JP2011095066A - Solution component sensor and method for manufacturing the same - Google Patents

Solution component sensor and method for manufacturing the same Download PDF

Info

Publication number
JP2011095066A
JP2011095066A JP2009248227A JP2009248227A JP2011095066A JP 2011095066 A JP2011095066 A JP 2011095066A JP 2009248227 A JP2009248227 A JP 2009248227A JP 2009248227 A JP2009248227 A JP 2009248227A JP 2011095066 A JP2011095066 A JP 2011095066A
Authority
JP
Japan
Prior art keywords
insulating film
fullerene
substrate
sample liquid
component sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009248227A
Other languages
Japanese (ja)
Inventor
Takasato Isoda
隆聡 礒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitakyushu Foundation for Advancement of Industry Science and Technology
Original Assignee
Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitakyushu Foundation for Advancement of Industry Science and Technology filed Critical Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority to JP2009248227A priority Critical patent/JP2011095066A/en
Publication of JP2011095066A publication Critical patent/JP2011095066A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solution component sensor excellent in reliability and workability, simple in structure and capable of miniaturizing the whole of a system, capable of being produced using an existing semiconductor manufacturing technique, excellent in mass productivity, and capable of precisely measuring the concentration of a component contained in a specimen liquid in an amount of about 1 ppm, such as ion, sugar, lipid, antibody or antigen, in an extremely short time. <P>SOLUTION: The solution component sensor 1 includes: a substrate 2; a pair of electrodes 3 arranged on the substrate at a predetermined interval; and an insulating film 5 covering the surface of the pair of electrodes and the surface of the substrate 2 between the pair of electrodes 3; wherein the insulating film 5 contains fullerene or a fullerene derivative. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、検体液中に含まれるイオン、糖、脂質、抗体、抗抗体、抗原等の種々の成分の濃度を電圧変化又は電流変化に基づいて検知することができる溶液成分センサとその製造方法に関する。   The present invention relates to a solution component sensor capable of detecting the concentration of various components such as ions, sugars, lipids, antibodies, anti-antibodies, antigens, etc. contained in a sample liquid based on voltage change or current change, and a method for producing the same. About.

従来、マイクロマシン技術の一種として、微量液体の分析、反応、ならびに分離操作に利用する流体マイクロシステム(fluid MEMS:micro electro
mechanical system)が知られている。
流体マイクロシステムはマイクロポンプ、ミキサ、バルブ、リアクタ、セパレータ、センサなどの各要素を基板(チップを含む)上に実装し、パッケージ化したものであり、ポストゲノム研究およびプロテオーム研究の発展に欠かせないツールとして期待されている。
このような流体マイクロシステムにおける検体液の濃度を計測する手段として、例えば(特許文献1)には、「基板と、前記基板上に所定間隔をおいて配置された電極対と、前記電極対の表面及び前記電極対間の前記基板の表面を被覆し血液、リンパ液、細胞質基質などの体液を含む検体液と接触する絶縁膜と、を備えていることを特徴とする酸化ストレス物質検知センサ」が開示されている。この方法では検体液中に含まれる1ppm程度の極微量の一酸化窒素などの特定の成分を極短時間で精度よく検知できるが、選択性が乏しいため、特定成分の有無や濃度の検知が困難であった。そのため、特定成分の有無や濃度の検知ができる選択性の付与が要望されていた。
Conventionally, as a kind of micromachine technology, a fluid micro system (fluid MEMS) used for analysis, reaction, and separation operation of a small amount of liquid.
mechanical system) is known.
A fluid microsystem is a package of micropumps, mixers, valves, reactors, separators, sensors, and other elements mounted on a substrate (including a chip) and packaged, and is indispensable for the development of post-genome research and proteomic research. Not expected as a tool.
As a means for measuring the concentration of the sample liquid in such a fluid microsystem, for example, (Patent Document 1) includes “a substrate, an electrode pair disposed on the substrate at a predetermined interval, and an electrode pair. An oxidative stress substance detection sensor comprising: an insulating film that covers a surface and a surface of the substrate between the electrode pair and that contacts a specimen fluid including a body fluid such as blood, lymph, and cytoplasmic substrate '' It is disclosed. This method can detect specific components such as very small amounts of nitric oxide of about 1 ppm contained in the sample liquid in a very short time, but it is difficult to detect the presence or concentration of specific components due to poor selectivity. Met. Therefore, there has been a demand for the provision of selectivity capable of detecting the presence or concentration of a specific component.

また、本発明者は、構造が簡単でシステム全体を小型化することができるとともに、既存の半導体製造技術を利用して製造することができるので新たな設備を要さず量産性に優れ、複数成分が混合した検体液中の特定成分の有無等を短時間で精度よく検知することができる選択性のあるセンサの提供を目的として鋭意研究の結果、「基板と、前記基板上に所定間隔をおいて配置された電極対と、前記電極対の表面及び前記電極対間の前記基板の表面を被覆し感応物質を分散保持した絶縁膜と、を備えた溶液成分センサ」を完成し、特許出願した(特許文献2、非特許文献1)。   In addition, the present inventor has a simple structure and can downsize the entire system, and can be manufactured by using existing semiconductor manufacturing technology. As a result of earnest research for the purpose of providing a selective sensor capable of accurately detecting the presence or absence of a specific component in a sample liquid mixed with components in a short period of time, “a predetermined interval between the substrate and the substrate is determined. Completed a solution component sensor comprising: an electrode pair disposed in a row; and an insulating film covering and holding the surface of the electrode pair and the surface of the substrate between the electrode pair to disperse and hold a sensitive substance. (Patent Document 2, Non-Patent Document 1).

特開2007−271287号公報JP 2007-271287 A 特開2008−134105号公報JP 2008-134105 A

”Sensors and Actuators B: Chemical”(Elsevier),Volume 129,Pages958-970,T.Isoda et al.(22 February 2008)“Sensors and Actuators B: Chemical” (Elsevier), Volume 129, Pages 958-970, T .; Isoda et al. (22 February 2008)

しかしながら、上記従来の技術においては、以下のような課題を有していた。
(1)(特許文献1)の酸化ストレス物質検知センサは、本願出願人らが出願したものであり、検体液中に含まれる1ppm程度の極微量の一酸化窒素などの特定の成分を極短時間で精度よく検知できる。しかし半導体製造方法で、基板上にこれらのセンサを複数配置させ、これを同時に測定する場合、絶縁膜の性状を一定に成膜することが難しく、その結果各々のセンサの検出電圧のバラツキが大きくなり再現性の改善が望まれていた。
(2)(特許文献2)の溶液成分センサも、本願出願人らが出願したものであり、絶縁膜に感応物質を分散保持させることにより、複数成分が混在した検体液中の1ppm程度の極微量の無機イオンや抗体あるいは抗原等の特定の成分を極短時間で精度よく検知できる。しかし、基板上にセンサを複数配置させ、同濃度の検体液を同時に測定する場合、検出感度が高いために溶液成分センサ自身の絶縁膜のわずかな歪みや絶縁膜の厚さに起因する誘電率のバラツキなども検出してしまい、その結果検出電圧の精度が低くなるという問題を生じた。さらに各センサ毎に異なる濃度の検体液を測定した場合、この誤差によって検体濃度に対する応答電圧の関係(検量線)の線形性が低下し、基板上のセンサ毎の測定値の精度の改善が望まれていた。
However, the above conventional techniques have the following problems.
(1) The oxidative stress substance detection sensor of (Patent Document 1) has been filed by the applicants of the present application, and is extremely short of a specific component such as a very small amount of nitric oxide of about 1 ppm contained in a sample liquid. It can be detected accurately with time. However, in the semiconductor manufacturing method, when a plurality of these sensors are arranged on a substrate and measured at the same time, it is difficult to form a constant property of the insulating film, resulting in large variations in the detection voltage of each sensor. Improvement of reproducibility was desired.
(2) The solution component sensor of (Patent Document 2) was also filed by the applicants of the present application, and by dispersing and holding a sensitive substance in an insulating film, an electrode of about 1 ppm in a sample liquid in which a plurality of components are mixed is used. A specific component such as a minute amount of inorganic ions, antibodies, or antigens can be detected accurately in a very short time. However, when multiple sensors are placed on the substrate and the same concentration of sample liquid is measured simultaneously, the dielectric constant caused by slight distortion of the insulation film of the solution component sensor itself and the thickness of the insulation film due to high detection sensitivity. As a result, the accuracy of the detection voltage is lowered. In addition, when different concentrations of the sample solution are measured for each sensor, this error reduces the linearity of the relationship of the response voltage to the sample concentration (calibration curve), and it is hoped that the accuracy of the measured value for each sensor on the substrate will be improved. It was rare.

本発明は上記要望に応えるもので、構造が簡単でシステム全体を小型化することができ、しかも既存の半導体製造技術を利用して製造することができるとともに、量産性に優れ、検体液中に含まれる1ppm程度のイオン、糖、脂質、抗体、抗原等の成分の濃度を極短時間で精度よく計測可能な信頼性、作業性に優れた溶液成分センサの提供を目的とする。
また本発明は、検出電圧のバラツキが小さく、再現性のよいデータを得ることが可能な溶液成分センサの量産性に優れた製造方法の提供を目的とする。
The present invention responds to the above-mentioned demands. The structure is simple, the entire system can be reduced in size, and it can be manufactured by using existing semiconductor manufacturing technology. An object of the present invention is to provide a solution component sensor excellent in reliability and workability capable of accurately measuring concentrations of components such as ions, sugars, lipids, antibodies, antigens and the like contained in about 1 ppm in a very short time.
It is another object of the present invention to provide a manufacturing method excellent in mass productivity of a solution component sensor that can obtain data with good reproducibility with small variations in detection voltage.

上記課題を解決するために本発明の溶液成分センサとその製造方法は、以下の構成を有している。
本発明の請求項1に記載の溶液成分センサは、基板と、前記基板上に所定間隔をおいて配置された電極対と、前記電極対の表面及び前記電極対間の前記基板の表面を被覆した絶縁膜と、を有し、前記絶縁膜がフラーレン又はフラーレン誘導体を含有していること、を備えた構成を有している。
この構成により、以下のような作用を有する。
(1)フラーレン又はフラーレン誘導体が絶縁膜中に含有されていることにより、絶縁膜の誘電率が低下するとともに、絶縁膜の表面電荷が平均化され、絶縁膜の持つ部分的な歪みや厚さのバラツキに起因する検出電圧のバラツキを抑え、データの精度と再現性をさらに高める。
(2)電極の表面及び電極間の基板の表面がフラーレン又はフラーレン誘導体を含有する絶縁膜で被覆されていることにより、絶縁膜上に滴下した微量の血液、リンパ液、細胞質基質などの体液を含む検体液中に含まれる成分の量に応じて変化する絶縁膜表面の静電分極量を電極間の電圧値又は電流値として短時間で、従来法よりも精度よく、検出することができる。
(3)電極表面が絶縁膜で被覆されていることにより、絶縁膜上に検体液を滴下或いは塗布するだけで、絶縁膜と検体液の界面に電荷の分離が発生し、検体液に含まれる電解効果の大きな無機イオンあるいは抗抗体などの成分を検出することができるので、1〜10μLの極微量な検体液で測定を行うことができ、測定前に特別な前処理等を行う必要もないので、検体液の採取や取り扱いが容易で作業性に優れる。
(4)構造が簡単な電極対を半導体作製技術によって基板上に高密度に集積させることができ、小型化が容易で量産性に優れ、電気回路や半導体集積回路などに容易に組み込むことができ、検出した化学的な情報を電気信号として短時間で処理することができ、高度で複雑な分析が可能な検知システムを構築することもできる。
In order to solve the above-mentioned problems, the solution component sensor and the manufacturing method thereof according to the present invention have the following configurations.
The solution component sensor according to claim 1 of the present invention covers a substrate, an electrode pair arranged on the substrate at a predetermined interval, a surface of the electrode pair, and a surface of the substrate between the electrode pairs. And the insulating film contains fullerene or a fullerene derivative.
This configuration has the following effects.
(1) When the fullerene or fullerene derivative is contained in the insulating film, the dielectric constant of the insulating film is lowered, the surface charge of the insulating film is averaged, and the partial distortion and thickness of the insulating film This suppresses variations in detection voltage caused by variations in data, and further improves data accuracy and reproducibility.
(2) Since the surface of the electrode and the surface of the substrate between the electrodes are covered with an insulating film containing fullerene or a fullerene derivative, it contains a small amount of blood, lymph fluid, cytoplasmic substrate, etc. dropped on the insulating film The amount of electrostatic polarization on the surface of the insulating film, which changes according to the amount of the component contained in the sample liquid, can be detected as a voltage value or current value between the electrodes in a short time and with higher accuracy than in the conventional method.
(3) Since the electrode surface is covered with the insulating film, the charge separation occurs at the interface between the insulating film and the sample liquid just by dropping or applying the sample liquid on the insulating film, and the sample liquid is contained in the sample liquid. Since components such as inorganic ions or anti-antibodies having a large electrolytic effect can be detected, measurement can be performed with a very small amount of sample liquid of 1 to 10 μL, and there is no need for special pretreatment or the like before measurement. Therefore, the sample liquid can be easily collected and handled, and the workability is excellent.
(4) Electrode pairs with a simple structure can be integrated on a substrate with high density by a semiconductor manufacturing technology, and can be easily miniaturized and excellent in mass productivity, and can be easily incorporated into electrical circuits and semiconductor integrated circuits. The detected chemical information can be processed as electrical signals in a short time, and a detection system capable of advanced and complicated analysis can be constructed.

ここで、絶縁膜の表面に検体液を滴下或いは塗布する等して接触させると、絶縁膜と検体液の界面に電荷の分離が生じ、溶液側と絶縁膜側は等しい数の極性の異なる電荷で帯電状態になる。その結果、絶縁膜が誘導分極し、電極間と接している絶縁膜内側にも電荷が生じる。電極間に電圧を負荷させると、この電荷が電子の流れを加速するため、電極間の電流値や電圧値に変化が生じる。検体液中に含まれる無機イオンあるいは抗抗体などの成分は、この誘導分極効果が大きいため、成分濃度に比例した電流値や電圧値の変化を検出することができる。   Here, when the sample liquid is brought into contact with the surface of the insulating film by dropping or applying it, charges are separated at the interface between the insulating film and the sample liquid, and the solution side and the insulating film side have the same number of charges of different polarities. It becomes a charged state. As a result, the insulating film is inductively polarized and charges are generated inside the insulating film in contact with the electrodes. When a voltage is applied between the electrodes, this charge accelerates the flow of electrons, so that a current value or a voltage value between the electrodes changes. Since components such as inorganic ions or anti-antibodies contained in the sample liquid have a large induced polarization effect, a change in current value or voltage value proportional to the component concentration can be detected.

