JP2011086753A - 熱輸送デバイス及び電子機器 - Google Patents

熱輸送デバイス及び電子機器 Download PDF

Info

Publication number
JP2011086753A
JP2011086753A JP2009238097A JP2009238097A JP2011086753A JP 2011086753 A JP2011086753 A JP 2011086753A JP 2009238097 A JP2009238097 A JP 2009238097A JP 2009238097 A JP2009238097 A JP 2009238097A JP 2011086753 A JP2011086753 A JP 2011086753A
Authority
JP
Japan
Prior art keywords
housing
working fluid
heat
expanded metal
transport device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009238097A
Other languages
English (en)
Inventor
Kazunao Oniki
一直 鬼木
Takashi Hirata
昂士 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2009238097A priority Critical patent/JP2011086753A/ja
Publication of JP2011086753A publication Critical patent/JP2011086753A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】部品点数を削減して製造を容易にし、製造コストを抑えることができる熱輸送デバイス及びこれを搭載した電子機器を提供すること。
【解決手段】熱輸送デバイス100は、ハウジング1と、ハウジング1内に封入された作動流体と、ハウジング1内に設けられ、作動流体の流路を形成する、エキスパンドメタル2及び毛細管構造体3を備えている。エキスパンドメタル2は一平面に広い形状でありながら、その厚さ方向に適度の厚さを有する。したがって、特にその厚さ方向で、ハウジング1を補強することができる。また、少なくともその厚さ方向に気相の作動流体が流通するための適度な空間が、エキスパンドメタル2に開口2aとして形成される。すなわち、エキスパンドメタル2は、補強部材及び気相流路の両方の機能を兼ね備える。
【選択図】図1

