JP2011088061A - Gas-liquid dissolving tank - Google Patents

Gas-liquid dissolving tank Download PDF

Info

Publication number
JP2011088061A
JP2011088061A JP2009243139A JP2009243139A JP2011088061A JP 2011088061 A JP2011088061 A JP 2011088061A JP 2009243139 A JP2009243139 A JP 2009243139A JP 2009243139 A JP2009243139 A JP 2009243139A JP 2011088061 A JP2011088061 A JP 2011088061A
Authority
JP
Japan
Prior art keywords
gas
tank
liquid
air
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009243139A
Other languages
Japanese (ja)
Other versions
JP5599597B2 (en
Inventor
Keiichiro Fukumizu
圭一郎 福水
Yuichiro Toba
裕一郎 鳥羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2009243139A priority Critical patent/JP5599597B2/en
Publication of JP2011088061A publication Critical patent/JP2011088061A/en
Application granted granted Critical
Publication of JP5599597B2 publication Critical patent/JP5599597B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Water Treatments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas-liquid dissolving tank which has a high dissolution rate of the gas to the liquid, a simple inner structure and a small size. <P>SOLUTION: The gas-liquid dissolving tank for dissolving the gas into the liquid under pressurization has a jet generating member to generate a jet on the front end, and is provided with an interpolation tube for introducing the mixture of the gas and liquid into the inside of the tank in a downward stream, and an inner cylindrical tube which is installed so that the jetting part of the jet generating member is situated inside and whose upper end is closed and whose lower end is opened. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、気液溶解タンク、特に、排水処理あるいは用水処理などで用いられる加圧浮上処理における加圧水発生装置の気液溶解タンクに関する。   The present invention relates to a gas-liquid dissolution tank, and more particularly, to a gas-liquid dissolution tank of a pressurized water generator in a pressurized flotation process used in wastewater treatment or water treatment.

排水処理や用水処理において、被処理水中の被除去物質、例えば、SS成分や油分に、微細気泡を混合し、付着させて、その浮力により浮上槽で分離する浮上分離装置が用いられる。被処理水中の被除去物質には、微細気泡を混合する前に凝集剤を添加してフロック化させることが多い。   In wastewater treatment and irrigation treatment, a levitating separation apparatus is used in which fine bubbles are mixed and adhered to a substance to be removed in the for-treatment water, for example, SS component and oil, and separated in a levitation tank by its buoyancy. In many cases, the substance to be removed in the water to be treated is flocified by adding a flocculant before mixing fine bubbles.

微細気泡の発生方法としては、加圧下で空気などの気体を溶解させた加圧水などの加圧液体を水深圧に減圧することで、微細気泡を発生させる方法が用いられることが多い。このような加圧水を用いる浮上分離処理は、特に、加圧浮上処理と言われる。加圧浮上処理は、多量の微細気泡を被処理水に供給することができるため、被処理水中のフロックに多くの気泡を付着させることができ、処理水質が良好であり、また浮上槽での処理速度を高く設定することができるなどの利点があり、広く採用されている。   As a method of generating fine bubbles, a method of generating fine bubbles is often used by reducing a pressurized liquid such as pressurized water in which a gas such as air is dissolved under pressure to a deep water pressure. Such a floating separation process using pressurized water is particularly referred to as a pressurized floating process. In the pressure levitation treatment, a large amount of fine bubbles can be supplied to the water to be treated, so that many bubbles can adhere to the floc in the water to be treated, the quality of the treated water is good, and There is an advantage that the processing speed can be set high, and it is widely adopted.

加圧下で空気を溶解させて微細気泡を発生させる方法は、高圧の水ほど空気を多量に溶解させることができることを利用しており、減圧して被処理水に混合する際には、その分、多量の微細気泡を発生する。   The method of generating fine bubbles by dissolving air under pressure utilizes the fact that high pressure water can dissolve a large amount of air. A large amount of fine bubbles are generated.

一般的に加圧水を調製する装置は、加圧水ポンプ、コンプレッサおよび気液溶解タンクなどで構成される。加圧水ポンプなどによって水を例えば0.3〜0.6MPaに加圧している状態で、系内にコンプレッサなどで空気を供給し、水への空気の溶解を図る。気液溶解タンクでは溶解しなかった空気を分離し、空気が溶解した加圧水を被処理水に供給する。   In general, an apparatus for preparing pressurized water includes a pressurized water pump, a compressor, a gas-liquid dissolution tank, and the like. In a state where water is pressurized to, for example, 0.3 to 0.6 MPa by a pressurized water pump or the like, air is supplied into the system by a compressor or the like to dissolve the air into water. Air that has not been dissolved in the gas-liquid dissolution tank is separated, and pressurized water in which the air is dissolved is supplied to the water to be treated.

しかし、実際には、単純に高圧の水に空気を供給しても空気は十分に溶解しないので、溶解器の設置や、気液溶解タンクの内部に空気の溶解を促進するような構造を設けるなどの工夫がなされる。   However, in reality, simply supplying air to high-pressure water does not sufficiently dissolve the air, so a dissolver is installed or a structure that promotes dissolution of air is provided inside the gas-liquid dissolution tank. Etc. are made.

なお、空気溶解の程度を評価する指標として、理論空気溶解量に対する空気溶解率(%)(以下、単に「溶解率」と呼ぶ場合がある。)があり、式1で定義される。式1中の理論空気溶解量はヘンリーの法則より算出できる。   As an index for evaluating the degree of air dissolution, there is an air dissolution rate (%) with respect to the theoretical air dissolution amount (hereinafter sometimes simply referred to as “dissolution rate”), which is defined by Equation 1. The theoretical air dissolution amount in Equation 1 can be calculated from Henry's law.

Figure 2011088061
Figure 2011088061

溶解器の例としては、ラインミキサ(例えば、図11参照)やエゼクタ(例えば、図12参照)などが挙げられる。ラインミキサは、空気などの気体と水などの液体とを混合した後に、配管中に流れに対して平行方向に旋回流を生じさせる板などを設け、気液の接触面積を増やし、空気などの気体溶解を促進させる働きをする。   Examples of the dissolver include a line mixer (for example, see FIG. 11) and an ejector (for example, see FIG. 12). A line mixer, after mixing a gas such as air and a liquid such as water, is provided with a plate in the pipe that generates a swirling flow in a direction parallel to the flow, increasing the contact area of the gas and liquid, It works to promote gas dissolution.

エゼクタは、空気などの気体と水などの液体とを混合する部分に設置され、主流の管径を絞ることで負圧を生じさせ、そこへ空気などの気体を自給、もしくはコンプレッサなどで圧入して気液を激しく接触させて気体溶解を図るものである。   The ejector is installed in a part where a gas such as air and a liquid such as water are mixed, and a negative pressure is generated by narrowing the main pipe diameter, and air or other gas is self-supplied or press-fitted with a compressor or the like. The gas and liquid are brought into contact with each other vigorously to dissolve the gas.

ラインミキサやエゼクタなどの溶解器を単独で用いて空気を水に溶解する場合、溶解率は空気を大量に吹き込んでも40〜50%程度が限界である。単独の溶解器の使用で溶解率が40〜50%の場合、フロックの浮上に必要な所定量の気泡を被処理水に供給するためには、被処理水に対する加圧水量の比(加圧水比)を20〜40%と大きくとる必要がある。このため、容量の大きい加圧水ポンプが必要となり、イニシャルコストや電力費を主とするランニングコストが増大してしまう。エゼクタとラインミキサを組み合わせるなど複数の溶解器を併用して溶解率は改善されるが、溶解器での圧力損失が大きくなり、その圧力損失分を見込んだ容量の加圧水ポンプが必要なため、結局これもイニシャルコストやランニングコストの増大となってしまう。   When using a dissolver such as a line mixer or ejector alone to dissolve air in water, the dissolution rate is limited to about 40 to 50% even if a large amount of air is blown. When the dissolution rate is 40 to 50% with the use of a single dissolver, the ratio of pressurized water to treated water (pressurized water ratio) is used to supply the treated water with a predetermined amount of bubbles necessary for flotation. Needs to be as large as 20 to 40%. For this reason, a pressurized water pump having a large capacity is required, and the running cost mainly including the initial cost and the power cost increases. The dissolution rate can be improved by using multiple dissolvers, such as combining an ejector and a line mixer, but the pressure loss in the dissolver increases, and a pressurized water pump with a capacity that allows for the pressure loss is necessary. This also increases initial costs and running costs.