基板の材質としては分析する検体液によって侵されず、基板上に電極対及び絶縁膜を形成することができ、電極対を電気的に絶縁できるものであればよく、例えば、各種の合成樹脂、ガラス、セラミックスなどが好適に用いられる。特にガラス等の透明な材質を用いた場合は、顕微鏡などによる検体液の観察も行うことができ汎用性に優れる。また、基板の形状は、矩形状、多角形状、円盤状などの種々な形状に形成することができる。
電極の素材としては、例えばPt、Au、Ag、Fe、Ni、Co、Cr、Cu、Al、Ti、Mn、Zn等の金属、ステンレス等の合金などを採用することができる。電極は、基板上に化学蒸着して形成してもよいし、あらかじめ基板上に作成した金属薄膜をドライエッチングやウエットエッチングでパターニングして形成してもよい。また、電極対の各々の電極は同種の金属を用いてもよいし、異種金属を組み合わせてもよい。尚、ガラス基板にCrを蒸着した上からAu電極を形成することにより、Crがバインダとなって密着性を向上させることができる。
As the material of the substrate, any material can be used as long as it can form an electrode pair and an insulating film on the substrate without being affected by the analyte liquid to be analyzed, and can electrically insulate the electrode pair. Glass, ceramics and the like are preferably used. In particular, when a transparent material such as glass is used, the sample liquid can be observed with a microscope or the like, and the versatility is excellent. The substrate can be formed in various shapes such as a rectangular shape, a polygonal shape, and a disk shape.
As the electrode material, for example, metals such as Pt, Au, Ag, Fe, Ni, Co, Cr, Cu, Al, Ti, Mn, Zn, and alloys such as stainless steel can be employed. The electrode may be formed by chemical vapor deposition on the substrate, or may be formed by patterning a metal thin film previously formed on the substrate by dry etching or wet etching. Moreover, the same kind of metal may be used for each electrode of the electrode pair, or different kinds of metals may be combined. In addition, by forming an Au electrode after depositing Cr on a glass substrate, Cr can be a binder to improve adhesion.

尚、1枚の基板上には1乃至複数の電極対を形成することがき、その配置は任意に選択することができる。また、電極対の各々の電極の形状は限定されるものではないが、三角形状、矩形状、半円形状等に形成することができる。また、電極対は非対称であっても、大きさが異なっていてもよく、辺部同士が対向するように配置される。
対向する2つの電極の辺部間の間隔は、検体液や電極の種類などにもよるが、5μm〜10mm、好ましくは10μm〜5mmの範囲とすることが好ましい。辺部間の間隔が10μmより狭くなるにつれ、検体液中の成分濃度に対する電流値等の電気特性の相関が小さくなり、応答感度が低下する傾向が見られ、間隔が5mmより広くなるにつれ、検出感度が低下し易くなり、データの再現性に欠ける傾向が見られるためである。特に電極の辺部間の間隔が5μmより狭くなるか10mmより広くなるにつれ、信号ノイズが大きくなり、電流値や電圧値の変化を正確に検出することが困難になる傾向があり、いずれも好ましくない。
One or a plurality of electrode pairs can be formed on one substrate, and the arrangement can be arbitrarily selected. In addition, the shape of each electrode of the electrode pair is not limited, but can be formed in a triangular shape, a rectangular shape, a semicircular shape, or the like. The electrode pairs may be asymmetrical or different in size, and are arranged so that the sides face each other.
The interval between the sides of the two opposing electrodes depends on the sample liquid and the type of electrode, but is preferably in the range of 5 μm to 10 mm, preferably 10 μm to 5 mm. As the distance between the side portions becomes narrower than 10 μm, the correlation between the electrical characteristics such as the current value with respect to the component concentration in the sample liquid decreases, and the response sensitivity tends to decrease, and as the interval becomes wider than 5 mm, the detection is performed. This is because the sensitivity tends to decrease and the data reproducibility tends to be lacking. In particular, as the distance between the sides of the electrode becomes narrower than 5 μm or wider than 10 mm, the signal noise increases, and it tends to be difficult to accurately detect changes in the current value and voltage value. Absent.

絶縁膜は電極の機械強度を保持するため、基板全面を被覆することが好ましいが、少なくとも電極の表面を被覆していればよい。
絶縁膜は、有機溶剤にポリ塩化ビニル,エポキシ樹脂,フェノール樹脂等を主成分とするマトリックス材料を溶解して調製した原料溶液を、電極対が形成された基板の上にスピンコート等によって塗布・乾燥して製造することができる。絶縁膜の膜厚は材質によって異なるが、検体液と電極対の間を確実に絶縁でき、センサとしての応答性を保つことができる範囲で選択する必要がある。絶縁膜の膜厚が薄くなるにつれ、絶縁膜の効果が不十分となりセンサの感度が低下する傾向があり、厚くなるにつれ、検体液中の成分濃度が変化しても電圧値や電流値に変化が見られなくなりセンサの応答性が消失する傾向があり、いずれも好ましくない。例えば、フルオロオレフィンビニルエーテール重合体(分子量分布100〜1000)であれば0.2μm〜0.8μmが好ましい。これらの樹脂による絶縁膜の厚みが平均0.2μm未満であると検体液と電極対の間を確実に絶縁できない恐れがある。また、平均0.8μmを超えるとセンサとしての応答性が下がり実用的でない。
ノボラック系フェノール樹脂(分子量分布1000〜10000))、ポリ塩化ビニル樹脂、ポリイミド樹脂であれば、5μm〜20μmが好ましい。これらの樹脂による絶縁膜の厚みが平均5μm未満であると検体液と電極対の間を確実に絶縁できない恐れがある。また、平均20μmを超えるとセンサとしての応答性が下がり実用的でない。
The insulating film preferably covers the entire surface of the substrate in order to maintain the mechanical strength of the electrode. However, it is sufficient that the insulating film covers at least the surface of the electrode.
For the insulating film, a raw material solution prepared by dissolving a matrix material mainly composed of polyvinyl chloride, epoxy resin, phenol resin, etc. in an organic solvent is applied to the substrate on which the electrode pair is formed by spin coating or the like. It can be produced by drying. Although the thickness of the insulating film varies depending on the material, it is necessary to select it within a range that can reliably insulate between the sample liquid and the electrode pair and maintain the responsiveness as a sensor. As the thickness of the insulating film decreases, the effect of the insulating film becomes insufficient and the sensitivity of the sensor tends to decrease.As the thickness increases, the voltage value and current value change even if the component concentration in the sample liquid changes. Is not seen, and the responsiveness of the sensor tends to disappear, which is not preferable. For example, if it is a fluoro olefin vinyl ether polymer (molecular weight distribution 100-1000), 0.2 micrometer-0.8 micrometer are preferable. If the thickness of the insulating film made of these resins is less than 0.2 μm on average, there is a possibility that the specimen liquid and the electrode pair cannot be reliably insulated. On the other hand, if the average value exceeds 0.8 μm, the response as a sensor is lowered, which is not practical.
In the case of a novolac phenol resin (molecular weight distribution 1000 to 10000)), a polyvinyl chloride resin, or a polyimide resin, 5 μm to 20 μm is preferable. If the thickness of the insulating film made of these resins is less than 5 μm on average, there is a possibility that the specimen liquid and the electrode pair cannot be reliably insulated. On the other hand, if the average value exceeds 20 μm, the response as a sensor is lowered, which is not practical.

絶縁膜を構成する樹脂にフラーレン又はフラーレン誘導体を含有させると、絶縁膜の誘電率が減少するとともに、表面電荷の分布が平均化するので、センサの絶縁膜の持つ部分的な歪みや厚さのバラツキに起因する検出電圧のバラツキを抑え、再現性よく精度の高い測定ができるようになる。   When fullerene or a fullerene derivative is contained in the resin constituting the insulating film, the dielectric constant of the insulating film is reduced and the surface charge distribution is averaged. Therefore, the partial distortion and thickness of the sensor insulating film are reduced. The variation in detection voltage due to the variation is suppressed, and the measurement can be performed with high reproducibility and high accuracy.

フラーレンは炭素原子が20個以上結合してできた球状の閉殻構造を有するカーボンクラスター分子の総称であり、C60のほかC20、C70、C82、C320など様々な大きさのフラーレンが知られており、レーザー法、アーク放電法、合成法などで製造されたものが使用できる。フラーレンの種類は特に限定しないが、現在C60が最もよく流通しており利用しやすく好ましい。 Fullerene is a general term for carbon cluster molecules having a spherical closed shell structure formed by bonding 20 or more carbon atoms. In addition to C 60 , fullerenes of various sizes such as C 20 , C 70 , C 82 , and C 320 are included. It is known and those manufactured by laser method, arc discharge method, synthesis method, etc. can be used. Type of fullerenes is not particularly limited, but preferably more accessible and the current C 60 is best distribution.

請求項2に記載の発明は、請求項1に記載の溶液成分センサであって、前記絶縁膜が感応物質を分散保持している構成を有している。
この構成により、請求項1の作用に加え、以下のような作用を有する。
(1)電極の表面及び電極間の基板の表面が感応物質を分散保持した絶縁膜で被覆されていることにより、絶縁膜上に滴下した微量の検体液中に含まれる特定の成分が、絶縁膜の表面の感応物質と相互作用する場合、特定の成分の有無や量に応じて電極間の電位に変化が生ずるため、これを検出することで、複数成分が混合した検体液中の特定成分の有無等を短時間で精度よく検知することができる。
(2)電極表面が絶縁膜で被覆されていることにより、絶縁膜上に検体液を滴下或いは塗布するだけで、絶縁膜と検体液の界面に電荷の分離を生じ、その静電誘導効果によって絶縁膜を構成している分子に分極が生じる。分極による電荷の量は、感応物質と相互作用する検体液の特定の成分の濃度に大きく依存し電気的に検知できるので、1〜10μLの極微量な検体液で測定を行うことができ、測定前に特別な前処理等を行う必要もないので、検体液の採取や取り扱いが容易で作業性に優れる。
A second aspect of the present invention is the solution component sensor according to the first aspect, wherein the insulating film has a structure in which a sensitive substance is dispersedly held.
With this configuration, in addition to the operation of the first aspect, the following operation is provided.
(1) Since the surface of the electrode and the surface of the substrate between the electrodes are coated with an insulating film in which a sensitive substance is dispersed and held, specific components contained in a small amount of sample liquid dropped on the insulating film are insulated. When interacting with a sensitive substance on the surface of the membrane, the potential between the electrodes changes depending on the presence or amount of the specific component. By detecting this, the specific component in the sample liquid in which multiple components are mixed is detected. The presence / absence or the like can be accurately detected in a short time.
(2) Since the electrode surface is covered with an insulating film, the charge is separated at the interface between the insulating film and the sample liquid simply by dropping or coating the sample liquid on the insulating film, and the electrostatic induction effect Polarization occurs in the molecules constituting the insulating film. The amount of charge due to polarization depends largely on the concentration of a specific component of the sample liquid that interacts with the sensitive substance and can be detected electrically. Therefore, measurement can be performed with a very small amount of sample liquid of 1 to 10 μL. Since it is not necessary to perform any special pretreatment or the like before, the sample liquid can be easily collected and handled, and the workability is excellent.

ここで、絶縁膜の表面に検体液を滴下或いは塗布する等して接触させると、絶縁膜と検体液の界面に電荷の分離が生じ、電気二重層を形成し、溶液側と絶縁膜側は等しい数の極性の異なる電荷で帯電状態になる。その結果、絶縁膜が誘導分極し、電極間と接している絶縁膜内側にも電荷が生じる。この電荷の量は感応物質と相互作用する検体液の特定の成分の濃度に依存するので、電極間に電圧を負荷するか電流を流すと、電極間の電流値や電圧値に変化が生じる。これを検知することで検体液中に含まれる特定の成分の有無や濃度を検知することができる。
また、シリカゲル,チタニア,アルミナ,硫化カドミウム,酸化鉛等の無機多孔質担体あるいは微粒子担体、ゼオライト,モンモリロナイト等の合成あるいは天然鉱物粒子、カーボンブラック,活性炭,炭素繊維,カーボンナノチューブ等の炭素材料を主成分とした多孔質担体あるいは微粒子担体、金,銀,銅,白金,パラジウム,鉄,コバルト,ニッケル等の金属微粒子あるいはコロイド分散液、ポリスチレン,ポリプロピレン,ポリエチレン,木材,紙,布等の有機高分子材料からなる多孔質担体あるいは微粒子担体等に感応物質を担持させ、該有機剤に多孔体を分散させフラーレンまたはフラーレン誘導体の微粒子を分散させた原料溶液を、電極対が形成された基板の上にスピンコート等によって塗布・乾燥して製造することができる。さらに前記多孔質担体とフラーレンまたはフラーレン誘導体の微粒子を予め分散させた原料用液を、電極対が形成された基板の上にスピンコート等によって塗布・乾燥させ、その膜表面に感応物質を溶解させた溶液を滴下させることで、感応物質をセンサ上に吸着担持させることができる。
Here, when the sample liquid is brought into contact with the surface of the insulating film by dropping or applying it, electric charges are separated at the interface between the insulating film and the sample liquid, and an electric double layer is formed. It becomes charged with an equal number of different charges of polarity. As a result, the insulating film is inductively polarized and charges are generated inside the insulating film in contact with the electrodes. Since the amount of this charge depends on the concentration of a specific component of the sample liquid that interacts with the sensitive substance, when a voltage is applied between the electrodes or a current is applied, a change occurs in the current value or voltage value between the electrodes. By detecting this, it is possible to detect the presence and concentration of a specific component contained in the sample liquid.
Also mainly used are inorganic porous or fine particle carriers such as silica gel, titania, alumina, cadmium sulfide and lead oxide, synthetic or natural mineral particles such as zeolite and montmorillonite, carbon materials such as carbon black, activated carbon, carbon fiber and carbon nanotube. Porous carrier or fine particle carrier as component, metal fine particles such as gold, silver, copper, platinum, palladium, iron, cobalt, nickel or colloidal dispersion, organic polymer such as polystyrene, polypropylene, polyethylene, wood, paper, cloth A raw material solution in which a sensitive substance is supported on a porous carrier or a fine particle carrier made of a material, a porous material is dispersed in the organic agent, and fine particles of fullerene or a fullerene derivative are dispersed on a substrate on which an electrode pair is formed. Can be manufactured by applying and drying by spin coating etc. Further, the raw material liquid in which the porous carrier and fullerene or fullerene derivative fine particles are dispersed in advance is applied to the substrate on which the electrode pair is formed by spin coating or the like, and the sensitive material is dissolved on the film surface. By dropping the solution, the sensitive substance can be adsorbed and supported on the sensor.