Description

本発明は、毛細管力を作動流体の主な推進力とし、作動流体が相変化することによる潜熱の移動により熱を輸送する熱輸送デバイス及びこれを搭載した電子機器に関する。
従来からCPU(Central Processing Unit)等の熱源を冷却するデバイスとして、平面型のヒートパイプが広く用いられている。平面型ヒートパイプは、近年の薄型TVに搭載されたCPUの冷却デバイスとしても用いられる。このような平面型のヒートパイプでは、作動流体の相変化を利用して熱源を冷却するため、平面型ヒートパイプ内部には、作動流体が封入される。
例えば特許文献1には、ヒートパイプの動作原理を用いたヒートスプレッダーが開示されている。このヒートスプレッダーは、金属メッシュによって形成される毛細管構造体と、金属ハウジングの内側に接合された複数の柱状の補強部材とを備えている(特許文献1参照の図3参照。)。補強部材は、ヒートスプレッダーが熱吸収のとき、作動流体が蒸発することによりハウジング内部からの圧力増加により、ハウジングが変形することを防止する機能を有する。
なお、特許文献2には、相変化型の熱輸送デバイスではないが、毛細管力を持つウィックを利用したマイクロミキサが開示されている。このマイクロミキサは、ウィック内で液体とその他の流体(主に気体)とを混合するものであり、熱伝達(気体から液体への)あるいは熱交換の目的で使用される場合もある(特許文献2の明細書段落[0047]参照)。また、このマイクロミキサでは、層状ウィックを構成する部材のうちの1つであって多孔質材料でなるシートの例として、エキスパンドメタルスクリーンが挙げられている(特許文献2の段落[0021]参照)。
特開2006−140435号公報 特表2009−509119号公報(国際公開2007/035303号パンフレット)
上記特許文献1のヒートスプレッダーでは、複数のアルミニウム製の柱状部材等が補強部材として用いられている。したがって、複数の柱状部材等が必要になり、部品点数が多くなる。また、このヒートスプレッダーでは、柱状部材を用いるために金属メッシュをハウジングの形状に合わせて立体的に加工する工程、及び、金属メッシュにその柱状部材を通すための穴を形成する工程等が必要になる。
以上のような事情に鑑み、本発明の目的は、部品点数を削減して製造を容易にし、製造コストを抑えることができる熱輸送デバイス及びこれを搭載した電子機器を提供することにある。
上記目的を達成するため、本発明の一形態に係る熱輸送デバイスは、ハウジングと、作動流体と、エキスパンドメタルとを具備する。
前記作動流体は、相変化により熱を輸送する。
前記エキスパンドメタルは、前記ハウジング内に設けられ、前記ハウジングを補強し、前記作動流体の流路を形成する。
エキスパンドメタルは一平面に広い形状でありながら、その厚さ方向に適度の厚さを有する。したがって、エキスパンドメタルにより特にその厚さ方向で、ハウジングを補強することができる。また、エキスパンドメタルの開口が、少なくともその厚さ方向に作動流体が流通するための空間として形成される。すなわち、エキスパンドメタルは、補強部材及び流路の両方の機能を兼ね備える。したがって、従来に比べ部品点数を減らすことができ、例えばハウジング内の形状に合わせて、任意の形状のエキスパンドメタルを製造できるので、製造も容易になる。その結果、製造コストを抑えることができる。
前記エキスパンドメタルは、気相の前記作動流体の流路を形成してもよい。エキスパンドメタルは、気相領域として機能するために、その開口が比較的大きく形成されてもその補強部材としての機能を低下させることがない。
前記エキスパンドメタルは、液相の前記作動流体に毛細管力を発生させるための流路を形成してもよい。
本発明の他の形態に係る熱輸送デバイスは、ハウジングと、相変化により熱を輸送する作動流体と、第1のエキスパンドメタルとを具備する。
前記第1のエキスパンドメタルは、第1のサイズの開口を有し、前記ハウジング内に設けられ、前記ハウジングを補強し、気相の前記作動流体の流路を形成する。
エキスパンドメタルは一平面に広い形状でありながら、その厚さ方向に適度の厚さを有する。したがって、エキスパンドメタルにより特にその厚さ方向で、ハウジングを補強することができる。また、エキスパンドメタルの開口が、少なくともその厚さ方向に気相の作動流体が流通するための空間として形成される。すなわち、エキスパンドメタルは、補強部材及び気相流路の両方の機能を兼ね備える。
前記熱輸送デバイスは、毛細管構造体をさらに具備してもよい。前記毛細管構造体は、第1のサイズより小さい第2のサイズの開口を有し、前記第1のエキスパンドメタルに積層するように設けられ、液相の前記作動流体に毛細管力を発生させる。
毛細管構造体が第1のエキスパンドメタルに積層するように設けられているので、第1のエキスパンドメタルは、毛細管構造体に接触しながらハウジングを補強することができる。
前記毛細管構造体は、前記第2のサイズの開口を有する第2のエキスパンドメタルを含んでもよい。
あるいは、前記毛細管構造体は、前記第2のサイズの開口を有するメッシュ部材を含んでもよい。
前記毛細管構造体は、前記第2のサイズの開口を有する第1の毛細管部材と、前記第1のサイズより小さく前記第2のサイズより大きく第3のサイズの開口を有する第2の毛細管部材とを有してもよい。第1の毛細管部材は、メッシュ部材、エキスパンドメタル及びこれら以外の毛細管部材のうちいずれか1つである。また、第2の毛細管部材も同様に、メッシュ部材、エキスパンドメタル及びこれら以外の毛細管部材のうちいずれか1つである。第1の毛細管部材及び第2の毛細管部材の具体的な組合せは任意である。
本発明の他の形態に係る熱輸送デバイスは、ハウジングと、相変化により熱を輸送する作動流体と、複数のエキスパンドメタルとを具備する。
前記複数のエキスパンドメタルは、異なるサイズの開口をそれぞれ有し、積層されて設けられ、前記ハウジングを補強し、前記作動流体の流路を形成する。