空気溶解の促進を気液溶解タンクで図る場合もある。気液溶解タンクには、空気溶解だけを行い、未溶解の空気の分離排除は別のタンクで行うものと、空気溶解と気液分離を1槽で行うものとがある。例を挙げると、前者のタイプには、非特許文献1に記載の図13のような構造の気液溶解タンク80があり、高い圧力をかけた流体が多孔板の孔を通った時に生じる乱流で気体を細分化し、気液接触面積を増やすことで空気溶解を促すものである。後者のタイプには、特許文献1に記載の図14のような構造の気液溶解タンク82があり、まずタンク入口部に設置されたノズルで気液を激しく混合、接触させ、ある程度の空気溶解をし、流路を長くすることで空気と十分に接触させ、空気溶解を促進する構造である。   In some cases, the gas-liquid dissolution tank is used to promote air dissolution. Some gas-liquid dissolution tanks perform only air dissolution, and separation / exclusion of undissolved air is performed in another tank, and air dissolution and gas-liquid separation are performed in one tank. For example, the former type includes a gas-liquid dissolution tank 80 having a structure as shown in FIG. 13 described in Non-Patent Document 1, and a turbulence generated when a fluid under high pressure passes through a hole in a perforated plate. The gas is subdivided by the flow, and the gas-liquid contact area is increased to promote air dissolution. In the latter type, there is a gas-liquid dissolution tank 82 having a structure as shown in FIG. 14 described in Patent Document 1. First, gas and liquid are vigorously mixed and brought into contact with a nozzle installed at the tank inlet to dissolve a certain amount of air. In this structure, the flow path is lengthened to sufficiently contact with air to promote air dissolution.

気液溶解タンクを用いて空気を水に溶解する場合、何らかの内部充填構造を持たないものは所定の空気溶解の効果を得るのに水の滞留時間を長く取る(3〜5分程度)必要があり、タンク容積が大きくなるため、設置面積および製作コストが高くなる。気液溶解タンクを図13および図14に示したような構造として、空気の水への溶解を促進する方法をとると、図13のタンクが65%程度、図14のタンクが60%程度の溶解率を得ることができるが、さらに高い溶解率を得ることが求められている。   When air is dissolved in water using a gas-liquid dissolution tank, those that do not have any internal filling structure need to take a long residence time of water (about 3 to 5 minutes) in order to obtain a predetermined air dissolution effect. In addition, since the tank volume is increased, the installation area and the manufacturing cost are increased. When the gas-liquid dissolution tank is structured as shown in FIGS. 13 and 14 and the method of promoting the dissolution of air into water is taken, the tank in FIG. 13 is about 65% and the tank in FIG. 14 is about 60%. Although a dissolution rate can be obtained, it is desired to obtain a higher dissolution rate.

さらに、図13のような構造の気液溶解タンクの問題として、以下の2点が考えられる。1つめは、所定の溶解率を得ようとした時、多孔板を多段で設置するので大きな圧力損失を生じるため、その圧力損失を見込んだ加圧水ポンプを使用する必要があることである。2つめに、気液溶解タンクとは別に気液分離タンクの配置が必要で、結局、加圧水製造設備全体では多くの設置面積が必要となってしまうことが挙げられる。   Furthermore, the following two points can be considered as problems of the gas-liquid dissolution tank having the structure as shown in FIG. The first is that when a predetermined dissolution rate is to be obtained, a large pressure loss occurs because a multi-stage perforated plate is installed. Therefore, it is necessary to use a pressurized water pump that allows for the pressure loss. Secondly, it is necessary to arrange a gas-liquid separation tank separately from the gas-liquid dissolution tank, and as a result, a large installation area is required for the entire pressurized water production facility.

また、図14のような構造の気液溶解タンクでは、タンク流入部のノズルで圧力損失が生じる程度で、圧力損失は小さいが、気液の接触時間を稼ぐ目的でタンク内の流路を長くしているため、タンク構造が複雑化することで、製作コストが増大する。また、溶解率も60%程度であり、加圧水ポンプの小型化を図るためには、より溶解率を向上させることが求められる。   In the gas-liquid dissolution tank having the structure as shown in FIG. 14, the pressure loss is small and the pressure loss is small at the nozzle at the tank inflow portion, but the flow path in the tank is lengthened for the purpose of increasing the gas-liquid contact time. Therefore, the manufacturing cost increases due to the complicated tank structure. Further, the dissolution rate is about 60%, and in order to reduce the size of the pressurized water pump, it is required to further improve the dissolution rate.

特開2004−290803号公報JP 2004-290803 A

Mooyoung Han, Tschung-il Kim, Sungwon Park, Youkun Jung、「The development of a generator to produce bubbles of tailored sizes」、The 5th International Conference on Flotation in Water and Wastewater Systems 予稿集、pp.1−7(2007)Mooyoung Han, Tschung-il Kim, Sungwon Park, Youkun Jung, “The development of a generator to produce bubbles of tailored sizes”, The 5th International Conference on Flotation in Water and Wastewater Systems, pp. 1-7 (2007)

本発明の目的は、液体への気体の溶解率が高く、簡易な内部構造で小型の気液溶解タンクを提供することにある。   An object of the present invention is to provide a small gas-liquid dissolution tank having a high gas dissolution rate in a liquid and a simple internal structure.

本発明は、気体を液体に加圧下で溶解するための気液溶解タンクであって、噴流を生じる噴流発生部材を先端に有し、気体と液体の混合物をタンク内部に下向流で導入するための内挿管と、前記噴流発生部材の噴出部が内部に位置するように設置され、上端が閉塞し下端が開口する内筒管と、を備える気液溶解タンクである。   The present invention is a gas-liquid dissolution tank for dissolving a gas into a liquid under pressure, having a jet generating member that generates a jet at the tip, and introducing a mixture of gas and liquid into the tank in a downward flow The gas-liquid dissolution tank is provided with an internal intubation tube, and an inner cylindrical tube that is installed so that a jet portion of the jet generating member is located inside, and that has an upper end closed and a lower end opened.

また、前記気液溶解タンクにおいて、前記内筒管の側面に、前記噴流発生部材の噴出部の位置よりも低い位置に設けられた開孔部を有することが好ましい。   Moreover, it is preferable that the gas-liquid dissolution tank has an opening provided on a side surface of the inner tube at a position lower than a position of the ejection portion of the jet generating member.

また、前記気液溶解タンクにおいて、前記内筒管の下端部の内径以上の径を有し、前記噴流の流出方向に前記内筒管の下端部と接しないように配置された阻流板を備えることが好ましい。   Further, in the gas-liquid dissolution tank, a baffle plate having a diameter equal to or larger than the inner diameter of the lower end portion of the inner cylindrical tube and disposed so as not to contact the lower end portion of the inner cylindrical tube in the outflow direction of the jet flow. It is preferable to provide.

本発明では、噴流を生じる噴流発生部材を先端に有し、気体と液体の混合物をタンク内部に下向流で導入するための内挿管と、噴流発生部材の噴出部が内部に位置するように設置され、上端が閉塞し下端が開口する内筒管と、を備えることにより、液体への気体の溶解率が高く、簡易な内部構造で小型の気液溶解タンクを提供することができる。   In the present invention, a jet generating member that generates a jet flow is provided at the tip, and an intubation tube for introducing a mixture of gas and liquid in a downward flow into the tank and a jet part of the jet generating member are located inside. By providing the inner tube having the upper end closed and the lower end opened, it is possible to provide a small gas-liquid dissolution tank with a high gas dissolution rate in the liquid and a simple internal structure.

