JP2011098842A - Sintered compact and method for manufacturing the same, and rotating tool - Google Patents

Sintered compact and method for manufacturing the same, and rotating tool Download PDF

Info

Publication number
JP2011098842A
JP2011098842A JP2009252639A JP2009252639A JP2011098842A JP 2011098842 A JP2011098842 A JP 2011098842A JP 2009252639 A JP2009252639 A JP 2009252639A JP 2009252639 A JP2009252639 A JP 2009252639A JP 2011098842 A JP2011098842 A JP 2011098842A
Authority
JP
Japan
Prior art keywords
phase
sintered body
probe
rotary tool
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009252639A
Other languages
Japanese (ja)
Inventor
Masashi Yoshimura
雅司 吉村
Kentaro Chihara
健太朗 千原
Hideki Moriguchi
秀樹 森口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009252639A priority Critical patent/JP2011098842A/en
Publication of JP2011098842A publication Critical patent/JP2011098842A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sintered compact which has high wear resistance and can be utilized suitably for a probe of a rotating tool of friction agitation joining, and a rotating tool using the sintered compact. <P>SOLUTION: The rotating tool 1 includes a shaft 10 and a probe 12 which has a smaller diameter than the shaft 10 and is arranged at the tip of the shaft 10, and utilized for friction agitation joining. At least a part of the probe 12 of the rotating tool 1 is a sintered compact which comprises a first phase, second phase and inevitable impurities. The first phase comprises silicon nitride or sialon. The second phase is nitride, carbide, oxide and carbonitride of an element selected from B, Al, Ti and Si, or these solid solutions, and consists of a material which is not silicon nitride and sialon. Moreover, the volume proportion of first phase occupied to the total volume of first phase and second phase is 50-90%. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、摩擦撹拌接合の回転工具に用いられるプローブを構成する焼結体とその製造方法、ならびにその焼結体をプローブに適用した回転工具に関するものである。特に、耐摩耗性に優れ、生産性良く摩擦撹拌接合することができる焼結体とその製造方法、ならびに回転工具に関するものである。   The present invention relates to a sintered body constituting a probe used for a rotary tool for friction stir welding, a manufacturing method thereof, and a rotary tool in which the sintered body is applied to a probe. In particular, the present invention relates to a sintered body that is excellent in wear resistance and capable of friction stir welding with good productivity, a manufacturing method thereof, and a rotary tool.

従来、自動車、鉄道車両といった各種車両や航空機などの輸送機器、建築材などを含む構造物、その他、家庭用電気製品などでは、金属材料からなる種々の部材(例えば、車両のボディなど)を備える。これら金属材料からなる部材同士を接合する場合、リベットを用いたり、抵抗スポット溶接といった点接合方法が広く利用されている。   2. Description of the Related Art Conventionally, various vehicles such as automobiles and railway vehicles, transportation equipment such as airplanes, structures including construction materials, and other household electrical products include various members made of metal materials (for example, vehicle bodies). . When joining these members made of metal materials, point joining methods such as rivets or resistance spot welding are widely used.

その他の接合方法として、特許文献1,2に記載される摩擦撹拌接合(Friction Stir Spot Welding)と呼ばれる方法が近年検討されてきている。摩擦撹拌接合は、回転工具の先端に設けられたプローブを回転させながら、重ね合わせた接合対象の重複部分に押し込み、このときの摩擦熱により軟化した接合対象の構成材料を撹拌(塑性流動)することで接合する。この摩擦撹拌接合は、固相接合であることから、接合時、接合対象への入熱が少ないため、接合対象の軟化や歪みの程度が少ない上に、上記抵抗スポット溶接やリベットによる接合よりも、継手品質がよく、良好な接合状態が安定して得られる。   As another joining method, a method called Friction Stir Spot Welding described in Patent Documents 1 and 2 has recently been studied. In the friction stir welding, while rotating the probe provided at the tip of the rotary tool, the friction stir welding is pushed into the overlapped portion of the overlapped welding target, and the constituent material softened by the frictional heat at this time is stirred (plastic flow) To join. Since this friction stir welding is solid phase bonding, there is less heat input to the object to be joined at the time of joining, so the degree of softening and distortion of the object to be joined is less, and the resistance spot welding and rivet joining are also used. The joint quality is good, and a good joined state can be stably obtained.

上記摩擦撹拌接合に用いられる回転工具のプローブには、耐摩耗性に優れることが望まれる。そこで、プローブの構成材料として、特許文献1では、工具鋼といった鋼を挙げており、特許文献2では、更に耐摩耗性に優れる超硬合金を挙げている。超硬合金は、硬質相をWC(炭化タングステン)とし、結合相をCo(コバルト)とするWC−Co系超硬合金が代表的である。   The probe of the rotary tool used for the friction stir welding is desired to have excellent wear resistance. Therefore, as a constituent material of the probe, Patent Document 1 lists steel such as tool steel, and Patent Document 2 lists cemented carbide having further excellent wear resistance. A typical example of the cemented carbide is a WC-Co based cemented carbide in which the hard phase is WC (tungsten carbide) and the binder phase is Co (cobalt).

国際公開WO93/10935号公報International Publication No. WO93 / 10935 特開2001−314983号公報JP 2001-314983 A

摩擦撹拌接合は、上述のように優れた接合状態を安定して得られることから、今後汎用されると考えられる。そのため、従来プローブに用いられていた材料よりも摩擦撹拌接合に適した材料を見出し、このような材料によりプローブを形成することで、プローブの耐摩耗性を向上させ、回転工具の長寿命化を達成することが望まれている。   Friction stir welding is considered to be widely used in the future because it can stably obtain an excellent bonding state as described above. Therefore, we have found a material that is more suitable for friction stir welding than the materials used in conventional probes, and by forming a probe with such a material, the wear resistance of the probe is improved and the life of the rotary tool is extended. It is hoped to achieve.

本発明は、上記事情に鑑みてなされたものであり、その目的の一つは、耐摩耗性が高く、摩擦撹拌接合の回転工具のプローブに好適に利用することができる焼結体とその製造方法を提供することにある。また、本発明の他の目的は、本発明焼結体をプローブに用いた回転工具を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is a sintered body that has high wear resistance and can be suitably used for a probe of a rotary tool for friction stir welding and its manufacture. It is to provide a method. Another object of the present invention is to provide a rotary tool using the sintered body of the present invention as a probe.