複数のエキスパンドメタルのうち、実質的に作動流体に毛細管力を発生させる程度のサイズの開口を有するエキスパンドメタルは、液相の作動流体をその毛細管力により保持することができる。また、実質的に作動流体に毛細管力を発生させない程度のサイズの開口を有するエキスパンドメタルは、気相の作動流体を流通させる機能を有する。また、複数のエキスパンドメタルは、補強部材としての機能もさらに備える。したがって、従来に比べ部品点数を減らすことができ、製造も容易になる。その結果、製造コストを抑えることができる。
本発明の一形態に係る電子機器は、上記各熱輸送デバイスのうち、いずれか1つの熱輸送デバイスを搭載する。
以上、本発明によれば、熱輸送デバイスの部品点数を削減して製造を容易にし、製造コストを抑えることができる。
本発明の第1の実施形態に係る熱輸送デバイスを示す模式的な断面図である。 熱輸送デバイスのエキスパンドメタルの一部を示す平面図である。 図2に示すA−A線断面図である。 毛細管力を作動流体の主な推進力として潜熱の移動により熱を輸送するデバイスにおける熱輸送原理を示すモデル図である。 気相流路を形成する部材として、通常のメッシュ部材が用いられた場合と、エキスパンドメタルが用いられた場合とで、その流路抵抗の違いを示したグラフである。 気相流路として、メッシュ部材が用いられた場合とエキスパンドメタルが用いられた場合とで、最大熱輸送量を比較した結果を示すグラフである。 本発明の第2の実施形態に係る熱輸送デバイスを示す断面図である。 本発明の第3の実施形態に係る熱輸送デバイスを示す断面図である。 本発明の第4の実施形態に係る熱輸送デバイスを示す断面図である。 本発明の第5の実施形態に係る熱輸送デバイスを示す断面図である。 上記第1〜5の実施形態に係る熱輸送デバイスにおいて、気相の作動流体が流れる方向と、エキスパンドメタル等の開口の配置との関係を説明するための図である。 本発明者が、エキスパンドメタルの開口のX軸方向でのピッチを変更した場合において、その変更前後での、エキスパンドメタルを流れる気相の作動流体の流路抵抗を示すグラフである。 図12における変更前後での、最大熱輸送量を示すグラフである。 熱輸送デバイスのハウジングの別の実施形態を示す分解斜視図である。 上記第各実施形態のうち1つの実施形態に係る熱輸送デバイスを搭載した電子機器として、ラップトップ型のPCを示している。
以下、図面を参照しながら、本発明の実施形態を説明する。
[第1の実施形態]
図1は、本発明の一実施形態に係る熱輸送デバイスを示す断面図である。
熱輸送デバイス100は、ハウジング1と、ハウジング1内に封入された作動流体(図示せず)と、ハウジング1内に設けられ、作動流体の流路を形成する、エキスパンドメタル2及び毛細管構造体3を備えている。エキスパンドメタル2及び毛細管構造体3は、積層されるように設けられている。
ハウジング1は、例えば上板部材11及び下板部材12を有し、これらが接合されてハウジング1が形成されている。なお、「上板部材」及び「下板部材」について、説明の便宜上のために「上下」と表現しており、この熱輸送デバイス100の使用時には特に上下を区別する必要はない。
ハウジング1は、典型的には、無酸素銅、タフピッチ銅、あるいは銅合金で構成される。しかしこれに限られず、ハウジング1は、銅以外の金属で構成されてもよく、その他、樹脂などが用いられてもよい。
上板部材11及び下板部材12の接合方法としては、拡散接合、超音波接合、ロウ付け、溶接などの方法が挙げられる。
ハウジング1は、上記のように上板部材11及び下板部材12で構成される場合に限られず、例えば、図14の分解斜視図に示すように、上板121、フレーム体123及び下板122を有し、これらが接合されて1つのハウジングが構成されていてもよい。
ハウジング1の形状は、典型的には、平面で見て実質的に矩形であり、例えば図1中Y軸方向に長い長方形である。
ハウジング1には、例えば、0.1mm〜1mm程度の直径を有する注入口(図示せず)が設けられており、この注入口を介してハウジング1内に作動流体が注入される。作動流体は、典型的には、ハウジング1内が大気圧から減圧された状態で注入される。
作動流体としては、純水、エタノールなどのアルコール、フロリナートFC72などのフッ素系の液体、あるいは、純水とアルコールの混合液などが挙げられる。
図2は、熱輸送デバイス100のエキスパンドメタル2の一部を示す平面図であり、図3は、図2に示すA−A線断面図である。
エキスパンドメタル2は、実質的にひし形(あるいは平行四辺形)の開口2aを有する。この開口2aのサイズ、例えばひし形の一辺の長さは、典型的には、2mm〜20mm程度である。エキスパンドメタル2として加工される前の板材の厚さは、典型的には0.3〜0.8mm、例えば0.4mmである。しかし、これらの値は、作動流体の材料、ハウジング1の大きさ、ハウジング1の材料、エキスパンドメタル2の材料、あるいは、この熱輸送デバイス100により輸送される最大熱輸送量等に応じて、適宜変更可能である。
「開口のサイズ」とは、例えば、開口面積、開口の一辺の長さ、あるいは、開口の対角線の長さ等の意味を含む。
市場では、種々の厚さ及び種々のサイズの開口2aを有するエキスパンドメタル2が流通している。一般に、1枚の板材に複数の開口2aが形成されることによりエキスパンドメタル2が形成される。複数の開口2aは、その開口2aのサイズに対応する複数の歯を有するカッターにより形成される。開口2aの形成のためにカッターにより板材が切削された後、開口2aのサイズが所望のサイズになるように、板材を延伸させる処理が行われる。あるいは、開口2aの形成のためにカッターにより板材が切削される途中で、カッターの押圧力により板材が徐々に伸びることで、開口2aの縦横比が定められる場合もある。
図3に示すように、エキスパンドメタル2では、開口面が斜めに形成された状態にあるので、エキスパンドメタル2は、一平面に広い形状でありながら、その厚さ方向に適度の厚さを有する。
エキスパンドメタル2は、銅、リン青銅、アルミニウム、銀、ステンレス、モリブデン、あるいはこれらのうち少なくとも2種類の合金により構成されるが、これらの材料に限られない。