感応物質としては、検体液の特定成分と相互作用を生じるものであれば特に制限なく用いることができ、錯体形成化合物、ホスト化合物、酵素、抗体、抗原、カロチン、ポリフェノール等の活性酸素スカベンジャー類、タンパク質、DNA、RNA、糖鎖、糖脂質等を用いることができる。
錯体形成化合物としては、例えば、金属イオンと錯体を形成するポルフィリン類,EDTA(エチレンジアミン三酢酸)ならびにその誘導体,NTA(ニトリロ三酢酸)ならびにその誘導体等に代表される金属キレーター類、Bis(benzo-15-crown-5),Bis(12-crown-4), Dibenzyl-bis(12-crown-4)等カリウム,ナトリウム,カルシウム,リチウム等の金属イオンと錯体を形成するクラウンエーテル誘導体、酸化ストレス物質と関連し体内で発生する一酸化窒素と錯体を形成するDTCS Na(N-(Dithocarboxy)sarcosine, disodium salt, dihydrate)の鉄錯体やMGD(N-(Dithocarbamoyl)-N-metyl-D-glucamine, disodium salt)の鉄錯体等が用いられる。
ホスト化合物としては、例えば、バリノマイシン,モネンシン,ラサロシド,サリノマイシン等のイオノフォア抗生物質、シクロデキストリン、カリックスアレーン等のゲストと包接化合物を形成する各種ホスト化合物、ビオチン分子と選択的に結合するアビジン等の抗体蛋白質、DNAやRNAの塩基配列に補完的に水素結合するDNA断片、RNA断片ならびに糖鎖が用いられる。さらに構造中にマクロポアあるいはミクロポアを持つゼオライト類,アルミナ,チタニア,シリカ等の合成段階の前駆体溶液に、界面活性剤ミセルや有機微粒子を混入させ、過熱・固体化段階でこれを分解させ、その混入粒子のサイズによって微細孔を形成させる等の分子鋳型手法で調整した無機材料、活性炭類,カーボンナノチューブ類を用い、その分子篩効果を利用して細孔サイズ以下の分子のみを選択的に吸着させるホスト機能を有する材料でもよい。
酵素としては、アルコールオキシダーゼ,LDH,G−6−PDH,GOD,ウリカーゼ,カタラーゼ,ペルオキシダーゼ等の酸化還元酵素、GOT,GPT,CPK等の転移酵素、リパーゼ,アミラーゼ,キモトリプシン,トロンビン,ウレアーゼ,アルギナーゼ,コレステロールエステラーゼ等の加水分解酵素、アルドラーゼ等の分解酵素、ホスホヘキソースイソメラーゼ等の異性化酵素、アセチル−CoA−シンセターゼ等の合成酵素等を用いることができる。
抗体や抗原としては、例えば、梅毒センサ用のトレポネーマや擬似脂質抗原、血液型センサ用の血液型決定物質、抗免疫グロブリンG,A,M,E抗体、癌センサ用のAFP抗体等、ビオチン分子と選択的に結合するアビジン等の抗体蛋白質を用いることができる。
As the sensitive substance, any substance that interacts with a specific component of the sample liquid can be used without particular limitation, and a reactive oxygen scavenger such as a complex-forming compound, host compound, enzyme, antibody, antigen, carotene, polyphenol, Proteins, DNA, RNA, sugar chains, glycolipids and the like can be used.
Examples of complex-forming compounds include porphyrins that form complexes with metal ions, EDTA (ethylenediaminetriacetic acid) and derivatives thereof, metal chelators represented by NTA (nitrilotriacetic acid) and derivatives thereof, Bis (benzo-benzo- 15-crown-5), Bis (12-crown-4), Dibenzyl-bis (12-crown-4), etc. Crown ether derivatives that form complexes with metal ions such as potassium, sodium, calcium, lithium, etc., oxidative stress substances DTCS Na (N- (Dithocarboxy) sarcosine, disodium salt, dihydrate) iron complexes and MGD (N- (Dithocarbamoyl) -N-metyl-D-glucamine, disodium salt) and the like.
Examples of host compounds include ionophore antibiotics such as valinomycin, monensin, rasaloside, and salinomycin, various host compounds that form inclusion compounds with guests such as cyclodextrins and calixarenes, and avidin that selectively binds to biotin molecules. Antibody proteins, DNA fragments, RNA fragments, and sugar chains that complementarily bond with DNA or RNA base sequences are used. In addition, surfactant micelles and organic fine particles are mixed in the precursor solution of the synthesis stage such as zeolite, alumina, titania, silica, etc. with macropores or micropores in the structure, and decomposed in the superheating / solidification stage. Using inorganic materials, activated carbons, and carbon nanotubes adjusted by molecular templating techniques such as forming micropores depending on the size of the mixed particles, using the molecular sieving effect, only molecules smaller than the pore size are selectively adsorbed. A material having a host function may be used.
Examples of the enzyme include oxidoreductases such as alcohol oxidase, LDH, G-6-PDH, GOD, uricase, catalase and peroxidase, transferases such as GOT, GPT and CPK, lipase, amylase, chymotrypsin, thrombin, urease, arginase, Hydrolytic enzymes such as cholesterol esterase, degrading enzymes such as aldolase, isomerizing enzymes such as phosphohexose isomerase, and synthetic enzymes such as acetyl-CoA-synthetase can be used.
Examples of antibodies and antigens include, for example, treponema and pseudolipid antigens for syphilis sensors, blood group-determining substances for blood group sensors, anti-immunoglobulin G, A, M, and E antibodies, AFP antibodies for cancer sensors, and biotin molecules An antibody protein such as avidin that selectively binds to can be used.

絶縁膜中に分散保持する感応物質は、感応物質が絶縁膜の有機溶剤に溶解しない物質(微粒子状態で絶縁膜中に分散)の場合は、絶縁膜の原料溶液中1〜50wt%の範囲が望ましい。感応物質が1wt%未満では、検体液の特定成分との相互作用の検出が困難になる不都合が生じ、50wt%を超えると絶縁膜の機械的強度が低下するため、いずれも好ましくない。
また、感応物質が絶縁膜の有機溶剤に溶解する物質(均一に絶縁膜中に分散)の場合は、絶縁膜の原料溶液中0.1〜25wt%の範囲が望ましい。感応物質が0.1wt%未満では、検体液の特定成分との相互作用の検出が困難になる不都合が生じ、25wt%を超えるとセンサの応答感度が低下し検体液中の特定成分の有無や濃度の検出が困難になる不都合が生じるため、いずれも好ましくない。
In the case where the sensitive substance dispersed and held in the insulating film is a substance in which the sensitive substance does not dissolve in the organic solvent of the insulating film (dispersed in the insulating film in a fine particle state), the range of 1 to 50 wt% in the raw material solution of the insulating film is desirable. If the sensitive substance is less than 1 wt%, it is difficult to detect the interaction with the specific component of the sample liquid, and if it exceeds 50 wt%, the mechanical strength of the insulating film is lowered, which is not preferable.
When the sensitive substance is a substance that dissolves in the organic solvent of the insulating film (uniformly dispersed in the insulating film), the range of 0.1 to 25 wt% in the insulating film raw material solution is desirable. If the sensitive substance is less than 0.1 wt%, it becomes difficult to detect the interaction with the specific component of the sample liquid. If it exceeds 25 wt%, the response sensitivity of the sensor is reduced, and the presence or absence of the specific component in the sample liquid Neither of these is preferable because the inconvenience that it becomes difficult to detect the concentration occurs.

本発明の溶液成分センサは、検体液の特定成分の有無や濃度の検知、例えば、化学センサやバイオセンサ等として利用される。測定対象としては、例えば、Na+、K+、Ca2+、Mg2+、Al3+、Fe2+、Fe3+、Cl-、NO2 -、NO3 -、SO4 2-、NH4 +、PO4 3-等のイオン、グルコース等の糖、コレステロール,中性脂質等の脂質、フェニルアラニン,ロイシン等のアミノ酸、アルブミン等のタンパク質、インスリン,TSH等のホルモン、免疫グロブリン等の抗体、抗原、ビタミン、体内の代謝経路で生産される一酸化窒素(RNOS)、ヒドロキシラジカル,スーパーオキシド,過酸化脂質等に代表される活性酸素(ROS)類等の酸化ストレス物質等を挙げることができる。血液,リンパ液,尿,汗,唾液等の体液に含有されるこれらの成分の検知も行うことができる。 The solution component sensor of the present invention is used as a detection of the presence or concentration of a specific component of a sample liquid, for example, a chemical sensor or a biosensor. Examples of the measurement object include Na + , K + , Ca 2+ , Mg 2+ , Al 3+ , Fe 2+ , Fe 3+ , Cl , NO 2 , NO 3 , SO 4 2− , NH Ions such as 4 + , PO 4 3- , sugars such as glucose, lipids such as cholesterol and neutral lipids, amino acids such as phenylalanine and leucine, proteins such as albumin, hormones such as insulin and TSH, antibodies such as immunoglobulin, Examples include oxidative stress substances such as antigens, vitamins, reactive oxygen (ROS) typified by nitric oxide (RNOS), hydroxy radicals, superoxide, lipid peroxide, etc. produced by metabolic pathways in the body. . These components contained in body fluids such as blood, lymph, urine, sweat, and saliva can also be detected.

多孔体は、平均粒径が1〜30μmのものが好適に用いられる。多孔体の平均粒径が1μmより小さくなると凝集し易く取扱性に欠け、30μmより大きくなると膜厚の薄い絶縁膜に保持するのが困難になり脱落し易くなるからである。
多孔体の添加量は、絶縁膜の原料溶液に対して1〜50wt%の範囲が望ましい。1wt%未満では検体液の特定成分との相互作用の検出が困難になる不都合が生じ、50wt%を超えると絶縁膜の機械的強度が低下するため、いずれも好ましくない。
多孔体の細孔の表面はアミノ基、カルボキシル基、水酸基、ケトン基、アセチル基、炭化水素鎖等の官能基や、アミド化、スルホン化、ニトリル化、エステル化、トリメチルシリル化、オクチル化、オクタデシル化、アミノプロピル化、シアノプロピル化等により化学修飾することができるが、これらに限定されるものではない。検体液中の対象成分や多孔体の種類に応じて適宜選択することができる。
化学修飾する方法としては、多孔体をテトラクロロエタン中で硫酸と反応させることによりスルホン化する方法、ブチルアミンやプロピルアミン等を用いて脱水トルエン中でアミド化する方法、塩化バレロイル等を用い脱水トルエン中でエステル化する方法、鍍金、化学蒸着あるいはスパッタリング等の方法でコーティングさせ、これにチオールあるいはニトリロ三酢酸(NTA)等の誘導体を溶解させた溶液に含浸させて金属表面に化学吸着あるいは錯体を形成する性質を利用して分子を配向させる自己組織化膜法等を用いることができる。
A porous material having an average particle size of 1 to 30 μm is preferably used. This is because if the average particle size of the porous body is smaller than 1 μm, it is easy to aggregate and lacks in handleability, and if it is larger than 30 μm, it is difficult to hold it in a thin insulating film and it is easy to fall off.
The addition amount of the porous body is desirably in the range of 1 to 50 wt% with respect to the raw material solution of the insulating film. If it is less than 1 wt%, it becomes difficult to detect the interaction with the specific component of the sample liquid, and if it exceeds 50 wt%, the mechanical strength of the insulating film is lowered.
The surface of the pores of the porous body is a functional group such as amino group, carboxyl group, hydroxyl group, ketone group, acetyl group, hydrocarbon chain, amidation, sulfonation, nitrification, esterification, trimethylsilylation, octylation, octadecyl Chemical modification can be performed by chemical modification, aminopropylation, cyanopropylation, etc., but is not limited thereto. It can select suitably according to the object component in a test liquid, and the kind of porous body.
Chemical modification methods include sulfonation by reacting the porous material with sulfuric acid in tetrachloroethane, amidation in dehydrated toluene using butylamine or propylamine, etc., dehydrated toluene using valeroyl chloride, etc. It is coated by a method such as esterification, plating, chemical vapor deposition or sputtering, and impregnated with a solution in which a derivative such as thiol or nitrilotriacetic acid (NTA) is dissolved to form a chemical adsorption or complex on the metal surface. For example, a self-assembled film method for orienting molecules using such properties can be used.

感応物質を多孔体に担持させるには、感応物質を水やエタノール等の適当な溶媒に溶解させ、これに多孔体を混合し含浸させればよい。多孔体の表面に感応物質を物理吸着させることができるし化学吸着させてもよい。   In order to support the sensitive substance on the porous body, the sensitive substance is dissolved in an appropriate solvent such as water or ethanol, and the porous body is mixed and impregnated therein. The sensitive substance can be physically adsorbed on the surface of the porous body or may be chemically adsorbed.

請求項3に記載の発明は、請求項1又は2に記載の溶液成分センサであって、前記絶縁膜中のフラーレン又はフラーレン誘導体の濃度が0.01g/cm3〜0.07g/cm3である構成を有している。
この構成により、請求項1又は2の作用に加え、以下のような作用を有する。
(1)フラーレン又はフラーレン誘導体が絶縁膜中に適量含有されていることにより、絶縁膜の誘電率の低下によりセンサ電圧が適正なレンジ範囲で検出され、絶縁膜の表面電荷の平均化により絶縁膜の持つ部分的な歪みや厚さのバラツキに起因する検出電圧のバラツキを抑え、データの精度と再現性をさらに高める。
The invention according to claim 3, in claim 1 or 2 a solution component sensor according to the concentration of fullerene or fullerene derivative in the insulating film is 0.01g / cm 3 ~0.07g / cm 3 It has a certain configuration.
With this configuration, in addition to the operation of the first or second aspect, the following operation is provided.
(1) When an appropriate amount of fullerene or fullerene derivative is contained in the insulating film, the sensor voltage is detected within an appropriate range due to a decrease in the dielectric constant of the insulating film, and the insulating film is obtained by averaging the surface charge of the insulating film. This suppresses variations in detection voltage caused by partial distortions and thickness variations, and further improves data accuracy and reproducibility.

ここで絶縁膜中のフラーレン又はフラーレン誘導体の濃度は0.01g/cm3〜0.07g/cm3が好ましい。0.01g/cm3よりも低い濃度ではフラーレンを含有させることによる検出電圧のバラツキを抑える効果が小さく、好ましくない。また0.07g/cm3よりも高い濃度では絶縁膜の均一性が低下して膜形状が安定せず信号測定が困難となり好ましくない。 Wherein the concentration of the fullerene or fullerene derivative in the insulating film is 0.01g / cm 3 ~0.07g / cm 3 are preferred. When the concentration is lower than 0.01 g / cm 3, the effect of suppressing variation in detection voltage due to inclusion of fullerene is small, which is not preferable. On the other hand , if the concentration is higher than 0.07 g / cm 3, the uniformity of the insulating film is lowered, the film shape is not stable, and the signal measurement becomes difficult.

