JP2011091088A - Heat radiation structure of heating element and semiconductor device using the heat radiation structure - Google Patents

Heat radiation structure of heating element and semiconductor device using the heat radiation structure Download PDF

Info

Publication number
JP2011091088A
JP2011091088A JP2009241325A JP2009241325A JP2011091088A JP 2011091088 A JP2011091088 A JP 2011091088A JP 2009241325 A JP2009241325 A JP 2009241325A JP 2009241325 A JP2009241325 A JP 2009241325A JP 2011091088 A JP2011091088 A JP 2011091088A
Authority
JP
Japan
Prior art keywords
heat
groove
heat radiating
protrusion
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009241325A
Other languages
Japanese (ja)
Inventor
Yasuhiko Kawanami
靖彦 川波
Masahito Higuchi
雅人 樋口
Koji Tokawa
康児 東川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2009241325A priority Critical patent/JP2011091088A/en
Publication of JP2011091088A publication Critical patent/JP2011091088A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat radiation structure of a heating element that is reduced in contact resistance at a junction portion of a heat radiating substrate and a heat radiator by reducing a gap of the junction portion to enhance adhesion, increased in reliability by greatly improving heat dissipation, easy to manufacture, and kept low in manufacturing cost; and to provide a semiconductor device using the heat radiation structure. <P>SOLUTION: A projection portion 300(a) is formed on a first heat radiation surface 102 of an engagement portion 300 which engages a first heat radiation portion 100 and a second heat radiation portion 200 with each other, and a groove portion 300(b) is formed on a second heat absorption surface 201, the projection portion 300(a) and groove portion 300(b) being mutually tapered toward a side in an engagement direction 10 so that the projection portion 300(a) is pressed as it is put in the groove portion 300(b) and inserted in the engagement direction 10. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、パワーエレクトロニクス分野において、モータドライブ用インバータやサーボアンプに使用される半導体チップが実装されたパワーモジュールを含む発熱体の放熱構造、および該放熱構造を用いた半導体装置に関する。 In the field of power electronics, the present invention relates to a heat dissipation structure for a heating element including a power module on which a semiconductor chip used for an inverter for a motor drive or a servo amplifier is mounted, and a semiconductor device using the heat dissipation structure.

大容量電力変換装置に使用される半導体チップが実装されたパワーモジュールは、発生する熱を効果的に放熱する絶縁性の放熱基板を有し、放熱基板は、銅やアルミニウムなどの熱伝導性に優れた金属製の放熱体と接続されている。このような放熱構造において、放熱基板と放熱器との接合部分での接触抵抗が増大すると放熱性が低下し、装置の性能低下を引き起こす要因となることから、この接合部分で生じる接触抵抗を低下させることにより、放熱性を向上することが技術課題となっている。 A power module on which a semiconductor chip used in a large-capacity power converter is mounted has an insulating heat dissipation board that effectively dissipates the generated heat, and the heat dissipation board has a thermal conductivity such as copper or aluminum. It is connected to an excellent metal radiator. In such a heat dissipation structure, if the contact resistance at the joint between the heat dissipation board and the heat sink increases, the heat dissipation will decrease, causing a reduction in the performance of the device, so the contact resistance generated at this joint will be reduced. Therefore, improving heat dissipation has become a technical problem.

このため、金属製の放熱基板と金属製の放熱体との結合面は、互いに凹凸面で形成され、熱伝導性薄膜を介して嵌合される構造が示されている。(例えば、特許文献1参照)。 For this reason, the coupling surface of the metal heat dissipation substrate and the metal heat dissipating member is formed as an uneven surface and is shown to be fitted via a heat conductive thin film. (For example, refer to Patent Document 1).

また、熱吸収部材と放熱部材の各熱結合部側には、互いに嵌合する凹凸部を形成し、熱吸収部材と放熱部材の嵌合部をシリコーン樹脂などの硬化性樹脂により接着して結合する構造が示されている(例えば、特許文献2参照)。 Also, on each heat coupling part side of the heat absorbing member and the heat radiating member, an uneven part to be fitted to each other is formed, and the fitting part of the heat absorbing member and the heat radiating member is bonded and bonded with a curable resin such as silicone resin. The structure which performs is shown (for example, refer patent document 2).

実開平6−72247号公報Japanese Utility Model Publication No. 6-72247 特開2002−64168号公報JP 2002-64168 A

しかしながら、特許文献1で示される放熱基板と放熱体の各結合面の形状を凹凸面で形成する場合、凹凸の鋭角部分では空隙が生じ易くなり、空隙により接触抵抗の高い箇所ができるため、全体としては放熱性を向上させることは難しい。このため、熱伝導性薄膜を介して嵌合すると、接触抵抗は低減するものの、一般に、このような熱伝導性薄膜は金属よりも熱抵抗が高く、層が厚くなるほど熱伝導性が低下するので、放熱性を大幅に向上させることは困難である。
一方、特許文献2で示される凹凸構造についても、加工時の寸法公差を考慮すると、熱吸収部材と放熱部材の勘合部分には空隙が生じやすくなる。このため、熱伝導性コンパウンドを用いて空隙を充填する必要があり、上述のように、放熱性の大幅な向上には至らない。
However, when the shape of each coupling surface of the heat dissipation substrate and the heat dissipation body shown in Patent Document 1 is formed with a concavo-convex surface, voids are likely to be generated at the acute angle portions of the concavo-convex, and a portion having high contact resistance is formed by the voids. It is difficult to improve heat dissipation. For this reason, although the contact resistance is reduced when fitted through a thermally conductive thin film, generally, such a thermally conductive thin film has a higher thermal resistance than a metal, and as the layer becomes thicker, the thermal conductivity decreases. It is difficult to greatly improve heat dissipation.
On the other hand, with regard to the concavo-convex structure shown in Patent Document 2, if dimensional tolerance during processing is taken into consideration, a gap is likely to occur in the fitting portion between the heat absorbing member and the heat radiating member. For this reason, it is necessary to fill the voids using a heat conductive compound, and as described above, the heat dissipation performance is not significantly improved.