本発明の実施形態に係る加圧水製造システムの一例を示す概略構成図である。It is a schematic block diagram which shows an example of the pressurized water manufacturing system which concerns on embodiment of this invention. 本発明の実施形態に係る気液溶解タンクの一例の構造を示す概略図である。It is the schematic which shows the structure of an example of the gas-liquid dissolution tank which concerns on embodiment of this invention. 本発明の実施形態に係る気液溶解タンクにおける上端が閉塞し下端が開口する内筒管(ドラフトチューブ)の一例の構造を示す概略図である。It is the schematic which shows the structure of an example of the inner cylinder pipe (draft tube) with which the upper end in the gas-liquid dissolution tank which concerns on embodiment of this invention obstruct | occludes, and a lower end opens. 本発明の実施形態に係る気液溶解タンクにおけるラッパ型の内筒管の一例の構造を示す概略図である。It is the schematic which shows the structure of an example of the trumpet type inner cylinder pipe in the gas-liquid melt | dissolution tank which concerns on embodiment of this invention. 本発明の実施形態に係る気液溶解タンクの他の例の構造を示す概略図である。It is the schematic which shows the structure of the other example of the gas-liquid dissolution tank which concerns on embodiment of this invention. 本発明の実施形態に係る気液溶解タンクにおける上端が閉塞し下端が開口し、開孔部を有する内筒管(ドラフトチューブ)の一例の構造を示す概略図である。It is the schematic which shows the structure of an example of the inner cylinder pipe (draft tube) which the upper end in the gas-liquid dissolution tank which concerns on embodiment of this invention has obstruct | occluded, the lower end opened, and has an opening part. 本発明の実施形態に係る気液溶解タンクにおける開孔部を有するラッパ型の内筒管の一例の構造を示す概略図である。It is the schematic which shows the structure of an example of the trumpet type inner cylinder pipe which has the opening part in the gas-liquid melt | dissolution tank which concerns on embodiment of this invention. 本発明の実施形態に係る気液溶解タンクの他の例の構造を示す概略図である。It is the schematic which shows the structure of the other example of the gas-liquid dissolution tank which concerns on embodiment of this invention. 本発明の実施形態に係る気液溶解タンクにおける阻流板の一例の構造を示す概略図である。It is the schematic which shows the structure of an example of the baffle plate in the gas-liquid melt | dissolution tank which concerns on embodiment of this invention. 本発明の実施例で用いた加圧水製造システムを示す概略構成図である。It is a schematic block diagram which shows the pressurized water manufacturing system used in the Example of this invention. 従来のラインミキサの一例の構造を示す概略図である。It is the schematic which shows the structure of an example of the conventional line mixer. 従来のエゼクタの一例の構造を示す概略図である。It is the schematic which shows the structure of an example of the conventional ejector. 従来の気液溶解タンクの一例の構造を示す概略図である。It is the schematic which shows the structure of an example of the conventional gas-liquid dissolution tank. 従来の気液溶解タンクの一例の構造を示す概略図である。It is the schematic which shows the structure of an example of the conventional gas-liquid dissolution tank.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

本発明の実施形態に係る加圧水製造システムの一例の概略構成を図1に示す。加圧水製造システム1は、原水タンク10と、加圧水ポンプ12と、コンプレッサ14と、気液溶解タンク16とを備える。   FIG. 1 shows a schematic configuration of an example of a pressurized water production system according to an embodiment of the present invention. The pressurized water production system 1 includes a raw water tank 10, a pressurized water pump 12, a compressor 14, and a gas-liquid dissolution tank 16.

図1の加圧水製造システム1において、原水タンク10が加圧水ポンプ12、原水流量調整バルブ18、原水流量計26を介して原水配管34などにより、気液溶解タンク16の上部に接続されている。また、コンプレッサ14が空気流量調整バルブ20、空気流量計28を介して空気配管36などにより、原水配管34の原水流量計26と気液溶解タンク16との間に接続されている。気液溶解タンク16の下部には、加圧水配管38が加圧水流量計30、減圧バルブ22を介して接続されている。気液溶解タンク16の上部には、排気配管40が排気調整バルブ24を介して接続されている。気液溶解タンク16の下部には、タンク圧力計32が設置されている。   In the pressurized water production system 1 of FIG. 1, the raw water tank 10 is connected to the upper part of the gas-liquid dissolution tank 16 through a pressurized water pump 12, a raw water flow rate adjustment valve 18, a raw water flow meter 26 and the raw water pipe 34. The compressor 14 is connected between the raw water flow meter 26 of the raw water pipe 34 and the gas-liquid dissolution tank 16 by an air pipe 36 or the like via the air flow rate adjusting valve 20 and the air flow meter 28. A pressurized water pipe 38 is connected to the lower part of the gas-liquid dissolution tank 16 via a pressurized water flow meter 30 and a pressure reducing valve 22. An exhaust pipe 40 is connected to the upper part of the gas-liquid dissolution tank 16 via an exhaust adjustment valve 24. A tank pressure gauge 32 is installed below the gas-liquid dissolution tank 16.

加圧水製造システム1において、原水タンク10からの水(原水)などの液体は、原水配管34を通って加圧水ポンプ12で加圧され、原水流量調整バルブ18により流量が調整される。コンプレッサ14で加圧された空気などの気体は、空気配管36を通って空気流量調整バルブ20により流量が調整され、原水配管34において水などの液体と混合される。水と空気の混合物は、原水配管34を通って気液溶解タンク16の上部から気液溶解タンク16の内部に供給される。気液溶解タンク16の内部において、加圧下で空気が水に溶解された後、加圧水は気液溶解タンク16の下部から加圧水配管38を通って排出され、加圧浮上処理における加圧水として、凝集水に供給される。加圧水は、減圧バルブ22を通る際、水深圧に開放され、例えばマイクロメートルオーダの微細気泡が発生する。一方、未溶解の空気などの気体は、気液溶解タンク16の上部から排気配管40を通って排出される。   In the pressurized water production system 1, liquid such as water (raw water) from the raw water tank 10 is pressurized by the pressurized water pump 12 through the raw water pipe 34, and the flow rate is adjusted by the raw water flow rate adjustment valve 18. A gas such as air pressurized by the compressor 14 is adjusted in flow rate by the air flow rate adjusting valve 20 through the air pipe 36 and mixed with liquid such as water in the raw water pipe 34. The mixture of water and air is supplied from the upper part of the gas-liquid dissolution tank 16 through the raw water pipe 34 into the gas-liquid dissolution tank 16. Inside the gas-liquid dissolution tank 16, after air is dissolved in water under pressure, the pressurized water is discharged from the lower part of the gas-liquid dissolution tank 16 through the pressurized water pipe 38, and the condensed water is used as the pressurized water in the pressure levitation process. To be supplied. When the pressurized water passes through the pressure reducing valve 22, it is released to a deep water pressure, and, for example, fine bubbles on the order of micrometers are generated. On the other hand, a gas such as undissolved air is discharged from the upper part of the gas-liquid dissolution tank 16 through the exhaust pipe 40.

図2に、本実施形態に係る気液溶解タンク16の構造の一例を示す。気液溶解タンク16は、タンク本体42と、噴流を生じる噴流発生部材であるノズルまたはオリフィス44(以下、「ノズルまたはオリフィス44」のことを、単に「ノズル44」と呼ぶ場合がある。)を先端に有し、気体と液体の混合物をタンク内部に下向流で導入するための内挿管46と、ノズル44の噴出部が内部に位置するように設置され、上端が閉塞し、下端が開口する内筒管48とを備える。気液溶解タンク16は、タンク内圧と水位とを所定範囲内に保持するようタンク内の上部に滞留する未溶解空気などの排気量を調整する排気量調整機構として排気配管40および排気調整バルブ24とを備えてもよい。   FIG. 2 shows an example of the structure of the gas-liquid dissolution tank 16 according to this embodiment. The gas-liquid dissolution tank 16 includes a tank body 42 and a nozzle or orifice 44 (hereinafter, “nozzle or orifice 44” may be simply referred to as “nozzle 44”), which is a jet generating member that generates a jet. It is installed at the tip so that the inner tube 46 for introducing the gas and liquid mixture into the tank in a downward flow and the ejection portion of the nozzle 44 are located inside, the upper end is closed, and the lower end is opened. And an inner tube 48 to be provided. The gas-liquid dissolution tank 16 has an exhaust pipe 40 and an exhaust adjustment valve 24 as an exhaust amount adjustment mechanism for adjusting the exhaust amount of undissolved air or the like staying in the upper part of the tank so as to keep the tank internal pressure and the water level within a predetermined range. And may be provided.

