JP2011098343A - Nox removal apparatus preventing urea aqueous solution-spraying nozzle from clogging - Google Patents

Nox removal apparatus preventing urea aqueous solution-spraying nozzle from clogging Download PDF

Info

Publication number
JP2011098343A
JP2011098343A JP2010279038A JP2010279038A JP2011098343A JP 2011098343 A JP2011098343 A JP 2011098343A JP 2010279038 A JP2010279038 A JP 2010279038A JP 2010279038 A JP2010279038 A JP 2010279038A JP 2011098343 A JP2011098343 A JP 2011098343A
Authority
JP
Japan
Prior art keywords
urea water
injection nozzle
water injection
air
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010279038A
Other languages
Japanese (ja)
Other versions
JP5302295B2 (en
Inventor
Katsuhisa Nakada
勝久 中田
Noritoshi Ando
則俊 安藤
Masahide Tsujishita
正秀 辻下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAMSON CO Ltd
Osaka Gas Co Ltd
Original Assignee
SAMSON CO Ltd
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAMSON CO Ltd, Osaka Gas Co Ltd filed Critical SAMSON CO Ltd
Priority to JP2010279038A priority Critical patent/JP5302295B2/en
Publication of JP2011098343A publication Critical patent/JP2011098343A/en
Application granted granted Critical
Publication of JP5302295B2 publication Critical patent/JP5302295B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treating Waste Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an NO<SB>x</SB>removal apparatus in which a urea aqueous solution-spraying nozzle is not clogged. <P>SOLUTION: In the NO<SB>x</SB>removal apparatus which sprays urea aqueous solution from the urea aqueous solution-spraying nozzle 4 disposed at a combustion exhaust gas path 3 to remove nitric oxides in combustion exhaust gas by reduction, air supply into the urea aqueous solution-spraying nozzle is enabled, a liquid portion in the urea aqueous solution-spraying nozzle is discharged by supplying air to the urea aqueous solution-spraying nozzle when operating NO<SB>x</SB>removal operation shutdown, the inside of the urea aqueous solution-spraying nozzle is replaced with air, and air is periodically supplied to the urea aqueous solution-spraying nozzle during the NO<SB>x</SB>removal operation shutdown. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、燃焼排ガス中に尿素水を噴射して窒素酸化物を除去する脱硝装置であって、尿素水噴射ノズルの詰まりを防止する制御を行う脱硝装置に関するものである。   The present invention relates to a denitration apparatus that removes nitrogen oxides by injecting urea water into combustion exhaust gas, and relates to a denitration apparatus that performs control to prevent clogging of a urea water injection nozzle.

特開2003−62427号公報に記載があるように、ガスタービンやエンジンなどの原動機と、原動機で発生した燃焼排ガスから熱を回収する排熱ボイラを設置しておき、動力とともに熱を利用することで装置全体としての効率を高めるということが行われている。そして、燃焼排ガスに含まれている窒素酸化物を除去するために、燃焼排ガス中へ尿素水を噴射し、窒素酸化物を還元除去することが行われている。   As described in Japanese Patent Application Laid-Open No. 2003-62427, a prime mover such as a gas turbine or an engine and a waste heat boiler that recovers heat from combustion exhaust gas generated by the prime mover are installed, and heat is used together with power. In order to improve the efficiency of the entire apparatus, it is performed. In order to remove nitrogen oxides contained in the combustion exhaust gas, urea water is injected into the combustion exhaust gas to reduce and remove the nitrogen oxides.

燃焼排ガスへ向けて尿素水を噴射する尿素水噴射ノズルは、原動機と排熱ボイラの間をつなぐ排ガス通路に設置する。尿素水噴射ノズルは燃焼排ガスの熱を受ける場所に設置することになり、排ガス通路内の燃焼排ガスは高温であるため、尿素水噴射ノズルは燃焼排ガスによって加熱される。尿素水噴射ノズルでは尿素水を噴射している時には、供給し続けている尿素水によって尿素水噴射ノズルを冷却することができるため、尿素水噴射ノズルが高温になることを防止できる。しかし、尿素水の噴射を停止している時には、尿素水によって尿素水噴射ノズルを冷却することができないため、ノズル部が高温になることがある。尿素水噴射ノズルの温度が上昇すると、尿素水噴射ノズル内に残っていた尿素水から水分が蒸発し、尿素が析出して尿素水噴射ノズルを詰まらせることがあった。   The urea water injection nozzle that injects urea water toward the combustion exhaust gas is installed in an exhaust gas passage that connects between the prime mover and the exhaust heat boiler. The urea water injection nozzle is installed at a place that receives the heat of the combustion exhaust gas. Since the combustion exhaust gas in the exhaust gas passage is at a high temperature, the urea water injection nozzle is heated by the combustion exhaust gas. When the urea water injection nozzle is injecting urea water, the urea water injection nozzle can be cooled by the urea water that is continuously supplied, so that the urea water injection nozzle can be prevented from becoming high temperature. However, when the urea water injection is stopped, the urea water injection nozzle cannot be cooled by the urea water, so the nozzle portion may become hot. When the temperature of the urea water injection nozzle rises, moisture may evaporate from the urea water remaining in the urea water injection nozzle, and urea may precipitate to clog the urea water injection nozzle.

そこで、脱硝運転停止時には尿素水の供給を停止した後で尿素水噴射ノズルへ洗浄液(水)を供給し、尿素水噴射ノズル内を洗浄することが行われている。また、洗浄液による洗浄後には尿素水噴射ノズル内へパージ用空気を供給し、尿素水噴射ノズル内に残っていた洗浄液を吹き飛ばすということも行われている。しかし、このようにしていても尿素水噴射ノズル内に尿素が析出し、尿素水噴射ノズルを詰まらせるということがあった。   Therefore, when the denitration operation is stopped, the urea water injection nozzle is cleaned and then the cleaning liquid (water) is supplied to the urea water injection nozzle to clean the inside of the urea water injection nozzle. Further, after the cleaning with the cleaning liquid, purge air is supplied into the urea water injection nozzle, and the cleaning liquid remaining in the urea water injection nozzle is blown off. However, even if it did in this way, urea precipitated in the urea water injection nozzle, and sometimes the urea water injection nozzle was clogged.