請求項4に記載の溶液成分センサの製造方法は、フラーレン又はフラーレン誘導体を合成樹脂に混合してフラーレン含有合成樹脂液を調製する合成樹脂液調製工程と、基板上に所定間隔を置いて配置された電極対の表面及び前記電極対間の前記基板の表面に前記フラーレン含有合成樹脂液を塗布して絶縁膜を形成する絶縁膜形成工程を有する構成を有している。
この構成により、以下のような作用を有する。
(1)フラーレン又はフラーレン誘導体が合成樹脂に混合されるので絶縁膜中に均一に含有され、絶縁膜の部分によるバラツキを抑えることができるので、同一の基板上に複数のセンサを備えていてもセンサ間の検出電圧のバラツキの少ない、再現性のよいデータを得られる溶液成分センサが製造できる。
(2)複数のセンサ間のバラツキが少ないので、既存の半導体製造技術を利用して製造することができるとともに、量産性に優れ、信頼性、作業性に優れた溶液成分センサが製造できる。
According to a fourth aspect of the present invention, there is provided a solution component sensor manufacturing method in which a fullerene or a fullerene derivative is mixed with a synthetic resin to prepare a fullerene-containing synthetic resin liquid, and a synthetic resin liquid preparation step is arranged on the substrate at a predetermined interval. And an insulating film forming step of forming an insulating film by applying the fullerene-containing synthetic resin liquid to the surface of the electrode pair and the surface of the substrate between the electrode pair.
This configuration has the following effects.
(1) Since the fullerene or fullerene derivative is mixed with the synthetic resin, it is uniformly contained in the insulating film, and variation due to the portion of the insulating film can be suppressed. It is possible to manufacture a solution component sensor capable of obtaining highly reproducible data with little variation in detection voltage between sensors.
(2) Since there are few variations between several sensors, while being able to manufacture using the existing semiconductor manufacturing technology, the solution component sensor excellent in mass production, reliability, and workability | operativity can be manufactured.

ここでフラーレンを合成樹脂に混合する方法には、粉体のまま樹脂に混錬する方法や溶媒に予め溶解して添加する方法が使用できる。フラーレンを溶解する有機溶媒としては、特に限定しないがジクロロベンゼン、クロロベンゼン、トリクロロベンゼン、ジオキサン、トルエン、四塩化炭素、二硫化炭素、ベンゼン、クロロナフタレンなどを用いることができる。発明者の知見によるとフラーレンを予め溶解して合成樹脂に添加した場合、合成樹脂を溶解している溶媒によってフラーレンは以下の2通りの挙動を示す。
(1)合成樹脂を溶解している溶媒に対するフラーレンの溶解度が高い場合。
合成樹脂液との添加混合過程や樹脂溶液が塗布され乾燥して溶媒が蒸発する過程において、フラーレンの微粒子が析出することなく合成樹脂中に均一に分散したまま固化する。
(2)合成樹脂を溶解している溶媒に対するフラーレンの溶解度が低い場合。
合成樹脂液に添加混合すると、合成樹脂液中でフラーレンが主として1〜5μmの微粒子として析出し、均一に分散する。樹脂と共に塗布され、均一分散したまま乾燥する。
(1)、(2)のいずれの場合も本願のセンサの機能としては差が認められなかった。
Here, as a method of mixing fullerene with a synthetic resin, a method of kneading the resin in the form of powder or a method of adding it by dissolving in advance in a solvent can be used. The organic solvent for dissolving fullerene is not particularly limited, but dichlorobenzene, chlorobenzene, trichlorobenzene, dioxane, toluene, carbon tetrachloride, carbon disulfide, benzene, chloronaphthalene, and the like can be used. According to the knowledge of the inventors, when fullerene is dissolved in advance and added to the synthetic resin, the fullerene exhibits the following two behaviors depending on the solvent in which the synthetic resin is dissolved.
(1) When the solubility of fullerene in the solvent dissolving the synthetic resin is high.
In the process of adding and mixing with the synthetic resin liquid or in the process of applying and drying the resin solution and evaporating the solvent, the fine particles of fullerene solidify without being precipitated and remain uniformly dispersed in the synthetic resin.
(2) When the solubility of fullerene in the solvent dissolving the synthetic resin is low.
When added to and mixed with the synthetic resin solution, fullerenes are mainly precipitated as fine particles of 1 to 5 μm in the synthetic resin solution and uniformly dispersed. It is applied together with the resin and dried with uniform dispersion.
In either case (1) or (2), no difference was recognized as the function of the sensor of the present application.

合成樹脂としては前述のフルオロオレフィンビニルエーテル重合体やノボラック系フェノール樹脂、ポリ塩化ビニル樹脂等が好適に用いられる。
合成樹脂を溶解する溶媒とフラーレンを溶解する有機溶媒が異なる場合には両者を添加混合する合成樹脂液調製工程で合成樹脂が不均一に析出しないことが好ましい。両者を添加混合して合成樹脂が不均一に析出する場合には均一に形成された絶縁膜とならない恐れがあるためである。
フラーレン含有合成樹脂液液の塗布方法は特に限定しないが、ロール法、スピンコート法、インクジェット法やスプレーによる吹きつけなどが使用できる。またディップコーティングで塗布したり、基板上に滴下した溶液をそのまま乾燥・固化させてもよい。
As the synthetic resin, the aforementioned fluoroolefin vinyl ether polymer, novolac phenol resin, polyvinyl chloride resin, or the like is preferably used.
When the solvent for dissolving the synthetic resin is different from the organic solvent for dissolving the fullerene, it is preferable that the synthetic resin does not precipitate unevenly in the synthetic resin liquid preparation step in which both are added and mixed. This is because when the both are added and mixed and the synthetic resin is deposited nonuniformly, the insulating film may not be formed uniformly.
The method for applying the fullerene-containing synthetic resin liquid is not particularly limited, and a roll method, a spin coating method, an ink jet method, spraying by spraying, or the like can be used. Further, it may be applied by dip coating, or the solution dropped on the substrate may be dried and solidified as it is.

請求項5に記載の発明は、請求項4に記載の溶液成分センサの製造方法であって、前記合成樹脂液調製工程において、フラーレン又はフラーレン誘導体を溶媒に溶解し不溶成分を分離除去する工程を有する構成を有している。
この構成により、請求項4の作用に加えて以下のような作用を有する。
(1)溶媒に不溶性のフラーレン成分が分離されることで、絶縁膜中のフラーレン又はフラーレン誘導体の分布がより均一となり、より検出電圧のバラツキの少ない、再現性のよいデータを得られる溶液成分センサが製造できる。
Invention of Claim 5 is a manufacturing method of the solution component sensor of Claim 4, Comprising: In the said synthetic resin liquid preparation process, the process of melt | dissolving a fullerene or a fullerene derivative in a solvent, and separating and removing an insoluble component is included. It has the composition which has.
With this configuration, in addition to the operation of the fourth aspect, the following operation is provided.
(1) A solution component sensor capable of obtaining a highly reproducible data with less variation in detection voltage because the distribution of fullerene or fullerene derivative in the insulating film becomes more uniform by separating the insoluble fullerene component in the solvent. Can be manufactured.

ここでフラーレンを溶解する溶媒としては、特に限定しないがジクロロベンゼン、クロロベンゼン、トリクロロベンゼン、ジオキサン、トルエン、四塩化炭素、二硫化炭素、ベンゼン、クロロナフタレンなどを用いることができる。
溶媒に溶けなかったフラーレンの不溶成分の分離には限外ろ過による方法、遠心分離により不溶成分を沈降させて上清と分ける方法などが使用できる。
Here, the solvent for dissolving fullerene is not particularly limited, and dichlorobenzene, chlorobenzene, trichlorobenzene, dioxane, toluene, carbon tetrachloride, carbon disulfide, benzene, chloronaphthalene, and the like can be used.
For the separation of insoluble components of fullerene that has not been dissolved in the solvent, a method by ultrafiltration, a method in which the insoluble components are precipitated by centrifugation and separated from the supernatant can be used.

請求項6に記載の発明は、請求項4又は5に記載の溶液成分センサの製造方法であって、前記合成樹脂液調製工程において、感応物質を前記フラーレン含有合成樹脂液に溶解または分散させる工程を有する構成を有している。
この構成により、請求項4又は5の作用に加えて以下のような作用を有する。
(1)感応物質が絶縁膜に含まれているので、検体液中の特定物質を非常に高感度で再現性よく検出できる溶液成分センサが製造できる。
Invention of Claim 6 is a manufacturing method of the solution component sensor of Claim 4 or 5, Comprising: In the said synthetic resin liquid preparation process, the process which dissolves or disperses a sensitive substance in the said fullerene containing synthetic resin liquid It has the composition which has.
With this configuration, in addition to the operation of the fourth or fifth aspect, the following operation is provided.
(1) Since the sensitive substance is contained in the insulating film, a solution component sensor capable of detecting a specific substance in the sample liquid with very high sensitivity and good reproducibility can be manufactured.

ここで感応物質は直接添加または、溶媒などに分散あるいは溶解してから添加することができる。   Here, the sensitive substance can be added directly or after being dispersed or dissolved in a solvent or the like.

以上のように、本発明の溶液成分センサとその製造方法によれば、以下のような有利な効果が得られる。
請求項1に記載の発明によれば、
(1)フラーレン又はフラーレン誘導体が絶縁膜中に含有されていることにより、絶縁膜の誘電率が低下するとともに、絶縁膜の表面電荷が平均化され、絶縁膜の持つ部分的な歪みや厚さのバラツキに起因する検出電圧のバラツキを抑え、データの精度と再現性がさらに高い溶液成分センサを提供することができる。
(2)電極の表面及び電極間の基板の表面がフラーレン又はフラーレン誘導体を含有する絶縁膜で被覆されていることにより、絶縁膜上に滴下した微量の血液、リンパ液、細胞質基質などの体液を含む検体液中に含まれる成分の量に応じて変化する絶縁膜表面の静電分極量を電極間の電圧値又は電流値として短時間で、従来法より精度よく、検出することができる溶液成分センサを提供することができる。
(3)電極表面が絶縁膜で被覆されていることにより、絶縁膜上に検体液を滴下或いは塗布するだけで、絶縁膜と検体液の界面に電荷の分離が発生し、検体液に含まれる電解効果の大きな無機イオンあるいは抗抗体などの成分を検出することができるので、1〜10μLの極微量な検体液で測定を行うことができ、測定前に特別な前処理等を行う必要もないので、検体液の採取や取り扱いが容易で作業性に優れる溶液成分センサを提供することができる。
(4)構造が簡単な電極対を半導体作製技術によって基板上に高密度に集積させることができ、小型化が容易で量産性に優れ、電気回路や半導体集積回路などに容易に組み込むことができ、検出した化学的な情報を電気信号として短時間で処理することができ、高度で複雑な分析が可能な検知システムを構築することもできる溶液成分センサを提供することができる。
As described above, according to the solution component sensor and the manufacturing method thereof of the present invention, the following advantageous effects can be obtained.
According to the invention of claim 1,
(1) When the fullerene or fullerene derivative is contained in the insulating film, the dielectric constant of the insulating film is lowered, the surface charge of the insulating film is averaged, and the partial distortion and thickness of the insulating film Thus, it is possible to provide a solution component sensor that suppresses variations in detection voltage due to variations in the quality of the data, and further improves data accuracy and reproducibility.
(2) Since the surface of the electrode and the surface of the substrate between the electrodes are covered with an insulating film containing fullerene or a fullerene derivative, it contains a small amount of blood, lymph fluid, cytoplasmic substrate, etc. dropped on the insulating film Solution component sensor that can detect the amount of electrostatic polarization on the surface of the insulating film, which changes according to the amount of components contained in the sample liquid, as the voltage value or current value between the electrodes in a short time and with higher accuracy than conventional methods Can be provided.
(3) Since the electrode surface is covered with the insulating film, the charge separation occurs at the interface between the insulating film and the sample liquid just by dropping or applying the sample liquid on the insulating film, and the sample liquid is contained in the sample liquid. Since components such as inorganic ions or anti-antibodies having a large electrolytic effect can be detected, measurement can be performed with a very small amount of sample liquid of 1 to 10 μL, and there is no need for special pretreatment or the like before measurement. Therefore, it is possible to provide a solution component sensor that is easy to collect and handle the sample liquid and has excellent workability.
(4) Electrode pairs with a simple structure can be integrated on a substrate with high density by a semiconductor manufacturing technology, and can be easily miniaturized and excellent in mass productivity, and can be easily incorporated into electrical circuits and semiconductor integrated circuits. Thus, it is possible to provide a solution component sensor that can process the detected chemical information as an electrical signal in a short time and can construct a detection system capable of advanced and complicated analysis.

請求項2に記載の発明によれば、請求項1の効果に加え、
(1)電極の表面及び電極間の基板の表面が感応物質を分散保持した絶縁膜で被覆されていることにより、絶縁膜上に滴下した微量の検体液中に含まれる特定の成分が、絶縁膜の表面の感応物質と相互作用する場合、特定の成分の有無や量に応じて電極間の電位に変化が生ずるため、これを検出することで、複数成分が混合した検体液中の特定成分の有無等を短時間で精度よく検知することができる選択性に優れた溶液成分センサを提供することができる。
(2)電極表面が絶縁膜で被覆されていることにより、絶縁膜上に検体液を滴下或いは塗布するだけで、絶縁膜と検体液の界面に電荷の分離を生じ、その静電誘導効果によって絶縁膜を構成している分子に分極が生じる。分極による電荷の量は、感応物質と相互作用する検体液の特定の成分の濃度に大きく依存し電気的に検知できるので、1〜10μLの極微量な検体液で測定を行うことができ、測定前に特別な前処理等を行う必要もないので、検体液の採取や取り扱いが容易で作業性に優れた溶液成分センサを提供することができる。
According to invention of Claim 2, in addition to the effect of Claim 1,
(1) Since the surface of the electrode and the surface of the substrate between the electrodes are coated with an insulating film in which a sensitive substance is dispersed and held, specific components contained in a small amount of sample liquid dropped on the insulating film are insulated. When interacting with a sensitive substance on the surface of the membrane, the potential between the electrodes changes depending on the presence or amount of the specific component. By detecting this, the specific component in the sample liquid in which multiple components are mixed is detected. Therefore, it is possible to provide a solution component sensor excellent in selectivity that can accurately detect the presence or absence or the like of the liquid in a short time.
(2) Since the electrode surface is covered with an insulating film, the charge is separated at the interface between the insulating film and the sample liquid simply by dropping or coating the sample liquid on the insulating film, and the electrostatic induction effect Polarization occurs in the molecules constituting the insulating film. The amount of charge due to polarization depends largely on the concentration of a specific component of the sample liquid that interacts with the sensitive substance and can be detected electrically. Therefore, measurement can be performed with a very small amount of sample liquid of 1 to 10 μL. Since it is not necessary to perform any special pretreatment or the like before, it is possible to provide a solution component sensor that is easy to collect and handle the sample liquid and excellent in workability.