気液溶解タンク16において、図1の原水配管34に接続された内挿管46は、タンク本体42の上部より略垂直下方に向かって内挿されている。内挿管46は、先端にノズル44を備え、ノズル44は、水没するように配置される。ノズル44の噴出部(先端部)を取り囲むように、内筒管48が配置されている。排気配管40は、タンク上部から内部に所定の長さで内挿されており、排気配管40には排気量を調整する排気調整バルブ24が設置されている。気液溶解タンク16の下部には加圧水配管38が接続されている。   In the gas-liquid dissolution tank 16, an internal intubation 46 connected to the raw water pipe 34 in FIG. 1 is inserted from the upper part of the tank main body 42 substantially vertically downward. The inner intubation 46 includes a nozzle 44 at the tip, and the nozzle 44 is disposed so as to be submerged. An inner tube 48 is disposed so as to surround the ejection portion (tip portion) of the nozzle 44. The exhaust pipe 40 is inserted from the upper part of the tank to the inside with a predetermined length, and the exhaust pipe 40 is provided with an exhaust adjustment valve 24 for adjusting the exhaust amount. A pressurized water pipe 38 is connected to the lower part of the gas-liquid dissolution tank 16.

図1の原水配管34を通って供給された水と空気の混合物は、内挿管46を通って気液溶解タンク16の上部からタンク内部に供給される。水と空気の混合物は、内挿管46の先端に設置されたノズル44の噴出部において略垂直下方向に下向流の噴流として噴出される。溶解しなかった空気は、排気調整バルブ24を有した排気配管40で調整され、タンク外へ排出される。空気が十分に溶解した水は、加圧水として、タンク下部に設けられた加圧水配管38より流出し、図1の減圧バルブ22を通り、凝集水に供給される。減圧バルブ22を通る際、水深圧に開放され、例えばマイクロメートルオーダの微細気泡が発生する。   The mixture of water and air supplied through the raw water pipe 34 in FIG. 1 is supplied from the upper part of the gas-liquid dissolution tank 16 into the tank through the inner tube 46. The mixture of water and air is ejected as a downward flow jet in a substantially vertical downward direction at the ejection portion of the nozzle 44 installed at the tip of the inner cannula 46. The undissolved air is adjusted by an exhaust pipe 40 having an exhaust adjustment valve 24 and discharged outside the tank. The water in which the air is sufficiently dissolved flows out from the pressurized water pipe 38 provided in the lower part of the tank as pressurized water, and is supplied to the condensed water through the pressure reducing valve 22 in FIG. When passing through the pressure reducing valve 22, it is released to a deep water pressure, and for example, fine bubbles on the order of micrometers are generated.

水と空気の混合流体がノズル44を通過する際、ノズル44の噴出部付近で空気が細分化されるため、噴流中で空気と水との接触面積が増大し、空気溶解が促進される。水中に噴出された気泡の一部は、次第に粗大化して内筒管48の上部に溜まり、ノズル44付近に気相を形成する。ノズルの2次側では、流体が高速で通過するため負圧が生じており、そこに気相中の空気が引き込まれ、噴流中に巻き込まれる。噴流中にはノズル1次側で注入していた空気に加え、気相中から巻き込まれた空気が混合されるため、内筒管48内の液相では気液混合比が上昇する。そのため、空気に接触できる水の面積がさらに大きくなり、空気溶解が助長されると考えられる。水中に噴出された気泡は、次第に合一して内筒管48の内部を上昇するが、ノズル44からの噴流と衝突するため、細分化され激しく撹拌される。ノズル44からの下向きの噴流と上昇する気泡が均衡するため、この激しい混合状態によって例えば図2に示すような気泡滞留ゾーンが形成される。この気泡滞留ゾーンにおいて、気泡が破砕され、気液接触面積が増大するため、さらに空気の溶解が促進されると考えられる。なお、図2に示すような気泡滞留ゾーンの形成位置、大きさ等はあくまでも例示的なものである。   When the mixed fluid of water and air passes through the nozzle 44, the air is subdivided in the vicinity of the ejection portion of the nozzle 44, so that the contact area between the air and water is increased in the jet stream, and air dissolution is promoted. Some of the bubbles ejected into the water gradually become coarse and accumulate in the upper part of the inner tube 48 to form a gas phase in the vicinity of the nozzle 44. On the secondary side of the nozzle, a negative pressure is generated because the fluid passes at a high speed. Air in the gas phase is drawn into the nozzle and is drawn into the jet. During the jet, in addition to the air injected on the primary side of the nozzle, the air entrained from the gas phase is mixed, so that the gas-liquid mixing ratio increases in the liquid phase in the inner tube 48. Therefore, the area of water that can come into contact with air is further increased, and it is considered that air dissolution is promoted. The bubbles ejected into the water gradually coalesce and rise inside the inner tube 48, but collide with the jet flow from the nozzle 44, so that they are subdivided and vigorously stirred. Since the downward jet flow from the nozzle 44 and the rising bubbles are balanced, this vigorous mixing state forms a bubble retention zone as shown in FIG. In this bubble retention zone, bubbles are crushed and the gas-liquid contact area is increased, so that it is considered that the dissolution of air is further promoted. Note that the formation position, size, and the like of the bubble retention zone as shown in FIG. 2 are merely exemplary.

前述したラインミキサ(図11)やエゼクタ(図12)などの溶解器を用いる方法で溶解率は40〜50%程度、図13,図14のような内部構造を有する気液溶解タンクでの溶解率は50〜70%程度であるのに対し、本実施形態に係る気液溶解タンク16では75%以上の溶解率で空気を溶解させることができる。   The dissolution rate is about 40 to 50% by a method using a dissolver such as the above-described line mixer (FIG. 11) or ejector (FIG. 12), and dissolution in a gas-liquid dissolution tank having an internal structure as shown in FIGS. While the rate is about 50 to 70%, the gas-liquid dissolution tank 16 according to the present embodiment can dissolve air at a dissolution rate of 75% or more.

本実施形態に係る気液溶解タンク16は、従来の気体溶解タンクよりも高い溶解率が得られることで、加圧水比を下げることができ、加圧水ポンプの容量を低く設定できるため、イニシャルコストを削減することができる。また、加圧水ポンプの容量削減により、電気代を主とするランニングコストも抑えられる。その他に、小型でタンク内部の構造が簡素であるため、製作費が削減でき、かつ加圧水製造設備に要する設置面積の中で大きな割合を占める、タンクの設置面積を縮小することができる。   The gas-liquid dissolution tank 16 according to the present embodiment can reduce the initial cost because it can lower the pressurized water ratio and can set the capacity of the pressurized water pump to be lower by obtaining a higher dissolution rate than the conventional gas dissolution tank. can do. Moreover, the running cost mainly for electricity costs can be reduced by reducing the capacity of the pressurized water pump. In addition, since the structure is small and the inside of the tank is simple, the manufacturing cost can be reduced, and the installation area of the tank that occupies a large proportion of the installation area required for the pressurized water production facility can be reduced.

また、本実施形態では、タンク上部から内部に所定の長さで内挿された排気管である排気配管40と、排気配管40に接続され排気量を調整する弁である排気調整バルブ24とを備える。これにより未溶解空気を水から分離排出できるとともに、タンク内の水位と圧力をできるだけ一定に保持することができ、空気溶解効果を安定的に得ることができる。   Further, in the present embodiment, an exhaust pipe 40 that is an exhaust pipe inserted from the upper part of the tank to the inside with a predetermined length, and an exhaust adjustment valve 24 that is connected to the exhaust pipe 40 and adjusts the exhaust amount is provided. Prepare. As a result, undissolved air can be separated and discharged from water, and the water level and pressure in the tank can be kept as constant as possible, so that the air dissolution effect can be stably obtained.