特開2003−62427号公報JP 2003-62427 A

本発明が解決しようとする課題は、尿素水噴射ノズルから尿素水を噴射することで燃焼排ガス中の窒素酸化物を還元除去する脱硝装置において、尿素水噴射ノズル内で尿素が析出することによって尿素水噴射ノズルが詰まるということを防止することにある。   The problem to be solved by the present invention is that in a denitration device that reduces and removes nitrogen oxides in combustion exhaust gas by injecting urea water from a urea water injection nozzle, urea is precipitated in the urea water injection nozzle. This is to prevent the water injection nozzle from clogging.

請求項1に記載の発明は、燃焼排ガスを通す排ガス通路に尿素水噴射ノズルを設置しておき、尿素水噴射ノズルから燃焼排ガスへ向けて尿素水を噴射し、燃焼排ガス中の窒素酸化物を還元除去するようにしている脱硝装置において、尿素水噴射ノズル内へは空気の供給も可能としておき、脱硝運転停止操作時、尿素水噴射ノズルへ空気を供給することによって尿素水噴射ノズル内の液体分を排出し、尿素水噴射ノズル内を空気で置換すると尿素水噴射ノズルへの空気供給は停止するが、その後も脱硝運転停止中には定期的に尿素水噴射ノズルへ空気を供給する制御を行うことを特徴とする。   According to the first aspect of the present invention, a urea water injection nozzle is installed in an exhaust gas passage through which combustion exhaust gas passes, urea water is injected from the urea water injection nozzle toward the combustion exhaust gas, and nitrogen oxides in the combustion exhaust gas are reduced. In the denitration apparatus that performs reduction and removal, air can be supplied into the urea water injection nozzle, and the liquid in the urea water injection nozzle can be supplied by supplying air to the urea water injection nozzle when the denitration operation is stopped. The air supply to the urea water injection nozzle is stopped when the urea water injection nozzle is replaced with air, but after that, while the denitration operation is stopped, the air supply to the urea water injection nozzle is periodically controlled. It is characterized by performing.

請求項2に記載の発明は、燃焼排ガスを通す排ガス通路に尿素水噴射ノズルを設置しておき、尿素水噴射ノズルから燃焼排ガスへ向けて尿素水を噴射し、燃焼排ガス中の窒素酸化物を還元除去するようにしている脱硝装置であって、尿素水噴射ノズルへは尿素水のほかに洗浄液の供給を可能としておき、脱硝運転を停止する際には尿素水噴射ノズルへ洗浄液を供給することで尿素水噴射ノズル内部の洗浄を行う脱硝装置において、尿素水噴射ノズル内へは空気の供給も可能としておき、脱硝運転停止操作時、洗浄液による尿素水噴射ノズルの洗浄を終了し、洗浄液供給停止後、すぐには尿素水噴射ノズルへの空気供給は行わず、尿素水や洗浄液を供給する尿素水供給経路内の圧力が抜けた後に、尿素水噴射ノズルへの空気供給を開始する制御を行うことを特徴とする。   In the invention according to claim 2, a urea water injection nozzle is installed in the exhaust gas passage through which the combustion exhaust gas passes, the urea water is injected from the urea water injection nozzle toward the combustion exhaust gas, and nitrogen oxides in the combustion exhaust gas are reduced. A denitration device that performs reduction and removal, and in addition to urea water, cleaning liquid can be supplied to the urea water injection nozzle, and when the denitration operation is stopped, the cleaning liquid is supplied to the urea water injection nozzle. In the denitration device that cleans the urea water injection nozzle at the same time, it is also possible to supply air into the urea water injection nozzle, and when the denitration operation is stopped, the cleaning of the urea water injection nozzle with the cleaning liquid is terminated and the cleaning liquid supply is stopped. After that, the air supply to the urea water injection nozzle is not performed immediately, and the control to start the air supply to the urea water injection nozzle after the pressure in the urea water supply path for supplying the urea water and the cleaning liquid is released. And performing.

本発明の第一の効果として、原動機停止中であっても脱硝運転停止中には定期的に尿素水噴射ノズルへ空気を供給する制御を行い、尿素水噴射ノズルの冷却を行うことで、原動機の余熱によって尿素水噴射ノズルが加熱されて高温になることがなくなる。そのため、脱硝運転停止後に尿素水噴射ノズル内に尿素分が残留していても尿素水噴射ノズル内で尿素が析出することはなくなり、脱硝運転停止中に尿素水噴射ノズルに詰まりが発生するということを防止できる。   As a first effect of the present invention, even when the prime mover is stopped, control is performed to periodically supply air to the urea water injection nozzle while the denitration operation is stopped, and the urea water injection nozzle is cooled, thereby Due to the remaining heat, the urea water injection nozzle is not heated to become high temperature. Therefore, even if urea remains in the urea water injection nozzle after the denitration operation is stopped, urea does not precipitate in the urea water injection nozzle, and the urea water injection nozzle is clogged while the denitration operation is stopped. Can be prevented.

第二の効果として、脱硝運転停止操作時、洗浄液による尿素水噴射ノズルの洗浄を終了し、洗浄液供給停止後、すぐには尿素水噴射ノズルへの空気供給は行わず、尿素水や洗浄液を供給する尿素水供給経路内の圧力が抜けた後に、尿素水噴射ノズルへの空気供給を開始する制御を行い、尿素水噴射ノズル内を空気で置換する前に尿素水供給経路内の圧力を抜いておくことで、尿素水噴射ノズルへの空気供給停止後に尿素水供給経路内から尿素を含んでいる可能性のある水が尿素水噴射ノズルへあふれ出ることがなくなる。そのため、脱硝運転停止中に尿素水噴射ノズル内の尿素水から水分が蒸発して尿素水噴射ノズルに詰まりが発生するということを防止できる。   As a second effect, at the time of the denitration operation stop operation, the cleaning of the urea water injection nozzle with the cleaning liquid is terminated, and immediately after the supply of the cleaning liquid is stopped, the urea water injection nozzle is not supplied with the urea water or the cleaning liquid. After the pressure in the urea water supply path is released, control is performed to start air supply to the urea water injection nozzle, and the pressure in the urea water supply path is released before replacing the inside of the urea water injection nozzle with air. Thus, after the supply of air to the urea water injection nozzle is stopped, water that may contain urea from the urea water supply path does not overflow to the urea water injection nozzle. For this reason, it is possible to prevent clogging of the urea water injection nozzle due to evaporation of water from the urea water in the urea water injection nozzle while the denitration operation is stopped.