本発明者らは、プローブの耐摩耗性を向上させ、プローブの長寿命化、ひいては回転工具の長寿命化を図る目的で、プローブを構成する焼結体の組成を種々検討した結果、本発明を完成するに至った。   The present inventors have studied various compositions of the sintered body constituting the probe for the purpose of improving the wear resistance of the probe and prolonging the life of the probe, and hence the life of the rotary tool. It came to complete.

本発明焼結体は、摩擦撹拌接合に用いられる回転工具のプローブを構成する焼結体に関する。この本発明焼結体は、窒化珪素またはサイアロンからなる第1相と、B,Al,Ti,Siから選択される元素の窒化物、炭化物、酸化物、および炭窒化物あるいはこれらの固溶体であり、かつ、窒化珪素およびサイアロンではない材料からなる第2相と、不可避的不純物と、からなる。そして、本発明焼結体は、第1相と第2相の合計体積に占める第1相の体積割合が、50〜90%であることを特徴とする。   The sintered body of the present invention relates to a sintered body constituting a probe of a rotary tool used for friction stir welding. The sintered body of the present invention is a first phase composed of silicon nitride or sialon, and a nitride, carbide, oxide and carbonitride of an element selected from B, Al, Ti and Si, or a solid solution thereof. And a second phase made of a material other than silicon nitride and sialon, and unavoidable impurities. The sintered body of the present invention is characterized in that the volume ratio of the first phase to the total volume of the first phase and the second phase is 50 to 90%.

また、本発明回転工具の製造方法は、摩擦撹拌接合に用いられる回転工具のプローブを構成する焼結体の製造方法であって、以下の工程を備えることを特徴とする。
窒化珪素粉末を含む第1相材料を用意する工程。
B,Al,Ti,Siから選択される元素の窒化物、炭化物、酸化物、および炭窒化物の少なくとも1種からなる第2相材料を用意する工程。
第1相材料と第2相材料とを体積比で90:10〜50:50の割合で混合する工程。
混合した材料を焼結する工程。
Moreover, the manufacturing method of this invention rotary tool is a manufacturing method of the sintered compact which comprises the probe of the rotary tool used for friction stir welding, Comprising: It comprises the following processes.
Preparing a first phase material containing silicon nitride powder;
A step of preparing a second phase material composed of at least one of nitride, carbide, oxide, and carbonitride of an element selected from B, Al, Ti, and Si.
A step of mixing the first phase material and the second phase material in a volume ratio of 90:10 to 50:50.
Sintering the mixed material.

さらに、本発明回転工具は、軸部と、この軸部よりも細径であり軸部の先端に設けられるプローブとを備え、摩擦撹拌接合に利用される回転工具に関する。そして、本発明回転工具は、回転工具に備わるプローブに本発明焼結体を用いたことを特徴とする。   Furthermore, the rotary tool of the present invention relates to a rotary tool that includes a shaft portion and a probe that is smaller in diameter than the shaft portion and is provided at the tip of the shaft portion and is used for friction stir welding. And this invention rotary tool used this invention sintered compact for the probe with which a rotary tool is equipped.

本発明焼結体は、耐摩耗性に優れると共に、硬度が高い上、破壊靱性にも優れるので、摩擦撹拌接合のプローブとして優れた特性を発揮する。そのため、本発明焼結体をプローブに適用した本発明回転工具によれば、従来の回転工具と比較して、安定した接合状態の摩擦撹拌接合を長期間に亘って行うことができる。   The sintered body of the present invention has excellent wear resistance, high hardness, and excellent fracture toughness, and therefore exhibits excellent characteristics as a probe for friction stir welding. Therefore, according to the rotating tool of the present invention in which the sintered body of the present invention is applied to the probe, the friction stir welding in a stable bonding state can be performed over a long period of time as compared with the conventional rotating tool.

本発明回転工具の一例であって、(A)は側面図、(B)は端面図である。It is an example of this invention rotary tool, Comprising: (A) is a side view, (B) is an end view. 図1の回転工具を用いた摩擦撹拌接合の手順を模式的に示す説明図であって、(A)は接合動作を開始する前の接合対象を、(B)は接合動作を開始するときの接合対象に対する工具の配置状態を、(C)は接合動作中の工具と接合対象の状態を示す。It is explanatory drawing which shows typically the procedure of the friction stir welding using the rotary tool of FIG. 1, Comprising: (A) is a joining object before starting joining operation | movement, (B) is when starting joining operation | movement. The arrangement state of the tool with respect to the joining object, (C) shows the state of the tool being joined and the joining object.

以下、図面を参照しつつ本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[回転工具の全体構成]
図1に例示するように、本発明回転工具1は、軸部10と、軸部10の先端から突出したプローブ12とを備え、回転させながら水平方向に移動させることができるようになっている。軸部10は、図示しない回転機構に支持される棒状部材であり、回転機構を駆動することで回転する。一方、プローブ12は、軸部10よりも細径の棒状部材であって、摩擦撹拌接合を行う際に、接合対象の接合界面に圧接される箇所である。このプローブ12は、軸部10に一体に設けられていても良いが、軸部10に対して着脱自在に形成されていても良い。後者の場合、例えば、ネジ嵌合により軸部10にプローブ12を固定するネジ止め方式や、軸部10に凹部にプローブ12を押し込んで固定するセルフグリップ方式とすることが挙げられる。
[Overall configuration of rotating tool]
As illustrated in FIG. 1, the rotary tool 1 of the present invention includes a shaft portion 10 and a probe 12 protruding from the tip of the shaft portion 10, and can be moved in the horizontal direction while rotating. . The shaft portion 10 is a rod-like member supported by a rotation mechanism (not shown), and rotates by driving the rotation mechanism. On the other hand, the probe 12 is a rod-like member having a diameter smaller than that of the shaft portion 10, and is a portion that is pressed against the joining interface to be joined when performing friction stir welding. The probe 12 may be provided integrally with the shaft portion 10, but may be formed detachably with respect to the shaft portion 10. In the latter case, for example, a screwing method in which the probe 12 is fixed to the shaft portion 10 by screw fitting or a self-grip method in which the probe 12 is pushed into the shaft portion 10 and fixed in a recess can be cited.

