JP2011100622A - Solid battery system - Google Patents

Solid battery system Download PDF

Info

Publication number
JP2011100622A
JP2011100622A JP2009254521A JP2009254521A JP2011100622A JP 2011100622 A JP2011100622 A JP 2011100622A JP 2009254521 A JP2009254521 A JP 2009254521A JP 2009254521 A JP2009254521 A JP 2009254521A JP 2011100622 A JP2011100622 A JP 2011100622A
Authority
JP
Japan
Prior art keywords
temperature
solid
solid battery
duct
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009254521A
Other languages
Japanese (ja)
Inventor
Yukiyoshi Ueno
幸義 上野
Yasuyuki Tamane
靖之 玉根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009254521A priority Critical patent/JP2011100622A/en
Publication of JP2011100622A publication Critical patent/JP2011100622A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/635Control systems based on ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid battery system capable of improving safety. <P>SOLUTION: The solid battery system comprises: a case for housing a solid battery provided with a solid electrolyte layer containing a solid sulfide and a pair of a positive electrode layer and an negative electrode layer pinching the solid electrolyte layer; a first temperature-adjusting means and a second temperature-adjusting means, capable of cooling the solid battery; a temperature-detecting means capable of detecting a temperature inside the case; and a controlling means for controlling the temperature of the solid battery based on the temperature-detecting result by the temperature-detecting means. The solid battery is cooled by using the first temperature-adjusting means for the temperature inside the case to become T1 or lower, and when the temperature inside the case exceeds T2 which is higher than T1, the solid battery is cooled by the second temperature-adjusting means having a higher cooling performance than the first temperature-adjusting means. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、固体電池システムに関する。   The present invention relates to a solid battery system.

リチウムイオン二次電池は、他の二次電池よりもエネルギー密度が高く、高電圧での動作が可能という特徴を有している。そのため、小型軽量化を図りやすい二次電池として携帯電話等の情報機器に使用されており、近年、電気自動車やハイブリッド自動車用等、大型の動力用としての需要も高まっている。   A lithium ion secondary battery has the characteristics that it has a higher energy density than other secondary batteries and can operate at a high voltage. For this reason, it is used as a secondary battery that can be easily reduced in size and weight in information equipment such as a mobile phone, and in recent years, there is an increasing demand for large motive power such as for electric vehicles and hybrid vehicles.

リチウムイオン二次電池には、正極層及び負極層と、これらの間に配置される電解質とが備えられ、電解質は、非水系の液体又は固体によって構成される。電解質に非水系の液体(以下において、「電解液」という。)が用いられる場合には、電解液が正極層の内部へと浸透する。そのため、正極層を構成する正極活物質と電解質との界面が形成されやすく、性能を向上させやすい。ところが、広く用いられている電解液は可燃性であるため、安全性を確保するためのシステムを搭載する必要がある。一方、固体の電解質は不燃性であるため、上記システムを簡素化できる。それゆえ、不燃性である固体の電解質を含有する層(以下において、「固体電解質層」ということがある。)が備えられる形態のリチウムイオン二次電池(以下において、「固体電池」という。)が提案されている。   The lithium ion secondary battery includes a positive electrode layer and a negative electrode layer, and an electrolyte disposed between the positive electrode layer and the negative electrode layer, and the electrolyte is composed of a non-aqueous liquid or solid. When a non-aqueous liquid (hereinafter referred to as “electrolytic solution”) is used as the electrolyte, the electrolytic solution penetrates into the positive electrode layer. Therefore, the interface between the positive electrode active material constituting the positive electrode layer and the electrolyte is easily formed, and the performance is easily improved. However, since the widely used electrolyte is flammable, it is necessary to mount a system for ensuring safety. On the other hand, since the solid electrolyte is nonflammable, the above system can be simplified. Therefore, a lithium ion secondary battery (hereinafter, referred to as “solid battery”) having a layer containing a non-combustible solid electrolyte (hereinafter, sometimes referred to as “solid electrolyte layer”). Has been proposed.

このような固体電池に関する技術として、例えば特許文献1には、分解により硫化水素ガスを発生する硫黄化合物を電池セル内に含み、硫化水素ガスをトラップし無毒化する物質で、電池セルの外周部が覆われている硫化物系二次電池が開示されている。また、車両に搭載された組電池(バッテリ)の温度調節に関する技術として、例えば特許文献2には、車両走行用のエンジンの冷却水を熱源とする温水加熱手段を組電池に設けることにより、車載の組電池を素早く且つ充分に昇温可能にした、車載組電池の温度調節装置が開示されている。また、特許文献3には、エンジン又は電池の温度制御に用いられる温度制御装置に関する技術が開示されている。   As a technique related to such a solid battery, for example, Patent Document 1 discloses a substance that contains a sulfur compound that generates hydrogen sulfide gas by decomposition in a battery cell, traps the hydrogen sulfide gas, and makes it non-toxic. A sulfide-based secondary battery in which is covered is disclosed. Further, as a technique related to temperature adjustment of an assembled battery (battery) mounted on a vehicle, for example, in Patent Document 2, a hot water heating unit that uses cooling water of an engine for running a vehicle as a heat source is provided in the assembled battery, so A temperature control device for an in-vehicle assembled battery that can quickly and sufficiently raise the temperature of the assembled battery is disclosed. Patent Document 3 discloses a technique related to a temperature control device used for temperature control of an engine or a battery.

特開2008−103245号公報JP 2008-103245 A 特開2009−73430号公報JP 2009-73430 A 特開平9−130917号公報Japanese Patent Laid-Open No. 9-130917

特許文献1に開示されている技術によれば、硫黄化合物を含む無機固体電解質を用い、電池セルの外周部を硫化水素ガスをトラップし無毒化する物質(以下において、「無毒化物質」という。)で覆うため、安全性を向上させることが可能になると考えられる。しかしながら、特許文献1では、硫化水素ガスの発生自体を抑制する対策が講じられていないため、安全対策が不十分であるという問題があった。かかる問題は、特許文献1〜特許文献3に開示されている技術を単に組み合わせたとしても、解決することが困難であった。   According to the technique disclosed in Patent Document 1, an inorganic solid electrolyte containing a sulfur compound is used, and a substance that traps hydrogen sulfide gas and detoxifies the outer periphery of a battery cell (hereinafter referred to as “detoxified substance”). ), It is considered possible to improve safety. However, in patent document 1, since the countermeasure which suppresses generation | occurrence | production itself of hydrogen sulfide gas is not taken, there existed a problem that a safety measure was inadequate. Such a problem has been difficult to solve even if the techniques disclosed in Patent Documents 1 to 3 are simply combined.

そこで本発明は、安全性を向上させることが可能な固体電池システムを提供することを課題とする。   Then, this invention makes it a subject to provide the solid battery system which can improve safety | security.

上記課題を解決するために、本発明は以下の手段をとる。すなわち、
本発明は、固体の硫化物を含有する固体電解質層と、該固体電解質層を狭持する一対の正極層及び負極層と、を備えた固体電池を収容する筐体と、固体電池を冷却可能な第1温度調整手段及び第2温度調整手段と、筐体の内側の温度を検出可能な温度検出手段と、該温度検出手段による温度検出結果に基づいて固体電池の温度を制御する制御手段と、を具備し、筐体の内側の温度がT1以下になるように、第1温度調整手段を用いて固体電池が冷却され、筐体の内側の温度がT1よりも高温であるT2を超えた場合に、第1温度調整手段よりも冷却性能が高い第2温度調整手段を用いて固体電池が冷却されることを特徴とする、固体電池システムである。
In order to solve the above problems, the present invention takes the following means. That is,
The present invention can cool a solid battery, a housing containing a solid battery including a solid electrolyte layer containing solid sulfide, and a pair of positive electrode layer and negative electrode layer sandwiching the solid electrolyte layer First temperature adjusting means and second temperature adjusting means, temperature detecting means capable of detecting the temperature inside the housing, and control means for controlling the temperature of the solid state battery based on the temperature detection result by the temperature detecting means, The solid battery is cooled by using the first temperature adjusting means so that the temperature inside the casing is equal to or lower than T1, and the temperature inside the casing exceeds T2, which is higher than T1. In this case, the solid state battery system is characterized in that the solid state battery is cooled by using the second temperature adjusting unit having a higher cooling performance than the first temperature adjusting unit.