本発明を実施する装置全体の概略を示した説明図Explanatory drawing which showed the outline of the whole apparatus which implements this invention 本発明での脱硝運転停止時における尿素水噴射ノズルの洗浄状況例などを示したタイムチャートTime chart showing an example of the cleaning situation of the urea water injection nozzle when denitration operation is stopped in the present invention 本発明での尿素水供給異常発生時における尿素水噴射ノズルの洗浄状況例などを示したタイムチャートTime chart showing an example of the cleaning situation of the urea water injection nozzle when the urea water supply abnormality occurs in the present invention 従来例での脱硝運転停止時におけるタイムチャートTime chart when denitration operation is stopped in the conventional example 従来例での尿素水供給異常発生時におけるタイムチャートTime chart when urea water supply abnormality occurs in the conventional example

本発明の一実施例を図面を用いて説明する。図1は本発明を実施する脱硝装置全体のフロー例を示したフロー図、図2は本発明の一実施例での脱硝運転停止操作時における尿素水噴射ノズルの洗浄状況等を示したタイムチャート、図3は本発明の他の実施例での脱硝運転中に尿素水供給異常が発生した場合を示したタイムチャート、図4は従来例における脱硝運転停止操作時でのタイムチャート、図5は従来例における脱硝運転中に尿素水供給異常が発生した場合を示したタイムチャートである。   An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a flow chart showing an example of the flow of the entire denitration apparatus for carrying out the present invention, and FIG. 2 is a time chart showing the cleaning situation of the urea water injection nozzle at the time of denitration operation stop operation in one embodiment of the present invention FIG. 3 is a time chart showing a case where a urea water supply abnormality occurs during the denitration operation in another embodiment of the present invention, FIG. 4 is a time chart at the time of denitration operation stop operation in the conventional example, and FIG. It is the time chart which showed the case where the urea water supply abnormality occurred during the denitration operation in the conventional example.

燃焼排ガスの発生源であるガスタービン等の原動機(図示せず)からは高温の燃焼排ガスが発生するため、原動機で発生した燃焼排ガスから熱を回収する排熱ボイラ(図示せず)を設置する。原動機と排熱ボイラは、排ガス通路3で接続し、排ガス通路3を通して燃焼排ガスを流すようにしておき、排ガス通路3に尿素水噴射ノズル4を設置する。燃焼排ガスは有害な窒素酸化物含んでいるため、尿素水を燃焼排ガス中に噴射し、アンモニアの還元作用を利用して窒素酸化物を窒素と水に分解することで無害化する。   Since a high-temperature combustion exhaust gas is generated from a prime mover (not shown) such as a gas turbine that is a source of combustion exhaust gas, an exhaust heat boiler (not shown) that recovers heat from the combustion exhaust gas generated by the prime mover is installed. . The prime mover and the exhaust heat boiler are connected by the exhaust gas passage 3 so that the combustion exhaust gas flows through the exhaust gas passage 3, and the urea water injection nozzle 4 is installed in the exhaust gas passage 3. Since combustion exhaust gas contains harmful nitrogen oxides, urea water is injected into the combustion exhaust gas and detoxified by decomposing nitrogen oxides into nitrogen and water using the reducing action of ammonia.

尿素水は結晶化して析出しやすく、尿素水噴射ノズル4内で結晶が析出すると尿素水噴射ノズル4が詰まることになるため、尿素水噴射ノズル4内が詰まらないようにする必要がある。そこで、尿素水噴射ノズル4へは尿素水だけでなく、洗浄液やパージ用空気を供給することもできるようにしておく。尿素水噴射ノズル4には、尿素水供給経路1と空気供給経路2を接続しており、尿素水供給経路1からは尿素水と水(洗浄液)、空気供給経路2からはパージ用空気を供給するようにしている。尿素水供給経路1の上流側には、尿素水供給ポンプ5と水供給ポンプ6を並列に設置しており、途中に吐出量チェッカー9を設ける。   The urea water is likely to be crystallized and deposited, and if the crystals are precipitated in the urea water injection nozzle 4, the urea water injection nozzle 4 is clogged. Therefore, it is necessary to prevent the urea water injection nozzle 4 from clogging. Therefore, not only the urea water but also the cleaning liquid and the purge air can be supplied to the urea water injection nozzle 4. A urea water supply path 1 and an air supply path 2 are connected to the urea water injection nozzle 4, urea water and water (cleaning liquid) are supplied from the urea water supply path 1, and purge air is supplied from the air supply path 2. Like to do. On the upstream side of the urea water supply path 1, a urea water supply pump 5 and a water supply pump 6 are installed in parallel, and a discharge amount checker 9 is provided in the middle.