請求項3に記載の発明によれば、請求項1又は2の効果に加え、
(1)フラーレンが絶縁膜中に適量含有されていることにより、絶縁膜の誘電率の低下と絶縁膜の表面電荷の平均化により検出感度の鋭敏さが緩和されると共に平均化され、絶縁膜の持つ部分的な歪みや厚さのバラツキに起因する検出電圧のバラツキを抑え、データの精度と再現性がさらに高い溶液成分センサを提供することができる。
According to invention of Claim 3, in addition to the effect of Claim 1 or 2,
(1) When an appropriate amount of fullerene is contained in the insulating film, the sensitivity of detection sensitivity is reduced and averaged by reducing the dielectric constant of the insulating film and averaging the surface charge of the insulating film. Thus, it is possible to provide a solution component sensor that suppresses variations in detection voltage due to partial distortions and variations in thickness, and has higher data accuracy and reproducibility.

請求項4に記載の発明によれば、
(1)フラーレンが合成樹脂に混合されるので、絶縁膜中に均一に含有され、絶縁膜の部分によるバラツキを抑えることができるので、同一の基板上に複数のセンサを備えていてもセンサ間の検出電圧のバラツキの少なく、再現性のよいデータを得られる溶液成分センサの製造方法を提供することができる。
(2)複数のセンサ間のバラツキが少ないので、既存の半導体製造技術を利用して製造することができるとともに、量産性に優れ、信頼性、作業性に優れた溶液成分センサの製造方法を提供することができる。
According to invention of Claim 4,
(1) Since the fullerene is mixed with the synthetic resin, it is uniformly contained in the insulating film, and variation due to the insulating film portion can be suppressed, so even if multiple sensors are provided on the same substrate, Therefore, it is possible to provide a method for manufacturing a solution component sensor that can obtain data with good reproducibility with little variation in detection voltage.
(2) Since there is little variation between multiple sensors, it can be manufactured using existing semiconductor manufacturing technology, and a solution component sensor manufacturing method with excellent mass productivity, reliability, and workability is provided. can do.

請求項5に記載の発明によれば、請求項4の効果に加え、
(1)溶媒に不溶性のフラーレン成分が分離されることで、絶縁膜中のフラーレンの分布がより均一となり、より検出電圧のバラツキの少ない、再現性のよいデータを得られる溶液成分センサの製造方法を提供することができる。
According to invention of Claim 5, in addition to the effect of Claim 4,
(1) A method for producing a solution component sensor in which fullerene components insoluble in a solvent are separated, so that the distribution of fullerenes in the insulating film becomes more uniform, and there is less variation in detection voltage and data with good reproducibility can be obtained. Can be provided.

請求項6に記載の発明によれば、請求項4又は5の効果に加え、
(1)感応物質が絶縁膜に含まれているので、検体液中の特定物質を非常に高感度で再現性よく検出できる溶液成分センサの製造方法を提供することができる。
According to invention of Claim 6, in addition to the effect of Claim 4 or 5,
(1) Since the sensitive substance is contained in the insulating film, it is possible to provide a method for manufacturing a solution component sensor that can detect a specific substance in the sample liquid with very high sensitivity and good reproducibility.

(a)実施の形態1における溶液成分センサを示す平面図 (b)図1(a)のA−A線矢視断面模式図(A) Top view which shows the solution component sensor in Embodiment 1 (b) AA sectional view schematic drawing of Fig.1 (a). 実施の形態1における溶液成分センサの使用状態を示す断面模式図Sectional schematic diagram which shows the use condition of the solution component sensor in Embodiment 1. 実施の形態2における溶液成分センサの断面模式図Sectional schematic diagram of the solution component sensor in the second embodiment 実施の形態2における溶液成分センサの使用状態を示す断面模式図Sectional schematic diagram which shows the use condition of the solution component sensor in Embodiment 2. 実施の形態3における溶液成分センサの断面模式図Sectional schematic diagram of the solution component sensor in the third embodiment 複数のセンサ部分を同一基板上に設けた溶液成分センサの模式図Schematic diagram of a solution component sensor with multiple sensor parts on the same substrate 実施例1のナトリウム濃度とNa検出電圧の関係を示す図The figure which shows the relationship between the sodium concentration of Example 1, and Na detection voltage. 実施例2のナトリウム濃度とNa検出電圧の関係を示す図The figure which shows the relationship between the sodium concentration of Example 2, and Na detection voltage. 比較例1のナトリウム濃度とNa検出電圧の関係を示す図The figure which shows the relationship between the sodium concentration of Comparative Example 1, and Na detection voltage 実施例3の絶縁膜中のフラーレン濃度とNa検出電圧との関係を示す図The figure which shows the relationship between the fullerene density | concentration in the insulating film of Example 3, and Na detection voltage. 実施例2の検体液の抗IgGの濃度と検出電圧の関係を示す図The figure which shows the relationship between the density | concentration of the anti-IgG of the sample liquid of Example 2, and detection voltage. 比較例2の検体液の抗IgGの濃度と検出電圧の関係を示す図The figure which shows the relationship between the density | concentration of anti-IgG of the sample liquid of the comparative example 2, and detection voltage

以下、本発明を実施するための最良の形態を、図面を参照しながら説明する。
(実施の形態1)
図1(a)は実施の形態1における溶液成分センサを示す平面図であり、図1(b)は図1(a)のA−A線矢視断面模式図である。
図1中、1は本発明の実施の形態1における溶液成分センサ、2は各種の合成樹脂、ガラス、セラミックスなどで形成した溶液成分センサ1の基板、3は基板2の上面に略半円形状の2つの電極4が辺部4a同士で対向するように離間して配置された溶液成分センサ1の電極対、4bは各々の電極4の円弧状の側部に延設された電極対3の端子部、5は電極対3を含んで基板2の全面を被覆したフルオロオレフィンビニルエーテル重合体やノボラック系樹脂、ポリイミド系樹脂、ポリ塩化ビニル樹脂などからなるフラーレンを含有した絶縁膜、6は端子部4bで電極対3に電気的に接続され、電極4間の電圧値や電流値等を検出するデジタルマルチメータなどの検出部、7は検出部6に接続され検出部6が検出した検出データに基づいて検体液に含まれる特定の成分の量を検知して特定の成分の有無や濃度を判定する判定部である。
Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
(Embodiment 1)
FIG. 1A is a plan view showing the solution component sensor according to Embodiment 1, and FIG. 1B is a schematic cross-sectional view taken along the line AA in FIG.
In FIG. 1, 1 is a solution component sensor according to Embodiment 1 of the present invention, 2 is a substrate of the solution component sensor 1 formed of various synthetic resins, glass, ceramics, and the like, 3 is a substantially semicircular shape on the upper surface of the substrate 2 The electrode pairs of the solution component sensor 1, 4 b, which are spaced apart so that the side portions 4 a face each other 4 a, are the electrode pairs 3 extending on the arc-shaped side portions of the respective electrodes 4. Terminal part 5 is an insulating film containing fullerene made of a fluoroolefin vinyl ether polymer, a novolac resin, a polyimide resin, a polyvinyl chloride resin or the like covering the entire surface of the substrate 2 including the electrode pair 3, and 6 is a terminal part. A detection unit such as a digital multimeter that is electrically connected to the electrode pair 3 at 4b and detects a voltage value or a current value between the electrodes 4, and 7 is connected to the detection unit 6 and is detected data detected by the detection unit 6. Specimen based A determination unit for presence and concentration of a particular component of the amount of a particular component contained in the detecting.

図1において、基板2の材質は、本実施の形態に限定されるものではなく、分析する検体液によって侵されず、基板2上に電極対3及び絶縁膜5を形成することができ、電極対3を電気的に絶縁できるものであればよい。特にガラス等の透明な材質を用いた場合は、顕微鏡などによる検体液の観察も行うことができ汎用性に優れる。また、基板2の形状は、矩形状以外に多角形状、円盤状などの種々な形状に形成することができる。
本実施の形態では、基板2にCrを蒸着した上からAuの電極4を形成することにより、Crをバインダとして電極4と基板2の密着性を向上させている。
In FIG. 1, the material of the substrate 2 is not limited to this embodiment, and the electrode pair 3 and the insulating film 5 can be formed on the substrate 2 without being affected by the sample liquid to be analyzed. What is necessary is just to be able to electrically insulate the pair 3. In particular, when a transparent material such as glass is used, the sample liquid can be observed with a microscope or the like, and the versatility is excellent. Moreover, the shape of the board | substrate 2 can be formed in various shapes, such as polygonal shape and disk shape other than rectangular shape.
In the present embodiment, the adhesion of the electrode 4 and the substrate 2 is improved by using Cr as a binder by forming the Au electrode 4 after depositing Cr on the substrate 2.

対向する2つの電極4の辺部4a間の間隔は、検体液や電極4の種類などにもよるが、1μm〜10mmの範囲に形成した。辺部4a間の間隔が1μmより狭くなるにつれ、検体液中の成分の濃度に対する電流値等の電気特性の相関が小さくなり、応答感度が低下し易くなる傾向があり、間隔が10mmより長くなるにつれ、検出感度が低下し易くなり、データの再現性に欠ける傾向があることがわかったためである。   The interval between the side portions 4a of the two electrodes 4 facing each other was formed in the range of 1 μm to 10 mm, although it depends on the sample liquid and the type of the electrode 4. As the distance between the side portions 4a becomes narrower than 1 μm, the correlation between the electrical characteristics such as the current value with respect to the concentration of the component in the sample liquid tends to decrease, and the response sensitivity tends to decrease, and the distance becomes longer than 10 mm. This is because it has been found that the detection sensitivity tends to decrease and the data reproducibility tends to be lacking.

本実施の形態では、基板2の全面を絶縁膜5で被覆したが、絶縁膜5は少なくとも電極4の表面を被覆していればよい。
絶縁膜5の膜厚は材質によって異なるが、検体液と電極対3の間を確実に絶縁でき、センサとしての応答性を保つことができる範囲で選択する必要がある。絶縁膜5の膜厚が薄くなるにつれ、絶縁膜5の効果が不十分となりセンサの感度が低下する傾向があり、厚くなるにつれ、検体液中の特定の成分濃度が変化しても電圧値や電流値に変化が見られなくなりセンサの応答性が低下する傾向があることがわかったためである。例えば、フルオロオレフィンビニルエーテール重合体(分子量分布100〜1000)であれば0.2μm〜0.8μmが好ましく、ノボラック系フェノール樹脂(分子量分布1000〜10000)、ポリ塩化ビニル樹脂、ポリイミド系樹脂であれば、5μm〜20μmが好ましい。
In the present embodiment, the entire surface of the substrate 2 is covered with the insulating film 5, but the insulating film 5 only needs to cover at least the surface of the electrode 4.
Although the film thickness of the insulating film 5 varies depending on the material, it is necessary to select it within a range in which the sample liquid and the electrode pair 3 can be reliably insulated and the responsiveness as a sensor can be maintained. As the film thickness of the insulating film 5 decreases, the effect of the insulating film 5 tends to be insufficient and the sensitivity of the sensor tends to decrease. As the film thickness increases, even if the concentration of a specific component in the sample liquid changes, the voltage value or This is because it has been found that there is a tendency that the change in the current value is not observed and the responsiveness of the sensor is lowered. For example, in the case of fluoroolefin vinyl ether polymer (molecular weight distribution 100 to 1000), 0.2 μm to 0.8 μm is preferable, and novolac phenol resin (molecular weight distribution 1000 to 10000), polyvinyl chloride resin, polyimide resin If it exists, 5 micrometers-20 micrometers are preferable.

以下、実施の形態1における溶液成分センサの動作原理について説明する。
図2は実施の形態1における溶液成分センサの使用状態を示す断面模式図である。
図2中、10は電極対3上のフラーレンを溶解した絶縁膜5に滴下した検体液である。
フラーレンを含有した絶縁膜5の表面に検体液10を滴下或いは塗布する等して接触させると、フラーレンを含有した絶縁膜5と検体液10の界面に電荷の分離が生じ、溶液側と絶縁膜側は等しい数の極性の異なる電荷で帯電状態になる。その結果、絶縁膜が誘導分極し、電極間と接している絶縁膜内側にも電荷が生じる。電極間に電圧を負荷させると、この電荷が電子の流れを加速するため、電極間の電流値や電圧値に変化が生じる。検体液10中に含まれる抗体、抗抗体やNaイオンなどの成分は、この誘導分極効果が大きいため、その濃度に比例した電流値や電圧値の変化を検出部6で検出することができる。
フラーレンを含有した絶縁膜5はフラーレンの電気特性により、膜面上の電荷の分布の局所的なバラツキを抑えられる。絶縁膜5はフラーレンにより誘電率を下げられ、膜の歪みや厚さの局所的バラツキに起因する測定電圧のバラツキが減少し、より再現性のよい測定が可能となる。
判定部7に予めその物質の濃度と電圧値若しくは電流値との関係を記憶させておき、その標準データと検出データ(測定データ)を比較することにより、確実かつ迅速な濃度の判定を行うことができる。
また、判定部7に記憶部を設けて検出データを継続的或いは定期的に記憶させておくことにより、検体の状態の変化や推移を管理することができ汎用性に優れる。
Hereinafter, the operation principle of the solution component sensor in the first embodiment will be described.
FIG. 2 is a schematic cross-sectional view showing a usage state of the solution component sensor in the first embodiment.
In FIG. 2, reference numeral 10 denotes a sample liquid dropped on the insulating film 5 in which fullerene on the electrode pair 3 is dissolved.
When the specimen liquid 10 is brought into contact with the surface of the insulating film 5 containing fullerene by dropping or coating it, charge separation occurs at the interface between the insulating film 5 containing fullerene and the specimen liquid 10, and the solution side and the insulating film are separated. The sides become charged with equal numbers of different charges. As a result, the insulating film is inductively polarized and charges are generated inside the insulating film in contact with the electrodes. When a voltage is applied between the electrodes, this charge accelerates the flow of electrons, so that a current value or a voltage value between the electrodes changes. Since components such as antibodies, anti-antibodies, and Na ions contained in the sample liquid 10 have a large induced polarization effect, a change in current value or voltage value proportional to the concentration can be detected by the detection unit 6.
The insulating film 5 containing fullerene can suppress local variation in charge distribution on the film surface due to the electric characteristics of fullerene. The dielectric constant of the insulating film 5 is lowered by the fullerene, and variations in measurement voltage caused by film distortion and local variations in thickness are reduced, enabling measurement with better reproducibility.
The determination unit 7 stores the relationship between the concentration of the substance and the voltage value or the current value in advance, and compares the standard data with the detection data (measurement data) to make a reliable and quick determination of the concentration. Can do.
In addition, by providing a storage unit in the determination unit 7 to store detection data continuously or periodically, it is possible to manage changes and transitions in the state of the sample, which is excellent in versatility.