さらに、本実施形態に係る気液溶解タンク16は構造が簡易なために、図14のような内部構造を有する気液溶解タンクに比べて、SS分の堆積なども起こりにくく、メンテナンスが容易である。   Furthermore, since the gas-liquid dissolution tank 16 according to the present embodiment has a simple structure, it is less likely to accumulate SS and the like, and maintenance is easier than the gas-liquid dissolution tank having the internal structure as shown in FIG. is there.

本実施形態に係る気液溶解タンク16は、気体を液体に加圧下で溶解するとともに、未溶解の気体を液体から分離するためのものであり、気体溶解と気液分離とを1槽で行うものであるが、本実施形態に係る気液溶解タンク16を用いて気体を液体に加圧下で溶解して、別途、未溶解の気体を液体から分離するための気液分離タンクなどの分離手段を設けて気液分離を行ってもよい。   The gas-liquid dissolution tank 16 according to the present embodiment is for dissolving a gas into a liquid under pressure and for separating an undissolved gas from the liquid, and performs gas dissolution and gas-liquid separation in one tank. However, a separation means such as a gas-liquid separation tank for separately dissolving undissolved gas from the liquid by dissolving the gas in the liquid under pressure using the gas-liquid dissolution tank 16 according to the present embodiment. Gas-liquid separation may be performed by providing the

気体としては通常、空気が用いられ、液体としては通常、水が用いられる。加圧水にする水(原水)には、加圧浮上処理水などを使用してもよい。   Air is usually used as the gas, and water is usually used as the liquid. Pressurized flotation treated water or the like may be used as water (raw water) to be pressurized water.

空気などの気体と水などの液体との混合は、図1のように加圧水ポンプ12の後方経路でコンプレッサなどから空気を供給して行ってもよいし、空気を自吸するポンプにて空気を水に供給してもよい。加圧水ポンプ12としては、例えば、コンプレッサで空気を供給する場合は渦巻ポンプを使用すればよい。また、空気を自吸するポンプとして、渦流ポンプを使用してもよい。   Mixing of a gas such as air and a liquid such as water may be performed by supplying air from a compressor or the like in the rear path of the pressurized water pump 12 as shown in FIG. You may supply to water. As the pressurized water pump 12, for example, when supplying air with a compressor, a spiral pump may be used. Moreover, you may use a vortex pump as a pump which self-sucks air.

気液溶解タンク16におけるタンク本体42は、通常、直胴部54を有する形状である。   The tank main body 42 in the gas-liquid dissolution tank 16 is usually in a shape having a straight body portion 54.

気液溶解タンク16における水の滞留時間は、例えば、30秒〜1分間である。   The residence time of water in the gas-liquid dissolution tank 16 is, for example, 30 seconds to 1 minute.

噴流を生じる噴流発生部材としては、噴流を生じるものであればよく、特に制限はないが、例えば、ノズル、オリフィスなどを用いればよい。噴流を発生し微細な気泡が発生しやすいなどの点から、入口と出口との間の圧力損失が0.05MPa以上のものが好ましい。   The jet generating member that generates the jet is not particularly limited as long as it generates the jet, and for example, a nozzle, an orifice, or the like may be used. A pressure loss between the inlet and the outlet is preferably 0.05 MPa or more from the viewpoint of generating a jet and easily generating fine bubbles.

ノズルまたはオリフィス44の配置位置は、内部容積有効利用などの点から、ノズル44の出口である噴出部が内筒管48の内部に位置すればよく、内部容積有効利用などの点から、ノズル44の先端部が、内筒管48の内挿管46が挿入された側の端部から内筒管48全体の50%以上の位置に配置されることが好ましい。   The arrangement position of the nozzle or orifice 44 may be such that the ejection portion that is the outlet of the nozzle 44 is located inside the inner tube 48 from the viewpoint of effective use of the internal volume. It is preferable that the distal end portion of the inner tubular tube 48 is disposed at a position of 50% or more of the entire inner tubular tube 48 from the end portion of the inner tubular tube 48 on the side where the inner tube 46 is inserted.

内筒管48の形状は、上端が閉塞し、下端が開口するものであればよく、特に制限はない。内筒管48の一例の構造の概略を図3に示す。図3のような円筒状(直管状)の他に、図4のような管の下端の径を上端の径よりも大きくしたラッパ形状でもよい。内筒管48としてラッパ形状のものを採用した場合、内筒管48の内部の下方向の流速が遅くなり、気泡滞留ゾーンの位置がさらに上になるため、直胴部54の長さを短くでき、タンクをよりいっそう小型化することができる。内筒管48は、例えば、支持部材により気液溶解タンク16のタンク本体42の内部に固定される。   The shape of the inner tube 48 is not particularly limited as long as the upper end is closed and the lower end is opened. An example of the structure of an example of the inner tube 48 is shown in FIG. In addition to the cylindrical shape (straight tube) as shown in FIG. 3, a trumpet shape in which the diameter of the lower end of the tube as shown in FIG. 4 is larger than the diameter of the upper end may be used. When a trumpet-shaped tube is used as the inner tube 48, the downward flow velocity inside the inner tube 48 is slowed and the position of the bubble retention zone is further raised, so the length of the straight body portion 54 is shortened. The tank can be further reduced in size. The inner tube 48 is fixed to the inside of the tank body 42 of the gas-liquid dissolution tank 16 by a support member, for example.

内筒管48の長さは、内筒管の内部または下部に気泡滞留ゾーンを十分に形成させるなどの点から、タンク本体42の水深(タンク底面から水面までの距離)の30〜80%の範囲であることが好ましい。   The length of the inner tube 48 is 30 to 80% of the water depth (distance from the tank bottom surface to the water surface) of the tank main body 42 from the viewpoint of sufficiently forming a bubble retention zone in or below the inner tube. A range is preferable.

内筒管48の内径は、内筒管の内部に十分な容積の気相を形成させるなどの点から、タンク本体42の直胴部54の内径の40〜80%の範囲であることが好ましい。   The inner diameter of the inner cylinder pipe 48 is preferably in the range of 40 to 80% of the inner diameter of the straight body portion 54 of the tank body 42 from the viewpoint of forming a sufficient volume of gas phase inside the inner cylinder pipe. .

図5に、本実施形態に係る気液溶解タンク16の構造の他の例を示す。図5の気液溶解タンク16では、内筒管48の側面に、ノズル44の噴出部の位置よりも低い位置に設けられた開孔部50を有する。内筒管48の側面に開孔部50を設けると、一度、ノズル44と気泡滞留ゾーンを通過し、内筒管48の下部から流出した水の一部は、内筒管48の外側を上昇し、開孔部50において内筒管48の内側に向かって引き込まれ、内筒管48を中心とする循環流が形成される。この循環流により、水は再び気泡と接触することで空気の溶解がいっそう促進されると考えられる。なお、図5に示すような気泡滞留ゾーンの形成位置、大きさ等はあくまでも例示的なものである。   FIG. 5 shows another example of the structure of the gas-liquid dissolution tank 16 according to this embodiment. In the gas-liquid dissolution tank 16 of FIG. 5, an opening 50 is provided on the side surface of the inner tube 48 at a position lower than the position of the ejection portion of the nozzle 44. When the opening 50 is provided on the side surface of the inner tube 48, part of the water that has once passed through the nozzle 44 and the bubble retention zone and has flowed out from the lower portion of the inner tube 48 rises outside the inner tube 48. Then, the opening 50 is drawn toward the inner side of the inner tube 48, and a circulation flow centered on the inner tube 48 is formed. This circulating flow is thought to further promote the dissolution of the air by bringing the water into contact with the bubbles again. Note that the formation position, size, and the like of the bubble retention zone as shown in FIG. 5 are merely exemplary.

このように、図5の気液溶解タンク16のように、内筒管48の側面に開孔部50を設けると、内筒管48を中心とした循環流の発生により、溶解率はさらに向上する。このため、よりイニシャルコストおよびランニングコストが抑えられる。   As described above, when the opening 50 is provided in the side surface of the inner cylinder pipe 48 as in the gas-liquid dissolution tank 16 of FIG. 5, the dissolution rate is further improved due to the generation of a circulating flow around the inner cylinder pipe 48. To do. For this reason, initial cost and running cost can be further suppressed.