ここに、「第1温度調整手段」は、筐体に収容されている固体電池を冷却可能であれば、その形態は特に限定されるものではない。例えば、本発明の固体電池システムがハイブリッド自動車に搭載された場合には、車両の車室外又は車室内の空気を筐体内へと流入させる吸気ダクトを第1温度調整手段として用いることができる。また、「第2温度調整手段」は、筐体に収容されている固体電池を冷却可能であり、且つ、第1温度調整手段よりも冷却性能が高ければ、その形態は特に限定されるものではない。例えば、本発明の固体電池システムがハイブリッド自動車に搭載された場合には、エアコンディショナー等の車両冷却装置を第2温度調整手段として用いることができる。   Here, the form of the “first temperature adjusting means” is not particularly limited as long as the solid battery accommodated in the housing can be cooled. For example, when the solid battery system of the present invention is mounted on a hybrid vehicle, an intake duct that allows air outside the vehicle interior or inside the vehicle interior to flow into the housing can be used as the first temperature adjusting means. The “second temperature adjusting means” is not particularly limited as long as the solid battery accommodated in the casing can be cooled and the cooling performance is higher than that of the first temperature adjusting means. Absent. For example, when the solid battery system of the present invention is mounted on a hybrid vehicle, a vehicle cooling device such as an air conditioner can be used as the second temperature adjusting means.

また、上記本発明において、さらに、筐体の内側の温度がT1よりも低温であるT3以下の場合に固体電池を加温可能な、第3温度調整手段が備えられることが好ましい。   Further, in the present invention, it is preferable that a third temperature adjusting unit is provided that can heat the solid state battery when the temperature inside the housing is equal to or lower than T3 that is lower than T1.

ここに、「第3温度調整手段」は、筐体に収容されている固体電池を加温可能であれば、その形態は特に限定されるものではない。例えば、本発明の固体電池システムがハイブリッド自動車に搭載された場合には、エンジンルームの空気を筐体へと流入させる手段を第3温度調整手段として用いることができる。   Here, the form of the “third temperature adjusting means” is not particularly limited as long as the solid battery accommodated in the housing can be heated. For example, when the solid battery system of the present invention is mounted on a hybrid vehicle, a means for allowing the air in the engine room to flow into the housing can be used as the third temperature adjusting means.

本発明の固体電池システムでは、温度がT1以下になるように第1温度調整手段を用いて固体電池が冷却され、温度がT2を超えた場合には第1温度調整手段よりも冷却性能が高い第2温度調整手段を用いて固体電池が冷却される。そのため、固体電池の過度の温度上昇を抑制することが可能になる。ここで、本発明の固体電池システムでは、固体の硫化物(以下において、「硫化物無機固体電解質」ということがある。)が用いられているので、高温環境(例えば、150℃程度の環境。以下において同じ。)下で固体の硫化物と水とが反応すると硫化水素ガスが発生しやすい。ところが、本発明の固体電池システムでは、第1温度調整手段及び第2温度調整手段を用いて、筐体内が高温環境に曝されないように制御される。固体電池の過度の温度上昇を抑制することにより、多量の硫化水素ガスが発生し難い環境にすることが可能になり、硫化水素ガスの発生を抑制することにより、安全性を向上させることが可能になる。したがって、本発明によれば、安全性を向上させることが可能な、固体電池システムを提供することができる。   In the solid battery system of the present invention, the solid state battery is cooled using the first temperature adjusting means so that the temperature is equal to or lower than T1, and when the temperature exceeds T2, the cooling performance is higher than that of the first temperature adjusting means. The solid state battery is cooled using the second temperature adjusting means. Therefore, it is possible to suppress an excessive temperature rise of the solid battery. Here, in the solid battery system of the present invention, since a solid sulfide (hereinafter sometimes referred to as “sulfide inorganic solid electrolyte”) is used, a high temperature environment (for example, an environment of about 150 ° C.). The same applies hereinafter.) Under the reaction of solid sulfide and water, hydrogen sulfide gas is likely to be generated. However, in the solid state battery system of the present invention, the interior of the housing is controlled so as not to be exposed to a high temperature environment by using the first temperature adjusting means and the second temperature adjusting means. By suppressing the excessive temperature rise of the solid state battery, it becomes possible to create an environment in which a large amount of hydrogen sulfide gas is difficult to generate, and by suppressing the generation of hydrogen sulfide gas, safety can be improved. become. Therefore, according to the present invention, a solid battery system capable of improving safety can be provided.

また、本発明の固体電池システムにおいて、温度がT3以下の場合に固体電池を加温可能な第3温度調整手段が備えられることにより、固体電池の過度の温度低下を抑制することが可能になる。固体電池の過度の温度低下を抑制することにより、固体電池の出力低下を抑制することが可能になる。したがって、かかる形態とすることにより、上記効果に加えて、性能を向上させることが可能な、固体電池システムを提供することができる。   Moreover, in the solid battery system of the present invention, it is possible to suppress an excessive temperature drop of the solid battery by providing the third temperature adjusting means capable of heating the solid battery when the temperature is equal to or lower than T3. . By suppressing the excessive temperature drop of the solid battery, it becomes possible to suppress the output drop of the solid battery. Therefore, by setting it as this form, in addition to the said effect, the solid battery system which can improve performance can be provided.

固体電池システム10を説明する図である。It is a figure explaining the solid battery system. 固体電池システム10の制御方法を説明する図である。3 is a diagram illustrating a control method of the solid battery system 10. FIG. 固体電池システム10に備えられる電池モジュールを説明する図である。1 is a diagram illustrating a battery module provided in a solid battery system 10. FIG. 積層型の固体電池を示す断面図である。It is sectional drawing which shows a laminated type solid battery. 捲回型の固体電池の構成要素を示す上面図である。It is a top view which shows the component of a winding type solid battery. 100℃における固体電池の充放電結果を示す図である。It is a figure which shows the charging / discharging result of the solid battery in 100 degreeC.

以下、図面を参照しつつ、本発明について説明する。なお、以下に示す形態は本発明の例示であり、本発明は以下に示す形態に限定されるものではない。   The present invention will be described below with reference to the drawings. In addition, the form shown below is an illustration of this invention and this invention is not limited to the form shown below.

図1は、本発明の固体電池システム10を説明する図であり、固体電池システム10がハイブリッド自動車に適用された場合の形態を簡略化して示している。図1に示すように、固体電池システム10は、固体電池を収容する筐体1と、車両の熱源と筐体1とを繋ぐダクト2と、車両の冷却源と筐体1とを繋ぐダクト3と、車内又は社外の空気を筐体1へと導くダクト4と、エンジン冷却水が流通する配管の周囲に存在する空気を筐体1へと導くダクト5と、筐体1へと接続されるダクト2、ダクト3、ダクト4、及び、ダクト5を切り替える切り替え手段6と、切り替え手段6の動作を制御することによって筐体1に収容された固体電池の温度制御形態を決定する制御装置7と、筐体1の内側の温度を検出する温度検出手段8と、外気の温度を検出する温度検出手段9と、を備えている。制御装置7は、切り替え手段6の動作制御を実行するCPU7aと、該CPU7aに対する記憶装置とが設けられている。CPU7aは、マイクロプロセッサユニット及びその動作に必要な各種周辺回路を組み合わせて構成され、CPU7aに対する記憶装置は、例えば、切り替え手段6の動作制御に必要なプログラムや各種データを記憶するROM7bと、CPU7aの作業領域として機能するRAM7c等を組み合わせて構成される。当該構成に加えて、さらに、CPU7aが、ROM7bに記憶されたソフトウエアと組み合わされることにより、固体電池システム10における制御装置7が機能する。温度検出手段8及び温度検出手段9によって検出された温度に関する情報(出力信号)は、制御装置7の入力ポート7dを介して、入力信号としてCPU7aへと到達する。CPU7aは、入力信号及びROM7bに記憶されたプログラムに基づいて、出力ポート7eを介して、切り替え手段6に対する動作指令を制御する。切り替え手段6は、CPU7aから与えられた動作指令に応じて、筐体1へと接続すべき温度調整手段(ダクト2、ダクト3、ダクト4、及び、ダクト5)を決定する。固体電池システム10において、筐体1には、ダクト2、ダクト3、ダクト4、及び、ダクト5から筐体1の内側へと導かれた空気を外へ排出可能な開口部(不図示)が備えられている。   FIG. 1 is a diagram for explaining a solid battery system 10 of the present invention, and shows a simplified form in a case where the solid battery system 10 is applied to a hybrid vehicle. As shown in FIG. 1, a solid battery system 10 includes a housing 1 that houses a solid battery, a duct 2 that connects a vehicle heat source and the housing 1, and a duct 3 that connects a vehicle cooling source and the housing 1. A duct 4 that guides air inside or outside the vehicle to the casing 1, a duct 5 that guides air around the piping through which engine coolant flows to the casing 1, and the casing 1. A switching unit 6 for switching the duct 2, the duct 3, the duct 4, and the duct 5, and a control device 7 for determining the temperature control mode of the solid battery accommodated in the housing 1 by controlling the operation of the switching unit 6; The temperature detecting means 8 for detecting the temperature inside the housing 1 and the temperature detecting means 9 for detecting the temperature of the outside air are provided. The control device 7 is provided with a CPU 7a that controls the operation of the switching means 6 and a storage device for the CPU 7a. The CPU 7a is configured by combining a microprocessor unit and various peripheral circuits necessary for its operation, and a storage device for the CPU 7a includes, for example, a ROM 7b for storing programs and various data necessary for operation control of the switching means 6, and the CPU 7a. It is configured by combining a RAM 7c or the like that functions as a work area. In addition to the configuration, the control device 7 in the solid state battery system 10 functions by combining the CPU 7a with software stored in the ROM 7b. Information (output signal) on the temperature detected by the temperature detecting means 8 and the temperature detecting means 9 reaches the CPU 7a as an input signal via the input port 7d of the control device 7. The CPU 7a controls an operation command to the switching unit 6 through the output port 7e based on the input signal and the program stored in the ROM 7b. The switching means 6 determines the temperature adjusting means (duct 2, duct 3, duct 4, and duct 5) to be connected to the housing 1 in accordance with the operation command given from the CPU 7a. In the solid battery system 10, the housing 1 has a duct 2, a duct 3, a duct 4, and an opening (not shown) through which air guided from the duct 5 to the inside of the housing 1 can be discharged to the outside. Is provided.