本発明はこのような問題点に鑑みてなされたものであり、放熱基板と放熱体の接合部の空隙を減少して密着性を高めることにより、接合部における接触抵抗を低下させ、放熱性を大幅に向上して信頼性を高めるとともに、組み立てが容易で製造コストを抑えた発熱体の放熱構造、および該放熱構造を用いた半導体装置を提供することを目的とする。 The present invention has been made in view of such problems, and by reducing the gap between the heat sink substrate and the heat sink to increase the adhesion, the contact resistance at the joint is lowered, and the heat dissipation is improved. An object of the present invention is to provide a heat dissipating structure for a heating element that can be significantly improved to improve reliability and that can be easily assembled and reduced in manufacturing cost, and a semiconductor device using the heat dissipating structure.

上記問題を解決するため、本発明は、次のように構成したものである。
請求項1に記載の発明は、発熱体が固定された第1吸熱面と、前記第1吸熱面が吸熱した熱が伝達される第1放熱面とを有し、前記発熱体から発せられる熱を伝達する第1放熱部と、前記第1放熱面に対向して配置された第2吸熱面と、前記第2吸熱面が吸熱した熱が伝達される第2放熱面とを有し、前記第1放熱部から伝達された熱を放熱する第2放熱部と、前記第1放熱面と前記第2吸熱面とを係合させる係合部とを備え、前記係合部は、前記第1放熱面と前記第2吸熱面のいずれか一方の面に突部が形成され、他方の面に前記突部が収容される溝部が形成され、前記突部が、前記溝部に収容されて前記第1放熱面及び前記第2吸熱面に平行となる嵌合方向に挿入されるに従って圧着されるように、前記突部および前記溝部は、互いに前記嵌合方向側につれて窄むように斜傾して形成されるものである。
請求項2に記載の発明は、前記一方の面に、前記突部と前記溝部がそれぞれ少なくとも1以上形成され、前記他方の面に、前記突部と前記溝部とにそれぞれ対応する前記溝部と前記突部がそれぞれ少なくとも1以上形成されるものである。
請求項3に記載の発明は、前記一方の面には、2以上の前記突部が形成され、前記一方の面の前記突部には、少なくとも1以上の溝部が形成され、前記他方の面には、前記2以上の前記突部に対応した2以上の前記溝部が形成され、前記他方の面の前記溝部には、前記1以上の溝部に対応した1以上の前記突部が形成されるものである。
請求項4に記載の発明は、前記溝部はアリミゾ構造を有し、前記突部はアリホゾ構造を有するものである。
請求項5に記載の発明は、前記突部を前記嵌合方向に挿入し、前記第1放熱部と前記第2放熱部を固定する固定手段を有するものである。
請求項6に記載の発明は、前記固定手段は、軸部に雄ネジが切られたボルトと、前記第1放熱部または前記発熱体の前記勘合方向側端面から前記勘合方向に雌ネジが切られたネジ穴と、前記第1放熱部及び前記第2放熱部と一体化または橋架して貫通穴が設けられた固定板で構成され、前記ボルトの軸部を前記貫通穴を貫通して前記ネジ穴にねじ込むようにするものである。
請求項7に記載の発明は、半導体チップが実装されたパワーモジュールの放熱手段は、
請求項1記載の発熱体の放熱構造により構成され、前記発熱体は半導体チップにより構成されたものである。
請求項8に記載の発明は、前記パワーモジュールの放熱手段は、前記半導体チップを含む前記発熱体の両面を請求項1記載の発熱体の放熱構造により構成したものである。
In order to solve the above problems, the present invention is configured as follows.
The invention according to claim 1 includes a first heat absorbing surface to which the heating element is fixed, and a first heat radiating surface to which heat absorbed by the first heat absorbing surface is transmitted, and heat generated from the heating element. A first heat radiating portion that transmits heat, a second heat absorbing surface disposed opposite to the first heat radiating surface, and a second heat radiating surface to which heat absorbed by the second heat absorbing surface is transmitted, A second heat dissipating part that dissipates heat transmitted from the first heat dissipating part; and an engaging part that engages the first heat dissipating surface with the second heat absorbing surface. A protrusion is formed on one of the heat radiating surface and the second heat absorbing surface, and a groove is formed on the other surface. The protrusion is received in the groove. The projecting portion and the groove portion are in front of each other so as to be crimped as they are inserted in the fitting direction parallel to the first heat radiating surface and the second heat absorbing surface. It is those formed by skewing as Subomu as fitting direction.
According to a second aspect of the present invention, at least one or more of the protrusions and the groove portions are formed on the one surface, and the groove portions corresponding to the protrusions and the groove portions are respectively formed on the other surface. At least one protrusion is formed.
According to a third aspect of the present invention, two or more protrusions are formed on the one surface, and at least one groove is formed on the protrusion on the one surface, and the other surface. The two or more grooves corresponding to the two or more protrusions are formed, and the one or more protrusions corresponding to the one or more grooves are formed in the groove on the other surface. Is.
According to a fourth aspect of the present invention, the groove portion has an antimizo structure, and the protrusion has an arihozo structure.
The invention according to claim 5 has a fixing means for inserting the protrusion in the fitting direction and fixing the first heat radiating portion and the second heat radiating portion.
According to a sixth aspect of the present invention, the fixing means includes a bolt having a male screw cut in a shaft portion, and a female screw cut in the fitting direction from an end surface on the fitting direction side of the first heat radiating portion or the heating element. A screw plate and a fixing plate provided with a through-hole integrated with or bridged with the first and second heat-dissipating parts, and the shaft part of the bolt passes through the through-hole. It is intended to be screwed into the screw hole.
In the invention according to claim 7, the heat radiation means of the power module on which the semiconductor chip is mounted is
It is comprised by the thermal radiation structure of the heat generating body of Claim 1, and the said heat generating body is comprised by the semiconductor chip.
According to an eighth aspect of the present invention, the heat radiating means of the power module comprises both sides of the heat generating element including the semiconductor chip by the heat radiating structure of the heat generating element according to the first aspect.