開孔部50を有する内筒管48の形状は、開孔部を有し、上端が閉塞し、下端が開口するものであればよく、特に制限はない。開孔部50を有する内筒管48の一例の構造の概略を図6に示す。図6のような円筒状(直管状)の他に、図7のような管の下端の径を上端の径よりも大きくしたラッパ形状でもよい。内筒管48としてラッパ形状のものを採用した場合、内筒管48の内部の下方向の流速が遅くなり、気泡滞留ゾーンの位置がさらに上になるため、タンクをよりいっそう小型化することができる。   The shape of the inner tube 48 having the opening 50 is not particularly limited as long as it has an opening, the upper end is closed, and the lower end is opened. An example of the structure of an example of the inner tube 48 having the opening 50 is shown in FIG. In addition to the cylindrical shape (straight tube) as shown in FIG. 6, a trumpet shape in which the diameter of the lower end of the tube is larger than the diameter of the upper end as shown in FIG. When a trumpet-shaped tube is used as the inner tube 48, the downward flow speed inside the inner tube 48 is slowed, and the position of the bubble retention zone is further raised, so that the tank can be further downsized. it can.

開孔部50の形状に特に制限はないが、大きさは内筒管48の円周部の例えば10%以上25%以下の面積が好ましい。開孔部50の位置は、ノズル44の噴出部の位置よりも低い位置に設けられればよく、特に制限はないが、ノズルにできるだけ近いことが好ましく、例えば、開孔部50の上端の位置が、ノズル44の先端から内筒管48の下端までの距離に対して、ノズル44の先端から5〜30%の位置に設けられることが好ましい。   The shape of the opening 50 is not particularly limited, but the size is preferably, for example, an area of 10% to 25% of the circumference of the inner tube 48. The position of the opening portion 50 is not particularly limited as long as it is provided at a position lower than the position of the ejection portion of the nozzle 44, but is preferably as close as possible to the nozzle. For example, the position of the upper end of the opening portion 50 is The distance from the tip of the nozzle 44 to the lower end of the inner tube 48 is preferably 5-30% from the tip of the nozzle 44.

図8に、本実施形態に係る気液溶解タンク16の構造の他の例を示す。図8の気液溶解タンク16では、ノズル44からの噴流の流出方向に、内筒管48の下端部の内径以上の径を有する阻流板52を備える。阻流板52は、内筒管48の下端部と接しないように、水没するように配置される。阻流板52を配置すると、ノズル44からの噴流が阻流され、内筒管48内部の下方流速が遅くなることで、内筒管48内部に生じる気泡滞留ゾーンの位置が上昇する。この効果により、内筒管48の長さを削減できるため、タンクを小型化できる。また、阻流板52の設置により、噴出した気泡のタンク後段への流出(ショートパス)を防止することができる。なお、図8に示すような気泡滞留ゾーンの形成位置、大きさ等はあくまでも例示的なものである。   FIG. 8 shows another example of the structure of the gas-liquid dissolution tank 16 according to this embodiment. The gas-liquid dissolution tank 16 of FIG. 8 includes a baffle plate 52 having a diameter equal to or larger than the inner diameter of the lower end portion of the inner tube 48 in the flow direction of the jet flow from the nozzle 44. The baffle plate 52 is disposed so as to be submerged so as not to contact the lower end portion of the inner tube 48. When the baffle plate 52 is arranged, the jet flow from the nozzle 44 is blocked, and the downward flow velocity inside the inner cylinder tube 48 is slowed, so that the position of the bubble retention zone generated inside the inner cylinder tube 48 is raised. Due to this effect, the length of the inner tube 48 can be reduced, so that the tank can be downsized. Further, by installing the baffle plate 52, it is possible to prevent the discharged bubbles from flowing out to the rear stage of the tank (short path). In addition, the formation position, size, etc. of the bubble retention zone as shown in FIG. 8 are merely exemplary.

このように、図8の気液溶解タンク16のように、阻流板52を配置すると、ノズル44からの噴流が阻流され、阻流板52に衝突した気泡の一部が反転上昇し、内筒管48内部に形成される気泡滞留ゾーンの位置が上昇するため、内筒管の長さを短くすることができ、タンクの高さおよびタンク容量を小さくすることができる。   As described above, when the baffle plate 52 is arranged as in the gas-liquid dissolution tank 16 of FIG. 8, the jet flow from the nozzle 44 is blocked, and some of the bubbles colliding with the baffle plate 52 are reversed and raised. Since the position of the bubble retention zone formed inside the inner cylinder pipe 48 is raised, the length of the inner cylinder pipe can be shortened, and the tank height and the tank capacity can be reduced.

阻流板52は、噴流が衝突することで気液の混合が生じるものであればよく、特に制限はないが、例えば、図9に示すような円板形状などのものを用いればよい。阻流板52は、例えば、支持部材56により気液溶解タンク16のタンク本体42の内部に固定される。   The baffle plate 52 is not particularly limited as long as gas-liquid mixing is caused by the collision of the jet flow. For example, the baffle plate 52 may have a disk shape as shown in FIG. The baffle plate 52 is fixed to the inside of the tank main body 42 of the gas-liquid dissolution tank 16 by, for example, a support member 56.

阻流板52の設置位置は、内筒管48の下端部と接しないように、噴流の流出方向に対してできるだけ垂直にその面を向けて、水没するように配置されればよく、特に制限はないが、例えば、内筒管48の下端から、内筒管48の内径の15%〜50%の距離である。   The baffle plate 52 may be disposed so as not to contact the lower end of the inner tube 48 so as to be submerged with its surface facing as perpendicular to the outflow direction of the jet as possible. For example, the distance is 15% to 50% of the inner diameter of the inner tube 48 from the lower end of the inner tube 48.

阻流板52の大きさは、ノズル44からの噴流の大部分が阻流板52に当たるようにするなどの点から、内筒管48の下端部の水平断面積以上、直胴部54の水平断面積の90%以下の範囲であることが好ましい。   The size of the baffle plate 52 is equal to or larger than the horizontal cross-sectional area of the lower end portion of the inner tube 48 from the viewpoint that most of the jet flow from the nozzle 44 hits the baffle plate 52. The range is preferably 90% or less of the cross-sectional area.

阻流板52は、内筒管48と接しないように配置されればよいが、気泡の流出防止などの点から、内筒管48の阻流板52側の端部が、直胴部54の阻流板52側の端部から直胴部54の内径の20%以上の範囲に入るように配置されることが好ましい。   The baffle plate 52 may be disposed so as not to contact the inner tube 48, but the end of the inner tube 48 on the baffle plate 52 side is the straight barrel portion 54 from the viewpoint of preventing the outflow of bubbles. It is preferable to arrange so as to be within a range of 20% or more of the inner diameter of the straight body portion 54 from the end portion on the baffle plate 52 side.

排気量調整機構としては、気液溶解タンク16の内圧と水位とを所定範囲内に保持するように、タンク内の上部に滞留する未溶解空気などの排気量を調整するものであればよく、特に制限はない。例えば、排気量調整機構は、気液溶解タンク16の上部から内部に所定の長さで内挿された排気管である排気配管40と、排気配管40に接続され排気量を調整する弁である排気調整バルブ24とを備える。この場合、タンク内の上部の水面付近に未溶解の空気が滞留すると、排気配管40から空気が排出され、ある程度空気が排出されると、水面が上がり空気の排出が停止する。これにより、タンク内の内圧と水位の変動を抑制しつつ未溶解の空気を排出することができる。気液分離面積の確保などの点から、内挿された排気配管40の下端部が、直胴部上端より下に配置されることが好ましい。排気量調整機構としては、レベルスイッチなどを利用してもよい。   The exhaust amount adjustment mechanism may be any mechanism that adjusts the exhaust amount of undissolved air or the like that stays in the upper part of the tank so as to maintain the internal pressure and water level of the gas-liquid dissolution tank 16 within a predetermined range. There is no particular limitation. For example, the exhaust amount adjusting mechanism is an exhaust pipe 40 that is an exhaust pipe inserted from the upper part of the gas-liquid dissolution tank 16 into a predetermined length and a valve that is connected to the exhaust pipe 40 and adjusts the exhaust amount. And an exhaust adjustment valve 24. In this case, if undissolved air stays in the vicinity of the upper water surface in the tank, the air is discharged from the exhaust pipe 40, and when the air is discharged to some extent, the water surface rises and the discharge of air stops. Thereby, undissolved air can be discharged | emitted, suppressing the fluctuation | variation of the internal pressure and water level in a tank. From the viewpoint of securing the gas-liquid separation area, it is preferable that the lower end portion of the inserted exhaust pipe 40 is disposed below the upper end of the straight body portion. A level switch or the like may be used as the displacement adjustment mechanism.