図1に示す回転工具1で摩擦撹拌接合を行う場合、図2(A)に示すように、まず一対の接合対象20を並列状態に突き合わせる。接合対象20を突き合わせたら、図2(B),(C)に示すように、回転工具1を回転させながら接合箇所に圧接し、接合対象20の突き合わせ界面に沿って回転工具1を移動させる。この回転工具1の回転と移動に伴って、突き合わせ箇所近傍の接合対象20が塑性流動され、両接合対象20が接合される。その他、この回転工具1を用いた摩擦撹拌接合により、スポット溶接のような点接合を行うこともできる。   When performing friction stir welding with the rotary tool 1 shown in FIG. 1, as shown in FIG. 2A, first, a pair of joining objects 20 are abutted in parallel. When the joining object 20 is abutted, as shown in FIGS. 2B and 2C, the rotating tool 1 is pressed against the joining portion while rotating the rotating tool 1, and the rotating tool 1 is moved along the abutting interface of the joining object 20. As the rotary tool 1 rotates and moves, the joining target 20 in the vicinity of the abutting portion is plastically flowed, and both the joining targets 20 are joined. In addition, spot welding such as spot welding can be performed by friction stir welding using the rotary tool 1.

上述したような摩擦撹拌接合の過程を見れば、特に、回転工具1のプローブ12の部分において、高い強度と耐摩耗性が要求されることが分かる。そこで、工具寿命を長くし、接合効率を向上させるために、回転工具1のうち少なくともプローブ12の部分に本発明焼結体を用いる。もちろん、軸部10も含めて本発明焼結体で構成しても良い。以下、本発明焼結体を詳細に説明する。   From the friction stir welding process described above, it can be seen that high strength and wear resistance are required particularly in the probe 12 portion of the rotary tool 1. Therefore, the sintered body of the present invention is used in at least the probe 12 portion of the rotary tool 1 in order to extend the tool life and improve the joining efficiency. Of course, you may comprise the sintered compact of this invention also including the axial part 10. FIG. Hereinafter, the sintered body of the present invention will be described in detail.

[焼結体]
摩擦撹拌接合に用いられる回転工具のプローブを構成する本発明焼結体は、第1相、第2相、および不可避的不純物で構成される。この焼結体は、第1相を主体として構成されており、第2相は、第1相中に分散した状態にある。第1相と第2相の合計体積を100とすると、第1相の体積割合は、50〜90%である。ここで、焼結体の主体は、あくまで第1相であり、より好ましい第1相の体積割合は、75〜90%である。
[Sintered body]
The sintered body of the present invention that constitutes a probe of a rotary tool used for friction stir welding is composed of a first phase, a second phase, and inevitable impurities. This sintered body is composed mainly of the first phase, and the second phase is in a state of being dispersed in the first phase. When the total volume of the first phase and the second phase is 100, the volume ratio of the first phase is 50 to 90%. Here, the main body of the sintered body is only the first phase, and a more preferable volume ratio of the first phase is 75 to 90%.

<第1相>
第1相は、窒化珪素(Si)またはサイアロン(Si−Al−O−N)から構成される。窒化珪素は、強度が高く、耐熱性、耐食性に優れる材料であり、摩擦撹拌接合に用いる回転工具1のプローブ12の主成分として好適である。ここで、サイアロン(Si−Al−O−N)は、SiにAlとOが固溶したものであり、窒化珪素と同様に強度が高く、耐熱性、耐食性に優れる。
<Phase 1>
The first phase is composed of silicon nitride (Si 3 N 4 ) or sialon (Si—Al—O—N). Silicon nitride is a material having high strength and excellent heat resistance and corrosion resistance, and is suitable as a main component of the probe 12 of the rotary tool 1 used for friction stir welding. Here, sialon (Si—Al—O—N) is a solution in which Al and O are dissolved in Si 3 N 4 , and has high strength and excellent heat resistance and corrosion resistance like silicon nitride.

上記第1相は、窒化珪素(サイアロン)の他に、窒化珪素(サイアロン)の結晶粒子を繋ぐバインダーを含むことを許容する。窒化珪素(サイアロン)はもともと高温で安定な化合物であるため、窒化珪素(サイアロン)の粉末のみを焼結して焼結体を得ることは難しい。そのため、窒化珪素(サイアロン)の焼結体を作製する際は、窒化珪素(サイアロン)粉末に少量の焼結助剤(代表的には酸化物)を添加して焼結することで、窒化珪素(サイアロン)の結晶粒子の界面にガラス相を析出させ、このガラス相をバインダーとすることが行われている。第1相の強度や耐熱性、耐食性などの特性は、ガラス相の体積割合が多くなるほど低下する傾向にある。   In addition to silicon nitride (sialon), the first phase is allowed to contain a binder that connects crystal grains of silicon nitride (sialon). Since silicon nitride (sialon) is originally a stable compound at high temperatures, it is difficult to obtain a sintered body by sintering only silicon nitride (sialon) powder. Therefore, when producing a sintered body of silicon nitride (sialon), silicon nitride (sialon) powder is added with a small amount of a sintering aid (typically an oxide) and sintered to form silicon nitride. It has been practiced to deposit a glass phase at the interface of (sialon) crystal particles and use this glass phase as a binder. Properties such as strength, heat resistance and corrosion resistance of the first phase tend to decrease as the volume ratio of the glass phase increases.

<第2相>
第2相は、B,Al,Ti,Siから選択される元素の窒化物、炭化物、酸化物、炭窒化物、あるいはこれらの固溶体から構成される。第2相を構成する化合物として具体的には、cBNや、TiB,AlB、SiC、TiN、TiCN、SiCNなどを挙げることができる。このような第2相を前述の第1相中に分散して配置することにより、焼結体の破壊靭性を向上させることができる。
<Phase 2>
The second phase is composed of a nitride, carbide, oxide, carbonitride, or a solid solution of an element selected from B, Al, Ti, and Si. Specific examples of the compound constituting the second phase include cBN, TiB 2 , AlB 2 , SiC, TiN, TiCN, and SiCN. By disperse | distributing and arrange | positioning such a 2nd phase in the above-mentioned 1st phase, the fracture toughness of a sintered compact can be improved.