毛細管構造体3としては、メッシュ部材31が用いられている。メッシュ部材31は、典型的には、金属線で織り込まれたメッシュが任意の大きさに切り取られて形成される。
メッシュ部材31の織り方としては、平織、綾織などが挙げられるが、これらに限られない。例えば、ロッククリンプ織、フラットトップ織などであってもよく、その他の織り方であってもよい。メッシュ部材31の材料も、上記エキスパンドメタル2と同様のものが用いられればよい。メッシュ部材31の網目(開口)のサイズは、上記エキスパンドメタル2の開口2aのサイズより小さくなるように設定されている。
エキスパンドメタル2及びメッシュ部材31の各材料は、同じでもよいし、異なっていてもよい。
エキスパンドメタル2により、気相の作動流体を流通させる気相流路が形成される。また、毛細管構造体3により、液相の作動流体を流通させる液相流路が形成され、毛細管構造体3は、液相の作動流体に毛細管力を発生させる。
図4は、毛細管力を作動流体の主な推進力として潜熱の移動により熱を輸送するデバイスにおける熱輸送原理を示すモデル図である。
液相の作動流体は、蒸発領域Eにおいて、熱源からの熱を受け、蒸気圧差ΔPeで蒸発し、気相の作動流体となる。この気相の作動流体は、気相流路を通り、蒸発領域Eから凝縮領域Cへと移動する。このとき、気相の作動流体は、気相流路の抵抗による圧力損失ΔPvを受けながら凝縮領域Cへと移動する。
凝縮領域Cへと移動した気相の作動流体は、熱Wを放出して凝縮し、気相から液相へと相変化する。このときの蒸気圧差をΔPcとする。液体の作動流体は毛細管構造体(図1に示す毛細管構造体3に相当)の毛細管力ΔPcapをポンプ力として液相流路を流れ、凝縮領域Cから蒸発領域Eへと移動する。このとき、液相の作動流体は、液相流路の抵抗ΔPlを受けながら凝縮領域Cへと移動する。
蒸発領域Eへと戻った液相の作動流体は、再び熱源からの熱を受け、蒸発する。上記動作を繰り返すことで、熱源からの熱が輸送される。
熱輸送デバイスの内部の全圧力損失が毛細管構造体の毛細管力ΔPcapより小さい場合、熱輸送デバイスは適正に作動する。逆に、全圧力損失が毛細管力ΔPcapより大きくなると、熱輸送デバイスは作動せず熱が輸送されない。全圧力損失と、毛細管力ΔPcapとが釣り合ったときが、熱輸送デバイスの最大熱輸送量Qmaxとなる。
従って、最大熱輸送量QmaxとなるΔPcapは、以下の式(1)により表される。
ΔPcap=ΔPv+ΔPl+ΔPe+ΔPc+ΔPh・・・(1)
ΔPv…気相作動流体の圧力損失
ΔPl…液相作動流体の圧力損失
ΔPe…蒸発による圧力差
ΔPc…凝縮による圧力差
ΔPh…体積力による圧力差。
ここで、単位熱量あたりの流路抵抗をRqとすると、最大熱輸送量Qmaxは、以下の式(2)により表される。
Qmax=ΔPcap/Rq・・・(2)。
また、最大熱輸送量Qmaxは、潜熱をH、全流路抵抗をRtotalとすると、以下の式(3)により表される。
Qmax=ΔPcap×H/Rtotal・・・(3)。
全流路抵抗Rtotalは、気相流路の抵抗Rv、液相流路の抵抗Rl、沸騰抵抗Re、凝縮抵抗Rc、及び体積力Rbによる抵抗の和である。従って(3)の式より、最大熱輸送量Qmaxは、一般的に、毛細管力ΔPcapが大きくなれば増大し、液相流路の抵抗Rlが大きくなれば減少する。
気相の作動流体の圧力損失ΔPv、液相の作動流体の圧力損失ΔPl、蒸発による圧力差ΔPe、凝縮による圧力差ΔPc、体積力Rbによる圧力差ΔPhは、それぞれ以下の式(4)〜(8)で表される。
ΔPv=8×μv×Q×L/(π×ρv×rv^4×H)・・・(4)
ΔPl=μl×Q×L/(K×Aw×ρl×H)・・・(5)
ΔPe=(RT/2π)^(1/2)×Q/[αc(H−1/2×RT)×rv×le]・・・(6)
ΔPc=(RT/2π)^(1/2)×Q/[αc(H−1/2×RT)×rv×lc]・・・(7)
ΔPh=(ρl−ρv)×g×L×sinφ・・・(8)
μv…気相の作動流体の粘度係数
μl…液相の作動流体の粘度係数
ρv…気相の作動流体の密度
ρl…液相の作動流体の密度
Q…熱輸送量
L…熱輸送デバイスの長手方向の大きさ
le…蒸発領域Eの長手方向の大きさ
lc…凝縮領域Cの長手方向の大きさ
Aw…毛細管構造体の断面積
rv…気相流路の毛細管半径
K…浸透係数
R…気体定数
g…重力加速度
φ…熱輸送デバイスの水平に対する傾き(体積力Rbは、熱輸送デバイスを水平に使用する場合には、ゼロとなる)。
上記式(4)〜(8)のうち、式(4)、(6)、(7)に着目すると、気相の作動流体の圧力損失ΔPv、蒸発による圧力差ΔPe、及び凝縮による圧力差ΔPcは、気相流路 の毛細管半径rvの関数であることが分かる。この気相流路の毛細管半径rvは、式(4)、(6)、(7)において、いずれも分母に配置されている。したがって、気相流路 の毛細管半径rvを大きくすれば、3つの圧力損失ΔPv、ΔPe、ΔPcを小さくすることができ、最大熱輸送量Qmaxを大きくすることができる。
ここで、気相又は液相の作動流体が移動する流路の毛細管半径rについて説明する。作動流体の流路として、ワイヤが編み込まれてなる毛細管構造体(例えば図1に示したメッシュ部材31)が用いられる場合、毛細管半径rは、以下の式(9)により表される。
r=(W+D)/2・・・(9)
W…毛細管構造体の開口の大きさ
D…ワイヤの径。
一方、例えば熱輸送デバイスの気相流路のように、作動流体の流路として毛細管構造体等が用いられず、矩形状の空洞が流路となる場合、毛細管半径rは、以下の式(10)により表される。
r=ab/(a+b)・・・(10)。
a…流路の幅(短手方向での大きさ)
b…流路の深さ(流路の厚さ)。
次に、本実施形態に係る熱輸送デバイス100の動作を説明する。