図2は、固体電池システム10の動作制御方法を説明するフローチャートである。固体電池システム10の動作は、温度検出手段8によって検出された筐体1の内側の温度(以下において、「温度T1」又は「T1」という。)、及び、温度検出手段9によって検出された外気の温度(以下において、「温度T2」又は「T2」という。)に基づいて制御される。以下、図1及び図2を参照しつつ、温度T1及び温度T2が検出された後の固体電池システム10の動作制御方法について、具体的に説明する。   FIG. 2 is a flowchart for explaining an operation control method of the solid battery system 10. The operation of the solid battery system 10 includes the temperature inside the casing 1 detected by the temperature detection means 8 (hereinafter referred to as “temperature T1” or “T1”) and the outside air detected by the temperature detection means 9. (Hereinafter, referred to as “temperature T2” or “T2”). Hereinafter, the operation control method of the solid battery system 10 after the temperature T1 and the temperature T2 are detected will be specifically described with reference to FIGS.

図2に示すように、固体電池システム10の動作制御方法では、まず、温度T1が温度x1(x1は25℃未満の任意の温度。例えば0℃。)よりも高温であるか否かが判断される(工程S1)。工程S1で肯定判断がなされた場合(x1<T1である場合)には、引き続き、温度T1が温度x2(x2は25℃<x2<150℃の任意の温度。例えば100℃。)よりも高温であるか否かが判断され(工程S2)、工程S1で否定判断がなされた場合(T1≦x1である場合)には、温度T1が温度T2よりも高温であるか否かが判断される(工程S16)。工程S2で否定判断がなされた場合(x1<T1≦x2である場合)には、かかる温度環境を維持するためにダクト5と筐体1とを接続すべく、CPU7aから切り替え手段6へ向けて動作指令が出力され(工程S11)、工程S2で肯定判断がなされた場合(x2<T1である場合)には、引き続き、温度T1が温度x3(x3は150℃<x3の任意の温度。例えば、250℃。)よりも高温であるか否かが判断される(工程S3)。   As shown in FIG. 2, in the operation control method of the solid battery system 10, first, it is determined whether or not the temperature T1 is higher than the temperature x1 (x1 is an arbitrary temperature lower than 25 ° C., for example, 0 ° C.). (Step S1). When an affirmative determination is made in step S1 (when x1 <T1), the temperature T1 continues to be higher than the temperature x2 (x2 is an arbitrary temperature of 25 ° C. <x2 <150 ° C., for example, 100 ° C.). Is determined (step S2), and if a negative determination is made in step S1 (when T1 ≦ x1), it is determined whether the temperature T1 is higher than the temperature T2. (Step S16). When a negative determination is made in step S2 (when x1 <T1 ≦ x2), the CPU 7a is directed to the switching unit 6 to connect the duct 5 and the housing 1 in order to maintain such a temperature environment. When an operation command is output (step S11) and an affirmative determination is made in step S2 (when x2 <T1), the temperature T1 continues to be any temperature x3 (x3 is 150 ° C. <x3. For example, , 250 ° C.) is determined (step S3).

工程S3で否定判断がなされた場合(x2<T1≦x3である場合)、x2<T1であるため、筐体1に収容された固体電池は高温になっている。そのため、固体電池が破損した場合に硫化水素ガスの生成が懸念される。そこで、ダクト4と筐体1とを接続し固体電池を冷却してその温度をx2以下へと低減することにより、多量の硫化水素ガスが生成され難い温度環境にすべく、CPU7aから切り替え手段6へ向けて動作指令が出力される(工程S12)。これに対し、工程S3で肯定判断がなされた場合(x3<T1である場合)には、筐体1に収容された固体電池の温度が過度に上昇しており、固体電池が破損すると多量の硫化水素ガスの生成されやすい温度環境になっていると考えられる。そのため、ダクト3と筐体1とを接続し固体電池を急冷してその温度をx2以下へと低減すべく、CPU7aから切り替え手段6へ向けて動作指令が出力される(工程S4)。   When a negative determination is made in step S3 (when x2 <T1 ≦ x3), since x2 <T1, the solid state battery accommodated in the housing 1 is at a high temperature. Therefore, there is a concern about generation of hydrogen sulfide gas when the solid battery is damaged. Therefore, the switching means 6 is switched from the CPU 7a to connect the duct 4 and the housing 1 and cool the solid state battery to reduce the temperature thereof to x2 or less so that a large amount of hydrogen sulfide gas is hardly generated. An operation command is output toward (step S12). On the other hand, when an affirmative determination is made in step S3 (when x3 <T1), the temperature of the solid battery accommodated in the housing 1 is excessively increased, and a large amount of damage occurs when the solid battery is damaged. It is thought that the temperature environment is such that hydrogen sulfide gas is easily generated. Therefore, an operation command is output from the CPU 7a to the switching means 6 in order to connect the duct 3 and the housing 1 and rapidly cool the solid battery to reduce its temperature to x2 or less (step S4).

工程S4によりダクト3と筐体1とが接続されたら、筐体1の内側の温度がどの程度低下したかを確認すべく、温度検出手段8によって筐体1の内側の温度T1が検出され(工程S5)、温度T1がx3以下に低下したか否かが判断される(工程S6)。工程S6で肯定判断がなされた場合(x3<T1である場合)には、固体電池の温度が充分に低下していないと考えられるので、処理が工程S4へと戻され、ダクト3と筐体1との接続が継続される。これに対し、工程S6で否定判断がなされた場合(x2<T1≦x3である場合)には、固体電池の温度が過度に上昇している事態は解消されたと考えられる。かかる場合には、固体電池の急冷を継続する必要性は低下したと考えられるものの、x2<T1であり、依然として硫化水素ガスの発生が懸念される温度環境であるため、固体電池の冷却は継続する必要があると考えられる。そこで、工程S6で否定判断がなされた場合には、ダクト3と筐体1との接続に代えて、ダクト3よりも冷却性能が低いダクト4と筐体1とを接続させるように切り替えるべく、CPU7aから切り替え手段6へ向けて動作指令が出力される(工程S7)。   When the duct 3 and the housing 1 are connected in step S4, the temperature detecting means 8 detects the temperature T1 inside the housing 1 in order to confirm how much the temperature inside the housing 1 has decreased ( Step S5), it is determined whether or not the temperature T1 has decreased to x3 or less (Step S6). If an affirmative determination is made in step S6 (when x3 <T1), it is considered that the temperature of the solid battery is not sufficiently lowered, so that the process returns to step S4, and the duct 3 and the housing Connection with 1 continues. On the other hand, when a negative determination is made in step S6 (when x2 <T1 ≦ x3), it is considered that the situation in which the temperature of the solid battery is excessively increased is eliminated. In such a case, although it is considered that the necessity to continue the rapid cooling of the solid state battery has decreased, since x2 <T1 and the temperature environment is still concerned about the generation of hydrogen sulfide gas, the solid state battery continues to be cooled. It is thought that it is necessary to do. Therefore, when a negative determination is made in step S6, instead of connecting the duct 3 and the casing 1, in order to switch to connect the duct 4 and the casing 1 having a cooling performance lower than that of the duct 3, An operation command is output from the CPU 7a to the switching means 6 (step S7).