ここで、第2相を構成する化合物の平均結晶粒径は、1〜20μmであることが好ましい。化合物の平均結晶粒径は、より好ましくは5〜20μm、さらに好ましくは10〜20μm、最も好ましくは15〜20μmである。第2相を構成する粒子の粒径が上記範囲にあれば、耐摩耗性に優れ、摩擦撹拌接合に用いる回転工具のプローブとして好適な焼結体となる。   Here, the average crystal grain size of the compound constituting the second phase is preferably 1 to 20 μm. The average crystal grain size of the compound is more preferably 5 to 20 μm, further preferably 10 to 20 μm, and most preferably 15 to 20 μm. When the particle size of the particles constituting the second phase is in the above range, the sintered body is excellent in wear resistance and suitable as a probe for a rotary tool used for friction stir welding.

[焼結体の製造方法]
上述した本発明焼結体は、以下の工程1〜工程4を経ることにより作製することができる。
[Method for producing sintered body]
The above-described sintered body of the present invention can be produced through the following steps 1 to 4.

<工程1>
工程1では、窒化珪素粉末を主体とする第1相材料を用意する。この第1相材料を起源として本発明焼結体の第1相が形成される。用意する窒化珪素の平均粒径は、0.1〜3μmとすることが好ましい。また、第1相材料として、サイアロン粉末を用意しても良く、その場合のサイアロンの平均結晶粒径は、0.1〜3μmとすることが好ましい。
<Step 1>
In step 1, a first phase material mainly composed of silicon nitride powder is prepared. The first phase of the sintered body of the present invention is formed from this first phase material. The average particle diameter of the prepared silicon nitride is preferably 0.1 to 3 μm. Moreover, you may prepare sialon powder as a 1st phase material, and it is preferable that the average crystal grain diameter of the sialon in that case shall be 0.1-3 micrometers.

第1相材料を焼結して得られる第1相が窒化珪素焼結体である場合、第1相材料は、窒化珪素粉末の他に、Yや、MgOなどの焼結助剤を含有させると良い。一方、第1相材料を焼結して得られる第1相がサイアロン焼結体である場合、第1相材料は、窒化珪素粉末の他に、焼結助剤としてAlなどのAlとOを含有する化合物を含有させて構成しても良いし、サイアロン粉末と焼結助剤(特に限定されない)とで構成しても良い。前者の場合、焼結により窒化珪素粒子に焼結助剤のAlとOが固溶してサイアロンとなる。なお、第1相材料に含有させる焼結助剤の量を少なくすると、出来上がる第1相にガラス相は形成されない。 When the first phase obtained by sintering the first phase material is a silicon nitride sintered body, the first phase material is a sintering aid such as Y 2 O 3 or MgO in addition to the silicon nitride powder. It is good to contain. On the other hand, when the first phase obtained by sintering the first phase material is a sialon sintered body, the first phase material is made of Al 2 O 3 or the like as a sintering aid in addition to the silicon nitride powder. And a compound containing O, or a sialon powder and a sintering aid (not particularly limited). In the former case, the sintering aids Al and O are dissolved in silicon nitride particles by sintering to form sialon. If the amount of the sintering aid contained in the first phase material is reduced, the glass phase is not formed in the completed first phase.

<工程2>
工程2では、B,Al,Ti,Siから選択される元素の窒化物、炭化物、酸化物、および炭窒化物の少なくとも1種からなる第2相材料を用意する。この第2相材料を起源として本発明焼結体の第2相が形成される。第2相材料を構成する化合物の平均粒径は、1〜20μmとすることが好ましい。
<Process 2>
In step 2, a second phase material comprising at least one of nitride, carbide, oxide, and carbonitride of an element selected from B, Al, Ti, and Si is prepared. The second phase of the sintered body of the present invention is formed from this second phase material. The average particle size of the compound constituting the second phase material is preferably 1 to 20 μm.

<工程3>
工程3では、用意した第1相材料と第2相材料とを混合する。混合の際は、作製する焼結体における第1相と第2相とが、本発明焼結体に規定する体積比率となるように、第1相材料と第2相材料の混合比を決定する。この混合比は、例えば、質量比で決定すれば良く、この質量比は実験結果をフィードバックすることで決定できる。具体的な第1相材料:第2相材料は、体積比で90:10〜50:50とすると良い。
<Step 3>
In step 3, the prepared first phase material and second phase material are mixed. At the time of mixing, the mixing ratio of the first phase material and the second phase material is determined so that the first phase and the second phase in the sintered body to be produced have a volume ratio specified in the sintered body of the present invention. To do. This mixing ratio may be determined by, for example, a mass ratio, and this mass ratio can be determined by feeding back experimental results. A specific first phase material: second phase material may be 90:10 to 50:50 in volume ratio.

<工程4>
工程4では、混合した第1相材料と第2相材料を焼結する。焼結により第1相材料を起源として形成される第1相と、第2相材料を起源として形成される第2相とを有する焼結体を作製できる。焼結の温度は、第1相材料・第2相材料に何を使用するか、どの程度の量とするかにより好適な値が変化するが、概ね1300〜1800℃とすれば良い。また、焼結時間も概ね0.2〜4hとすると良い。
<Step 4>
In step 4, the mixed first phase material and second phase material are sintered. A sintered body having a first phase formed from the first phase material by sintering and a second phase formed from the second phase material can be produced. A suitable value for the sintering temperature varies depending on what is used for the first phase material and the second phase material and how much is used, but it may be about 1300 to 1800 ° C. Also, the sintering time is preferably about 0.2 to 4 hours.

ここで、焼結体の第1相を、サイアロンではなく窒化珪素から形成する場合、既に述べたように、第1相に含まれるガラス相をできるだけ小さくすることが好ましい。その場合、焼結時に材料を急速に加熱することができる放電プラズマ焼結(Spark Plasma Sintering)を利用すると、第1相材料に含有させる焼結助剤の量を少なくでき、ひいては第1相におけるガラス相(粒界相)の割合を小さくすることができる。また、放電プラズマ焼結であれば、短時間で焼結を終了することができるので、高温・長時間の焼結によりcBNがhBNに変態することを抑制することができる。   Here, when the first phase of the sintered body is formed from silicon nitride instead of sialon, it is preferable to make the glass phase contained in the first phase as small as possible as already described. In that case, the use of spark plasma sintering, which can rapidly heat the material during sintering, can reduce the amount of sintering aid contained in the first phase material, and thus in the first phase. The ratio of the glass phase (grain boundary phase) can be reduced. Moreover, since it can complete | finish sintering in a short time if it is discharge plasma sintering, it can suppress that cBN transform | transforms into hBN by sintering for high temperature and a long time.