図1に示すように、熱源10が例えばハウジング1の下板部材12に接触しているとする。熱源10から発せられる熱により、毛細管力により保持された液相の作動流体が蒸発して気相の作動流体になる。気相の作動流体は、毛細管構造体3が配置されている液相領域に比べ、流路抵抗の小さい領域である、主にエキスパンドメタル2が配置されている気相領域へ移動し、拡散する。後述するように、エキスパンドメタル2が気相流路を形成することにより、流路抵抗(気相の流路抵抗であるΔPv)を小さく維持しながら、ハウジング1を補強することができる。
気相の作動流体は、主に気相領域においてハウジング1自体及びハウジング1の外側へ熱を放出し、凝縮する。作動流体は熱源10から離れるほど凝縮しやすい。気相の作動流体は、エキスパンドメタル2の開口2aを流通することにより、低い凝縮抵抗で凝縮することができる。液相となった作動流体は、再び毛細管構造体3の毛細管力により液相領域に戻る。作動流体は以上のような相変化を繰り返して潜熱を移動させることにより、熱を輸送する。その結果、熱源が冷却される。
なお、熱源は、ハウジング1に熱的に接続していればよい。熱的に接続とは、例えば熱源とハウジング1とが直接接触している形態、あるいは、熱源が熱拡散シート等の部材を介して効率的な熱伝導が可能な状態で熱源とハウジング1とが接続されている形態を含む。熱源は、ハウジング1の上板部材11に接触していてもよい。
また、例えばハウジング1の長手方向において、熱源が接続される側とは、反対側に図示しないヒートシンクが熱的に接続されていてもよい。
以上のように、本実施形態では、エキスパンドメタル2が用いられている。エキスパンドメタル2は一平面に広い形状でありながら、その厚さ方向に適度の厚さを有する。したがって、特にその厚さ方向で、ハウジング1を補強することができる。つまり、従来のように補強部材としての柱状部材が必要ない。また、少なくともその厚さ方向に気相の作動流体が流通するための適度な空間が、エキスパンドメタル2に開口2aとして形成される。すなわち、エキスパンドメタル2は、補強部材及び気相流路の両方の機能を兼ね備える。したがって、従来に比べ部品点数を減らすことができ、例えばハウジング1内の形状に合わせて、任意の形状のエキスパンドメタル2を製造できるので、製造も容易になる。その結果、製造コストを抑えることができる。
また、エキスパンドメタル2が用いられることにより、高い熱輸送性能及び高い耐久性を有する熱輸送デバイス100を実現することができる。
エキスパンドメタル2の開口2aのサイズは、メッシュ部材31では実現できないほど、いくらでも大きくすることができる、というメリットがある。したがって、例えばハウジング1のサイズに応じて、エキスパンドメタル2の開口2aのサイズを適宜設定することができる。
図5は、気相流路を形成する部材として、比較例に係る通常のメッシュ部材が用いられた場合と、エキスパンドメタル2が用いられた場合とで、その流路抵抗の違いを示したグラフであり、実測値を示している。
このメッシュ部材31とエキスパンドメタル2の各開口2aのサイズは実質的に同じとされた。材料はメッシュ部材及びエキスパンドメタルがともに純銅、作動流体は水である。エキスパンドメタルとして、例えば後述の図11に示した長さa=b=2mmのものが用いられた。比較例に係るメッシュ部材は♯18のメッシュ、つまり、1インチ(25.4mm)角あたり、18個の開口を有するメッシュである。
この実験から、メッシュ部材31に比べエキスパンドメタル2の方が流路抵抗が小さいことが判明している。
図6は、メッシュ部材31が用いられた場合と、エキスパンドメタル2が用いられた場合とで、最大熱輸送量を比較した結果を示すグラフである。この実験から明らかなように、エキスパンドメタル2が用いられた場合の方が、最大熱輸送量が多いことがわかる。
[第2の実施形態]
図7は、本発明の第2の実施形態に係る熱輸送デバイスを示す図である。これ以降の説明では、図1等に示した実施形態に係る熱輸送デバイス100が含む部材や機能等について同様のものは説明を簡略化または省略し、異なる点を中心に説明する。
熱輸送デバイス200のハウジング1内には、気相を流通させるメッシュ部材23と、毛細管構造体としての、また、補強部材としてのエキスパンドメタル22が設けられている。エキスパンドメタル22の構造は、上記第1の実施形態に係るエキスパンドメタル2の構造と実質的に同じであり、両者の開口のサイズが異なる。すなわち、エキスパンドメタル22は、液相の作動流体に毛細管力を発生させる程度のサイズの開口を有する。メッシュ部材23の開口のサイズは、エキスパンドメタル22のそれより大きく形成されており、気相の作動流体の流路抵抗が小さくなるように設定されている。
[第3の実施形態]
図8は、本発明の第3の実施形態に係る熱輸送デバイスを示す図である。
この熱輸送デバイス300では、主に気相の作動流体を流通させるエキスパンドメタル2のほか、毛細管構造体としてもエキスパンドメタル16が用いられている。すなわち、エキスパンドメタル16は、エキスパンドメタル2の開口のサイズより小さいサイズの開口を有している。エキスパンドメタル16の開口のサイズは、液相の作動流体に毛細管力を発生させることができる程度のサイズでよい。
このように、気相流路用のエキスパンドメタル2のほか、毛細管構造体としてもエキスパンドメタル16が用いられることにより、上記第1の実施形態に係る熱輸送デバイス100に比べ、ハウジング1の補強の機能を高めることができる。
[第4の実施形態]
図9は、本発明の第4の実施形態に係る熱輸送デバイスを示す図である。
この実施形態に係る熱輸送デバイス400は、気相流路を形成するエキスパンドメタル2及び液相流路として毛細管力を発生させる毛細管構造体32を有する。毛細管構造体32は、2層のエキスパンドメタル17及び18で構成される。これらのエキスパンドメタル17及び18は、それぞれ異なるサイズの開口を有する。例えばエキスパンドメタル17の開口のサイズより、エキスパンドメタル18の開口のサイズが小さい。エキスパンドメタル2の開口のサイズは最も大きく形成されている。
[第5の実施形態]
図10は、本発明の第5の実施形態に係る熱輸送デバイスを示す図である。