工程S7によりダクト4と筐体1とが接続されたら、筐体1の内側の温度がどの程度低下したかを確認すべく、温度検出手段8によって筐体1の内側の温度T1が再び検出され(工程S8)、温度T1がx2よりも高温であるか否かが判断される(工程S9)。工程S9で肯定判断がなされた場合(x2<T1≦x3である場合)には、依然として硫化水素ガスの発生が懸念される温度環境であるため、処理がS7へと戻され、ダクト4と筐体1との接続が継続される。これに対し、工程S9で否定判断がなされた場合(x1<T1≦x2である場合)には、硫化水素ガスが多量に発生することはない温度にまで筐体1の内側の温度が低下したと考えられるので、かかる温度環境を維持するために、ダクト4と筐体1との接続に代えて、ダクト5と筐体1とを接続させるように切り替えるべく、CPU7aから切り替え手段6へ向けて動作指令が出力される(工程S10)。   When the duct 4 and the housing 1 are connected in step S7, the temperature T1 inside the housing 1 is detected again by the temperature detecting means 8 in order to confirm how much the temperature inside the housing 1 has decreased. (Step S8), it is determined whether or not the temperature T1 is higher than x2 (Step S9). When an affirmative determination is made in step S9 (when x2 <T1 ≦ x3), since the temperature environment is still concerned about the generation of hydrogen sulfide gas, the process returns to S7, and the duct 4 and the housing are connected. Connection with the body 1 is continued. On the other hand, when a negative determination is made in step S9 (when x1 <T1 ≦ x2), the temperature inside the housing 1 has decreased to a temperature at which a large amount of hydrogen sulfide gas is not generated. Therefore, in order to maintain such a temperature environment, instead of connecting the duct 4 and the housing 1, the CPU 7 a is directed to the switching means 6 in order to switch the connection so that the duct 5 and the housing 1 are connected. An operation command is output (step S10).

一方、上記工程S3で否定判断がなされ、上記工程S12によりダクト4と筐体1とが接続されたら、筐体1の内側の温度がどの程度低下したかを確認すべく、温度検出手段8によって筐体1の内側の温度T1が再び検出され(工程S13)、温度T1がx2よりも高温であるか否かが判断される(工程S14)。工程S14で肯定判断がなされた場合(x2<T1≦x3である場合)には、依然として硫化水素ガスの発生が懸念される温度環境であるため、処理が工程S12へと戻され、ダクト4と筐体1との接続が継続される。これに対し、工程S14で否定判断がなされた場合(x1<T1≦x2である場合)には、硫化水素ガスが多量に発生することはない温度にまで筐体1の内側の温度が低下したと考えられるので、かかる温度環境を維持するために、ダクト4と筐体1との接続に代えて、ダクト5と筐体1とを接続させるように切り替えるべく、CPU7aから切り替え手段6へ向けて動作指令が出力される(工程S15)。   On the other hand, if a negative determination is made in step S3 and the duct 4 and the housing 1 are connected in step S12, the temperature detecting means 8 checks whether the temperature inside the housing 1 has decreased. The temperature T1 inside the housing 1 is detected again (step S13), and it is determined whether or not the temperature T1 is higher than x2 (step S14). When an affirmative determination is made in step S14 (when x2 <T1 ≦ x3), since the temperature environment is still concerned about the generation of hydrogen sulfide gas, the process is returned to step S12, and the duct 4 and Connection with the housing 1 is continued. On the other hand, when a negative determination is made in step S14 (when x1 <T1 ≦ x2), the temperature inside the housing 1 has decreased to a temperature at which a large amount of hydrogen sulfide gas is not generated. Therefore, in order to maintain such a temperature environment, instead of connecting the duct 4 and the housing 1, the CPU 7 a is directed to the switching means 6 in order to switch the connection so that the duct 5 and the housing 1 are connected. An operation command is output (step S15).

このように、硫化水素ガスの発生が懸念されるx2<T1≦x3の場合にはダクト3よりも冷却性能が低いダクト4と筐体1とを接続して固体電池の温度がx2以下となるように固体電池を冷却し、硫化水素ガスの発生がより一層懸念されるx3<T1の場合には冷却性能の高いダクト3と筐体1とを接続して固体電池の温度がx3以下となるように固体電池を急冷することにより、固体電池が、硫化水素ガスの発生が懸念される温度環境に長時間に亘って曝される事態を防止することが可能になる。したがって、ダクト3、ダクト4、切り替え手段6、制御装置7、及び、温度検出手段8を備える固体電池システム10によれば、筐体1に収容された固体電池が、硫化水素ガスの発生が懸念される高温環境に曝される事態を抑制することができるので、安全性を向上させることが可能になる。また、固体電池システム10をこのように制御することにより、固体電池システム10の安全性を向上させることが可能になる。   Thus, in the case of x2 <T1 ≦ x3 in which generation of hydrogen sulfide gas is a concern, the temperature of the solid battery becomes x2 or less by connecting the duct 4 and the housing 1 whose cooling performance is lower than that of the duct 3. In the case of x3 <T1, where the generation of hydrogen sulfide gas is further concerned, the solid battery is cooled to a temperature of x3 or less by connecting the duct 3 and the housing 1 having high cooling performance. Thus, by rapidly cooling the solid state battery, it is possible to prevent the solid state battery from being exposed to a temperature environment where generation of hydrogen sulfide gas is a concern over a long period of time. Therefore, according to the solid battery system 10 including the duct 3, the duct 4, the switching means 6, the control device 7, and the temperature detection means 8, there is a concern that the solid battery housed in the housing 1 may generate hydrogen sulfide gas. Since it is possible to suppress the situation of being exposed to a high temperature environment, safety can be improved. In addition, by controlling the solid battery system 10 in this way, the safety of the solid battery system 10 can be improved.

他方、上記工程S1で否定判断がなされた場合(T1≦x1である場合)には、筐体1の内側の温度T1が低温(x1=0℃である場合には零度以下の温度)であるため、硫化水素ガスの発生はそれほど懸念されない。しかしながら、固体電池は温度が低下すると出力が低下しやすい。そこで、固体電池の出力低下を抑制すべく、工程S1で否定判断がなされた場合には、ダクト2と筐体1とを接続することにより、固体電池を加温する。以下、T1≦x1である場合における固体電池システム10の制御方法について説明する。   On the other hand, when a negative determination is made in the above step S1 (when T1 ≦ x1), the temperature T1 inside the housing 1 is a low temperature (a temperature of 0 ° C. or less when x1 = 0 ° C.). Therefore, the generation of hydrogen sulfide gas is not so concerned. However, the output of a solid battery tends to decrease as the temperature decreases. Therefore, when a negative determination is made in step S <b> 1 in order to suppress a decrease in the output of the solid battery, the solid battery is heated by connecting the duct 2 and the housing 1. Hereinafter, a control method of the solid battery system 10 when T1 ≦ x1 will be described.