また、尿素水噴射ノズル4の外側にはアトマイズエアライン12を設置しておき、尿素水噴射時にアトマイズエアを噴射することで尿素水の拡散効果を高める。空気供給経路2の上流側には空気供給ポンプ7を設け、空気供給経路2は途中で分岐しており、空気供給経路2は尿素水噴射ノズル4と尿素水噴射ノズル4周囲のアトマイズエアライン12に接続する。尿素水噴射ノズル4に接続している空気供給経路2にはパージ用空気制御弁11、アトマイズエアライン12に接続している空気供給経路2にはアトマイズエア制御弁10を設けておく。尿素水供給ポンプ5、水供給ポンプ6、空気供給ポンプ7、アトマイズエア制御弁10、パージ用空気制御弁11、吐出量チェッカー9は、脱硝装置の運転を制御する制御装置8と接続しておき、制御装置8が各機器の作動を制御する。   Further, an atomizing air line 12 is installed outside the urea water injection nozzle 4 to increase the diffusion effect of urea water by injecting atomized air at the time of urea water injection. An air supply pump 7 is provided on the upstream side of the air supply path 2, and the air supply path 2 is branched in the middle. The air supply path 2 includes the urea water injection nozzle 4 and the atomized air line 12 around the urea water injection nozzle 4. Connect to. A purge air control valve 11 is provided in the air supply path 2 connected to the urea water injection nozzle 4, and an atomizing air control valve 10 is provided in the air supply path 2 connected to the atomizing air line 12. The urea water supply pump 5, the water supply pump 6, the air supply pump 7, the atomizing air control valve 10, the purge air control valve 11, and the discharge amount checker 9 are connected to the control device 8 that controls the operation of the denitration device. The control device 8 controls the operation of each device.

脱硝運転を停止する操作を行う場合における尿素水供給ポンプ5、水供給ポンプ6、空気供給ポンプ7の稼働制御等を図2に基づいて説明する。図2のタイムチャートでは、原動機を運転しており、脱硝運転を行っている状態から始まっている。脱硝運転を行っている場合、制御装置8は、尿素水供給ポンプ5を稼働することで尿素水噴射ノズル4へ尿素水を供給する。尿素水噴射ノズル4では尿素水を微粒化して排ガス中へ噴射しており、排ガス中の窒素酸化物を窒素と水に分解する。この時、尿素水噴射ノズル4へは所定量の尿素水を供給し続けているため、尿素水噴射ノズル4内の液量は一定量となっている。尿素水噴射ノズル4では燃焼排ガスの熱を受けるが、尿素水噴射ノズル4は次々と送られてくる尿素水によって冷却されるため、尿素水噴射ノズル4内の尿素水温度が大幅に高くなることはなく、尿素水噴射ノズル4内の尿素水から水分が蒸発して結晶が析出するということはない。   Operation control of the urea water supply pump 5, the water supply pump 6, and the air supply pump 7 in the case of performing an operation for stopping the denitration operation will be described with reference to FIG. In the time chart of FIG. 2, the prime mover is in operation and starts from a state of performing denitration operation. When performing the denitration operation, the control device 8 supplies urea water to the urea water injection nozzle 4 by operating the urea water supply pump 5. The urea water injection nozzle 4 atomizes urea water and injects it into the exhaust gas, and decomposes nitrogen oxides in the exhaust gas into nitrogen and water. At this time, since a predetermined amount of urea water is continuously supplied to the urea water injection nozzle 4, the amount of liquid in the urea water injection nozzle 4 is constant. The urea water injection nozzle 4 receives the heat of the combustion exhaust gas. However, since the urea water injection nozzle 4 is cooled by the urea water sent one after another, the urea water temperature in the urea water injection nozzle 4 is significantly increased. In other words, the water does not evaporate from the urea water in the urea water injection nozzle 4 to precipitate crystals.

また、この時空気供給ポンプ7を作動しておき、アトマイズエア制御弁10を開き、パージ用空気制御弁11は閉じておく。空気供給ポンプ7からの空気は空気供給経路2を通ってアトマイズエアライン12へ入り、尿素水噴射ノズル4から噴射している尿素水を拡散する。   At this time, the air supply pump 7 is operated, the atomizing air control valve 10 is opened, and the purge air control valve 11 is closed. The air from the air supply pump 7 enters the atomizing air line 12 through the air supply path 2 and diffuses the urea water injected from the urea water injection nozzle 4.

点Aで原動機を停止することになった場合、制御装置8は原動機停止の情報を受けて脱硝運転を停止させる制御を行う。制御装置8は、まず尿素水供給ポンプ5の稼働を行っている状態のままで水供給ポンプ6の稼働を開始する。水供給ポンプ6を稼働すると、尿素水噴射ノズル4へは尿素水に加えて洗浄液の供給が開始される。この時、尿素水噴射ノズル4への供給量は、尿素水供給ポンプ5からの尿素水に加えて水供給ポンプ6からの水が追加されるため、尿素水噴射ノズルへ供給されている液量は増加していく。   When the prime mover is to be stopped at the point A, the control device 8 performs control to stop the denitration operation in response to information on the prime mover stop. First, the control device 8 starts the operation of the water supply pump 6 while the urea water supply pump 5 is operating. When the water supply pump 6 is operated, the supply of the cleaning liquid to the urea water injection nozzle 4 in addition to the urea water is started. At this time, since the water supplied from the water supply pump 6 is added to the urea water injection nozzle 4 in addition to the urea water supplied from the urea water supply pump 5, the amount of liquid supplied to the urea water injection nozzle Will increase.

制御装置8が水供給ポンプ6の稼働を開始させた時から所定の時間(例えば30秒程度)経過後である点Bになると、制御装置8は尿素水供給ポンプ5の稼働を停止する。尿素水供給ポンプ5が稼働を停止すると、尿素水噴射ノズル4への尿素水供給がなくなるため、尿素水噴射ノズル4へ供給される液量は減少する。しかしこの時点では水供給ポンプ6を稼働して尿素水噴射ノズル4へ洗浄液を供給しているため、尿素水噴射ノズル4の液量が少なくなりすぎることはなく、尿素水噴射ノズル4の温度上昇は発生しない。尿素水噴射ノズル4の洗浄は、その後も点Cになるまで継続しておき、十分な洗浄を行った後で水供給ポンプ6を停止して洗浄液による洗浄を終了する。   When the control device 8 reaches point B after a predetermined time (for example, about 30 seconds) has elapsed since the start of the operation of the water supply pump 6, the control device 8 stops the operation of the urea water supply pump 5. When the operation of the urea water supply pump 5 stops, the urea water supply to the urea water injection nozzle 4 is lost, so the amount of liquid supplied to the urea water injection nozzle 4 decreases. However, at this time, since the water supply pump 6 is operated to supply the cleaning liquid to the urea water injection nozzle 4, the amount of liquid in the urea water injection nozzle 4 does not decrease too much, and the temperature of the urea water injection nozzle 4 rises. Does not occur. Cleaning of the urea water injection nozzle 4 is continued until the point C is reached, and after sufficient cleaning, the water supply pump 6 is stopped and the cleaning with the cleaning liquid is completed.