この実施形態に係る熱輸送デバイス500は、エキスパンドメタル2及び毛細管構造体42を有する。毛細管構造体42は、エキスパンドメタル19及びメッシュ部材33で構成される。メッシュ部材33の開口のサイズは、エキスパンドメタル19の開口のサイズより小さい。
この熱輸送デバイス500の毛細管構造体42に代えて、異なるサイズの開口をそれぞれ有する、少なくとも2つのメッシュ部材が用いられてもよい。
図11は、上記第1〜5の実施形態に係る熱輸送デバイス100等において、気相の作動流体が流れる方向と、エキスパンドメタル2等の開口の配置との関係を説明するための図である。エキスパンドメタル2のひし形の開口2aの2つの対角線a、bのうち、長い方向の対角線bの方向(図11中のX軸方向)が、気相の作動流体が流れる方向に沿うように、エキスパンドメタル2が配置されると効果的である。典型的には、ハウジング1の長手方向に熱が輸送される場合、その長手方向にX軸が実質的に一致するように、エキスパンドメタル2がハウジング1内に配置される。
エキスパンドメタル2の製造時において、エキスパンドメタル2が延伸されることにより、開口2aのサイズが容易に変更されるので、熱輸送デバイス100等の製造が容易となる。これに対し、メッシュ部材31の開口の縦横比は、実質的に同じに値に固定される。
図12及び13は、本発明者が、図11における対角線bの長さ(開口2aのX軸方向でのピッチ)を変更した場合において、その変更前後での、エキスパンドメタル2を流れる気相の作動流体の流路抵抗及びその時の最大熱輸送量をそれぞれ示している。実験では、変更後における対角線bの長さが、変更前のそれより長くなるように設定された。これらの図から、ピッチが大きい方が効果的であることがわかった。変更前のエキスパンドメタルは、a=b=2mmのもの、変更後のエキスパンドメタルはa=1.4mm、b=2.4mmのものである。
図15は、上記各実施形態のうち1つの実施形態に係る熱輸送デバイスを搭載した電子機器として、ラップトップ型のパーソナルコンピュータ(PC)を示している。
PC150は、第1の筐体111と、第2の筐体112と、第1の筐体111及び第2の筐体112を回動可能に支持するヒンジ部113とを備えている。
第1の筐体111は、表示部101と、表示部101に光を照射するエッジライト型のバックライト102とを有する。バックライト102は、第1の筐体111内部において、第1の筐体111の上下方向にそれぞれ配置される。バックライト102は、例えば、銅板上に複数の白色LED(Light Emitting Diode)が配置されて形成される。
第2の筐体112は、複数の入力キー103と、タッチパッド104とを有する。また、第2の筐体112は、内部にCPU105などの電子回路部品が搭載された制御回路基板(図示せず)を有している。
熱輸送デバイス10は、第2の筐体112の内部において、CPU105に接するように配置される。図15では、熱輸送デバイス10は、第2の筐体112の平面外形よりも小さく表されているが、熱輸送デバイス10は、第2の筐体112の平面外形と同等の大きさとされてもよい。
あるいは、熱輸送デバイス10は、第1の筐体111内部において、バックライト102を形成する銅板と接するように配置されていてもよい。この場合、熱輸送デバイス10は、第1の筐体111内に複数個配置される。
上述のように、熱輸送デバイス10は、高い熱輸送性能を有しているため、CPU105や、バックライト102などで発生した熱を速やかに輸送することができる。これにより、熱を速やかにPC150の外部へ放出することができる。また、熱輸送デバイス10により、第1の筐体111、あるいは、第2の筐体112の内部の温度を均一にすることができるため、低温火傷を防止することができる。
さらに、熱輸送デバイス10は、高い熱輸送性能が、薄型で実現されているため、PC150の薄型化も実現される。
図15では、電子機器の一例として、PCを挙げて説明したが、電子機器は、これに限られない。電子機器の他の例として、オーディオ/ビジュアル機器、ディスプレイ装置、プロジェクタ、ゲーム機器、カーナビゲーション機器、ロボット機器、PDA(Personal Digital Assistance)、電子辞書、カメラ、携帯電話その他の電化製品等が挙げられる。
本発明に係る実施形態は、以上説明した実施形態に限定されず、他の種々の実施形態がある。
例えば、図9に示した熱輸送デバイス400において、各エキスパンドメタル17及び18の配置が互いに逆とされてもよい。すなわち、必ずしもハウジング1の下面側に近い方に最も小さいサイズの開口を有するエキスパンドメタル18が配置されていなくてもよく。
4つ以上のエキスパンドメタル2が積層されてハウジング1内に配置されていてもよい。その場合の各エキスパンドメタルは、どのような順番で配置されていてもよい。例えば、ハウジング1内の厚さ方向で、中央に気相流路を形成するエキスパンドメタルが配置され、それを挟むように毛細管構造体を形成するエキスパンドメタルが配置されてもよい。
図10に示した実施形態において、毛細管構造体42として、エキスパンドメタル19及びメッシュ部材33が設けられた。しかし、毛細管構造体42としては、エキスパンドメタル、メッシュ部材及びこれら以外の毛細管部材のうち少なくとも2つの組合せでよい。エキスパンドメタル及びメッシュ部材以外の毛細管部材としては、金属やセラミック等の多孔質の焼結体がある。
このような、エキスパンドメタル、メッシュ部材及びこれら以外の毛細管部材のうち少なくとも2つの組合せを有する毛細管構造体の、それら少なくとも2つの部材の各開口のサイズは同じであってもよい。
熱輸送デバイスのハウジング1の形状は、矩形に限られず、平面で見てL字状、U字状、円形、楕円形、多角形、リング形状等、何でもよい。
100、200、300、400、500…熱輸送デバイス
2、16〜19、22…エキスパンドメタル
23、31、33…メッシュ部材
31…メッシュ部材
3、32、42…毛細管構造体
150…PC