以下、実際に本発明焼結体をプローブに採用した回転工具を作製し、その工具寿命と耐摩耗性を調べた。   In the following, a rotary tool that actually employs the sintered body of the present invention as a probe was produced, and its tool life and wear resistance were examined.

[試験例1]
<回転工具の作製>
まず、第1相材料として、平均粒径0.3μmの窒化珪素(Si)粉末に、YとAlを添加したものを用意した。Yの添加量とAlの添加量は、Siを100質量%としたときに、それぞれ5質量%と2質量%とした。ここで、平均粒径とは、粒径のヒストグラム中、粒径の小さい粒子からの質量の和が総質量の50%に達する粒子の粒径、つまり50%粒径をいう。
[Test Example 1]
<Production of rotating tool>
First, a first phase material prepared by adding Y 2 O 3 and Al 2 O 3 to silicon nitride (Si 3 N 4 ) powder having an average particle size of 0.3 μm was prepared. The addition amount of Y 2 O 3 and the addition amount of Al 2 O 3 were 5 mass% and 2 mass%, respectively, when Si 3 N 4 was 100 mass%. Here, the average particle diameter refers to the particle diameter of particles in which the sum of the masses from the small particle diameters reaches 50% of the total mass in the particle diameter histogram, that is, 50% particle diameter.

また、平均粒径10μmの立方晶窒化ホウ素(cBN)粉末を第2相材料として用意した。なお、このcBN粉末も、上述したSi粉末も市販品である。 Further, cubic boron nitride (cBN) powder having an average particle size of 10 μm was prepared as the second phase material. In addition, both this cBN powder and the Si 3 N 4 powder described above are commercially available products.

次いで、用意した第1相材料と第2相材料とをエタノールを用いて混合した後、エタノールを揮発させて、焼結体の材料となる焼結体原料を作製した。このとき、第1相材料と第2相材料の混合比を変化させた複数の焼結体原料を作製しておいた。   Next, after the prepared first phase material and second phase material were mixed using ethanol, ethanol was volatilized to produce a sintered body raw material to be a sintered body material. At this time, a plurality of sintered body materials in which the mixing ratio of the first phase material and the second phase material was changed were prepared.

作製した焼結体原料を黒鉛型に充填し、放電プラズマ焼結炉(株式会社住友石炭工業製:商品名SPS−2030)にて50MPaの圧力をかけ、1500℃×0.5時間焼結した。そして、得られた焼結体を加工して、図1に示すような軸部10とプローブ12とが一体に形成された回転工具1であって、摩擦撹拌接合に用いられる回転工具1を作製した(図1参照)。回転工具1の軸部10の寸法は、φ10mm×軸方向長さ20mm、回転工具1のプローブ12の寸法は、φ4mm×軸方向長さ2.4mmであった。   The prepared sintered body raw material was filled in a graphite mold and sintered at 1500 ° C. for 0.5 hours by applying a pressure of 50 MPa in a discharge plasma sintering furnace (manufactured by Sumitomo Co., Ltd .: trade name SPS-2030). . Then, the obtained sintered body is processed to produce the rotary tool 1 in which the shaft portion 10 and the probe 12 are integrally formed as shown in FIG. 1 and used for friction stir welding. (See FIG. 1). The dimension of the shaft portion 10 of the rotary tool 1 was φ10 mm × length in the axial direction 20 mm, and the dimension of the probe 12 of the rotary tool 1 was φ4 mm × length in the axial direction 2.4 mm.

<回転工具の評価方法と評価結果>
次に、摩擦撹拌接合を模した以下に示す条件で板材に作製した回転工具1を押し付ける操作を繰り返し、回転工具1の工具寿命と耐摩耗性を評価した。なお、実際の摩擦撹拌接合は、例えば、接合対象を突き合わせて、その境界部に回転工具1を押し付けるなどして行う。
板材 :厚さ4mmのSUS316
回転工具の回転数 :3000rpm
押し込み速度 :0.1mm/sec
加工時間 :40sec
<Evaluation method and result of rotating tool>
Next, the operation of pressing the rotary tool 1 produced on the plate material under the following conditions simulating friction stir welding was repeated, and the tool life and wear resistance of the rotary tool 1 were evaluated. Note that the actual friction stir welding is performed, for example, by matching the objects to be joined and pressing the rotary tool 1 against the boundary portion.
Plate material: SUS316 with a thickness of 4 mm
Number of rotations of rotating tool: 3000rpm
Pushing speed: 0.1 mm / sec
Processing time: 40 sec

工具寿命は、回転工具に割れや欠けなどが生じるまでの摩擦撹拌接合の回数を測定することで評価した。また、耐摩耗性は、所定回数の摩擦撹拌接合を行う前と後で、プローブの直径(mm)がどのくらい変化したかを測定することで評価した。この測定の結果と、試料における第1相(サイアロン)と第2相(cBN)の体積割合を表1に示す。体積割合は、回転工具の断面における第1相と第2相の面積割合を体積割合と見なすことで求めた。面積割合は、少なくとも3つ以上の単位視野(0.5mm×0.5mm)における測定結果を平均したものである。   The tool life was evaluated by measuring the number of times of friction stir welding until a crack or chip occurred in the rotary tool. Wear resistance was evaluated by measuring how much the diameter (mm) of the probe changed before and after the predetermined number of friction stir welding. The results of this measurement and the volume ratio of the first phase (sialon) and the second phase (cBN) in the sample are shown in Table 1. The volume ratio was obtained by regarding the area ratio of the first phase and the second phase in the cross section of the rotary tool as the volume ratio. The area ratio is an average of measurement results in at least three unit visual fields (0.5 mm × 0.5 mm).