その後、制御装置8は、尿素水供給経路1内の圧力が低下するのを待つために所定の時間を開け、点Dとなるとパージ用空気制御弁11を開く。パージ用空気制御弁11を開くことで、空気供給ポンプ7からの空気は尿素水噴射ノズル4へ入り、尿素水噴射ノズル4への空気供給を行うことで、尿素水噴射ノズル4の流路内に残留していた液分を吹き飛ばしておく。制御装置8は点Eになると、パージ用空気制御弁11を閉じてパージ用空気の供給を停止して脱硝運転を停止する。しかし、制御装置8ではパージ用空気供給停止からの経過時間を検出しておき、原動機が停止していても経過時間が所定時間に達するごとにパージ用空気の供給を行う。点Fで所定時間に到達したとすると、点Fからパージ用空気制御弁11を開いて尿素水噴射ノズル4へ一定時間分だけ空気供給を行う。   Thereafter, the control device 8 opens a predetermined time to wait for the pressure in the urea water supply path 1 to decrease, and when the point D is reached, opens the purge air control valve 11. By opening the purge air control valve 11, the air from the air supply pump 7 enters the urea water injection nozzle 4, and by supplying air to the urea water injection nozzle 4, Blow off any remaining liquid. At point E, the control device 8 closes the purge air control valve 11 to stop the supply of purge air and stop the denitration operation. However, the control device 8 detects the elapsed time from the purge air supply stop and supplies the purge air every time the elapsed time reaches a predetermined time even if the prime mover is stopped. If the predetermined time is reached at the point F, the purge air control valve 11 is opened from the point F, and air is supplied to the urea water injection nozzle 4 for a predetermined time.

原動機を停止しているのに尿素水噴射ノズル4への空気供給を行うのは、原動機を停止していても原動機は熱を持っており、停止している原動機からの放熱によって尿素水噴射ノズル4が加熱されることがあるために、尿素水噴射ノズル4を冷却するというものである。そのため、空気供給は冷却に必要なだけでよく、例えば15分経過するごとに1分間だけ空気供給ポンプ7を稼働するようにする。なお、所定時間ごとに行う尿素水噴射ノズル4の冷却は、尿素水噴射ノズル4が加熱されなくなれば停止すればよく、原動機が十分に冷えるだけ時間が経過すれば停止する。また、原動機停止中の定期的な冷却は、尿素水噴射ノズル4部分の温度に基づいて行うようにしてもよい。   Even when the prime mover is stopped, the air supply to the urea water injection nozzle 4 is performed even if the prime mover is stopped, the prime mover has heat, and the urea water injection nozzle is radiated by heat radiation from the stopped prime mover. Since 4 may be heated, the urea water injection nozzle 4 is cooled. Therefore, the air supply only needs to be performed for cooling. For example, every 15 minutes, the air supply pump 7 is operated for 1 minute. In addition, the cooling of the urea water injection nozzle 4 performed every predetermined time may be stopped if the urea water injection nozzle 4 is not heated, and is stopped when the time enough for the prime mover to sufficiently cool is elapsed. Further, the regular cooling while the prime mover is stopped may be performed based on the temperature of the urea water injection nozzle 4 portion.

図4は、比較のための従来例におけるタイムチャートである。図4では、点aで原動機の運転を停止しており、制御装置8は原動機の停止を検出すると直ちに尿素水供給ポンプ5の停止と水供給ポンプ6の稼働を行っている。この場合、尿素水供給ポンプ5を停止すると尿素水噴射ノズル4への尿素水供給量は急激に減少するのに対し、水供給ポンプ6の稼働開始による尿素水噴射ノズル4への洗浄液供給量は緩やかにしか増加しないため、尿素水噴射ノズル4での液量は一時的に減少する。尿素水噴射ノズル4内の液量が少なくなると、尿素水噴射ノズル4内では少量の液体で尿素水噴射ノズル4に伝わってくる熱を取り込まなければならなくなる。そのため、尿素水が加熱されて高温になり、水分が蒸発することにより結晶が析出することがある。析出した結晶は尿素水噴射ノズル4内に固着するため、脱硝運転を停止するたびに析出と固着を繰り返すことによって尿素水噴射ノズル4に詰まりが発生することになる。   FIG. 4 is a time chart in a conventional example for comparison. In FIG. 4, the operation of the prime mover is stopped at the point a, and the control device 8 stops the urea water supply pump 5 and operates the water supply pump 6 immediately after detecting the stop of the prime mover. In this case, when the urea water supply pump 5 is stopped, the urea water supply amount to the urea water injection nozzle 4 rapidly decreases, whereas the cleaning liquid supply amount to the urea water injection nozzle 4 by the start of operation of the water supply pump 6 is Since it increases only slowly, the amount of liquid at the urea water injection nozzle 4 temporarily decreases. When the amount of liquid in the urea water injection nozzle 4 decreases, it is necessary to take in heat transmitted to the urea water injection nozzle 4 with a small amount of liquid in the urea water injection nozzle 4. For this reason, the urea water is heated to a high temperature, and crystals may be precipitated by evaporation of the water. Since the precipitated crystal is fixed in the urea water injection nozzle 4, the urea water injection nozzle 4 is clogged by repeating the precipitation and fixation every time the denitration operation is stopped.