Claims (12)

  1. ハウジングと、
    相変化により熱を輸送する作動流体と、
    前記ハウジング内に設けられ、前記ハウジングを補強し、前記作動流体の流路を形成するエキスパンドメタルと
    を具備する熱輸送デバイス。
  2. 請求項1に記載の熱輸送デバイスであって、
    前記エキスパンドメタルは、気相の前記作動流体の流路を形成する熱輸送デバイス。
  3. 請求項1に記載の熱輸送デバイスであって、
    前記エキスパンドメタルは、液相の前記作動流体に毛細管力を発生させるための流路を形成する熱輸送デバイス。
  4. ハウジングと、
    相変化により熱を輸送する作動流体と、
    第1のサイズの開口を有し、前記ハウジング内に設けられ、前記ハウジングを補強し、気相の前記作動流体の流路を形成する第1のエキスパンドメタルと
    を具備する熱輸送デバイス。
  5. 請求項4に記載の熱輸送デバイスであって、
    第1のサイズより小さい第2のサイズの開口を有し、前記第1のエキスパンドメタルに積層するように設けられ、液相の前記作動流体に毛細管力を発生させる毛細管構造体をさらに具備する熱輸送デバイス。
  6. 請求項5に記載の熱輸送デバイスであって、
    前記毛細管構造体は、前記第2のサイズの開口を有する第2のエキスパンドメタルを含む熱輸送デバイス。
  7. 請求項5に記載の熱輸送デバイスであって、
    前記毛細管構造体は、前記第2のサイズの開口を有するメッシュ部材を含む熱輸送デバイス。
  8. 請求項5に記載の熱輸送デバイスであって、
    前記毛細管構造体は、
    前記第2のサイズの開口を有する第1の毛細管部材と、
    前記第1のサイズより小さく前記第2のサイズより大きく第3のサイズの開口を有する第2の毛細管部材と
    を有する熱輸送デバイス。
  9. ハウジングと、
    相変化により熱を輸送する作動流体と、
    異なるサイズの開口をそれぞれ有し、積層されて設けられ、前記ハウジングを補強し、前記作動流体の流路を形成する複数のエキスパンドメタルと
    を具備する熱輸送デバイス。
  10. 熱源と、
    前記熱源に接触するように設けられたハウジングと、相変化により熱を輸送する作動流体と、前記ハウジング内に設けられ、前記ハウジングを補強し、前記作動流体の流路を形成するエキスパンドメタルとを有する熱輸送デバイスと
    を具備する電子機器。
  11. 熱源と、
    前記熱源に接触するように設けられたハウジングと、相変化により熱を輸送する作動流体と、第1のサイズの開口を有し、前記ハウジング内に設けられ、前記ハウジングを補強し、気相の前記作動流体の流路を形成する第1のエキスパンドメタルとを有する熱輸送デバイスと
    を具備する電子機器。
  12. 熱源と、
    前記熱源に接触するように設けられたハウジングと、相変化により熱を輸送する作動流体と、異なるサイズの開口をそれぞれ有し、積層されて設けられ、前記ハウジングを補強し、前記作動流体の流路を形成する複数のエキスパンドメタルとを有する熱輸送デバイスと
    を具備する電子機器。
JP2009238097A 2009-10-15 2009-10-15 熱輸送デバイス及び電子機器 Pending JP2011086753A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009238097A JP2011086753A (ja) 2009-10-15 2009-10-15 熱輸送デバイス及び電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009238097A JP2011086753A (ja) 2009-10-15 2009-10-15 熱輸送デバイス及び電子機器