実施の形態1の溶液成分センサは以上のように構成されているので、以下の作用を有する。
(1)電極4の表面及び電極4間の基板2の表面が絶縁膜5で被覆されていることにより、絶縁膜5上に滴下した微量の検体液10中に含まれる抗体、抗抗体やNaイオンなどの成分の量に応じて変化する電極4間の電圧値又は電流値を短時間で精度よく再現性よく検出することができ、検体の状態を簡便に判定することができる。
(2)構造が簡単な電極対3を半導体作製技術によって基板2上に高密度に集積させることができ、小型化が容易で量産性に優れ、電気回路や半導体集積回路などに容易に組み込むことができ、検出した化学的な情報を電気信号として短時間で処理することができ、高度で複雑な分析が可能な検知システムを構築することもできる。
(3)電極4表面がフラーレンを含有した絶縁膜5で被覆されていることにより、フラーレンを溶解した絶縁膜5上に検体液10を滴下或いは塗布するだけで、絶縁膜5と検体液10の界面に電荷の分離が発生し、帯電量が増加して誘導分極が起る。電極4と接しているフラーレンを溶解した絶縁膜5内側にも電荷が生じるため、電極4間に電圧を負荷させることにより、その電荷が電子の流れを加速して検体液10に含まれる分極効果の大きな抗体、抗抗体やNaイオンなどの成分を検出することができるので、1〜10μLの極微量な検体液10で測定を行うことができ、測定前に特別な前処理等を行う必要もないので、検体液10の採取や取り扱いが容易で作業性に優れる。
(4)絶縁膜5上に検体液10を滴下或は塗布する等して接触させると、絶縁膜5と検体液10の界面に電荷の分離が生じるが、絶縁膜5を形成する有機薄膜層の表面には高分子末端あるいは分岐末端の化学構造に由来する各種官能基(カルボキシル基、ケトン基、水酸基、アミノ基、エーテル基等)ならびに極性基(フッ素、塩素、臭素等)が存在するため、この分極現象が大きく、溶液成分センサ1の応答性を向上させることができる。また検体液10中の化学種によっては、有機薄膜表面の各種官能基と特異的な分極を生じるため、応答感度の高い溶液成分センサ1の作製が可能となる。
(5)フラーレンを含有した絶縁膜5はフラーレンの電気特性により、膜上の電荷の分布が平均化するので、膜の厚さのバラツキや歪みに起因する測定電圧のバラツキが抑えられ、再現性のよい応答感度の高い溶液成分センサ1の作製が可能となる。
(6)電極対3に接続された検出部6を備えているので、電極4間の電圧変化又は電流変化を簡便に検出することができ、その測定値に基づいて直ちに検体液10中の成分濃度を求めることができる。
(7)検出部6が検出した検出データに基づいて検体液10に含まれる成分の量を検知して状態を判定する判定部7を有するので、短時間で即座に検体液10の状態を知ることができ、取扱い性に優れる。
Since the solution component sensor of Embodiment 1 is configured as described above, it has the following operations.
(1) Since the surface of the electrode 4 and the surface of the substrate 2 between the electrodes 4 are covered with the insulating film 5, antibodies, anti-antibodies, and Na contained in a small amount of the sample liquid 10 dropped on the insulating film 5 The voltage value or current value between the electrodes 4 that changes according to the amount of components such as ions can be detected in a short time with good reproducibility, and the state of the specimen can be easily determined.
(2) The electrode pair 3 having a simple structure can be integrated on the substrate 2 with a high density by a semiconductor manufacturing technique, and can be easily miniaturized and excellent in mass productivity, and can be easily incorporated into an electric circuit or a semiconductor integrated circuit. Therefore, it is possible to construct a detection system capable of processing the detected chemical information as an electrical signal in a short time and capable of advanced and complex analysis.
(3) Since the surface of the electrode 4 is covered with the insulating film 5 containing fullerene, the sample liquid 10 is simply dropped or applied onto the insulating film 5 in which fullerene is dissolved. Charge separation occurs at the interface, the charge amount increases, and induced polarization occurs. Since charges are also generated inside the insulating film 5 in which the fullerene in contact with the electrode 4 is dissolved, by applying a voltage between the electrodes 4, the charge accelerates the flow of electrons and the polarization effect contained in the sample liquid 10. Large components such as antibodies, anti-antibodies, and Na ions can be detected, so that it is possible to perform measurement with a very small amount of sample liquid 10 of 1 to 10 μL, and it is also necessary to perform a special pretreatment before the measurement. Therefore, the sample liquid 10 can be easily collected and handled, and the workability is excellent.
(4) When the specimen liquid 10 is brought into contact with the insulating film 5 by dropping or coating, the organic thin film layer that forms the insulating film 5 is separated in charge at the interface between the insulating film 5 and the specimen liquid 10. Since there are various functional groups (carboxyl group, ketone group, hydroxyl group, amino group, ether group, etc.) and polar groups (fluorine, chlorine, bromine, etc.) derived from the chemical structure of the polymer terminal or branched terminal on the surface of The polarization phenomenon is large, and the response of the solution component sensor 1 can be improved. Further, depending on the chemical species in the sample liquid 10, specific polarization occurs with various functional groups on the surface of the organic thin film, so that the solution component sensor 1 with high response sensitivity can be produced.
(5) Since the insulating film 5 containing fullerene averages the distribution of electric charges on the film due to the electrical characteristics of fullerene, variations in the measurement voltage due to variations in film thickness and distortion can be suppressed, and reproducibility is achieved. It is possible to produce a solution component sensor 1 with good response sensitivity.
(6) Since the detection unit 6 connected to the electrode pair 3 is provided, the voltage change or current change between the electrodes 4 can be easily detected, and the component in the sample liquid 10 is immediately based on the measured value. The concentration can be determined.
(7) Since the determination unit 7 that determines the state by detecting the amount of the component contained in the sample liquid 10 based on the detection data detected by the detection unit 6 is provided, the state of the sample liquid 10 is immediately known in a short time. It is easy to handle.

(実施の形態2)
図3は実施の形態2における溶液成分センサを示す断面模式図である。
なお、実施の形態2における溶液成分センサと同様のものは、同じ符号を付して説明を省略する。
図中、1aは実施の形態2における溶液成分センサ、5aは絶縁膜5に分散保持された錯体形成化合物,ホスト化合物,酵素,抗体,抗原等の感応物質である。
また、基板2の表面に複数の電極対3を形成し、被覆する絶縁膜5に保持させた感応物質の種類を電極対3毎に異ならせておくこともできる。これにより、1枚の基板2で複数種の溶液成分を検知することができるため好ましい。
(Embodiment 2)
FIG. 3 is a schematic cross-sectional view showing the solution component sensor in the second embodiment.
In addition, the thing similar to the solution component sensor in Embodiment 2 attaches | subjects the same code | symbol, and abbreviate | omits description.
In the figure, reference numeral 1a denotes a solution component sensor in the second embodiment, and 5a denotes a sensitive substance such as a complex-forming compound, a host compound, an enzyme, an antibody, and an antigen dispersed and held in the insulating film 5.
In addition, a plurality of electrode pairs 3 may be formed on the surface of the substrate 2, and the type of sensitive substance held on the insulating film 5 to be covered may be different for each electrode pair 3. This is preferable because a plurality of types of solution components can be detected by a single substrate 2.

以下、実施の形態2における溶液成分センサの製造方法の一例を説明する。
有機溶剤にエポキシ樹脂,フェノール樹脂等を主成分とするマトリックス材料を溶解して調製した合成樹脂液に、フラーレン又はフラーレン誘導体を溶解したフラーレン液を混合し、フラーレン含有合成樹脂液を調製する。次いで錯体形成化合物,ホスト化合物,酵素,抗体,抗原等の感応物質5aを前記フラーレン含有合成樹脂液に溶解又は分散させたフラーレン・感応物質含有合成樹脂液を調製する。このフラーレン・感応物質含有合成樹脂液を、電極対3が形成された基板2の上にスピンコート等によって薄く塗布し、乾燥することによって溶液成分センサ1aを製造できる。
Hereinafter, an example of the manufacturing method of the solution component sensor in Embodiment 2 is demonstrated.
A fullerene solution in which fullerene or a fullerene derivative is dissolved is mixed with a synthetic resin solution prepared by dissolving a matrix material mainly composed of an epoxy resin, a phenol resin, or the like in an organic solvent to prepare a fullerene-containing synthetic resin solution. Next, a fullerene / sensitive substance-containing synthetic resin solution is prepared by dissolving or dispersing a sensitive substance 5a such as a complex-forming compound, a host compound, an enzyme, an antibody, or an antigen in the fullerene-containing synthetic resin solution. The fullerene / sensitive substance-containing synthetic resin liquid is thinly applied by spin coating or the like onto the substrate 2 on which the electrode pair 3 is formed, and dried to produce the solution component sensor 1a.

次に、実施の形態2における溶液成分センサの動作原理について説明する。
図4は実施の形態2における溶液成分センサの使用状態を示す断面模式図である。
図4中、10は電極対3上の絶縁膜5に滴下した血液,リンパ液,細胞質基質等の検体液である。
絶縁膜5の表面に検体液10を滴下或いは塗布する等して接触させると、絶縁膜5と検体液10の界面に電荷の分離が生じ、電気二重層を形成し、検体液10側と絶縁膜5側は等しい数の極性の異なる電荷で帯電状態になる。その結果、絶縁膜5が誘電分極し、電極4と接している絶縁膜5内側にも電荷が生じる。この電荷の量は絶縁膜5の表面に露出した感応物質5aと相互作用する検体液10の特定の成分の濃度に依存するので、電極4間に電圧を負荷するか電流を流すと、電極4間の電流値や電圧値に変化が生じる。これを検出部6で検出する。
Next, the operation principle of the solution component sensor in the second embodiment will be described.
FIG. 4 is a schematic cross-sectional view showing a use state of the solution component sensor in the second embodiment.
In FIG. 4, reference numeral 10 denotes a sample liquid such as blood, lymph, cytoplasmic substrate, etc. dropped on the insulating film 5 on the electrode pair 3.
When the sample liquid 10 is brought into contact with the surface of the insulating film 5 by dropping or coating it, charge separation occurs at the interface between the insulating film 5 and the sample liquid 10 to form an electric double layer, which is insulated from the sample liquid 10 side. The film 5 side is charged with the same number of charges having different polarities. As a result, the insulating film 5 is dielectrically polarized, and electric charges are generated inside the insulating film 5 in contact with the electrode 4. Since the amount of this charge depends on the concentration of a specific component of the sample liquid 10 that interacts with the sensitive substance 5a exposed on the surface of the insulating film 5, when a voltage is applied between the electrodes 4 or a current is passed, the electrodes 4 A change occurs in the current value and voltage value. This is detected by the detector 6.

実施の形態2の溶液成分センサは以上のように構成されているので、以下の作用を有する。
(1)電極4の表面及び電極4間の基板2の表面が感応物質5aを分散保持した絶縁膜5で被覆されていることにより、絶縁膜5上に滴下した微量の検体液10中に含まれる特定の成分が、絶縁膜5の表面の感応物質5aと相互作用する場合、特定の成分の有無や量に応じて電極4間の電位に変化が生じるため、これを検出することで、複数成分が混合した検体液10中の特定成分の有無等を短時間で精度よく検知することができる。
(2)電極4の表面が絶縁膜5で被覆されていることにより、絶縁膜5上に検体液10を滴下或いは塗布するだけで、絶縁膜5と検体液10の界面に電荷の分離を生じ電気二重層が形成される。電気二重層の電荷の量は、感応物質5aと相互作用する検体液10の特定の成分の濃度に大きく依存し電気的に検知できるので、1〜10μLの極微量な検体液10で測定を行うことができ、測定前に特別な前処理等を行う必要もないので、検体液10の採取や取り扱いが容易で作業性に優れる。
Since the solution component sensor of Embodiment 2 is configured as described above, it has the following operations.
(1) Since the surface of the electrode 4 and the surface of the substrate 2 between the electrodes 4 are covered with the insulating film 5 in which the sensitive substance 5a is dispersedly held, it is contained in a small amount of the sample liquid 10 dropped on the insulating film 5. When the specific component to be interacted with the sensitive substance 5a on the surface of the insulating film 5 changes in the potential between the electrodes 4 depending on the presence or amount of the specific component, the detection of this causes a plurality of The presence or absence of the specific component in the sample liquid 10 in which the components are mixed can be detected with high accuracy in a short time.
(2) Since the surface of the electrode 4 is covered with the insulating film 5, the charge separation is generated at the interface between the insulating film 5 and the sample liquid 10 only by dropping or applying the sample liquid 10 on the insulating film 5. An electric double layer is formed. The amount of electric charge in the electric double layer greatly depends on the concentration of a specific component of the sample liquid 10 that interacts with the sensitive substance 5a and can be electrically detected. Therefore, measurement is performed with a very small amount of the sample liquid 10 of 1 to 10 μL. Since no special pretreatment or the like is required before the measurement, the sample liquid 10 can be easily collected and handled, and the workability is excellent.

(実施の形態3)
図5は実施の形態3における溶液成分センサの断面模式図である。なお、実施の形態1又は実施の形態2における溶液成分センサと同様のものは、同じ符号を付して説明を省略する。
図中、1bは実施の形態3における溶液成分センサ、5bは絶縁膜5に分散保持され錯体形成化合物,ホスト化合物,酵素,抗体,抗原等の感応物質を担持したシリカゲル,活性炭,ゼオライト等の多孔体である。
なお、本実施の形態においては、平均粒径1〜30μmの多孔体を用いている。
(Embodiment 3)
FIG. 5 is a schematic cross-sectional view of the solution component sensor in the third embodiment. In addition, the thing similar to the solution component sensor in Embodiment 1 or Embodiment 2 attaches | subjects the same code | symbol, and abbreviate | omits description.
In the figure, 1b is a solution component sensor in the third embodiment, 5b is a porous material such as silica gel, activated carbon, zeolite, etc. that is dispersed and held in the insulating film 5 and carries sensitive substances such as complex forming compounds, host compounds, enzymes, antibodies, and antigens. Is the body.
In the present embodiment, a porous body having an average particle size of 1 to 30 μm is used.