上記工程S1で否定判断がなされたら、引き続き、温度T1が温度T2よりも高温であるか否かが判断される(工程S16)。工程S16で肯定判断がなされた場合(T2<T1≦x1である場合)には、筐体1に収容された固体電池を加温するためにダクト2及びダクト5と筐体1とを接続すべく、CPU7aから切り替え手段6へ向けて動作指令が出力される(工程S17)。ここで、工程S17でダクト2及びダクト5と筐体1とを接続するのは、電池を加温し出力を向上させるためである。これに対し、工程S16で否定判断がなされた場合(T1≦T2である場合)には、筐体1に収容された固体電池を加温するためにダクト2、ダクト4、及び、ダクト5と筐体1とを接続すべく、CPU7aから切り替え手段6へ向けて動作指令が出力される(工程S21)。ここで、上記工程S17とは異なり、工程S21でダクト2、ダクト4、及び、ダクト5と筐体1とを接続するのは、外気温が電池温よりも高く、ダクト4による加温が有効だからである。   If a negative determination is made in step S1, it is subsequently determined whether or not the temperature T1 is higher than the temperature T2 (step S16). When an affirmative determination is made in step S16 (when T2 <T1 ≦ x1), the duct 2 and the duct 5 are connected to the casing 1 in order to heat the solid state battery accommodated in the casing 1. Accordingly, an operation command is output from the CPU 7a to the switching means 6 (step S17). Here, the reason why the duct 2 and the duct 5 are connected to the housing 1 in the step S17 is to warm the battery and improve the output. On the other hand, when a negative determination is made in step S16 (when T1 ≦ T2), the duct 2, duct 4, and duct 5 are used to heat the solid battery accommodated in the housing 1. In order to connect the housing 1, an operation command is output from the CPU 7a to the switching means 6 (step S21). Here, unlike the step S17, the duct 2, the duct 4, and the duct 5 and the housing 1 are connected in the step S21 because the outside air temperature is higher than the battery temperature and the heating by the duct 4 is effective. That's why.

工程S17によりダクト2及びダクト5と筐体1とが接続されたら、筐体1の内側の温度がどの程度上昇したかを確認すべく、温度検出手段8によって筐体1の内側の温度T1が検出され(工程S18)、温度T1が温度x1よりも高温になったか否かが判断される(工程S19)。工程S19で否定判断がなされた場合(T2<T1≦x1である場合)には、固体電池の加温が充分ではないと考えられるため、処理が工程S17へと戻され、ダクト2及びダクト5と筐体1との接続が継続される。これに対し、工程S19で肯定判断がなされた場合(x1<T1である場合)には、性能の低下が懸念されない程度に固体電池が加温されたと考えられるので、かかる温度環境を維持するために、ダクト2及びダクト5と筐体1との接続に代えて、ダクト5と筐体1とを接続させるように切り替えるべく、CPU7aから切り替え手段6へ向けて動作指令が出力される(工程S20)。   When the duct 2 and the duct 5 and the casing 1 are connected in the step S17, the temperature T1 inside the casing 1 is set by the temperature detecting means 8 in order to check how much the temperature inside the casing 1 has increased. It is detected (step S18), and it is determined whether or not the temperature T1 is higher than the temperature x1 (step S19). When a negative determination is made in step S19 (when T2 <T1 ≦ x1), it is considered that the solid battery is not sufficiently heated, so the process returns to step S17, and duct 2 and duct 5 are processed. And the housing 1 are continuously connected. On the other hand, when an affirmative determination is made in step S19 (when x1 <T1), it is considered that the solid state battery has been heated to such an extent that there is no concern about performance deterioration, so that this temperature environment is maintained. In addition, instead of connecting the duct 2 and the duct 5 to the housing 1, an operation command is output from the CPU 7a to the switching means 6 in order to switch the duct 5 and the housing 1 to be connected (step S20). ).

一方、上記工程S16で否定判断がなされ、上記工程S21でダクト2、ダクト4、及び、ダクト5と筐体1とが接続されたら、筐体1の内側の温度がどの程度上昇したかを確認すべく、温度検出手段8によって筐体1の内側の温度T1が検出され(工程S22)、温度T1が温度T2よりも高温になったか否かが判断される(工程S23)。工程S23で否定判断がなされた場合(T1≦T2である場合)には、上記工程S16で否定判断がなされた時と状況があまり変わっていないと考えられるので、処理が工程S21へと戻され、ダクト2、ダクト4、及び、ダクト5と筐体1との接続が継続される。これに対し、工程S23で肯定判断がなされた場合(T2<T1≦x1である場合)には、外気を用いて電池を加温することができず、電池を逆に冷却してしまうため、ダクト2、ダクト4、及び、ダクト5と筐体1との接続に代えて、ダクト2及びダクト5と筐体1とを接続させるように切り替えるべく、CPU7aから切り替え手段6へ向けて動作指令が出力される(工程S24)。   On the other hand, if a negative determination is made in step S16 and the duct 2, duct 4, and duct 5 are connected to the casing 1 in step S21, it is confirmed how much the temperature inside the casing 1 has increased. Accordingly, the temperature T1 inside the housing 1 is detected by the temperature detection means 8 (step S22), and it is determined whether or not the temperature T1 is higher than the temperature T2 (step S23). If a negative determination is made in step S23 (when T1 ≦ T2), it is considered that the situation has not changed much from the case where the negative determination is made in step S16, so the process returns to step S21. The connection between the duct 2, the duct 4, and the duct 5 and the housing 1 is continued. On the other hand, when an affirmative determination is made in step S23 (when T2 <T1 ≦ x1), the battery cannot be heated using outside air, and the battery is cooled in the reverse direction. Instead of connecting the duct 2, the duct 4, and the duct 5 to the housing 1, an operation command is issued from the CPU 7 a to the switching means 6 in order to switch the duct 2, the duct 5 and the housing 1 to be connected. This is output (step S24).

工程S24によりダクト2及びダクト5と筐体1とが接続されたら、筐体1の内側の温度がどの程度上昇したかを確認すべく、温度検出手段8によって筐体1の内側の温度T1が検出され(工程S25)、温度T1が温度x1よりも高温になったか否かが判断される(工程S26)。工程S26で否定判断がなされた場合(T2<T1≦x1である場合)には、上記工程S23で肯定判断がなされた時と状況があまり変わっていないと考えられるので、処理が工程S24へと戻され、ダクト2及びダクト5と筐体1との接続が継続される。これに対し、工程S26で肯定判断がなされた場合(x1<T1である場合)には、性能の低下が懸念されない程度に固体電池が加温されたと考えられるので、かかる温度環境を維持するために、ダクト2及びダクト5と筐体1との接続に代えて、ダクト5と筐体1とを接続させるように切り替えるべく、CPU7aから切り替え手段6へ向けて動作指令が出力される(工程S27)。   When the duct 2 and the duct 5 are connected to the housing 1 in the step S24, the temperature T1 inside the housing 1 is detected by the temperature detecting means 8 in order to check how much the temperature inside the housing 1 has increased. It is detected (step S25), and it is determined whether or not the temperature T1 is higher than the temperature x1 (step S26). If a negative determination is made in step S26 (when T2 <T1 ≦ x1), it is considered that the situation has not changed much from the case where an affirmative determination is made in step S23, so that the process proceeds to step S24. The connection between the duct 2 and the duct 5 and the housing 1 is continued. On the other hand, when an affirmative determination is made in step S26 (when x1 <T1), it is considered that the solid state battery has been heated to such an extent that there is no concern about performance degradation. In addition, instead of connecting the duct 2 and the duct 5 to the housing 1, an operation command is output from the CPU 7a to the switching means 6 in order to switch the duct 5 and the housing 1 so as to be connected (step S27). ).

このように、性能の低下が懸念されるT1≦x1の場合には、ダクト2と筐体1とを接続して固体電池の温度がx1よりも高温となるように固体電池を加温することにより、固体電池が、性能の低下が懸念される温度環境に曝される事態を抑制することができる。したがって、ダクト2、切り替え手段6、制御装置7、温度検出手段8、及び、温度検出手段9を備える固体電池システム10によれば、筐体1に収容された固体電池が、性能の低下が懸念される低温環境に曝される事態を抑制することができるので、性能を向上させることが可能になる。また、固体電池システム10をこのように制御することにより、固体電池システム10の性能を向上させることが可能になる。   Thus, in the case of T1 ≦ x1 in which performance degradation is a concern, the duct 2 and the housing 1 are connected and the solid battery is heated so that the temperature of the solid battery is higher than x1. Thus, it is possible to suppress the situation where the solid battery is exposed to a temperature environment in which the performance may be deteriorated. Therefore, according to the solid battery system 10 including the duct 2, the switching unit 6, the control device 7, the temperature detection unit 8, and the temperature detection unit 9, there is a concern that the performance of the solid battery housed in the housing 1 may be deteriorated. Since it is possible to suppress the situation of being exposed to a low temperature environment, the performance can be improved. Further, by controlling the solid battery system 10 in this way, the performance of the solid battery system 10 can be improved.