Figure 2011098842
Figure 2011098842

表1に示すように、回転工具における第1相の体積割合が50%〜90%である試料1−1〜1−3は、その他の試料1−4〜1−6に比べて顕著に優れた工具寿命と耐摩耗性を有していた。特に、本発明である試料1−1〜1−3を比較すると、第1相の体積割合が高くなるにつれ、工具寿命・耐摩耗性が向上することがわかった。これらのことから、第1相が多すぎても少なすぎても、良好な工具寿命と耐摩耗性を得られないことがわかった。   As shown in Table 1, the samples 1-1 to 1-3 in which the volume ratio of the first phase in the rotary tool is 50% to 90% are significantly superior to the other samples 1-4 to 1-6. Has a long tool life and wear resistance. In particular, when Samples 1-1 to 1-3 according to the present invention were compared, it was found that the tool life and wear resistance improved as the volume ratio of the first phase increased. From these facts, it was found that if the first phase was too much or too little, good tool life and wear resistance could not be obtained.

[試験例2]
実施例2では、工具寿命と耐摩耗性に及ぼす焼結体中のcBN粒径の影響について調べた。
[Test Example 2]
In Example 2, the influence of the cBN particle size in the sintered body on the tool life and wear resistance was examined.

まず、実施例1と同様に平均粒径が0.3μmの窒化珪素粉末を主体とする第1相材料を用意すると共に、第2相材料として平均粒径が1,5,10,15,20,30μmの5種類のcBN粉末を用意した。そして、用意した各種cBN粉末と窒化珪素粉末とを混合し、焼結することで試料2−1〜2−6を得た。各種cBN粉末と窒化珪素粉末の混合比、および焼結の条件は、実施例1の試料1−2と同様である。   First, as in Example 1, a first phase material mainly composed of silicon nitride powder having an average particle size of 0.3 μm is prepared, and the average particle size is 1, 5, 10, 15, 20 as the second phase material. , 30 μm of 5 types of cBN powders were prepared. And the various cBN powder and silicon nitride powder which were prepared were mixed, and the samples 2-1 to 2-6 were obtained by sintering. The mixing ratio of various cBN powders and silicon nitride powders and the sintering conditions are the same as those of Sample 1-2 in Example 1.

得られた試料2−1〜2−6について、実施例1と同様の条件で接合回数と摩耗量を測定し、工具寿命と耐摩耗性を評価した。測定の結果は表2に示す。なお、表中のcBN粒径は、用意したcBN粉末の平均粒径を示しているが、この平均粒径は、試料の断面のSEM写真から実際に求めた第1相におけるcBN粒子の平均粒径と殆ど同じであった。これは、焼結の前後でcBNの粒径は殆ど変化しないためである。   For the obtained Samples 2-1 to 2-6, the number of times of bonding and the amount of wear were measured under the same conditions as in Example 1, and the tool life and wear resistance were evaluated. The measurement results are shown in Table 2. The cBN particle size in the table indicates the average particle size of the prepared cBN powder. This average particle size is the average particle size of the cBN particles in the first phase actually obtained from the SEM photograph of the cross section of the sample. It was almost the same as the diameter. This is because the particle size of cBN hardly changes before and after sintering.

Figure 2011098842
Figure 2011098842

表2の結果から、cBNの平均粒径が1〜20μmの範囲にある試料2−1〜2−5は、cBNの平均粒径が30μmの試料2−6に比べて摩擦撹拌接合のプローブとして優れていることが分かった。特に、cBNの平均粒径が15μmの試料2−4は、極めて優れた工具寿命と耐摩耗性を有していた。   From the results of Table 2, Samples 2-1 to 2-5 having an average particle size of cBN in the range of 1 to 20 μm are used as probes for friction stir welding as compared with Sample 2-6 in which the average particle size of cBN is 30 μm. I found it excellent. In particular, Sample 2-4 having an average particle size of cBN of 15 μm had extremely excellent tool life and wear resistance.

[試験例3]
実施例3では、工具寿命と耐摩耗性に及ぼす第2相を構成する化合物の影響について調べた。
[Test Example 3]
In Example 3, the influence of the compound constituting the second phase on the tool life and wear resistance was examined.

実施例1,2で用意したcBN粉末の他、第2相材料として、平均粒径が5μmのSiC粉末と、平均粒径が3μmのTiN粉末を用意した。次いで、cBN粉末、SiC粉末、およびTiN粉末から選択される2種類の粉末と、窒化珪素粉末を主体とする第1相材料とを混合し、実施例1と同様の条件で焼結することで試料3−1〜3−4を作製した。そして、得られた試料3−1〜3−4について、実施例1と同様の条件で試験を行い、工具寿命と耐摩耗性を評価した。これら試料の組成と試験結果を表3に示す。   In addition to the cBN powder prepared in Examples 1 and 2, SiC powder having an average particle diameter of 5 μm and TiN powder having an average particle diameter of 3 μm were prepared as the second phase material. Next, two kinds of powders selected from cBN powder, SiC powder, and TiN powder are mixed with a first phase material mainly composed of silicon nitride powder, and sintered under the same conditions as in Example 1. Samples 3-1 to 3-4 were produced. And about the obtained samples 3-1 to 3-4, the test was done on the conditions similar to Example 1, and the tool life and abrasion resistance were evaluated. Table 3 shows the compositions and test results of these samples.

Figure 2011098842
Figure 2011098842

表3の結果から、第2相を構成する化合物がSiCやTiNであっても、cBNと同様に工具寿命と耐摩耗性の改善に効果を発揮することが明らかになった。また、cBNとSiCまたはTiNとの組み合わせも、工具寿命と耐摩耗性の改善に効果があることが明らかになった。   From the results shown in Table 3, it was revealed that even if the compound constituting the second phase is SiC or TiN, the effect of improving the tool life and wear resistance is exhibited as in the case of cBN. Moreover, it became clear that the combination of cBN and SiC or TiN is also effective in improving the tool life and wear resistance.

なお、上述した実施の形態は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、上述した構成に限定されるものではない。例えば、サイアロンに代えて窒化珪素を利用しても、優れた工具寿命と耐摩耗性を発揮することが期待される。窒化珪素からなる第1相を有する焼結体を作製するには、第1相材料に含有させる焼結助剤をMgOやYなどの、AlとOを同時に含まない材料を用いれば良い。 The above-described embodiment can be appropriately changed without departing from the gist of the present invention, and is not limited to the above-described configuration. For example, even if silicon nitride is used instead of sialon, it is expected to exhibit excellent tool life and wear resistance. In order to produce a sintered body having a first phase made of silicon nitride, a material that does not contain Al and O at the same time, such as MgO or Y 2 O 3, is used as a sintering aid to be contained in the first phase material. good.