本実施形態に係る気液溶解タンク16は、例えば、排水処理や用水処理などで用いられる加圧浮上処理における加圧水を調製するために用いることができる。その他、オゾン溶解などに用いることができる。   The gas-liquid dissolution tank 16 according to the present embodiment can be used for preparing pressurized water in a pressurized flotation process used in, for example, waste water treatment or water treatment. In addition, it can be used for ozone dissolution.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.

<実施例1〜3および比較例1>
図10に示す加圧水製造システムを用いて比較実験を行った。原水タンク60からの原水に加圧水ポンプ62の後流側の原水配管64においてコンプレッサ66から空気を供給し、実施例1として図2の内部構造(図3の内筒管を備える)を有する気液溶解タンク16、実施例2として図5の内部構造(図6の内筒管を備える)を有する気液溶解タンク16、実施例3として図8の内部構造(図6の内筒管および図9の阻流板を備える)を有する気液溶解タンク16、比較例1として図14の構造の気液溶解タンク82、以上4系列を並列配置して各タンクの性能を比較検討した。なお、各タンクへの通水は、入口流路切り替えバルブ68および出口流路切り替えバルブ70を用いて1系列毎に行った。
<Examples 1-3 and Comparative Example 1>
A comparative experiment was performed using the pressurized water production system shown in FIG. In the raw water pipe 64 on the downstream side of the pressurized water pump 62, air is supplied to the raw water from the raw water tank 60 from the compressor 66, and the gas-liquid having the internal structure of FIG. The gas-liquid dissolution tank 16 having the internal structure of FIG. 5 (provided with the inner cylinder pipe of FIG. 6) as Example 2 and the internal structure of FIG. 8 as Example 3 (the inner cylinder pipe and FIG. 9). The gas-liquid dissolution tank 16 having a baffle plate), the gas-liquid dissolution tank 82 having the structure shown in FIG. 14 as Comparative Example 1, and the above four series were arranged in parallel, and the performance of each tank was compared. The water flow to each tank was performed for each series using the inlet channel switching valve 68 and the outlet channel switching valve 70.

(共通実験条件)
原水:井戸水 SS 5mg/L
原水流量:6m/hr
空気供給量:1.8m/hr(気液混合比:30%)
タンク容積:実施例1,2 75L、実施例3 60L、比較例1 100L
タンク滞留時間:実施例1,2 0.75分、実施例3 0.60分、比較例1 1.00分
タンク入口圧力:0.55MPa
水温:20℃
(Common experimental conditions)
Raw water: Well water SS 5mg / L
Raw water flow rate: 6m 3 / hr
Air supply amount: 1.8 m 3 / hr (gas-liquid mixture ratio: 30%)
Tank volume: Examples 1, 2 75L, Example 3 60L, Comparative Example 1 100L
Tank residence time: Examples 1, 2 0.75 minutes, Example 3 0.60 minutes, Comparative Example 1 1.00 minutes Tank inlet pressure: 0.55 MPa
Water temperature: 20 ° C

以上の条件で、10時間の通水を行い、各タンク内部構造における空気溶解率を比較した。タンク入口圧力は、入口流路切り替えバルブ68の前流側に設置したタンク入口圧力計72により、タンク出口圧力は、各タンク出口と出口流路切り替えバルブ70との間に設置したタンク出口圧力計74により測定した。空気溶解率は、図10に示すように、出口流路切り替えバルブ70の後流側で減圧バルブ76の前流側のサンプリングポイントで行った。   Under the above conditions, water was passed for 10 hours, and the air dissolution rate in each tank internal structure was compared. The tank inlet pressure is set by a tank inlet pressure gauge 72 installed on the upstream side of the inlet flow switching valve 68, and the tank outlet pressure is set between each tank outlet and the outlet flow switching valve 70. 74. As shown in FIG. 10, the air dissolution rate was measured at the sampling point on the upstream side of the pressure reducing valve 76 on the downstream side of the outlet flow path switching valve 70.

Figure 2011088061
Figure 2011088061

表1は、比較実験の結果をまとめたものである。空気溶解量および理論値空気溶解量に対する空気溶解率(以下、溶解率)において比較すると、各気体溶解タンクの溶解率は、実施例1が78%、実施例2が85%、実施例3が84%、比較例1が68%であった。実施例1の溶解率は、比較例1の図14の構造よりも10%高く、タンクの容積も25%以上削減できることが確認された。また、圧力損失は実施例1の方が低かった結果から、実施例1では、より小さな容量の加圧水ポンプで、比較例1の溶解率を上回ることが確認された。   Table 1 summarizes the results of the comparative experiments. Comparing the air dissolution rate with respect to the air dissolution amount and the theoretical air dissolution amount (hereinafter referred to as dissolution rate), the dissolution rate of each gas dissolution tank is 78% in Example 1, 85% in Example 2, and in Example 3. 84% and Comparative Example 1 were 68%. It was confirmed that the dissolution rate of Example 1 was 10% higher than that of the structure of FIG. 14 of Comparative Example 1 and the tank volume could be reduced by 25% or more. Further, from the result that the pressure loss was lower in Example 1, it was confirmed that in Example 1, the pressurized water pump having a smaller capacity exceeded the dissolution rate of Comparative Example 1.

また、内筒管に開孔部を設けた実施例2では、溶解率がさらに7%向上した。実施例3は、実施例2と同等の気体溶解性能を有し、さらにタンク容積を削減できることが確認された。これらの効果によって、小型かつ簡素な気体溶解タンクで、空気が高濃度に溶解した加圧水が得られるため、既存のタンクよりもイニシャルコストおよびランニングコストが削減できることを確認した。   Further, in Example 2 in which the opening portion was provided in the inner tube, the dissolution rate was further improved by 7%. It was confirmed that Example 3 has a gas dissolution performance equivalent to that of Example 2 and can further reduce the tank volume. Because of these effects, it was confirmed that the initial cost and running cost can be reduced compared to existing tanks because pressurized water with high concentration of air can be obtained in a small and simple gas dissolution tank.

1 加圧水製造システム、10,60 原水タンク、12,62 加圧水ポンプ、14,66 コンプレッサ、16,80,82 気液溶解タンク、18 原水流量調整バルブ、20 空気流量調整バルブ、22,76 減圧バルブ、24 排気調整バルブ、26 原水流量計、28 空気流量計、30 加圧水流量計、32 タンク圧力計、34,64 原水配管、36 空気配管、38 加圧水配管、40 排気配管、42 タンク本体、44 ノズルまたはオリフィス、46 内挿管、48 内筒管、50 開孔部、52 阻流板、54 直胴部、56 支持部材、68 入口流路切り替えバルブ、70 出口流路切り替えバルブ、72 タンク入口圧力計、74 タンク出口圧力計。   1 Pressurized water production system 10, 60 Raw water tank, 12, 62 Pressurized water pump, 14, 66 Compressor, 16, 80, 82 Gas-liquid dissolution tank, 18 Raw water flow adjustment valve, 20 Air flow adjustment valve, 22, 76 Pressure reducing valve, 24 Exhaust adjustment valve, 26 Raw water flow meter, 28 Air flow meter, 30 Pressurized water flow meter, 32 Tank pressure gauge, 34, 64 Raw water piping, 36 Air piping, 38 Pressurized water piping, 40 Exhaust piping, 42 Tank body, 44 Nozzle or Orifice, 46 Inner tube, 48 Inner tube, 50 Opening, 52 Barrier plate, 54 Straight body, 56 Support member, 68 Inlet channel switching valve, 70 Outlet channel switching valve, 72 Tank inlet pressure gauge, 74 Tank outlet pressure gauge.