加えて、固体電池システム10によれば、固体電池の温度変化を低減することが可能になるので、界面抵抗を低減する等の目的で固体電池へと付与される拘束圧の変化を抑制することが可能になる。さらに、無毒化物質の使用を必須の構成としない本発明の固体電池システムによれば、単位容量・質量当たりのエネルギー密度を向上させること及び車両搭載性を向上させることが可能になるほか、製造コストを抑制することも可能になる。   In addition, according to the solid battery system 10, it is possible to reduce the temperature change of the solid battery, and thus it is possible to suppress the change in the restraint pressure applied to the solid battery for the purpose of reducing the interface resistance. Is possible. Furthermore, according to the solid battery system of the present invention that does not require the use of a detoxifying substance, it is possible to improve the energy density per unit capacity and mass, improve the vehicle mountability, and manufacture Costs can be suppressed.

図3は、筐体1に収容される電池モジュールの形態例を説明する図である。図3に示すように、筐体1には、複数の電池モジュール20、20、…が収容されており、これら複数の電池モジュール20、20、…は要求される出力を得られるように、適宜、電気的に直列・並列に接続されている。電池モジュール20には複数の固体電池が収容されており、当該複数の固体電池が採り得る形態に、積層型及び捲回型がある。そこで、積層型の固体電池の形態例を図4に、捲回型の固体電池の形態例を図5にそれぞれ示す。   FIG. 3 is a diagram for explaining an example of the battery module accommodated in the housing 1. As shown in FIG. 3, a plurality of battery modules 20, 20,... Are accommodated in the housing 1, and the plurality of battery modules 20, 20,. They are electrically connected in series and parallel. A plurality of solid state batteries are accommodated in the battery module 20, and there are a stacked type and a wound type as a form that the plurality of solid state batteries can take. Therefore, FIG. 4 shows an example of a stacked solid battery, and FIG. 5 shows an example of a wound solid battery.

図4は、複数の固体電池31、31、31を積層することによって構成される積層型の固体電池(以下において、「積層型固体電池30」という。)の形態例を示す断面図である。積層型固体電池30の構成の理解を容易にするため、図4では、3つの固体電池31、31、31を積層することによって構成した積層型固体電池30を示している。図4に示すように、積層型固体電池30では、固体電池31、31、31と集電箔32、32、32、32とが交互に積層されており、積層方向の一端側に配設されている集電箔32に負極端子33が、積層方向の他端側に配設されている集電箔32に正極端子34が、それぞれ接続されている。すなわち、積層型固体電池30では、固体電池31、31、31が電気的に直列に接続されている。積層型固体電池30において、集電箔32に接続される固体電池31は、正極層31aと、硫化物無機固体電解質を含有する電解質層31bと、負極層31cとを有しており、電解質層31bが正極層31a及び負極層31cによって狭持されている。   FIG. 4 is a cross-sectional view showing a form example of a stacked solid battery (hereinafter referred to as “stacked solid battery 30”) configured by stacking a plurality of solid batteries 31, 31, and 31. FIG. In order to facilitate understanding of the configuration of the stacked solid battery 30, FIG. 4 shows a stacked solid battery 30 configured by stacking three solid batteries 31, 31, 31. As shown in FIG. 4, in the stacked solid battery 30, the solid batteries 31, 31, 31 and the current collector foils 32, 32, 32, 32 are alternately stacked and arranged on one end side in the stacking direction. A negative electrode terminal 33 is connected to the current collector foil 32, and a positive electrode terminal 34 is connected to the current collector foil 32 disposed on the other end side in the stacking direction. That is, in the stacked solid battery 30, the solid batteries 31, 31, and 31 are electrically connected in series. In the stacked solid battery 30, the solid battery 31 connected to the current collector foil 32 includes a positive electrode layer 31a, an electrolyte layer 31b containing a sulfide inorganic solid electrolyte, and a negative electrode layer 31c. 31b is sandwiched between the positive electrode layer 31a and the negative electrode layer 31c.

図5は、捲回型の固体電池(以下において、「捲回型固体電池40」という。)の形態例を示す断面図である。捲回型固体電池40の構成の理解を容易にするため、図5では、捲回型固体電池40の一部を抽出し、捲回される前の各層の位置を上下にずらして示している。また、図5では、一部符号の記載を省略している。図5に示すように、捲回型固体電池40は、複数の固体電池41、41、…を備えており、隣接する固体電池41、41が集電箔42を介して接続されることにより、複数の固体電池41、41、…が電気的に直列に接続されている。捲回型固体電池40において、集電箔42に接続される固体電池41は、正極層41aと、硫化物無機固体電解質を含有する電解質層41bと、負極層41cとを有しており、電解質層41bが正極層41a及び負極層41cによって狭持されている。   FIG. 5 is a cross-sectional view showing a form example of a wound solid battery (hereinafter referred to as “wound solid battery 40”). In order to facilitate understanding of the configuration of the wound solid battery 40, FIG. 5 shows a part of the wound solid battery 40 extracted, and the positions of the layers before being wound are shifted up and down. . Further, in FIG. 5, some reference numerals are omitted. As shown in FIG. 5, the wound solid battery 40 includes a plurality of solid batteries 41, 41,..., And the adjacent solid batteries 41, 41 are connected via the current collector foil 42. A plurality of solid state batteries 41, 41,... Are electrically connected in series. In the wound solid battery 40, the solid battery 41 connected to the current collector foil 42 includes a positive electrode layer 41a, an electrolyte layer 41b containing a sulfide inorganic solid electrolyte, and a negative electrode layer 41c. The layer 41b is sandwiched between the positive electrode layer 41a and the negative electrode layer 41c.

固体電池システム10において、電解質層31b、41bは、例えば、LiS:P=50:50〜100:0(質量比)でLiS及びP(以下において、「LiS−P」という。)を混合し、10MPa〜500MPaの圧力でプレスすることにより作製することができる。 In the solid battery system 10, the electrolyte layers 31 b and 41 b are, for example, Li 2 S: P 2 S 5 = 50: 50 to 100: 0 (mass ratio) and Li 2 S and P 2 S 5 (hereinafter referred to as “Li 2 S-P 2 S 5 "hereinafter.) were mixed, it can be prepared by pressing at a pressure of 10MPa~500MPa.

また、固体電池システム10において、正極層31a、41aは、例えば、正極材と電解質層31b、41bに含有させたLiS−Pとを混合し、98MPaの圧力でプレスすることにより作製することができる。正極層31a、41aに含有させる正極材としては、リチウム遷移金属酸化物及びカルコゲン化物を例示することができる。正極層31a、41aに含有させるリチウム遷移金属酸化物としては、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、鉄オリビン(LiFePO)、コバルトオリビン(LiCoPO)、マンガンオリビン(LiMnPO)、及び、チタン酸リチウム(LiTi12)等を例示することができる。また、正極層31a、41aに含有させるカルコゲン化物としては、銅シュブレル(CuMo)、硫化鉄(FeS)、及び、硫化コバルト(CoS)、及び、硫化ニッケル(NiS)等を例示することができる。 In the solid battery system 10, the positive electrode layers 31 a and 41 a are mixed with, for example, a positive electrode material and Li 2 S—P 2 S 5 contained in the electrolyte layers 31 b and 41 b and pressed at a pressure of 98 MPa. Can be produced. Examples of the positive electrode material contained in the positive electrode layers 31a and 41a include lithium transition metal oxides and chalcogenides. Examples of the lithium transition metal oxide contained in the positive electrode layers 31a and 41a include lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), iron olivine (LiFePO 4 ), cobalt olivine ( Examples include LiCoPO 4 ), manganese olivine (LiMnPO 4 ), and lithium titanate (Li 4 Ti 5 O 12 ). Examples of chalcogenides to be contained in the positive electrode layers 31a and 41a include copper subrel (Cu 2 Mo 6 S 8 ), iron sulfide (FeS), cobalt sulfide (CoS), and nickel sulfide (NiS). can do.