Publications (1)

Publication Number Publication Date
JP2011086753A true JP2011086753A (ja) 2011-04-28

Family

ID=44079493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009238097A Pending JP2011086753A (ja) 2009-10-15 2009-10-15 熱輸送デバイス及び電子機器

Country Status (1)

Country Link
JP (1) JP2011086753A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018523088A (ja) * 2015-07-27 2018-08-16 金積徳 ベイパーチャンバー
US10292311B2 (en) 2017-01-24 2019-05-14 Toyota Jidosha Kabushiki Kaisha Heat radiating sheet
WO2020189713A1 (ja) * 2019-03-19 2020-09-24 株式会社フジクラ ベーパーチャンバーおよびベーパーチャンバーの製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018523088A (ja) * 2015-07-27 2018-08-16 金積徳 ベイパーチャンバー
EP3330654A4 (en) * 2015-07-27 2019-03-06 Chi-Te Chin PLATE-TYPE TEMPERATURE UNIFORMIZING DEVICE
US10292311B2 (en) 2017-01-24 2019-05-14 Toyota Jidosha Kabushiki Kaisha Heat radiating sheet
WO2020189713A1 (ja) * 2019-03-19 2020-09-24 株式会社フジクラ ベーパーチャンバーおよびベーパーチャンバーの製造方法

Similar Documents

Publication Publication Date Title
JP4706754B2 (ja) 熱輸送デバイス及び電子機器
JP4811460B2 (ja) 熱輸送デバイス及び電子機器
JP4737285B2 (ja) 熱輸送デバイス及び電子機器
JP6233125B2 (ja) ループ型ヒートパイプとその製造方法、及び電子機器
US20110088877A1 (en) Heat transport device, method of manufacturing a heat transport device, and electronic apparatus
JP6146484B2 (ja) ループ型ヒートパイプとその製造方法、及び電子機器
US20200236810A1 (en) Vapor chamber
US20100122798A1 (en) Heat transport device, electronic apparatus, and heat transport device manufacturing method
JPWO2018003957A1 (ja) ベーパーチャンバ
US9995537B2 (en) Heat pipe
US8490683B2 (en) Flat plate type micro heat transport device
JP2007113864A (ja) 熱輸送装置及び電子機器
US10107557B2 (en) Integrated heat dissipation device
US10502496B2 (en) Micro vapor chamber
US11346617B2 (en) Wick structure and heat pipe accommodating wick structure
JP2011127780A (ja) 熱輸送デバイス及び電子機器
WO2017115771A1 (ja) ヒートパイプ
JP4496999B2 (ja) 熱輸送装置及び電子機器
JP2022189849A (ja) ベーパーチャンバー、及び電子機器
JP2018004108A (ja) 放熱モジュール及びその製造方法
JP2011086753A (ja) 熱輸送デバイス及び電子機器
JP2010014292A (ja) 熱輸送デバイス、電子機器及び積層構造体
JP6636791B2 (ja) 放熱モジュール
JP3167981U (ja) 平板型ヒートパイプの構造
US20160223267A1 (en) Flat-plate heat pipe structure