また、図4では、点cで水供給ポンプ6を停止するとともにアトマイズエア制御弁10を開き、尿素水噴射ノズル4へパージ用空気を供給している。水供給ポンプ6の停止と同時にパージ用空気制御弁11を開いた場合、尿素水供給経路部分をパージ用空気によって蓋をすることになる。水供給ポンプ6を停止した直後の場合、尿素水供給経路1内では洗浄水の圧力が高くなっており、パージ用空気によって蓋がされると、尿素水供給経路内では高い圧力のままで維持される。この場合、その後にパージ用空気供給を停止して空気による圧力がなくなると、圧力の高い尿素水供給経路内から洗浄水が尿素水噴射ノズルへあふれ出て、少量の洗浄水が尿素水噴射ノズル4内にたまる。尿素水噴射ノズル4内の洗浄水に尿素分が残っていると、尿素水噴射ノズル4内から水分が蒸発して尿素が析出し、析出した尿素によって尿素水噴射ノズル4が詰まることがあった。   In FIG. 4, the water supply pump 6 is stopped at the point c and the atomizing air control valve 10 is opened to supply the purge air to the urea water injection nozzle 4. When the purge air control valve 11 is opened simultaneously with the stop of the water supply pump 6, the urea water supply path portion is covered with the purge air. Immediately after the water supply pump 6 is stopped, the pressure of the washing water is high in the urea water supply path 1, and when the lid is covered with the purge air, the pressure is kept high in the urea water supply path. Is done. In this case, when the purge air supply is subsequently stopped and the pressure due to air disappears, the wash water overflows from the high-pressure urea water supply path to the urea water injection nozzle, and a small amount of the wash water flows into the urea water injection nozzle. Accumulate in 4. If urea remains in the cleaning water in the urea water injection nozzle 4, the water evaporates from the urea water injection nozzle 4 to precipitate urea, and the urea water injection nozzle 4 may be clogged with the precipitated urea. .

そのため、本発明では水供給ポンプ6の停止から尿素水供給経路1内の圧力を逃がすための所定の時間を開けてパージ用空気制御弁11を開くようにしている。水供給ポンプ6の停止からパージ用空気供給までに時間を開けることで、尿素水供給経路内の圧力による尿素水供給経路からのあふれ出しを先に行っておき、その後にパージ用空気を供給するようにしているため、本発明ではパージ用空気供給停止後に洗浄水が尿素水噴射ノズル4内へあふれ出てくることをなくすことができる。   Therefore, in the present invention, the purge air control valve 11 is opened after a predetermined time for releasing the pressure in the urea water supply path 1 from the stop of the water supply pump 6. By allowing time from the stop of the water supply pump 6 to the supply of purge air, overflow from the urea water supply path due to the pressure in the urea water supply path is performed first, and then purge air is supplied. Therefore, in the present invention, it is possible to prevent the washing water from overflowing into the urea water injection nozzle 4 after the supply of the purge air is stopped.

また、図4では脱硝運転を停止した以降は尿素水噴射ノズル4の冷却を行っていない。原動機を停止していても原動機の温度が高ければ、余熱によって尿素水噴射ノズル4が加熱されることがある。原動機停止中には尿素水噴射ノズル4の冷却を行っていない図4の場合、点eで空気供給ポンプ7を停止した以降は尿素水噴射ノズル4を冷却するものがないため、原動機の余熱によって尿素水噴射ノズル4の温度が上昇することがある。尿素水噴射ノズル4内に尿素水が残留している状態で尿素水噴射ノズル4の温度が上昇すると、尿素水から水分が蒸発し、結晶化して尿素水噴射ノズル4内を詰まらせることになるといった問題があった。しかし、尿素水噴射ノズル4を定期的に冷却する本発明を実施することで、脱硝運転停止中における尿素析出の問題も解消することができる。   In FIG. 4, the urea water injection nozzle 4 is not cooled after the denitration operation is stopped. Even if the prime mover is stopped, if the temperature of the prime mover is high, the urea water injection nozzle 4 may be heated by residual heat. In the case of FIG. 4 in which the urea water injection nozzle 4 is not cooled while the prime mover is stopped, there is nothing to cool the urea water injection nozzle 4 after the air supply pump 7 is stopped at the point e. The temperature of the urea water injection nozzle 4 may rise. If the temperature of the urea water injection nozzle 4 rises with the urea water remaining in the urea water injection nozzle 4, the water evaporates from the urea water and crystallizes to clog the inside of the urea water injection nozzle 4. There was a problem. However, by implementing the present invention in which the urea water injection nozzle 4 is periodically cooled, the problem of urea precipitation during the denitration operation stop can be solved.

図3は本発明に関するものであって、原動機の運転途中で尿素水供給ポンプ5に異常が発生して尿素水の供給が行えなくなった場合のタイムチャートを示している。尿素水供給ポンプ5でのエアがみや尿素水供給ポンプの異常、また尿素水噴射ノズルにつまりが発生するなどして、尿素水噴射ノズル4へ尿素水を供給できなくなった場合、早急に対処しないと、尿素水噴射ノズル4内に残留している尿素水から水分が蒸発し、尿素水噴射ノズル4が析出した尿素によって閉塞されることになる。   FIG. 3 relates to the present invention, and shows a time chart when the urea water supply pump 5 becomes abnormal during operation of the prime mover and the urea water cannot be supplied. When the urea water supply pump 5 cannot supply urea water to the urea water injection nozzle 4 due to air leakage, abnormalities in the urea water supply pump, or clogging of the urea water injection nozzle, it is not dealt with immediately. Then, moisture evaporates from the urea water remaining in the urea water injection nozzle 4 and the urea water injection nozzle 4 is blocked by the deposited urea.