また、固体電池システム10において、負極層31c、41cは、例えば、負極材と電解質層31b、41bに含有させたLiS−Pとを混合し、392MPaの圧力でプレスすることにより作製することができる。負極層31c、41cに含有させる負極材としては、カーボン、リチウム遷移金属酸化物、及び、合金を例示することができる。負極層31c、41cに含有させるリチウム遷移金属酸化物としては、チタン酸リチウム(LiTi12)を例示することができる。また、負極層31c、41cに含有させる合金としては、LaNiSnを例示することができる。 Moreover, in the solid battery system 10, the negative electrode layers 31c and 41c are formed by, for example, mixing the negative electrode material and Li 2 S—P 2 S 5 contained in the electrolyte layers 31b and 41b and pressing the mixture at a pressure of 392 MPa. Can be produced. Examples of the negative electrode material contained in the negative electrode layers 31c and 41c include carbon, a lithium transition metal oxide, and an alloy. Examples of the lithium transition metal oxide to be contained in the negative electrode layers 31c and 41c include lithium titanate (Li 4 Ti 5 O 12 ). As the alloy to be contained negative electrode layer 31c, to 41c, it can be exemplified La 3 Ni 2 Sn 7.

また、固体電池システム10において、集電箔32、42は、固体電池で使用可能な公知の導電性材料によって構成することができる。   In the solid battery system 10, the current collector foils 32 and 42 can be made of a known conductive material that can be used in a solid battery.

筐体1に積層型固体電池30が収容される場合、この積層型固体電池30は、上記材料・方法によって作製した正極層31a、電解質層31b、及び、負極層31cをこの順で積層することにより構成される固体電池31と集電箔32とを交互に積層した後、プレス機を用いて98MPa〜490MPaの圧力でプレスする工程を経て作製することができる。   When the multilayer solid battery 30 is accommodated in the housing 1, the multilayer solid battery 30 is formed by laminating the positive electrode layer 31a, the electrolyte layer 31b, and the negative electrode layer 31c produced in the above-described materials / methods in this order. After alternately laminating the solid battery 31 and the current collector foil 32 constituted by the above, it can be manufactured through a step of pressing at a pressure of 98 MPa to 490 MPa using a press.

また、筐体1に捲回型固体電池40が収容される場合、この捲回型固体電池40は、上記材料・方法によって作製した電解質層41b、正極層41a、電解質層41b、及び、負極層41cをこの順で(又は、電解質層41b、負極層41c、電解質層41b、及び、正極層41aをこの順で)積層することにより構成される複数の固体電池41、41、…を、集電箔42を介して直列に接続することによって形成した構造体を、公知の捲回機を用いて捲回した後、プレス機を用いて98MPa〜490MPaの圧力でプレスする工程を経て作製することができる。   Further, when the wound solid battery 40 is accommodated in the housing 1, the wound solid battery 40 includes the electrolyte layer 41 b, the positive electrode layer 41 a, the electrolyte layer 41 b, and the negative electrode layer manufactured by the above-described materials and methods. A plurality of solid state batteries 41, 41,... Configured by stacking 41c in this order (or stacking electrolyte layer 41b, negative electrode layer 41c, electrolyte layer 41b, and positive electrode layer 41a in this order) A structure formed by connecting in series via the foil 42 is produced by winding a structure using a known winding machine and then pressing the structure at a pressure of 98 MPa to 490 MPa using a pressing machine. it can.

上記工程を経て作製した固体電池システム10を、上記動作制御方法によって制御することにより、筐体1に収容されている固体電池の温度を、電解質層に電解液が充填されるリチウムイオン二次電池と比較して高温域である100℃前後に制御した。100℃における固体電池の充放電結果を図6に示す。図6の縦軸は電圧[V]、横軸は比容量[mAh/g]である。図6に示すように、100℃で充放電することにより、良好な性能を発現させることができた。したがって、上記動作制御方法によって動作を制御することにより、固体電池システム10の安全性及び性能を向上させることが可能であった。   A lithium ion secondary battery in which the electrolyte layer is filled with an electrolyte by controlling the temperature of the solid battery housed in the housing 1 by controlling the solid battery system 10 manufactured through the above steps by the operation control method. The temperature was controlled around 100 ° C., which is a high temperature range. The charge / discharge results of the solid state battery at 100 ° C. are shown in FIG. In FIG. 6, the vertical axis represents voltage [V], and the horizontal axis represents specific capacity [mAh / g]. As shown in FIG. 6, good performance could be expressed by charging and discharging at 100 ° C. Therefore, it is possible to improve the safety and performance of the solid battery system 10 by controlling the operation by the operation control method.

本発明に関する上記説明では、温度x1として0℃を例示したが、本発明は温度x1が0℃である形態に限定されるものではない。温度x1は、固体電池の出力の観点から決定される温度であり、x1<25℃の任意の温度とすることが可能である。   In the above description regarding the present invention, 0 ° C. is exemplified as the temperature x1, but the present invention is not limited to the form in which the temperature x1 is 0 ° C. The temperature x1 is a temperature determined from the viewpoint of the output of the solid state battery, and can be an arbitrary temperature of x1 <25 ° C.

また、本発明に関する上記説明では、温度x2として100℃を例示したが、本発明は温度x2が100℃である形態に限定されるものではない。温度x2は、固体電池の劣化の観点から決定される温度であり、25℃<x2<150℃の任意の温度とすることが可能である。   In the above description regarding the present invention, the temperature x2 is exemplified as 100 ° C. However, the present invention is not limited to the embodiment in which the temperature x2 is 100 ° C. The temperature x2 is a temperature determined from the viewpoint of deterioration of the solid state battery, and can be an arbitrary temperature of 25 ° C. <x2 <150 ° C.

また、本発明に関する上記説明では、温度x3として250℃を例示したが、本発明は温度x3が250℃である形態に限定されるものではない。温度x3は、固体電池の硫化水素発生量の観点から決定される温度であり、150℃<x3の任意の温度とすることが可能である。   In the above description regarding the present invention, 250 ° C. is exemplified as the temperature x3, but the present invention is not limited to the embodiment in which the temperature x3 is 250 ° C. The temperature x3 is a temperature determined from the viewpoint of the amount of hydrogen sulfide generated in the solid state battery, and can be an arbitrary temperature of 150 ° C. <x3.

また、本発明に関する上記説明では、第1温度調整手段として機能し得るダクト4、及び、第2温度調整手段として機能し得るダクト3に加えて、第3温度調整手段として機能し得るダクト2が備えられる固体電池システム10を例示したが、本発明は当該形態に限定されるものではない。ただし、低温環境に曝されることによる固体電池の性能低下を抑制可能な形態にする等の観点からは、第3温度調整手段が備えられる形態の固体電池システムとすることが好ましい。   In the above description regarding the present invention, in addition to the duct 4 that can function as the first temperature adjusting means and the duct 3 that can function as the second temperature adjusting means, the duct 2 that can function as the third temperature adjusting means. Although the solid battery system 10 provided is illustrated, the present invention is not limited to the embodiment. However, from the viewpoint of suppressing the deterioration of the performance of the solid battery due to exposure to a low temperature environment, it is preferable to provide a solid battery system with a third temperature adjusting means.

また、本発明において、切り替え手段6は、筐体1へと接続されるべき温度調整手段(ダクト2、ダクト3、ダクト4、及び、ダクト5)を切り替え可能であれば、その形態は特に限定されるものではなく、ハイブリッド自動車等で用いられる公知の切り替え手段を適宜用いることができる。   In the present invention, the form of the switching means 6 is particularly limited as long as the temperature adjusting means (duct 2, duct 3, duct 4, and duct 5) to be connected to the housing 1 can be switched. However, known switching means used in a hybrid vehicle or the like can be used as appropriate.

また、本発明において、制御装置7は、温度検出手段8及び温度検出手段9によって検出された温度の結果に基づいて切り替え手段6の動作を制御可能であれば、その形態は特に限定されるものではなく、ハイブリッド自動車等で用いられる公知の制御装置を適宜用いることができる。   Further, in the present invention, the form of the control device 7 is particularly limited as long as the control device 7 can control the operation of the switching means 6 based on the temperature results detected by the temperature detection means 8 and the temperature detection means 9. Instead, a known control device used in a hybrid vehicle or the like can be used as appropriate.

また、本発明において、温度検出手段8及び温度検出手段9は、温度を検出してその結果を制御装置7へと出力可能であれば、その形態は特に限定されるものではなく、公知の温度センサー等を適宜用いることができる。   In the present invention, the temperature detection means 8 and the temperature detection means 9 are not particularly limited in form as long as the temperature detection means 8 and the temperature detection means 9 can detect the temperature and output the result to the control device 7. A sensor or the like can be used as appropriate.