請求項1の発明によれば、第1放熱部と第2放熱部とを係合させる係合部となる突部が溝部に収容され、嵌合方向に挿入されるに従い、第1放熱部と第2放熱部との隙間が小さくなり、さらに圧入することにより係合面は均等に圧着され、密着性が極めて良好になる。これにより熱伝導性が改善され、放熱性が大幅に向上する。この結果、放熱部の小型化が可能となり、インバータやサーボアンプのようなモータ制御装置、あるいは電力変換装置のパワー密度が高まるとともに、信頼性が向上する。また、突部を溝部に挿入して嵌合方向に圧入されることにより位置決めと固定が容易にできるので、製造が容易になりコスト低減が可能になる。
請求項2の発明によれば、請求項1と同様の効果が得られる。
請求項3の発明によれば、、第1放熱部と第2放熱部の嵌合部分の面積が大きくなるので、さらに密着性が良くなり放熱性が向上する。
請求項4の発明によれば、第1放熱部と第2放熱部とを係合させる係合部となる溝部をアリミゾ構造とし、突部をアリホゾ構造とすることにより、請求項1乃至3と同様の効果が得られるとともに、さらに密着性および放熱性が向上する。
請求項5の発明によれば、第1放熱部と第2放熱部とを係合させる係合部となる突部を嵌合方向に挿入して圧着、固定する際、特殊な工具を必要とせず、製造が容易にできるようになる。
請求項6の発明によれば、汎用的な部材を用いて、第1放熱部と第2放熱部とを係合させる係合部となる突部を嵌合方向に挿入して圧着、位置決め、及び固定することが容易になり、製造コストの低減に寄与することができるようになる。
請求項7の発明によれば、半導体チップが実装されたパワーモジュールの放熱性が向上することにより半導体装置の性能、信頼性、製造性が向上し、小型化やコスト低減が実現できる効果が得られる。
請求項8記載の発明によれば、半導体装置を搭載するモータドライブ用インバータやサーボアンプなどの電力変換装置の性能、信頼性、製造性が向上し、小型化やコスト低減が実現できる効果が得られる。
According to the first aspect of the present invention, the protrusion serving as the engaging portion for engaging the first heat radiating portion and the second heat radiating portion is accommodated in the groove portion, and the first heat radiating portion is inserted into the fitting direction. The gap with the second heat radiating portion is reduced, and the engagement surface is evenly crimped by press-fitting, and the adhesion is extremely good. Thereby, thermal conductivity is improved and heat dissipation is greatly improved. As a result, it is possible to reduce the size of the heat radiating section, and the power density of a motor control device such as an inverter or a servo amplifier or a power conversion device is increased, and the reliability is improved. Further, since the protrusion is inserted into the groove and press-fitted in the fitting direction, the positioning and fixing can be easily performed, so that the manufacturing becomes easy and the cost can be reduced.
According to the invention of claim 2, the same effect as that of claim 1 can be obtained.
According to invention of Claim 3, since the area of the fitting part of a 1st thermal radiation part and a 2nd thermal radiation part becomes large, adhesiveness improves further and thermal radiation property improves.
According to the invention of claim 4, the groove portion serving as the engaging portion for engaging the first heat radiating portion and the second heat radiating portion has an arimizo structure, and the protrusion has an aliphozo structure. While the same effect is acquired, adhesiveness and heat dissipation are further improved.
According to the fifth aspect of the present invention, a special tool is required when inserting and pressing and fixing the protruding portion, which is the engaging portion for engaging the first heat radiating portion and the second heat radiating portion, in the fitting direction. Therefore, it becomes possible to manufacture easily.
According to the invention of claim 6, using a general-purpose member, a protrusion serving as an engaging portion for engaging the first heat radiating portion and the second heat radiating portion is inserted in the fitting direction, and is crimped, positioned, And it becomes easy to fix and it can contribute to the reduction of manufacturing cost.
According to the seventh aspect of the present invention, the performance, reliability, and manufacturability of the semiconductor device are improved by improving the heat dissipation of the power module on which the semiconductor chip is mounted. It is done.
According to the eighth aspect of the invention, the performance, reliability and manufacturability of a power converter such as an inverter for a motor drive or a servo amplifier on which a semiconductor device is mounted are improved, and an effect of realizing downsizing and cost reduction is obtained. It is done.

本発明の第1の実施例を示す発熱体の放熱構造の概略図Schematic of the heat dissipating structure of the heating element showing the first embodiment of the present invention 熱解析における半導体装置の模式図Schematic diagram of semiconductor device in thermal analysis 本発明の第2の実施例を示す発熱体の放熱構造の概略図Schematic of the heat dissipating structure of the heating element showing the second embodiment of the present invention 本発明の第3の実施例を示す発熱体の放熱構造の概略図Schematic of the heat dissipating structure of the heating element showing the third embodiment of the present invention 本発明の第4の実施例を示す発熱体の放熱構造の概略図Schematic of the heat dissipating structure of the heating element showing the fourth embodiment of the present invention 本発明の第5の実施例を示す半導体装置の概略構成図Schematic configuration diagram of a semiconductor device showing a fifth embodiment of the present invention. 本発明の第6の実施例を示す半導体装置の概略構成図Schematic configuration diagram of a semiconductor device showing a sixth embodiment of the present invention.

以下、本発明の実施例について図面を参照して説明する。本実施例で参酌する図面では、発明の理解を容易にするため、各要素が模式的に示されており、ケーブル類や接続端子を含む電子部品は省略している。   Embodiments of the present invention will be described below with reference to the drawings. In the drawings referred to in the present embodiment, each element is schematically shown for easy understanding of the invention, and electronic components including cables and connection terminals are omitted.