本発明焼結体を使用した回転工具は、特に、金属材料からなる部材、例えば、一般構造用鋼材、建築などに用いられる構造用鋼材、自動車用鋼板などの鉄鋼材料といった鉄系材料や、アルミニウム、マグネシウムなどの非鉄金属材料からなる部材同士を摩擦撹拌接合により接合することに好適に利用可能である。   The rotary tool using the sintered body of the present invention is a member made of a metal material, for example, an iron-based material such as a general structural steel material, a structural steel material used in construction, a steel material such as a steel plate for automobiles, and aluminum. It can be suitably used for joining members made of non-ferrous metal materials such as magnesium by friction stir welding.

1 回転工具
10 軸部 12 プローブ
20 接合対象
DESCRIPTION OF SYMBOLS 1 Rotary tool 10 Shaft part 12 Probe 20 Joining object

Claims (9)

摩擦撹拌接合に用いられる回転工具のプローブを構成する焼結体であって、
窒化珪素またはサイアロンからなる第1相と、
B,Al,Ti,Siから選択される元素の窒化物、炭化物、酸化物、および炭窒化物あるいはこれらの固溶体であり、かつ、窒化珪素およびサイアロンではない材料からなる第2相と、
不可避的不純物と、からなり、
前記第1相と第2相の合計体積に占める第1相の体積割合は、50〜90%であることを特徴とする焼結体。
A sintered body constituting a probe of a rotary tool used for friction stir welding,
A first phase comprising silicon nitride or sialon;
A second phase made of a material that is a nitride, carbide, oxide, and carbonitride of an element selected from B, Al, Ti, and Si, or a solid solution thereof, and is not silicon nitride and sialon;
With inevitable impurities,
The sintered body according to claim 1, wherein a volume ratio of the first phase to a total volume of the first phase and the second phase is 50 to 90%.
前記第2相を構成する化合物は、cBNであることを特徴とする請求項1に記載の焼結体。   The sintered body according to claim 1, wherein the compound constituting the second phase is cBN. 前記第2相を構成する化合物は、TiNであることを特徴とする請求項1に記載の焼結体。   2. The sintered body according to claim 1, wherein the compound constituting the second phase is TiN. 前記第2相を構成する化合物は、SiCであることを特徴とする請求項1に記載の焼結体。   The sintered body according to claim 1, wherein the compound constituting the second phase is SiC. 前記第2相を構成する化合物の平均粒径は、1〜20μmであることを特徴とする請求項1〜4のいずれか一項に記載の焼結体。   5. The sintered body according to claim 1, wherein an average particle diameter of the compound constituting the second phase is 1 to 20 μm. 軸部と、
この軸部よりも細径で、軸部の先端に設けられるプローブと、
を備え、摩擦撹拌接合に利用される回転工具であって、
前記プローブは、請求項1〜5のいずれか一項に記載の焼結体からなることを特徴とする回転工具。
The shaft,
A probe having a smaller diameter than the shaft and provided at the tip of the shaft,
A rotary tool used for friction stir welding,
The said probe consists of a sintered compact as described in any one of Claims 1-5, The rotary tool characterized by the above-mentioned.
前記プローブは、前記軸部に対して着脱自在であることを特徴とする請求項6に記載の回転工具。   The rotary tool according to claim 6, wherein the probe is detachable from the shaft portion. 摩擦撹拌接合に用いられる回転工具のプローブを構成する焼結体の製造方法であって、
窒化珪素粉末を含む第1相材料を用意する工程と、
B,Al,Ti,Siから選択される元素の窒化物、炭化物、酸化物、および炭窒化物の少なくとも1種からなる第2相材料を用意する工程と、
第1相材料と第2相材料とを体積比で90:10〜50:50の割合で混合する工程と、
混合した材料を焼結する工程と、
を備えることを特徴とする焼結体の製造方法。
A method of manufacturing a sintered body constituting a probe of a rotary tool used for friction stir welding,
Providing a first phase material comprising silicon nitride powder;
Providing a second phase material comprising at least one of a nitride, carbide, oxide, and carbonitride of an element selected from B, Al, Ti, and Si;
Mixing the first phase material and the second phase material in a volume ratio of 90:10 to 50:50;
Sintering the mixed material;
The manufacturing method of the sintered compact characterized by comprising.
前記焼結する工程は、放電プラズマ焼結であることを特徴とする請求項8に記載の焼結体の製造方法。   The method for manufacturing a sintered body according to claim 8, wherein the sintering step is spark plasma sintering.
JP2009252639A 2009-11-04 2009-11-04 Sintered compact and method for manufacturing the same, and rotating tool Pending JP2011098842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009252639A JP2011098842A (en) 2009-11-04 2009-11-04 Sintered compact and method for manufacturing the same, and rotating tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009252639A JP2011098842A (en) 2009-11-04 2009-11-04 Sintered compact and method for manufacturing the same, and rotating tool

Publications (1)

Publication Number Publication Date
JP2011098842A true JP2011098842A (en) 2011-05-19

Family

ID=44190352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009252639A Pending JP2011098842A (en) 2009-11-04 2009-11-04 Sintered compact and method for manufacturing the same, and rotating tool

Country Status (1)

Country Link
JP (1) JP2011098842A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016132004A (en) * 2015-01-20 2016-07-25 日本特殊陶業株式会社 Friction agitation jointing tool
JP2018015793A (en) * 2016-07-29 2018-02-01 日本特殊陶業株式会社 Frictional agitation joining tool
CN108610057A (en) * 2018-04-09 2018-10-02 中国科学院兰州化学物理研究所 It is a kind of width temperature range antifriction antiwear have both grand based composites of match of high-ductility and preparation method thereof
CN109562485A (en) * 2016-08-09 2019-04-02 国立大学法人大阪大学 Agitating friction weldering tool component and friction stir weld device and friction stir welding method using the tool component
CN110724949A (en) * 2019-11-13 2020-01-24 上海交通大学 Preparation method of high-entropy alloy layer on surface of medical beta titanium alloy
US10744592B2 (en) 2014-09-25 2020-08-18 Kabushiki Kaisha Toshiba Friction stir welding tool member made of silicon nitride sintered body and friction stir welding apparatus using same
US11097374B2 (en) 2016-08-09 2021-08-24 Osaka University Friction stir welding tool member made of silicon nitride sintered body, and friction stir welding apparatus using the same
JP2021523010A (en) * 2018-05-04 2021-09-02 マザック コーポレーション Low cost friction agitation process tool