Claims (3)

気体を液体に加圧下で溶解するための気液溶解タンクであって、
噴流を生じる噴流発生部材を先端に有し、気体と液体の混合物をタンク内部に下向流で導入するための内挿管と、
前記噴流発生部材の噴出部が内部に位置するように設置され、上端が閉塞し下端が開口する内筒管と、
を備えることを特徴とする気液溶解タンク。
A gas-liquid dissolution tank for dissolving gas into liquid under pressure,
An intubation tube having a jet generating member for generating a jet at the tip, for introducing a mixture of gas and liquid into the tank in a downward flow;
An inner cylindrical tube which is installed so that the jet part of the jet generating member is located inside, the upper end is closed and the lower end is opened;
A gas-liquid dissolution tank comprising:
請求項1に記載の気液溶解タンクであって、
前記内筒管の側面に、前記噴流発生部材の噴出部の位置よりも低い位置に設けられた開孔部を有することを特徴とする気体溶解タンク。
The gas-liquid dissolution tank according to claim 1,
A gas dissolution tank having an opening provided in a side surface of the inner tube at a position lower than a position of an ejection portion of the jet generating member.
請求項1または2に記載の気液溶解タンクであって、
前記内筒管の下端部の内径以上の径を有し、前記噴流の流出方向に前記内筒管の下端部と接しないように配置された阻流板を備えることを特徴とする気液溶解タンク。
The gas-liquid dissolution tank according to claim 1 or 2,
Gas-liquid dissolution characterized by comprising a baffle plate that has a diameter equal to or larger than the inner diameter of the lower end portion of the inner tube, and is arranged so as not to contact the lower end of the inner tube in the jet direction of the jet tank.
JP2009243139A 2009-10-22 2009-10-22 Gas-liquid dissolution tank Active JP5599597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009243139A JP5599597B2 (en) 2009-10-22 2009-10-22 Gas-liquid dissolution tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009243139A JP5599597B2 (en) 2009-10-22 2009-10-22 Gas-liquid dissolution tank

Publications (2)

Publication Number Publication Date
JP2011088061A true JP2011088061A (en) 2011-05-06
JP5599597B2 JP5599597B2 (en) 2014-10-01

Family

ID=44106838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009243139A Active JP5599597B2 (en) 2009-10-22 2009-10-22 Gas-liquid dissolution tank

Country Status (1)

Country Link
JP (1) JP5599597B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050520A1 (en) * 2012-09-28 2014-04-03 ヒノデホールディングス株式会社 Gas dissolving device
JP2014069134A (en) * 2012-09-28 2014-04-21 Hinode Holdings Co Ltd Gas dissolving apparatus
KR20170091023A (en) * 2016-01-29 2017-08-08 노무라마이크로사이엔스가부시키가이샤 Functional water producing apparatus and functional water producing method
CN108854616A (en) * 2018-05-08 2018-11-23 李常德 A kind of microbubble generating system
CN114904410A (en) * 2021-02-07 2022-08-16 佛山市顺德区美的洗涤电器制造有限公司 Microbubble generating device and range hood

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09234479A (en) * 1996-03-01 1997-09-09 Chlorine Eng Corp Ltd Ozone reaction tank
US5783118A (en) * 1997-07-02 1998-07-21 Kolaini; Ali R. Method for generating microbubbles of gas in a body of liquid
JP2001276589A (en) * 2000-03-30 2001-10-09 Nittetsu Mining Co Ltd Aerator
JP2002028635A (en) * 2000-07-18 2002-01-29 Max Co Ltd Gas-liquid separator in ozone water producer
JP2003053168A (en) * 2001-08-21 2003-02-25 Yokogawa Electric Corp Gas dissolving equipment and oxygen dissolving system
JP2004313905A (en) * 2003-04-15 2004-11-11 Matsushita Electric Works Ltd Structure of gas-liquid dissolving tank
US20050218085A1 (en) * 2004-04-02 2005-10-06 Young Song Ozone sterilization method and device for water supply drainage

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09234479A (en) * 1996-03-01 1997-09-09 Chlorine Eng Corp Ltd Ozone reaction tank
US5783118A (en) * 1997-07-02 1998-07-21 Kolaini; Ali R. Method for generating microbubbles of gas in a body of liquid
JP2001276589A (en) * 2000-03-30 2001-10-09 Nittetsu Mining Co Ltd Aerator
JP2002028635A (en) * 2000-07-18 2002-01-29 Max Co Ltd Gas-liquid separator in ozone water producer
JP2003053168A (en) * 2001-08-21 2003-02-25 Yokogawa Electric Corp Gas dissolving equipment and oxygen dissolving system
JP2004313905A (en) * 2003-04-15 2004-11-11 Matsushita Electric Works Ltd Structure of gas-liquid dissolving tank
US20050218085A1 (en) * 2004-04-02 2005-10-06 Young Song Ozone sterilization method and device for water supply drainage

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050520A1 (en) * 2012-09-28 2014-04-03 ヒノデホールディングス株式会社 Gas dissolving device
JP2014069133A (en) * 2012-09-28 2014-04-21 Hinode Holdings Co Ltd Gas dissolving apparatus
JP2014069134A (en) * 2012-09-28 2014-04-21 Hinode Holdings Co Ltd Gas dissolving apparatus
CN104602799A (en) * 2012-09-28 2015-05-06 日之出控股株式会社 Gas dissolving device
CN104602799B (en) * 2012-09-28 2016-09-28 日之出控股株式会社 Gas dissolution apparatus
KR20170091023A (en) * 2016-01-29 2017-08-08 노무라마이크로사이엔스가부시키가이샤 Functional water producing apparatus and functional water producing method
US10654014B2 (en) 2016-01-29 2020-05-19 Nomura Micro Science Co., Ltd. Functional water producing apparatus and functional water producing method
KR102192464B1 (en) * 2016-01-29 2020-12-18 노무라마이크로사이엔스가부시키가이샤 Functional water producing apparatus and functional water producing method
CN108854616A (en) * 2018-05-08 2018-11-23 李常德 A kind of microbubble generating system
CN114904410A (en) * 2021-02-07 2022-08-16 佛山市顺德区美的洗涤电器制造有限公司 Microbubble generating device and range hood

Also Published As

Publication number Publication date
JP5599597B2 (en) 2014-10-01

Similar Documents

Publication Publication Date Title
CN107744732B (en) Tubular micro-bubble generator
JP5372585B2 (en) Gas-liquid dissolution tank
JP5599597B2 (en) Gas-liquid dissolution tank
KR100843970B1 (en) Apparatus of generating microbubble
JP2006334556A (en) Fine bubble generation nozzle and fine bubble generation bath
RU2675546C2 (en) Microbubble generating device and contaminated water purifying system provided with microbubble generating device
JP6353936B1 (en) Fine bubble generator
US9839918B2 (en) Flocculation basin inclusion or exclusion type water treatment apparatus using dissolved air flotation
JP2017189733A (en) Fine bubble generator
TWM483123U (en) Generation device for gas dissolution into liquid and fluid nozzle
JP2008290050A (en) Fine bubble generator and fine bubble generating method
CN103191658A (en) Gas dissolving device capable of combining pipe flow and vortex
JP2016112511A (en) Method of and device for producing gas dissolved liquid
JP6047210B1 (en) Aeration stirrer
JP2007268390A (en) Bubble generating device
JP2002045667A (en) Device for generating circulating flow
JP2008290051A (en) Fine bubble generator
JP2014069134A (en) Gas dissolving apparatus
CN103657497B (en) For three grades of hybrid systems of liquid mixing
WO2023070832A1 (en) Multi-channel venturi tube hydrodynamic cavitation generation device
CN106277150B (en) Air flotation microbubble aerating device for petroleum water treatment and using method thereof
JP4706669B2 (en) Microbubble generator
RU156526U1 (en) INSTALLATION FOR MIXING LIQUIDS IN TANKS
JP2019048274A (en) Oxygen water manufacturing apparatus and oxygen water manufacturing method
CN204874000U (en) Sewage treating device and coalescence settling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140813

R150 Certificate of patent or registration of utility model

Ref document number: 5599597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250