図1は、本発明の実施例1を示す発熱体の放熱構造の概略図である。図1(a)は、発熱体1と、第1放熱部100、および第2放熱部200から構成される放熱構造の縦断面図である。図1(b)は、図1(a)の横断面図であり、第1放熱部100と第2放熱部200の嵌合方向を示している。図1(c)は、図1(a)および図1(b)の上面図である。
第1放熱部100の第1吸熱面101は、発熱体1と接合される。また、第1吸熱面101の裏側が第1放熱面102であり、第2放熱部200の第2吸熱面201と接合される。このため、発熱体1で発生した熱は、第1放熱部100を介して第2放熱部200に伝達し、大気または冷却水などの液中に放熱される。
なお、第1放熱部100は熱伝導性の良好な銅またはアルミニウムを含む金属材料、樹脂材料、繊維材料、あるいはそれらの複合材などにより構成されており、発熱体1と第1吸熱面101とは熱溶着、樹脂材料、ビス止めなどにより接合される。一方、第2放熱部200は、熱伝導性の良好な銅やアルミニウムを含む金属材料、樹脂材料、繊維材料、あるいはそれらの複合材などから構成され、第2吸熱面201の裏側の第2放熱面202は、表面積を広げて放熱を良好にするための放熱フィンを含む凹凸を有しており、大気あるいは冷却水などに接して放熱する構造となっている。また、効率良く熱伝導を行うためには、第1放熱面102よりも第2吸熱面201の縦横の寸法が大きい方が良い。
FIG. 1 is a schematic diagram of a heat dissipating structure for a heating element showing Embodiment 1 of the present invention. FIG. 1A is a longitudinal cross-sectional view of a heat dissipation structure including the heating element 1, the first heat dissipation unit 100, and the second heat dissipation unit 200. FIG. 1B is a cross-sectional view of FIG. 1A and shows the fitting direction of the first heat radiation part 100 and the second heat radiation part 200. FIG. 1C is a top view of FIGS. 1A and 1B.
The first heat absorbing surface 101 of the first heat radiating unit 100 is joined to the heating element 1. The back side of the first heat absorbing surface 101 is the first heat radiating surface 102 and is joined to the second heat absorbing surface 201 of the second heat radiating portion 200. For this reason, the heat generated in the heating element 1 is transmitted to the second heat radiating portion 200 via the first heat radiating portion 100 and is radiated into the liquid such as the atmosphere or cooling water.
The first heat radiating portion 100 is made of a metal material containing copper or aluminum having a good thermal conductivity, a resin material, a fiber material, or a composite material thereof, and the heating element 1, the first heat absorbing surface 101, and the like. Are joined by heat welding, resin material, screwing or the like. On the other hand, the second heat radiating part 200 is made of a metal material containing copper or aluminum having good thermal conductivity, a resin material, a fiber material, or a composite material thereof, and the second heat radiating part on the back side of the second heat absorbing surface 201. The surface 202 has irregularities including heat dissipating fins for widening the surface area to improve heat dissipation, and has a structure for dissipating heat in contact with the atmosphere or cooling water. In order to conduct heat efficiently, it is better that the vertical and horizontal dimensions of the second heat absorbing surface 201 are larger than those of the first heat radiating surface 102.

次に、第1放熱部100と第2放熱部200とを係合させる係合部300の第1放熱面102には突部300(a)、第2吸熱面201には溝部300(b)が形成されており、突部300(a)が溝部300(b)に収容されて嵌合方向10に挿入されるに従い、第1放熱部100と第2放熱部200が圧着されるように、突部300(a)および前記溝部300(b)は、互いに嵌合方向10側につれて窄むように斜傾して形成されている。なお、図において、突部300(a)の断面はアリホゾ構造を有し、これを収容する溝部300(b)の断面はアリミゾ構造を有している。また、本実施例では、第1放熱面102に突部300(a)、第2吸熱面201に溝部300(b)が形成されているが、第1放熱面102に溝部300(b)、第2吸熱面201に突部300(a)を形成することも可能である。
また、突部および溝部の断面構造は、多角形、円形、楕円形を含め、その他の形状でも良く、一部または全面のいずれかが嵌合方向10側につれて窄むように斜傾した形状であれば良い。
Next, a protrusion 300 (a) is formed on the first heat radiating surface 102 of the engaging portion 300 for engaging the first heat radiating portion 100 and the second heat radiating portion 200, and a groove 300 (b) is formed on the second heat absorbing surface 201. As the protrusion 300 (a) is received in the groove 300 (b) and inserted in the fitting direction 10, the first heat radiating part 100 and the second heat radiating part 200 are pressure-bonded. The protrusion 300 (a) and the groove 300 (b) are formed obliquely so as to narrow toward each other in the fitting direction 10 side. In the drawing, the cross section of the protrusion 300 (a) has an anthozo structure, and the cross section of the groove 300 (b) that accommodates this has an antimizo structure. Further, in this embodiment, the protrusion 300 (a) is formed on the first heat dissipation surface 102 and the groove 300 (b) is formed on the second heat absorption surface 201, but the groove 300 (b), It is also possible to form the protrusion 300 (a) on the second heat absorbing surface 201.
In addition, the cross-sectional structure of the protrusion and the groove may be other shapes including polygonal, circular, and elliptical, as long as either a part or the entire surface is inclined so as to narrow toward the fitting direction 10 side. good.

次に、上記の構成を用いた半導体装置の放熱効率について熱解析を行い、比較例との対比を行った。図2は、熱解析における半導体装置の模式図である。発熱体1は半導体チップ1(a)と絶縁回路基板1(b)を接合して構成されている。熱解析条件を表1に示す。表1において、本実施例と比較例では、第1放熱部100の第1吸熱面101と、第2放熱部200の第2吸熱面201との係合部300における接合条件が異なっており、実施例では、熱伝導性コンパウンドは使用せず、図1と同様の接合が行われることにより、第1放熱部100と第2放熱部200は隙間なく密着されている。一方、比較例では、第1吸熱面101および第2吸熱面201を平面として、その間に熱伝導性コンパウンドが0.3mmの厚さで均一に塗布されて第1放熱部100と第2放熱部200が接合されている。 Next, thermal analysis was performed on the heat dissipation efficiency of the semiconductor device using the above-described configuration, and a comparison with a comparative example was performed. FIG. 2 is a schematic diagram of a semiconductor device in thermal analysis. The heating element 1 is configured by bonding a semiconductor chip 1 (a) and an insulating circuit substrate 1 (b). Table 1 shows the thermal analysis conditions. In Table 1, in this embodiment and the comparative example, the joining conditions in the engaging portion 300 between the first heat absorbing surface 101 of the first heat radiating portion 100 and the second heat absorbing surface 201 of the second heat radiating portion 200 are different. In the embodiment, the first heat radiating part 100 and the second heat radiating part 200 are in close contact with each other without using a heat conductive compound and performing the same joining as in FIG. On the other hand, in the comparative example, the first heat-absorbing surface 101 and the second heat-absorbing surface 201 are flat surfaces, and the heat conductive compound is uniformly applied with a thickness of 0.3 mm between the first heat-radiating portion 100 and the second heat-radiating portion. 200 is joined.