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626772A (en) * 1979-08-14 1981-03-14 Sumitomo Electric Industries Sintered body for superhard tool and manufacture thereof
JPH01172276A (en) * 1987-12-25 1989-07-07 Nippon Cement Co Ltd Production of compound ceramic comprising beta-sialon
JPH04123069A (en) * 1990-09-14 1992-04-23 Fuji Xerox Co Ltd Lock device of photosensitive body unit
JP2003221280A (en) * 2002-01-30 2003-08-05 Sumitomo Electric Ind Ltd Electroconductive silicon nitride-based composite sintered body and method for producing the same
WO2005105360A1 (en) * 2004-04-30 2005-11-10 Tokyu Car Corporation Method of connecting metal material
JP2008196020A (en) * 2007-02-14 2008-08-28 Osaka Industrial Promotion Organization Tool for friction stir processing and method for producing friction stir processed product
JP2009072790A (en) * 2007-09-18 2009-04-09 Kawasaki Heavy Ind Ltd Friction stir welding apparatus and tool for friction stir welding

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626772A (en) * 1979-08-14 1981-03-14 Sumitomo Electric Industries Sintered body for superhard tool and manufacture thereof
JPH01172276A (en) * 1987-12-25 1989-07-07 Nippon Cement Co Ltd Production of compound ceramic comprising beta-sialon
JPH04123069A (en) * 1990-09-14 1992-04-23 Fuji Xerox Co Ltd Lock device of photosensitive body unit
JP2003221280A (en) * 2002-01-30 2003-08-05 Sumitomo Electric Ind Ltd Electroconductive silicon nitride-based composite sintered body and method for producing the same
WO2005105360A1 (en) * 2004-04-30 2005-11-10 Tokyu Car Corporation Method of connecting metal material
JP2008196020A (en) * 2007-02-14 2008-08-28 Osaka Industrial Promotion Organization Tool for friction stir processing and method for producing friction stir processed product
JP2009072790A (en) * 2007-09-18 2009-04-09 Kawasaki Heavy Ind Ltd Friction stir welding apparatus and tool for friction stir welding

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013015366; 黒川一哉ら: '窒化ケイ素セラミックスの高温酸化挙動に及ぼす焼結助剤の影響' 北海道大學工學部研究報告 143号, 1988, 51-59頁 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10744592B2 (en) 2014-09-25 2020-08-18 Kabushiki Kaisha Toshiba Friction stir welding tool member made of silicon nitride sintered body and friction stir welding apparatus using same
JP2016132004A (en) * 2015-01-20 2016-07-25 日本特殊陶業株式会社 Friction agitation jointing tool
JP2018015793A (en) * 2016-07-29 2018-02-01 日本特殊陶業株式会社 Frictional agitation joining tool
CN109562485A (en) * 2016-08-09 2019-04-02 国立大学法人大阪大学 Agitating friction weldering tool component and friction stir weld device and friction stir welding method using the tool component
US11097374B2 (en) 2016-08-09 2021-08-24 Osaka University Friction stir welding tool member made of silicon nitride sintered body, and friction stir welding apparatus using the same
US11130194B2 (en) 2016-08-09 2021-09-28 Osaka University Friction stir welding tool member, friction stir welding apparatus using the same, and friction stir welding method
CN108610057A (en) * 2018-04-09 2018-10-02 中国科学院兰州化学物理研究所 It is a kind of width temperature range antifriction antiwear have both grand based composites of match of high-ductility and preparation method thereof
JP2021523010A (en) * 2018-05-04 2021-09-02 マザック コーポレーション Low cost friction agitation process tool
JP7389756B2 (en) 2018-05-04 2023-11-30 マザック コーポレーション Low-cost friction stir process tools
CN110724949A (en) * 2019-11-13 2020-01-24 上海交通大学 Preparation method of high-entropy alloy layer on surface of medical beta titanium alloy

Similar Documents

Publication Publication Date Title
JP2011098842A (en) Sintered compact and method for manufacturing the same, and rotating tool
JP2011116597A (en) Sintered compact and rotating tool
JP6330387B2 (en) Sintered body and manufacturing method thereof
KR101743862B1 (en) Cermet and cutting tool
JP2006315898A (en) Cubic boron nitride sintered compact
JP5969364B2 (en) WC-based cemented carbide and cutting tool
CN106715032A (en) Friction stir welding tool member formed from silicon nitride sintered body and friction stir welding apparatus using same
JP6740862B2 (en) Tools for hard materials and friction stir welding
KR102587409B1 (en) Sintered body and cutting tool
JP6048522B2 (en) Sintered body and cutting tool
JP2008208027A (en) cBN SINTERED COMPACT
JP2011062743A (en) Rotary tool and sintered compact
JP6615108B2 (en) High temperature oxidation resistant rare metal-free hard sintered body and method for producing the same
JP6968341B2 (en) Cubic boron nitride-based sintered body with microstructural structure and cutting tools
JP5988430B2 (en) Cubic boron nitride sintered body and method for producing the same
WO2016084738A1 (en) cBN SINTERED COMPACT AND CUTTING TOOL
JP5969363B2 (en) WC-based cemented carbide and cutting tool
JP2001198710A (en) Cemented carbide extruded material, manufacturing method and cutting tool
RU2644718C2 (en) Wear-resistant filler
JP2012162753A (en) Cemented carbide and method of manufacturing the same, and micro drill
JP2001187431A (en) Laminated structural material
JP2013053022A (en) Composite sintered body and composite sintered body tool using the same
JP2007162065A (en) Coated cemented carbide member and method for producing rare earth element-containing cemented carbide
JP6860300B2 (en) Lightweight tungsten alloy, tools and friction stir welding equipment
JP2021151931A (en) Ceramic cutting tool, and cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131024