以下、実施の形態3における溶液成分センサの製造方法の一例を説明する。
まず、有機溶剤にエポキシ樹脂,フェノール樹脂等を主成分とするマトリックス材料を溶解して調製した合成樹脂液と、フラーレン又はフラーレン誘導体を溶解して調製したフラーレン溶解液とを混合し、フラーレン含有合成樹脂液とする。次いでフラーレン含有合成樹脂液に多孔体5bを分散させてフラーレン・多孔体含有合成樹脂液を調製する。このフラーレン・多孔体含有合成樹脂液を、電極対3が形成された基板2の上にスピンコート等によって約0.5μmの厚さに塗布し乾燥することによって、絶縁膜5の表面に多孔体5bの一部が露出した構造を形成させる。
次に、錯体化合物、ホスト化合物、酵素、抗体、抗原等の感応物質を水やエタノール等の適当な溶媒に溶解させ、溶液成分センサ1bの表面に滴下し吸着させる。これを洗浄、乾燥して、感応物質を担持させた多孔体5bを表面に保持した溶液成分センサ1bを製造できる。
Hereinafter, an example of the manufacturing method of the solution component sensor in Embodiment 3 is demonstrated.
First, a synthetic resin solution prepared by dissolving a matrix material mainly composed of epoxy resin, phenol resin, etc. in an organic solvent and a fullerene solution prepared by dissolving fullerene or a fullerene derivative are mixed to produce a fullerene-containing synthesis. A resin liquid is used. Next, the fullerene-containing synthetic resin liquid is prepared by dispersing the porous body 5b in the fullerene-containing synthetic resin liquid. This fullerene / porous material-containing synthetic resin liquid is applied on the substrate 2 on which the electrode pair 3 is formed to a thickness of about 0.5 μm by spin coating or the like and dried, whereby the porous material is formed on the surface of the insulating film 5. A structure in which a part of 5b is exposed is formed.
Next, a sensitive substance such as a complex compound, a host compound, an enzyme, an antibody, and an antigen is dissolved in an appropriate solvent such as water or ethanol, and is dropped and adsorbed on the surface of the solution component sensor 1b. This can be washed and dried to produce a solution component sensor 1b having a porous body 5b carrying a sensitive substance held on its surface.

実施の形態3における溶液成分センサの動作原理は、実施の形態2で説明したものと同様なので、説明を省略する。   Since the operation principle of the solution component sensor in the third embodiment is the same as that described in the second embodiment, the description thereof is omitted.

以上のように構成された実施の形態3における溶液分析センサによれば、実施の形態1又は2の作用に加え、以下のような作用が得られる。
(1)感応物質が多孔体5bに担持され絶縁膜5に分散保持されているので、感応物質を多孔体5bに担持させることができればどのような感応物質でも絶縁膜5に分散保持させることができ自在性に優れる。
(2)細孔の表面を化学修飾した多孔体に感応物質を担持させ、該多孔体を絶縁膜5に分散保持させると、多孔体の担持能を高められるため絶縁膜を検体液等に接触させたときに多孔体から感応物質を溶出し難くすることができる。このため、検体液の成分を繰り返し測定しても絶縁膜内の感応物質が減少し難いため、絶縁膜の感度を持続させ耐久性を高めることができる。
(3)また、表面が化学修飾された細孔によって、多孔体に担持された感応物質に加え、検体液中の成分との相互作用(例えば水素結合相互作用や静電相互作用)を利用し絶縁膜の分極現象を大きくすることができ、検出感度をさらに向上させることができる。
According to the solution analysis sensor of the third embodiment configured as described above, the following operation is obtained in addition to the operation of the first or second embodiment.
(1) Since the sensitive substance is carried on the porous body 5b and dispersedly held on the insulating film 5, any sensitive substance can be dispersed and held on the insulating film 5 as long as the sensitive substance can be carried on the porous body 5b. Excellent flexibility.
(2) When a sensitive substance is supported on a porous body whose surface is chemically modified, and the porous body is dispersed and held in the insulating film 5, the supporting capacity of the porous body can be improved, so that the insulating film is brought into contact with the sample liquid or the like It is possible to make it difficult to elute the sensitive substance from the porous body. For this reason, even if the components of the sample liquid are repeatedly measured, it is difficult for the sensitive substance in the insulating film to decrease, so that the sensitivity of the insulating film can be maintained and the durability can be enhanced.
(3) In addition to the sensitive substance supported on the porous body by the pores whose surface is chemically modified, the interaction with the components in the sample liquid (for example, hydrogen bonding interaction or electrostatic interaction) is used. The polarization phenomenon of the insulating film can be increased, and the detection sensitivity can be further improved.

図1〜5では、説明の都合上、一対の電極対3のみを図示したが、実施の形態1乃至3のいずれにおいても基板2上には1乃至複数の電極対3を形成することがき、その配置は任意に選択することができる。また、電極対の各々の電極の形状は限定されるものではないが、三角形状、矩形状、半円形状等に形成することができる。尚、電極対は非対称であっても、大きさが異なっていてもよく、辺部同士が対向するように配置される。また、本実施の形態では各々の電極4の側部から延設された2本の端子部4bを略L字型に形成し、基板2の一端部から取り出したが、これに限定されるものではなく、端子部4bの取り出し位置や取り出し方向は任意に選択することができる。
1枚の基板に5対の電極対3を作成した場合について図6に示す。幅20mm×長さ20mm×厚さ1mmのガラスの基板2に3mm径の半月型電極対3を5個設け、各々端子部4bと結合させている。
In FIGS. 1 to 5, only a pair of electrode pairs 3 is shown for convenience of explanation, but in any of the first to third embodiments, one to a plurality of electrode pairs 3 can be formed on the substrate 2. The arrangement can be arbitrarily selected. In addition, the shape of each electrode of the electrode pair is not limited, but can be formed in a triangular shape, a rectangular shape, a semicircular shape, or the like. The electrode pairs may be asymmetrical or different in size, and are arranged so that the sides face each other. Further, in the present embodiment, the two terminal portions 4b extending from the side portions of the respective electrodes 4 are formed in a substantially L shape and taken out from one end portion of the substrate 2. However, the present invention is not limited to this. Instead, the take-out position and take-out direction of the terminal portion 4b can be arbitrarily selected.
FIG. 6 shows a case where five electrode pairs 3 are formed on one substrate. Five half-moon-shaped electrode pairs 3 having a diameter of 3 mm are provided on a glass substrate 2 having a width of 20 mm, a length of 20 mm, and a thickness of 1 mm, and each pair is connected to a terminal portion 4b.

以下、本発明を実施例により具体的に説明する。
まず、実施の形態1で説明した溶液成分センサ1について、溶液中の成分の検出能力について実験を行った。
溶液成分センサ1の基板2は1mm厚のガラス基板とし、半円形状の電極4を2mm離間させて対向配置した略円形状の電極対3の直径は3mmとした。電極4はスパッタリング法にてCr層0.1μm、Au層1μmを積層させ、フォトリソグラフィー法にてパターニングした。ガラス基板上にこのような電極対3を5対配置した。
フラーレン(フロンティアカーボン(株)製 nanom purple)20mgをジクロロベンゼン(和光純薬製)500μLに溶解した。この液をジクロロベンゼンに溶解したポリイミド系樹脂とフラーレン溶解液の体積比が1:1となるように混合し、フラーレン含有合成樹脂液を調製した。
次いで、スピンコーティング法によって基板2の全面をフラーレン含有合成樹脂液で被覆し、厚さ10μmのフラーレンを含む絶縁膜5を得た。
このフラーレンを含む絶縁膜5の表面に検体液10としてリン酸緩衝生理食塩水液(NaCl 8.0g/L pH7.2〜7.4)(以下これを濃度1のPBSと略す。)を各々2μL各々のセンサ電極対に滴下した。このPBSのナトリウムの濃度に対し、検出部6で検出される電極4間の電圧値をNa検出電圧として測定した。さらに濃度0.2及び濃度2.3のPBSについて、同様にしてNa検出電圧を測定した。
Hereinafter, the present invention will be specifically described by way of examples.
First, for the solution component sensor 1 described in the first embodiment, an experiment was performed on the ability to detect components in the solution.
The substrate 2 of the solution component sensor 1 was a glass substrate having a thickness of 1 mm, and the diameter of the substantially circular electrode pair 3 in which the semicircular electrodes 4 were opposed to each other with a spacing of 2 mm was 3 mm. The electrode 4 was formed by laminating a Cr layer of 0.1 μm and an Au layer of 1 μm by sputtering and patterning by photolithography. Five such electrode pairs 3 were arranged on a glass substrate.
20 mg of fullerene (nanom purple manufactured by Frontier Carbon Co., Ltd.) was dissolved in 500 μL of dichlorobenzene (manufactured by Wako Pure Chemical Industries). This solution was mixed so that the volume ratio of the polyimide resin dissolved in dichlorobenzene and the fullerene solution was 1: 1 to prepare a fullerene-containing synthetic resin solution.
Next, the entire surface of the substrate 2 was covered with a fullerene-containing synthetic resin solution by a spin coating method to obtain an insulating film 5 containing fullerene having a thickness of 10 μm.
A phosphate buffered saline solution (NaCl 8.0 g / L pH 7.2 to 7.4) (hereinafter abbreviated as PBS having a concentration of 1) is used as the specimen solution 10 on the surface of the insulating film 5 containing the fullerene. 2 μL was dropped on each sensor electrode pair. The voltage value between the electrodes 4 detected by the detection unit 6 was measured as the Na detection voltage with respect to the sodium concentration of the PBS. Further, the Na detection voltage was measured in the same manner for PBS having a concentration of 0.2 and a concentration of 2.3.

フラーレン(フロンティアカーボン(株)製 nanom purple)20mgをジクロロベンゼン(和光純薬製)500μLに溶解した後、孔径0.1μmのスピンカラムを使ってフラーレンの不溶成分を除いて使用した以外は実施例1と同様にして溶液成分センサを作成し、実施例1と同様の測定をした。   Example except that 20 mg of fullerene (manufactured by Frontier Carbon Co., Ltd.) was dissolved in 500 μL of dichlorobenzene (manufactured by Wako Pure Chemical Industries, Ltd.) and then used to remove insoluble components of fullerene using a spin column having a pore size of 0.1 μm. A solution component sensor was prepared in the same manner as in Example 1, and the same measurement as in Example 1 was performed.

(比較例1)
絶縁膜5にフラーレンを含ませずジクロロベンゼンに溶解したポリイミド系樹脂で作成した以外は実施例1と同様にして、溶液成分を作成し、測定をした。
(Comparative Example 1)
Solution components were prepared and measured in the same manner as in Example 1 except that the insulating film 5 was made of a polyimide resin that did not contain fullerene and was dissolved in dichlorobenzene.

図7は実施例1のNa濃度とNa検出電圧との関係を示す図である。
図8は実施例2のNa濃度とNa検出電圧との関係を示す図である。
図9は絶縁膜がフラーレンを含まない場合(比較例1)のナトリウム濃度とNa検出電圧との関係を示す図である。
絶縁膜がフラーレンを含有しない場合(図9)に比べて、図7、図8に示す実施例1,2のフラーレンを含有した絶縁膜ではガラス基板上に配置した5つのセンサ部のNa検出電圧のバラツキが小さくなり、精度の高い測定ができていることが示された。
また図8から、フラーレンの不溶成分を除去することでさらにバラツキが小さくなり、精度の高い測定ができることが示された。
FIG. 7 is a graph showing the relationship between the Na concentration and the Na detection voltage in Example 1.
FIG. 8 is a graph showing the relationship between the Na concentration and the Na detection voltage in Example 2.
FIG. 9 is a diagram showing the relationship between the sodium concentration and the Na detection voltage when the insulating film does not contain fullerene (Comparative Example 1).
Compared to the case where the insulating film does not contain fullerene (FIG. 9), the Na detection voltages of the five sensor units arranged on the glass substrate in the insulating films containing the fullerenes of Examples 1 and 2 shown in FIGS. It was shown that measurement with high accuracy was possible.
Further, FIG. 8 shows that by removing the insoluble component of fullerene, the variation is further reduced and the measurement can be performed with high accuracy.

次にフラーレンの絶縁膜中の濃度を変えた以外は実施例1と同様にして溶液成分センサを作成して、濃度1のPBSを使ってNa検出電圧を測定した。結果を図10に示す。
図10よりフラーレン濃度を上げるにつれ検出電圧のバラツキが減っていくことが示された。しかし0.07g/cm3を超えると検出電圧のバラツキが大きくなってしまった。
これは樹脂膜が乾燥するときにフラーレン濃度が高いと膜としての形状を保つことができず、測定が困難なセンサ部分が生じてしまうことが原因である。
よって絶縁膜中のフラーレンの濃度は0.01〜0.07g/cm3が好ましい。
Next, a solution component sensor was prepared in the same manner as in Example 1 except that the concentration of fullerene in the insulating film was changed, and the Na detection voltage was measured using PBS of concentration 1. The results are shown in FIG.
FIG. 10 shows that the variation in the detection voltage decreases as the fullerene concentration is increased. However, when it exceeds 0.07 g / cm 3 , the variation in the detection voltage becomes large.
This is because when the resin film dries, if the fullerene concentration is high, the shape of the film cannot be maintained, and a sensor portion that is difficult to measure is generated.
Accordingly, the concentration of fullerene in the insulating film is preferably 0.01 to 0.07 g / cm 3 .

次に合成樹脂としてポリ塩化ビニルを使用した以外は実施例1と同様にして溶液成分センサを作成して、濃度1のPBSを使ってNa検出電圧を測定した。   Next, a solution component sensor was prepared in the same manner as in Example 1 except that polyvinyl chloride was used as the synthetic resin, and the Na detection voltage was measured using PBS having a concentration of 1.

(比較例2)
次に合成樹脂としてポリ塩化ビニルを使用した以外は比較例1と同様にして溶液成分センサを作成して、濃度1のPBSを使ってNa検出電圧を測定した。
(Comparative Example 2)
Next, a solution component sensor was prepared in the same manner as in Comparative Example 1 except that polyvinyl chloride was used as the synthetic resin, and the Na detection voltage was measured using PBS having a concentration of 1.