Figure 2011091088
Figure 2011091088

熱解析結果を表2に示す。表2によると、実施例の半導体チップ1(a)の表面温度は160℃に上昇し、比較例側は164℃であった。 Table 2 shows the thermal analysis results. According to Table 2, the surface temperature of the semiconductor chip 1 (a) of the example rose to 160 ° C., and the comparative example side was 164 ° C.

Figure 2011091088
Figure 2011091088

以上のように、突部300(a)を溝部300(b)に収容して嵌合方向10に挿入するにしたがって、第1放熱部と第2放熱部との隙間が小さくなり、さらに圧入することにより係合面は均等に圧着され、第1放熱部100と第2放熱部200は密着する。これにより、接触抵抗が低下して放熱性が向上することとなり、発熱体の温度上昇が抑制される。この結果、小型で信頼性の高い半導体装置を提供することが可能になる。また、突部300(a)を溝部300(b)に収容し嵌合方向10に挿入するだけで位置決めと固定が容易にできる。
なお、第1放熱部100と第2放熱部200間の係合部300に熱伝導性コンパウンドを塗布した場合においても、係合部300は均等に圧着されるので、熱伝導性コンパウンドは均一に引き伸ばされ極薄い膜状となる。このため、熱伝導性コンパウンドを塗布することによる熱伝導性の低下は非常に小さくなる。
これらにより、インバータやサーボアンプのようなモータ制御装置のパワー密度が高くなるとともに、信頼性の向上や製造コストの低減にも寄与することができる。
As described above, as the protrusion 300 (a) is accommodated in the groove 300 (b) and inserted in the fitting direction 10, the gap between the first heat radiating portion and the second heat radiating portion becomes smaller and press-fitted. As a result, the engagement surface is uniformly crimped, and the first heat radiating portion 100 and the second heat radiating portion 200 are in close contact with each other. Thereby, contact resistance falls and heat dissipation improves, and the temperature rise of a heat generating body is suppressed. As a result, a small and highly reliable semiconductor device can be provided. Further, positioning and fixing can be facilitated simply by accommodating the protrusion 300 (a) in the groove 300 (b) and inserting it in the fitting direction 10.
Even when the heat conductive compound is applied to the engaging portion 300 between the first heat radiating portion 100 and the second heat radiating portion 200, the engaging portion 300 is uniformly crimped, so that the heat conductive compound is uniform. It is stretched to form an extremely thin film. For this reason, the decrease in thermal conductivity due to the application of the thermal conductive compound is very small.
As a result, the power density of a motor control device such as an inverter or a servo amplifier is increased, and it is possible to improve reliability and reduce manufacturing costs.

図3は、本発明の実施例2を示す発熱体の放熱構造の概略図である。
第1放熱部100と第2放熱部200とを係合させる係合部300の第1放熱面102は、突部300(a)と溝部300(b)が形成され、第2吸熱面201には、溝部300(b)と突部300(a)が形成されており、互いに突部300(a)が溝部300(b)に挿入されるようになっている。
FIG. 3 is a schematic diagram of a heat dissipating structure for a heating element, showing a second embodiment of the present invention.
The first heat radiating surface 102 of the engaging portion 300 that engages the first heat radiating portion 100 and the second heat radiating portion 200 is formed with a protrusion 300 (a) and a groove portion 300 (b). The groove 300 (b) and the protrusion 300 (a) are formed, and the protrusion 300 (a) is inserted into the groove 300 (b).

本実施例においても、突部300(a)を溝部300(b)に収容して嵌合方向10に挿入するに従い圧着されるように、突部300(a)および溝部300(b)は、互いに嵌合方向10側につれて窄むように斜傾して形成されており、実施例1と同様の効果が得られる。 Also in this embodiment, the protrusion 300 (a) and the groove 300 (b) are so crimped that the protrusion 300 (a) is accommodated in the groove 300 (b) and inserted in the fitting direction 10. They are formed so as to be inclined so as to narrow toward each other in the fitting direction 10 side, and the same effect as in the first embodiment can be obtained.

図4は、本発明の実施例3を示す発熱体の放熱構造の概略図である。
第1放熱部100と第2放熱部200とを係合させる係合部300の第1放熱面102は、突部300(a)が2箇所と溝部300(b)1箇所が形成され、第2吸熱面201には、溝部300(b)が2箇所と突部300(a)が1箇所形成されており、互いに突部300(a)が溝部300(b)に挿入されるようになっている。
FIG. 4 is a schematic diagram of a heat dissipating structure for a heating element, showing Example 3 of the present invention.
The first heat radiating surface 102 of the engaging portion 300 that engages the first heat radiating portion 100 and the second heat radiating portion 200 has two protrusions 300 (a) and one groove 300 (b). Two endothermic surfaces 201 are formed with two grooves 300 (b) and one protrusion 300 (a), and the protrusions 300 (a) are inserted into the groove 300 (b). ing.

本実施例においても、突部300(a)を溝部300(b)に収容して嵌合方向10に挿入するに従い、圧着されるように突部300(a)および溝部300(b)は、互いに嵌合方向10側につれて窄むように斜傾して形成されている。また、第1放熱部100と第2放熱部200の嵌合部分の面積が大きくなるので、さらに第1放熱部100と第2放熱部200の密着性が向上する。 Also in this embodiment, as the protrusion 300 (a) is accommodated in the groove 300 (b) and inserted in the fitting direction 10, the protrusion 300 (a) and the groove 300 (b) They are formed obliquely so as to be narrowed toward each other in the fitting direction 10 side. Moreover, since the area of the fitting part of the 1st thermal radiation part 100 and the 2nd thermal radiation part 200 becomes large, the adhesiveness of the 1st thermal radiation part 100 and the 2nd thermal radiation part 200 improves further.