尿素水噴射ノズル4への尿素水供給異常は、尿素水供給経路1に設けている吐出量チェッカー9からの信号に基づいて検出する。制御装置8は、尿素水供給ポンプ5に対して作動指令は出力しているにもかかわらず、吐出量チェッカー9から尿素水供給の信号が出力されてこないということを検出した場合、尿素水供給ポンプ異常(尿素水吐出異常)との判定を行う。制御装置8は尿素水供給に異常が発生しているとの判定を行うと、原動機は運転中であっても脱硝運転停止の操作を行う。脱硝運転停止の操作自体は、原動機運転停止時の操作と同じである。制御装置8は、点Hで異常発生を検出すると、水供給ポンプ6の作動を行うことで、尿素水噴射ノズル4内の尿素水を洗浄水によって排出する。その後点Iで水供給ポンプ6の作動を停止し、点Jでパージ用空気制御弁11を開いて尿素水噴射ノズル4へ空気を供給することで尿素水噴射ノズル4内の洗浄水を排出する。なお、尿素水吐出異常によって尿素水噴射を停止した場合、原動機は運転を継続しており、高温の燃焼排ガスが排ガス通路3内を流れ続けているため、尿素水噴射ノズル4への空気供給を継続することで尿素水噴射ノズル4の冷却を行う。その後、点Kで原動機の運転を停止すれば尿素水噴射ノズル4の冷却を継続する理由がなくなるため、その場合には前記と同様に、定期的に尿素水噴射ノズル4へ空気を供給するのみとし、余熱による尿素水噴射ノズル4の加熱を防止するための冷却を行う。   Abnormal supply of urea water to the urea water injection nozzle 4 is detected based on a signal from the discharge amount checker 9 provided in the urea water supply path 1. When the control device 8 detects that the urea water supply signal is not output from the discharge amount checker 9 even though the operation command is output to the urea water supply pump 5, the urea water supply is performed. It is determined that the pump is abnormal (urea water discharge abnormality). When the control device 8 determines that an abnormality has occurred in the urea water supply, the prime mover performs a denitration operation stop operation even during operation. The operation for stopping the denitration operation itself is the same as the operation for stopping the motor operation. When the controller 8 detects the occurrence of an abnormality at the point H, it operates the water supply pump 6 to discharge the urea water in the urea water injection nozzle 4 with the wash water. Thereafter, the operation of the water supply pump 6 is stopped at the point I, the purge air control valve 11 is opened at the point J, and air is supplied to the urea water injection nozzle 4 to discharge the wash water in the urea water injection nozzle 4. . When urea water injection is stopped due to abnormal urea water discharge, the prime mover continues to operate, and high-temperature combustion exhaust gas continues to flow in the exhaust gas passage 3, so that air supply to the urea water injection nozzle 4 is not performed. The urea water injection nozzle 4 is cooled by continuing. Thereafter, if the operation of the prime mover is stopped at the point K, there is no reason to continue cooling the urea water injection nozzle 4. In this case, only air is periodically supplied to the urea water injection nozzle 4 as described above. Then, cooling is performed to prevent heating of the urea water injection nozzle 4 due to residual heat.

図5は比較のための従来例におけるタイムチャートである。図4でも尿素水供給ポンプ5の異常によって尿素水の供給が停止している。しかしこの場合、尿素水供給の異常を検出することができておらず、原動機の運転を停止する点kまでは水供給ポンプ6の作動も行わないため、尿素水噴射ノズル4は温度が上昇する。そのため尿素水噴射ノズル4内の尿素水は蒸発し、尿素水噴射ノズル4内で尿素が析出するため、尿素水噴射ノズル4が詰まることになる。   FIG. 5 is a time chart in a conventional example for comparison. Also in FIG. 4, the urea water supply is stopped due to the abnormality of the urea water supply pump 5. However, in this case, the abnormality in the urea water supply cannot be detected, and the water supply pump 6 is not operated until the point k at which the operation of the prime mover is stopped. Therefore, the temperature of the urea water injection nozzle 4 rises. . Therefore, the urea water in the urea water injection nozzle 4 evaporates and urea is deposited in the urea water injection nozzle 4, so that the urea water injection nozzle 4 is clogged.

1 尿素水供給経路
2 空気供給経路
3 排ガス通路
4 尿素水噴射ノズル
5 尿素水供給ポンプ
6 水供給ポンプ
7 空気供給ポンプ
8 制御装置
9 吐出量チェッカー
10 アトマイズエア制御弁
11 パージ用空気制御弁
12 アトマイズエアライン

1 Urea water supply route
2 Air supply path
3 Exhaust gas passage
4 Urea water injection nozzle
5 Urea water supply pump 6 Water supply pump
7 Air supply pump
8 Control device 9 Discharge amount checker 10 Atomized air control valve 11 Purge air control valve 12 Atomized air line

Claims (2)

燃焼排ガスを通す排ガス通路に尿素水噴射ノズルを設置しておき、尿素水噴射ノズルから燃焼排ガスへ向けて尿素水を噴射し、燃焼排ガス中の窒素酸化物を還元除去するようにしている脱硝装置において、尿素水噴射ノズル内へは空気の供給も可能としておき、脱硝運転停止操作時、尿素水噴射ノズルへ空気を供給することによって尿素水噴射ノズル内の液体分を排出し、尿素水噴射ノズル内を空気で置換すると尿素水噴射ノズルへの空気供給は停止するが、その後も脱硝運転停止中には定期的に尿素水噴射ノズルへ空気を供給する制御を行う制御装置を有することを特徴とする尿素水噴射ノズルの詰まりを防止する脱硝装置。   A denitration device in which a urea water injection nozzle is installed in the exhaust gas passage for passing the combustion exhaust gas, urea water is injected from the urea water injection nozzle toward the combustion exhaust gas, and nitrogen oxides in the combustion exhaust gas are reduced and removed. In this case, air can also be supplied into the urea water injection nozzle, and when the denitration operation is stopped, the liquid in the urea water injection nozzle is discharged by supplying air to the urea water injection nozzle. When the inside is replaced with air, the air supply to the urea water injection nozzle is stopped, but after that, while the denitration operation is stopped, it has a control device that performs control to periodically supply air to the urea water injection nozzle A denitration device that prevents clogging of the urea water injection nozzle. 燃焼排ガスを通す排ガス通路に尿素水噴射ノズルを設置しておき、尿素水噴射ノズルから燃焼排ガスへ向けて尿素水を噴射し、燃焼排ガス中の窒素酸化物を還元除去するようにしている脱硝装置であって、尿素水噴射ノズルへは尿素水のほかに洗浄液の供給を可能としておき、脱硝運転を停止する際には尿素水噴射ノズルへ洗浄液を供給することで尿素水噴射ノズル内部の洗浄を行う脱硝装置において、尿素水噴射ノズル内へは空気の供給も可能としておき、脱硝運転停止操作時、洗浄液による尿素水噴射ノズルの洗浄を終了し、洗浄液供給停止後、すぐには尿素水噴射ノズルへの空気供給は行わず、尿素水や洗浄液を供給する尿素水供給経路内の圧力が抜けた後に、尿素水噴射ノズルへの空気供給を開始する制御を行う制御装置を有することを特徴とする尿素水噴射ノズルの詰まりを防止する脱硝装置。