(比較例3)
実施例3のフラーレンを(A)酸化物系粒子であるチタニア、リチウムアルミネート、酸化ニッケル、酸化亜鉛、シリカゲル、(B)金属系粒子である塩化パラジウム、ニッケル、(C)炭素系粒子である単層カーボンナノチューブ、カードラン、多層カーボンナノチューブに変えて同様に測定した。使用量は実施例1のフラーレンと同じ20mgである。
(Comparative Example 3)
The fullerene of Example 3 is (A) oxide-based particles of titania, lithium aluminate, nickel oxide, zinc oxide, silica gel, (B) metal-based particles of palladium chloride, nickel, and (C) carbon-based particles. The measurement was made in the same manner by changing to single-walled carbon nanotubes, curdlan, and multi-walled carbon nanotubes. The amount used is 20 mg, the same as the fullerene of Example 1.

実施例4と比較例2及び比較例3の結果を表1に示す。平均電圧が低いほど測定範囲が広がる。またCV値が低いほど測定値のバラツキが小さいことを表す。粒子を何も加えなかったコントロールと比較すると他の酸化物系粒子や金属系粒子、炭素系粒子に比べてフラーレンが平均電圧を下げなおかつバラツキを抑える効果が高いことが示された。   The results of Example 4, Comparative Example 2 and Comparative Example 3 are shown in Table 1. The lower the average voltage, the wider the measurement range. Moreover, it represents that the variation in a measured value is so small that a CV value is low. Compared to the control in which no particles were added, it was shown that fullerene had a higher effect of lowering the average voltage and suppressing variations than other oxide-based particles, metal-based particles, and carbon-based particles.

Figure 2011095066
Figure 2011095066

実施例4と同様に溶液成分センサの基板と電極を準備した。
フラーレン(フロンティアカーボン(株)製 nanom purple)20mgをジクロロベンゼン(和光純薬製)500μLに溶解し、孔径0.1μmの遠心式限外ろ過フィルターユニットを使ってフラーレンの不溶成分を除いた。テトラヒドロフランに溶解したポリ塩化ビニル樹脂液と不溶成分を除いたフラーレン溶液の体積比が1:1となるように混合し、フラーレン含有合成樹脂液を調製した。テトラヒドロフランにフラーレンは溶解しないので、混合するとフラーレンが析出し微粒子となって分散したフラーレン含有合成樹脂液となった。このフラーレン含有樹脂液に、多孔体としてシリカゲル(和光純薬(株)製)を20mg/mLとなるように添加しフラーレン・多孔体含有合成樹脂液を得た。
次いで、スピンコーティング法によって基板2の全面をフラーレン・多孔体含有合成樹脂液で被覆し、表面にシリカゲルを露出した厚さ20μmのフラーレンを含有した絶縁膜5を得た。
マウスのIgG抗体(シグマ社製)を100μg/mLとなるようにPBS(1倍濃度)で希釈する。これを各センサ表面に5μLずつ滴下し、絶縁膜表面に露出したシリカゲルに吸着させる。5分間室温で放置した後、エアーブロー処理により液を吹き飛ばし、蒸留水を各センサ表面に15μLずつ滴下し、吸着しなかったIgG抗体を洗浄する。5分間室温で放置した後、エアーブロー処理により液を吹き飛ばし、IgGを感応物質として担持したシリカゲルを表面に露出した絶縁膜を持つ溶液成分センサを得た。
抗マウスIgG抗体(抗抗体)(DAKO社製)を5倍濃度のPBSによって希釈し、濃度0.5μg/mL、1μg/mL、4μg/mL、7μg/mL、10μg/mLの抗抗体液を調製する。
この抗抗体液を検体液とする。電極対3の表面に、まず0.2倍濃度のPBSを4μLずつ滴下し、検出部6で検出される電極間4の電圧値E0を2分間計測した。計測を継続したまま、検体液を各電極対3に12μLずつ滴下し4分間保持して計測を終了した。
検体液滴下による最大検出電圧をE1、検体液滴下から3〜5分間における検出電圧の平均値E2を解析し、各々の測定センサの相対応答値R=(E2−E0)/(E1−E0)を算出した。
In the same manner as in Example 4, a substrate and electrodes for a solution component sensor were prepared.
20 mg of fullerene (nanom purple, manufactured by Frontier Carbon Co., Ltd.) was dissolved in 500 μL of dichlorobenzene (manufactured by Wako Pure Chemical Industries, Ltd.), and insoluble components of fullerene were removed using a centrifugal ultrafiltration filter unit having a pore size of 0.1 μm. A fullerene-containing synthetic resin solution was prepared by mixing the polyvinyl chloride resin solution dissolved in tetrahydrofuran and the fullerene solution excluding insoluble components so that the volume ratio was 1: 1. Since fullerene does not dissolve in tetrahydrofuran, when mixed, fullerene precipitated and became a fullerene-containing synthetic resin liquid dispersed as fine particles. To this fullerene-containing resin liquid, silica gel (manufactured by Wako Pure Chemical Industries, Ltd.) was added as a porous body so as to be 20 mg / mL to obtain a fullerene / porous body-containing synthetic resin liquid.
Next, the entire surface of the substrate 2 was coated with a fullerene / porous material-containing synthetic resin solution by a spin coating method to obtain an insulating film 5 containing 20 μm thick fullerene with silica gel exposed on the surface.
Mouse IgG antibody (manufactured by Sigma) is diluted with PBS (1 × concentration) to 100 μg / mL. 5 μL of this is dropped onto each sensor surface and adsorbed onto silica gel exposed on the surface of the insulating film. After leaving at room temperature for 5 minutes, the liquid is blown off by air blow treatment, and 15 μL of distilled water is dropped on each sensor surface to wash away the IgG antibody that has not been adsorbed. After being left at room temperature for 5 minutes, the solution was blown off by an air blowing process to obtain a solution component sensor having an insulating film with a silica gel carrying IgG as a sensitive substance exposed on the surface.
Anti-mouse IgG antibody (anti-antibody) (manufactured by DAKO) was diluted with PBS of 5 times concentration, and anti-antibody solutions with concentrations of 0.5 μg / mL, 1 μg / mL, 4 μg / mL, 7 μg / mL, and 10 μg / mL were added. Prepare.
This anti-antibody solution is used as a sample solution. First, 4 μL of 0.2-fold concentration of PBS was dropped on the surface of the electrode pair 3, and the voltage value E 0 between the electrodes 4 detected by the detector 6 was measured for 2 minutes. While the measurement was continued, 12 μL of the sample liquid was dropped on each electrode pair 3 and held for 4 minutes to complete the measurement.
The maximum detection voltage under the specimen droplet is E 1 , and the average value E 2 of the detection voltage for 3 to 5 minutes from under the specimen droplet is analyzed, and the relative response value R = (E 2 −E 0 ) / ( E 1 -E 0) was calculated.

(比較例4)
フラーレンを添加しなかった以外は実施例2と同様にセンサを作成し、実施例5と同様の測定を行った。
(Comparative Example 4)
A sensor was prepared in the same manner as in Example 2 except that fullerene was not added, and the same measurement as in Example 5 was performed.

図11に実施例5の、図12に比較例4の結果を示す。縦軸が相対応答率Rを、横軸が検体液中の抗抗体の濃度を示す。
フラーレン微粒子を含まない比較例4(図12)に比べてフラーレン微粒子を絶縁膜中に分散させた実施例5(図11)は測定値のバラツキが小さく、再現性よく測定できることが示された。
FIG. 11 shows the results of Example 5, and FIG. 12 shows the results of Comparative Example 4. The vertical axis represents the relative response rate R, and the horizontal axis represents the concentration of anti-antibodies in the sample liquid.
It was shown that Example 5 (FIG. 11) in which fullerene fine particles were dispersed in an insulating film had a smaller variation in measured values and could be measured with good reproducibility as compared with Comparative Example 4 (FIG. 12) not containing fullerene fine particles.

本発明は、検体液中のイオン、糖、脂質、抗体、抗原等の特定成分の有無や濃度を検知することのできる溶液成分センサに関し、構造が簡単でシステム全体を小型化することができ、半導体製造技術を利用して製造することができ量産性に優れ、検体液中に含まれる1ppm程度の極微量の特定成分を極短時間で精度よく検知可能な信頼性、作業性に優れる溶液成分センサを提供できる。   The present invention relates to a solution component sensor that can detect the presence or concentration of specific components such as ions, sugars, lipids, antibodies, antigens, etc. in a sample liquid, and has a simple structure and can reduce the size of the entire system. Solution components with excellent reliability and workability that can be manufactured using semiconductor manufacturing technology, have excellent mass productivity, and can detect a very small amount of a specific component of about 1 ppm contained in a sample solution in a very short time. A sensor can be provided.

1,1a、1b 溶液成分センサ
2 基板
3 電極対
4 電極
4a 辺部
4b 端子部
5 絶縁膜
5a 感応物質
5b 多孔体
6 検出部
7 判定部
10 検体液
DESCRIPTION OF SYMBOLS 1,1a, 1b Solution component sensor 2 Board | substrate 3 Electrode pair 4 Electrode 4a Side part 4b Terminal part 5 Insulating film 5a Sensitive substance 5b Porous body 6 Detection part 7 Determination part 10 Sample liquid

Claims (6)

基板と、前記基板上に所定間隔をおいて配置された電極対と、前記電極対の表面及び前記電極対間の前記基板の表面を被覆した絶縁膜と、を有し、前記絶縁膜がフラーレン又はフラーレン誘導体を含有していることを特徴とする溶液成分センサ。   A substrate, an electrode pair disposed on the substrate at a predetermined interval, and an insulating film covering a surface of the electrode pair and a surface of the substrate between the electrode pair, wherein the insulating film is fullerene A solution component sensor comprising a fullerene derivative. 前記絶縁膜が感応物質を分散保持していることを特徴とする請求項1に記載の溶液成分センサ。   The solution component sensor according to claim 1, wherein the insulating film holds a sensitive substance dispersedly. 前記絶縁膜中のフラーレン又はフラーレン誘導体の濃度が0.01g/cm3〜0.07g/cm3であることを特徴とする請求項1又は2に記載の溶液成分センサ。 Solution component sensor according to claim 1 or 2 concentration of the fullerene or fullerene derivative in the insulating film is characterized in that it is a 0.01g / cm 3 ~0.07g / cm 3 . フラーレン又はフラーレン誘導体を合成樹脂に混合してフラーレン含有合成樹脂液を調製する合成樹脂液調製工程と、基板上に所定間隔を置いて配置された電極対の表面及び前記電極対間の前記基板の表面に前記フラーレン含有合成樹脂液を塗布して感応物質を分散保持した絶縁膜を形成する絶縁膜形成工程を有することを特徴とする溶液成分センサの製造方法。   A synthetic resin liquid preparation step of preparing a fullerene-containing synthetic resin liquid by mixing fullerene or a fullerene derivative with a synthetic resin, a surface of an electrode pair arranged at a predetermined interval on the substrate, and the substrate between the electrode pair A method for producing a solution component sensor, comprising: an insulating film forming step of forming an insulating film in which a sensitive substance is dispersed and held by applying the fullerene-containing synthetic resin liquid on a surface. 前記合成樹脂液調製工程において、フラーレン又はフラーレン誘導体を溶媒に溶解し不溶成分を分離除去する工程を有することを特徴とする請求項4に記載の溶液成分センサの製造方法。   The method for producing a solution component sensor according to claim 4, wherein the synthetic resin liquid preparation step includes a step of dissolving and removing insoluble components by dissolving fullerene or a fullerene derivative in a solvent. 前記合成樹脂液調整工程において感応物質を前記フラーレン含有合成樹脂液に溶解または分散させる工程を有することを特徴とする請求項4または5に記載の溶液成分センサの製造方法。

6. The method for producing a solution component sensor according to claim 4, further comprising a step of dissolving or dispersing a sensitive substance in the fullerene-containing synthetic resin liquid in the synthetic resin liquid adjusting step.

JP2009248227A 2009-10-28 2009-10-28 Solution component sensor and method for manufacturing the same Withdrawn JP2011095066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009248227A JP2011095066A (en) 2009-10-28 2009-10-28 Solution component sensor and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009248227A JP2011095066A (en) 2009-10-28 2009-10-28 Solution component sensor and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2011095066A true JP2011095066A (en) 2011-05-12

Family

ID=44112149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009248227A Withdrawn JP2011095066A (en) 2009-10-28 2009-10-28 Solution component sensor and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2011095066A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013082583A (en) * 2011-10-11 2013-05-09 Honjo Chemical Corp Method for manufacturing fullerene-containing silica gel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013082583A (en) * 2011-10-11 2013-05-09 Honjo Chemical Corp Method for manufacturing fullerene-containing silica gel

Similar Documents

Publication Publication Date Title
Wang et al. New insights into the structure–performance relationships of mesoporous materials in analytical science
Luo et al. Electrochemical sensor for bovine hemoglobin based on a novel graphene-molecular imprinted polymers composite as recognition element
Mohammadniaei et al. Electrochemical biosensor composed of silver ion‐mediated dsDNA on Au‐encapsulated Bi2Se3 nanoparticles for the detection of H2O2 released from breast cancer cells
KR100874026B1 (en) Biosensor using nanowires and its manufacturing method
Huang et al. Chemical sensors based on nanostructured materials
Penner Chemical sensing with nanowires
Ramgir et al. Nanowire‐based sensors
Fang et al. Electrochemical biosensors on platforms of graphene
US10247689B2 (en) Low concentration ammonia nanosensor
Samanman et al. Highly-sensitive label-free electrochemical carcinoembryonic antigen immunosensor based on a novel Au nanoparticles–graphene–chitosan nanocomposite cryogel electrode
Omidfar et al. A high-sensitivity electrochemical immunosensor based on mobile crystalline material-41–polyvinyl alcohol nanocomposite and colloidal gold nanoparticles
Chartuprayoon et al. One-dimensional nanostructures based bio-detection
Tarasov et al. Gold-coated graphene field-effect transistors for quantitative analysis of protein–antibody interactions
US20220283116A1 (en) Device for detecting analytes in a sample, and methods of use thereof
Lu et al. Recent advances in biosensor-integrated enrichment methods for preconcentrating and detecting the low-abundant analytes in agriculture and food samples
KR20140132869A (en) Bio-sensor array for measuring glucose, glycated protein and total albumin
JP2008064724A (en) Carbon nanotube electrode and sensor using the electrode
US20210396708A1 (en) Methods for detecting analytes using a graphene-based biological field-effect transistor
WO2017183716A1 (en) Device for detecting biological material, detecting apparatus for detecting biological material, ionic current measuring method, and method for identifying biological material
Zou et al. Electrochemical behaviors and determination of rifampicin on graphene nanoplatelets modified glassy carbon electrode in sulfuric acid solution
JP2009002939A (en) Amperometric biosensor
JP4859226B2 (en) Solution component sensor
JP5311406B2 (en) Immunosensor
JP2011095066A (en) Solution component sensor and method for manufacturing the same
Kuswandi Nanobiosensors for detection of micropollutants

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130108