図5は、本発明の実施例4を示す発熱体の放熱構造の概略図である。図5(a)は、第1放熱部100、および第2放熱部200から構成される放熱構造の横断面図を示している。図5(b)は図5(a)の上面図である。
第2放熱部100の嵌合方向10側の端面には固定板400が取り付けられ、貫通穴400(a)が設けられている。また、貫通穴400(a)には軸部に雄ネジが切られたボルト401が貫通するようになっており、第1放熱部の嵌合方向10側の端面には雌ネジが切られたネジ穴402が設けられている。
第1放熱部と第2放熱部とを係合させる際、ボルト401を貫通穴400(a)に通し、ネジ穴402にねじ込むことにより、第1放熱部は嵌合方向10に少しずつスライドして挿入され、次第に第2放熱部と密着して固定される。
なお、固定板400は第2放熱部100と一体化せず、第1放熱部100と第2放熱部200を橋架する取り外しの可能な構造であっても良い。
FIG. 5 is a schematic diagram of a heat dissipating structure for a heating element, showing Example 4 of the present invention. FIG. 5A shows a cross-sectional view of a heat dissipation structure including the first heat dissipation part 100 and the second heat dissipation part 200. FIG. 5B is a top view of FIG.
A fixing plate 400 is attached to the end face on the fitting direction 10 side of the second heat radiating portion 100, and a through hole 400 (a) is provided. Further, a bolt 401 having a male screw cut in the shaft portion passes through the through hole 400 (a), and a female screw is cut in the end surface on the fitting direction 10 side of the first heat radiating portion. A screw hole 402 is provided.
When engaging the first heat radiating portion and the second heat radiating portion, the first heat radiating portion slides little by little in the fitting direction 10 by passing the bolt 401 through the through hole 400 (a) and screwing it into the screw hole 402. Inserted and gradually fixed in close contact with the second heat radiating portion.
The fixing plate 400 may not be integrated with the second heat radiating unit 100 but may be a detachable structure that bridges the first heat radiating unit 100 and the second heat radiating unit 200.

このように、汎用の部材を用いて、第1放熱部と第2放熱部との圧着、位置決め、及び固定することが容易にできるので、第1放熱部100と第2放熱部200との接合作業が容易になり、製造コストの低減が可能となる。 As described above, since the first heat radiating portion and the second heat radiating portion can be easily crimped, positioned, and fixed using a general-purpose member, the first heat radiating portion 100 and the second heat radiating portion 200 can be joined. Work becomes easy and the manufacturing cost can be reduced.

図6は、本発明の実施例5を示す半導体装置の概略構成図である。図6(a)は、半導体装置の斜視図であり、図6(b)は図6(a)のA−A´における断面図を示している。半導体チップや絶縁回路基板を含む発熱体1の両面にはそれぞれ第1放熱部100が接合され、さらにそれらの両側から第2放熱部200が接合されるようになっている。また、発熱体1の嵌合方向10側の端面には雌ネジが切られたネジ穴402が設けられており、双方の第2放熱部200を橋架するように、貫通穴400(a)の設けられた固定板400を設置できるようになっている。このネジ穴402と貫通穴400の位置を合わせて、ボルト401をねじ込むことにより、発熱体1と接合された第1放熱部100は嵌合方向10に少しずつスライドして挿入され、次第に第2放熱部と圧着されて固定される。 FIG. 6 is a schematic configuration diagram of a semiconductor device showing Embodiment 5 of the present invention. FIG. 6A is a perspective view of the semiconductor device, and FIG. 6B is a cross-sectional view taken along line AA ′ of FIG. A first heat radiating portion 100 is bonded to both surfaces of the heating element 1 including a semiconductor chip and an insulating circuit substrate, and a second heat radiating portion 200 is bonded from both sides thereof. Further, a screw hole 402 in which a female screw is cut is provided on the end face on the fitting direction 10 side of the heating element 1, and the through hole 400 (a) is formed so as to bridge both the second heat radiating portions 200. The fixed plate 400 provided can be installed. By aligning the positions of the screw holes 402 and the through holes 400 and screwing the bolts 401, the first heat radiating portion 100 joined to the heating element 1 is inserted by sliding in the fitting direction 10 little by little. It is fixed by being crimped to the heat dissipation part.

このように、半導体チップが実装されたパワーモジュールで発生する熱は両面に放熱されることとなり、さらに放熱性が向上するため、パワーモジュールの性能、信頼性が大幅に改善される。また、上記の接合手段により製造性が改善され、コスト低減が実現できる効果が得られる。 Thus, the heat generated in the power module on which the semiconductor chip is mounted is radiated on both sides, and the heat dissipation is further improved, so that the performance and reliability of the power module are greatly improved. In addition, the productivity can be improved by the above-described joining means, and an effect of realizing cost reduction can be obtained.

図7は、本発明の実施例6を示す半導体装置の概略構成図である。図7(a)は、
半導体装置の縦断面図であり、図7(b)は図7(a)のA−A´における断面図を示している。本実施例は、実施例5の半導体装置がさらに多重に積層された構造となっており、第2放熱部200は冷却水路203を有している。
また、第2放熱部200は、内燃機関の冷却を行う多数の細い流路で構成された車載用ラジエータであっても良い。
FIG. 7 is a schematic configuration diagram of a semiconductor device showing Embodiment 6 of the present invention. FIG. 7 (a)
FIG. 7B is a longitudinal sectional view of the semiconductor device, and FIG. 7B is a sectional view taken along the line AA ′ of FIG. The present embodiment has a structure in which the semiconductor devices of the fifth embodiment are further stacked in multiple layers, and the second heat radiating section 200 has a cooling water channel 203.
Moreover, the 2nd heat radiating part 200 may be a vehicle-mounted radiator configured with a large number of thin flow paths for cooling the internal combustion engine.

このように、半導体チップが実装されたパワーモジュールはさらに放熱性が向上し、パワーモジュールの性能、信頼性が大幅に改善される。また、ラジエータを利用した放熱構造とすることにより、パワーモジュールから発熱する熱を効果的に放熱することができるとともに、収容スペースのコンパクト化が可能となる。 As described above, the power module on which the semiconductor chip is mounted has further improved heat dissipation, and the performance and reliability of the power module are greatly improved. In addition, the heat dissipation structure using the radiator can effectively radiate the heat generated from the power module, and the accommodation space can be made compact.

半導体装置に限定されず、発熱体を有する電気品全般、あるいは熱交換器の放熱構造に適用することができる。また、内燃機関の冷却を行う車載用ラジエータ以外の産業機械、建設機械、あるいは家庭用の熱交換器等に使用されるラジエータを利用して放熱構造を構成することも可能である。 The present invention is not limited to a semiconductor device, and can be applied to general electrical products having a heating element or a heat dissipation structure of a heat exchanger. It is also possible to configure the heat dissipation structure using a radiator used for an industrial machine, a construction machine, a household heat exchanger, or the like other than the on-vehicle radiator that cools the internal combustion engine.

1 発熱体
1(a) 半導体チップ
1(b) 絶縁回路基板
10 嵌合方向
100 第1放熱部
101 第1吸熱面
102 第1放熱面
200 第2放熱部
201 第2吸熱面
202 第2放熱面
203 冷却水路
300 係合部
300(a) 突部
300(b) 溝部
400 固定板
400(a) 貫通穴
401 ボルト
402 ネジ穴
DESCRIPTION OF SYMBOLS 1 Heat generating body 1 (a) Semiconductor chip 1 (b) Insulating circuit board 10 Fitting direction 100 1st heat radiating part 101 1st heat absorbing surface 102 1st heat radiating surface 200 2nd heat radiating part 201 2nd heat absorbing surface 202 2nd heat radiating surface 203 Cooling water channel 300 Engagement part 300 (a) Projection part 300 (b) Groove part 400 Fixing plate 400 (a) Through hole 401 Bolt 402 Screw hole

Claims (8)

発熱体が固定された第1吸熱面と、前記第1吸熱面が吸熱した熱が伝達される第1放熱面とを有し、前記発熱体から発せられる熱を伝達する第1放熱部と、
前記第1放熱面に対向して配置された第2吸熱面と、前記第2吸熱面が吸熱した熱が伝達される第2放熱面とを有し、前記第1放熱部から伝達された熱を放熱する第2放熱部と、
前記第1放熱面と前記第2吸熱面とを係合させる係合部とを備え、
前記係合部は、前記第1放熱面と前記第2吸熱面のいずれか一方の面に突部が形成され、他方の面に前記突部が収容される溝部が形成され、
前記突部が、前記溝部に収容されて前記第1放熱面及び前記第2吸熱面に平行となる嵌合方向に挿入されるに従って圧着されるように、前記突部および前記溝部は、互いに前記嵌合方向側につれて窄むように斜傾して形成されることを特徴とする発熱体の放熱構造。
A first heat-dissipating part having a first heat-absorbing surface to which the heat-generating body is fixed and a first heat-dissipating surface to which heat absorbed by the first heat-absorbing surface is transmitted;
The heat transferred from the first heat radiating portion has a second heat absorbing surface disposed opposite to the first heat radiating surface and a second heat radiating surface to which heat absorbed by the second heat absorbing surface is transmitted. A second heat dissipating part that dissipates heat;
An engagement portion that engages the first heat dissipation surface and the second heat absorption surface;
The engaging portion has a protrusion formed on one surface of the first heat dissipation surface and the second heat absorption surface, and a groove portion in which the protrusion is accommodated on the other surface.
The projecting part and the groove part are mutually connected so that the projecting part is crimped as it is accommodated in the groove part and inserted in a fitting direction parallel to the first heat radiating surface and the second heat absorbing surface. A heat dissipating structure for a heating element, wherein the heat dissipating structure is formed so as to be narrowed toward the fitting direction.
前記一方の面に、前記突部と前記溝部がそれぞれ少なくとも1以上形成され、
前記他方の面に、前記突部と前記溝部とにそれぞれ対応する前記溝部と前記突部がそれぞれ少なくとも1以上形成されることを特徴とする請求項1に記載の発熱体の放熱構造。
At least one or more of the protrusion and the groove are formed on the one surface,
2. The heat dissipation structure for a heating element according to claim 1, wherein at least one or more of the groove and the protrusion corresponding to the protrusion and the groove are formed on the other surface, respectively.
前記一方の面には、2以上の前記突部が形成され、
前記一方の面の前記突部には、少なくとも1以上の溝部が形成され、
前記他方の面には、前記2以上の前記突部に対応した2以上の前記溝部が形成され、
前記他方の面の前記溝部には、前記1以上の溝部に対応した1以上の前記突部が形成されることを特徴とする、請求項2に記載の発熱体の放熱構造。
Two or more protrusions are formed on the one surface,
At least one or more grooves are formed on the protrusion on the one surface,
Two or more grooves corresponding to the two or more protrusions are formed on the other surface,
The heat dissipating structure for a heating element according to claim 2, wherein the one or more protrusions corresponding to the one or more groove portions are formed in the groove portion on the other surface.
前記溝部はアリミゾ構造を有し、前記突部はアリホゾ構造を有することを特徴とする請求項1乃至3記載の発熱体の放熱構造。 4. The heat dissipating structure for a heating element according to claim 1, wherein the groove portion has an antagonism structure, and the protrusion has an anthozo structure. 前記突部を前記嵌合方向に挿入し、前記第1放熱部と前記第2放熱部を固定する固定手段を有することを特徴とする請求項1乃至3に記載の発熱体の放熱構造。   4. The heat dissipation structure for a heating element according to claim 1, further comprising fixing means for inserting the protrusion in the fitting direction and fixing the first heat dissipation part and the second heat dissipation part. 前記固定手段は、軸部に雄ネジが切られたボルトと、前記第1放熱部または前記発熱体の前記勘合方向側端面から前記勘合方向に雌ネジが切られたネジ穴と、前記第1放熱部及び前記第2放熱部と一体化または橋架して貫通穴が設けられた固定板で構成され、前記ボルトの軸部を前記貫通穴を貫通して前記ネジ穴にねじ込むようにすることを特徴とする請求項5に記載の発熱体の放熱構造。   The fixing means includes a bolt having a male screw cut in a shaft portion, a screw hole in which a female screw is cut in the fitting direction from an end surface on the fitting direction side of the first heat radiating portion or the heating element, and the first It is composed of a fixing plate provided with a through hole by being integrated or bridged with the heat radiating portion and the second heat radiating portion, and the shaft portion of the bolt is screwed into the screw hole through the through hole. The heat-dissipating structure for a heating element according to claim 5. 半導体チップが実装されたパワーモジュールの放熱手段は、請求項1記載の発熱体の放
熱構造により構成され、前記発熱体は半導体チップにより構成されたことを特徴とする半導体装置。
2. A semiconductor device according to claim 1, wherein the heat dissipating means of the power module on which the semiconductor chip is mounted is constituted by the heat dissipating structure of the heat generating element according to claim 1. The heat generating element is constituted by a semiconductor chip.
前記パワーモジュールの放熱手段は、前記半導体チップを含む前記発熱体の両面を請求項1記載の発熱体の放熱構造により構成したことを特徴とする半導体装置。 2. The semiconductor device according to claim 1, wherein the heat radiating means of the power module is configured by the heat radiating structure of the heat generating element according to claim 1 on both surfaces of the heat generating element including the semiconductor chip.
JP2009241325A 2009-10-20 2009-10-20 Heat radiation structure of heating element and semiconductor device using the heat radiation structure Pending JP2011091088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009241325A JP2011091088A (en) 2009-10-20 2009-10-20 Heat radiation structure of heating element and semiconductor device using the heat radiation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009241325A JP2011091088A (en) 2009-10-20 2009-10-20 Heat radiation structure of heating element and semiconductor device using the heat radiation structure

Publications (1)

Publication Number Publication Date
JP2011091088A true JP2011091088A (en) 2011-05-06

Family

ID=44109106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009241325A Pending JP2011091088A (en) 2009-10-20 2009-10-20 Heat radiation structure of heating element and semiconductor device using the heat radiation structure

Country Status (1)

Country Link
JP (1) JP2011091088A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013069959A (en) * 2011-09-26 2013-04-18 Nissan Motor Co Ltd Cooling structure of power module
JP2013098450A (en) * 2011-11-04 2013-05-20 Sumitomo Electric Ind Ltd Semiconductor module and method of manufacturing semiconductor module
JP2013165122A (en) * 2012-02-09 2013-08-22 Mitsubishi Electric Corp Semiconductor device and manufacturing method of the same
JP2014179394A (en) * 2013-03-14 2014-09-25 Mitsubishi Electric Corp Semiconductor device
KR101836658B1 (en) * 2016-06-29 2018-03-09 현대자동차주식회사 Power module and manufacturing method therefor
CN108141009A (en) * 2015-10-20 2018-06-08 松下知识产权经营株式会社 Light supply apparatus
CN111466159A (en) * 2017-12-08 2020-07-28 海拉有限双合股份公司 Method for producing a circuit board/heat sink arrangement and arrangement for this purpose comprising a circuit board and a heat sink
EP3751602A1 (en) * 2019-06-11 2020-12-16 Siemens Aktiengesellschaft Insulated metal substrate for a power electronic module
WO2023071671A1 (en) * 2021-10-26 2023-05-04 北京比特大陆科技有限公司 Chip module and circuit board

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013069959A (en) * 2011-09-26 2013-04-18 Nissan Motor Co Ltd Cooling structure of power module
JP2013098450A (en) * 2011-11-04 2013-05-20 Sumitomo Electric Ind Ltd Semiconductor module and method of manufacturing semiconductor module
JP2013165122A (en) * 2012-02-09 2013-08-22 Mitsubishi Electric Corp Semiconductor device and manufacturing method of the same
JP2014179394A (en) * 2013-03-14 2014-09-25 Mitsubishi Electric Corp Semiconductor device
CN108141009A (en) * 2015-10-20 2018-06-08 松下知识产权经营株式会社 Light supply apparatus
KR101836658B1 (en) * 2016-06-29 2018-03-09 현대자동차주식회사 Power module and manufacturing method therefor
CN111466159A (en) * 2017-12-08 2020-07-28 海拉有限双合股份公司 Method for producing a circuit board/heat sink arrangement and arrangement for this purpose comprising a circuit board and a heat sink
CN111466159B (en) * 2017-12-08 2023-07-25 海拉有限双合股份公司 Method for producing a printed circuit board and heat sink structure, and structure for this purpose comprising printed circuit board and heat sink
EP3751602A1 (en) * 2019-06-11 2020-12-16 Siemens Aktiengesellschaft Insulated metal substrate for a power electronic module
WO2023071671A1 (en) * 2021-10-26 2023-05-04 北京比特大陆科技有限公司 Chip module and circuit board

Similar Documents

Publication Publication Date Title
JP2011091088A (en) Heat radiation structure of heating element and semiconductor device using the heat radiation structure
TWI458927B (en) Heat sink
TWI362165B (en)
JP2008294284A (en) Semiconductor device
JP2007165620A (en) Semiconductor cooling structure
JP2010171279A (en) Heat radiator
JP2010171033A (en) Method of brazing heat sink
JP2008171936A (en) Cooling structure
JP2016066639A (en) Heat sink having fins connected in different methods
JP4433875B2 (en) Heat dissipating structure of heat generating component and method of manufacturing heat dissipating member in this heat dissipating structure
CA3063005A1 (en) Cooling structure of power conversion device
JP5392196B2 (en) Semiconductor device
JP2011129797A (en) Control apparatus
JP5267238B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2006196593A (en) Semiconductor device and heat sink
JP6003109B2 (en) Power module
JP4196214B2 (en) Heat dissipation structure, package assembly, and heat dissipation sheet
JP2012138475A (en) Semiconductor module and method for manufacturing the same
JP2011091152A (en) Power module
JP2007173301A (en) Dissipator for cooling semiconductor element, semiconductor device, and manufacturing process of dissipator for cooling semiconductor element
JP2006140390A (en) Power semiconductor equipment
JP2009124054A (en) Joint structure of heating element and radiating element
JP5117303B2 (en) heatsink
JP5320354B2 (en) Heat dissipation device
JP3162275U (en) Heat dissipation module