本発明の固体電池システムは、電気自動車やハイブリッド自動車用等に利用することができる。   The solid battery system of the present invention can be used for electric vehicles, hybrid vehicles, and the like.

1…筐体
2…ダクト(第3温度調整手段)
3…ダクト(第2温度調整手段)
4…ダクト(第1温度調整手段)
5…ダクト
6…切り替え手段
7…制御装置(制御手段)
7a…CPU
7b…ROM
7c…RAM
7d…入力ポート
7e…出力ポート
8…温度検出手段
9…温度検出手段
10…固体電池システム
20…電池モジュール
30…積層型固体電池
31、41…固体電池
31a、41a…正極層
31b、41b…電解質層(固体電解質層)
31c、41c…負極層
32、42…集電箔
40…捲回型固体電池
DESCRIPTION OF SYMBOLS 1 ... Housing 2 ... Duct (3rd temperature adjustment means)
3. Duct (second temperature adjusting means)
4 ... Duct (first temperature adjusting means)
5 ... Duct 6 ... Switching means 7 ... Control device (control means)
7a ... CPU
7b ... ROM
7c ... RAM
7d: Input port 7e: Output port 8 ... Temperature detection means 9 ... Temperature detection means 10 ... Solid battery system 20 ... Battery module 30 ... Stacked solid battery 31, 41 ... Solid battery 31a, 41a ... Positive electrode layer 31b, 41b ... Electrolyte Layer (solid electrolyte layer)
31c, 41c ... negative electrode layer 32, 42 ... current collector foil 40 ... wound solid battery

Claims (2)

固体の硫化物を含有する固体電解質層と、該固体電解質層を狭持する一対の正極層及び負極層と、を備えた固体電池を収容する筐体と、前記固体電池を冷却可能な第1温度調整手段及び第2温度調整手段と、前記筐体の内側の温度を検出可能な温度検出手段と、該温度検出手段による温度検出結果に基づいて前記固体電池の温度を制御する制御手段と、を具備し、
前記筐体の内側の温度がT1以下になるように、前記第1温度調整手段を用いて前記固体電池が冷却され、
前記筐体の内側の温度が前記T1よりも高温であるT2を超えた場合に、前記第1温度調整手段よりも冷却性能が高い前記第2温度調整手段を用いて前記固体電池が冷却されることを特徴とする、固体電池システム。
A housing containing a solid battery comprising a solid electrolyte layer containing solid sulfide and a pair of positive electrode layer and negative electrode layer sandwiching the solid electrolyte layer, and a first capable of cooling the solid battery A temperature adjusting means and a second temperature adjusting means; a temperature detecting means capable of detecting the temperature inside the housing; and a control means for controlling the temperature of the solid state battery based on a temperature detection result by the temperature detecting means; Comprising
The solid state battery is cooled using the first temperature adjusting means so that the temperature inside the casing is equal to or lower than T1,
When the temperature inside the casing exceeds T2, which is higher than T1, the solid state battery is cooled by using the second temperature adjusting means having a higher cooling performance than the first temperature adjusting means. A solid state battery system.
さらに、前記筐体の内側の温度が前記T1よりも低温であるT3以下の場合に前記固体電池を加温可能な、第3温度調整手段が備えられることを特徴とする、請求項1に記載の固体電池システム。 The third temperature adjusting means is further provided for heating the solid state battery when the temperature inside the casing is equal to or lower than T3 which is lower than the T1. Solid battery system.
JP2009254521A 2009-11-06 2009-11-06 Solid battery system Pending JP2011100622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009254521A JP2011100622A (en) 2009-11-06 2009-11-06 Solid battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009254521A JP2011100622A (en) 2009-11-06 2009-11-06 Solid battery system

Publications (1)

Publication Number Publication Date
JP2011100622A true JP2011100622A (en) 2011-05-19

Family

ID=44191648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009254521A Pending JP2011100622A (en) 2009-11-06 2009-11-06 Solid battery system

Country Status (1)

Country Link
JP (1) JP2011100622A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015031483A1 (en) * 2013-08-28 2015-03-05 Robert Bosch Gmbh Solid state battery with integrated rate booster
WO2018188223A1 (en) * 2017-04-12 2018-10-18 宁德时代新能源科技股份有限公司 Battery, battery system and using method for the battery
JP2019192609A (en) * 2018-04-27 2019-10-31 日本碍子株式会社 All-solid lithium battery and method of manufacturing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09232007A (en) * 1996-02-20 1997-09-05 Toyota Autom Loom Works Ltd Cooling device for vehicle battery
JP2002191104A (en) * 2000-10-13 2002-07-05 Honda Motor Co Ltd Battery cooling device for vehicle
JP2002345163A (en) * 2001-05-14 2002-11-29 Sony Corp Power supply and control method therefor
JP2004362949A (en) * 2003-06-05 2004-12-24 Sony Corp Battery device, battery heating method, and electric hybrid bicycle
JP2008103245A (en) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd Sulfide based secondary battery
JP2008287970A (en) * 2007-05-16 2008-11-27 Toyota Motor Corp All solid lithium secondary battery
JP2009193727A (en) * 2008-02-12 2009-08-27 Toyota Motor Corp All-solid lithium secondary battery
WO2009110352A1 (en) * 2008-03-05 2009-09-11 カルソニックカンセイ株式会社 Vehicle battery cooling device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09232007A (en) * 1996-02-20 1997-09-05 Toyota Autom Loom Works Ltd Cooling device for vehicle battery
JP2002191104A (en) * 2000-10-13 2002-07-05 Honda Motor Co Ltd Battery cooling device for vehicle
JP2002345163A (en) * 2001-05-14 2002-11-29 Sony Corp Power supply and control method therefor
JP2004362949A (en) * 2003-06-05 2004-12-24 Sony Corp Battery device, battery heating method, and electric hybrid bicycle
JP2008103245A (en) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd Sulfide based secondary battery
JP2008287970A (en) * 2007-05-16 2008-11-27 Toyota Motor Corp All solid lithium secondary battery
JP2009193727A (en) * 2008-02-12 2009-08-27 Toyota Motor Corp All-solid lithium secondary battery
WO2009110352A1 (en) * 2008-03-05 2009-09-11 カルソニックカンセイ株式会社 Vehicle battery cooling device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015031483A1 (en) * 2013-08-28 2015-03-05 Robert Bosch Gmbh Solid state battery with integrated rate booster
US9799933B2 (en) 2013-08-28 2017-10-24 Robert Bosch Gmbh Solid state battery with integrated rate booster
WO2018188223A1 (en) * 2017-04-12 2018-10-18 宁德时代新能源科技股份有限公司 Battery, battery system and using method for the battery
CN108695565A (en) * 2017-04-12 2018-10-23 宁德时代新能源科技股份有限公司 Battery, battery system and battery using method
JP2019192609A (en) * 2018-04-27 2019-10-31 日本碍子株式会社 All-solid lithium battery and method of manufacturing the same

Similar Documents

Publication Publication Date Title
CN107195945B (en) Nonaqueous electrolyte battery, nonaqueous electrolyte battery pack, and vehicle
JP4977375B2 (en) Lithium ion battery and battery pack using the same
US8859124B2 (en) Integrated circuit and battery pack using the same
JP5772428B2 (en) Secondary battery cooling device
JP5050065B2 (en) Metal-air secondary battery
JP4173674B2 (en) Electrochemical device module
JP5100143B2 (en) Battery unit
JP5010250B2 (en) Battery stack and battery pack
JP4497372B2 (en) Pouch-type lithium secondary battery
JP2009054297A (en) Battery pack
WO2008050736A1 (en) Electricity storage device and cooling system
JP4862211B2 (en) Sealed secondary battery
KR100587436B1 (en) Lithium Ion Secondary Battery and Battery Device Comprising Same
KR20130014431A (en) Electrode assembly comprising separator for improving safety and lithium secondary batteries comprising the same
JP2007095421A (en) Large lithium ion secondary battery and electric storage system
JP2008300103A (en) Power storage module
JP5462304B2 (en) Battery pack using lithium-ion battery
JP4348492B2 (en) Non-aqueous secondary battery
JP2011100622A (en) Solid battery system
JP2007087801A (en) Lithium ion secondary battery
JP2013152880A (en) Laminate cell and module using the same
KR101786991B1 (en) Secondary battery module
JP4234940B2 (en) Lithium secondary battery
JP2009123484A (en) Separator and battery
WO2019151494A1 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131217