A denitration device in which a urea water injection nozzle is installed in the exhaust gas passage for passing the combustion exhaust gas, urea water is injected from the urea water injection nozzle toward the combustion exhaust gas, and nitrogen oxides in the combustion exhaust gas are reduced and removed. In addition, the urea water injection nozzle can be supplied with cleaning liquid in addition to urea water, and when the denitration operation is stopped, the cleaning liquid is supplied to the urea water injection nozzle to clean the inside of the urea water injection nozzle. In the denitration device to be used, it is possible to supply air into the urea water injection nozzle, and at the time of denitration operation stop operation, cleaning of the urea water injection nozzle with the cleaning liquid is finished, and immediately after the cleaning liquid supply stops, the urea water injection nozzle Air control is not performed, and a control device is provided that performs control to start air supply to the urea water injection nozzle after the pressure in the urea water supply path for supplying urea water and cleaning liquid is released. Denitration device for preventing clogging of the urea water injection nozzle according to claim.

JP2010279038A 2010-12-15 2010-12-15 Denitration device to prevent clogging of urea water injection nozzle Expired - Fee Related JP5302295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010279038A JP5302295B2 (en) 2010-12-15 2010-12-15 Denitration device to prevent clogging of urea water injection nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010279038A JP5302295B2 (en) 2010-12-15 2010-12-15 Denitration device to prevent clogging of urea water injection nozzle

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005184201A Division JP4673146B2 (en) 2005-06-24 2005-06-24 Denitration device to prevent clogging of urea water injection nozzle

Publications (2)

Publication Number Publication Date
JP2011098343A true JP2011098343A (en) 2011-05-19
JP5302295B2 JP5302295B2 (en) 2013-10-02

Family

ID=44189968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010279038A Expired - Fee Related JP5302295B2 (en) 2010-12-15 2010-12-15 Denitration device to prevent clogging of urea water injection nozzle

Country Status (1)

Country Link
JP (1) JP5302295B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108590820A (en) * 2018-06-20 2018-09-28 中国第汽车股份有限公司 A kind of urea injection system and its control method of crystallization-preventive

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH067643A (en) * 1992-02-24 1994-01-18 Hans T Hug Method of purifying combustor exhaust gas
JPH09290134A (en) * 1996-04-26 1997-11-11 Blue Notsukusu Japan Kk Method for cleaning nitrogen oxide-removing apparatus
JP2003062427A (en) * 2001-08-27 2003-03-04 Miura Co Ltd Method for washing denitrification apparatus and apparatus therefor
JP2006122878A (en) * 2004-11-01 2006-05-18 Babcock Hitachi Kk Exhaust gas denitrification system and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH067643A (en) * 1992-02-24 1994-01-18 Hans T Hug Method of purifying combustor exhaust gas
JPH09290134A (en) * 1996-04-26 1997-11-11 Blue Notsukusu Japan Kk Method for cleaning nitrogen oxide-removing apparatus
JP2003062427A (en) * 2001-08-27 2003-03-04 Miura Co Ltd Method for washing denitrification apparatus and apparatus therefor
JP2006122878A (en) * 2004-11-01 2006-05-18 Babcock Hitachi Kk Exhaust gas denitrification system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108590820A (en) * 2018-06-20 2018-09-28 中国第汽车股份有限公司 A kind of urea injection system and its control method of crystallization-preventive
CN108590820B (en) * 2018-06-20 2024-05-07 中国第一汽车股份有限公司 Anti-crystallization urea injection system and control method thereof

Also Published As

Publication number Publication date
JP5302295B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
JP4673146B2 (en) Denitration device to prevent clogging of urea water injection nozzle
JP4673145B2 (en) Denitration device that automatically eliminates clogging of urea water injection nozzle
JP4560447B2 (en) Denitration device to prevent clogging of urea water injection nozzle
WO2005033482A1 (en) Exhaust gas cleaner for engine
JP2009097479A (en) Device and method for controlling reducing agent supplying device
JP2005113687A (en) Engine exhaust emission control device
JP2007000784A (en) Denitrification apparatus with protective tube provided on urea water jetting nozzle
KR102447698B1 (en) Reductant supply system and method for managing the same
JP4137831B2 (en) Engine exhaust purification system
JP2009264191A (en) Denitration device
JP3687914B2 (en) Engine exhaust purification system
JP5302295B2 (en) Denitration device to prevent clogging of urea water injection nozzle
JP2011226434A (en) System for supplying ammonia to scr device
CN105673147B (en) A kind of SCR system builds pressure method and device
JP2006122878A (en) Exhaust gas denitrification system and method
JP4969149B2 (en) Ammonia injection device and method for exhaust heat recovery boiler
JP4274358B2 (en) Flue gas denitration device and flue gas denitration method
JP2011173072A (en) Chemical agent spraying device and chemical agent spraying method
JP5437018B2 (en) Economizer performance recovery method and recovery equipment
JP2010119935A (en) Exhaust gas treatment apparatus and method of manufacturing semiconductor device
JP2015075003A (en) Exhaust emission control device for internal combustion engine
JP4647960B2 (en) Glass melting furnace exhaust gas treatment method and treatment apparatus
CN209781009U (en) Selective catalytic reduction system
JP5465773B1 (en) Soot blow control device and soot blow control method for air preheater
JP2010180800A (en) Exhaust gas cleaning device of internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130620

R150 Certificate of patent or registration of utility model

Ref document number: 5302295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees