JP2011082288A - Semiconductor manufacturing device and method of manufacturing semiconductor device using the same - Google Patents

Semiconductor manufacturing device and method of manufacturing semiconductor device using the same Download PDF

Info

Publication number
JP2011082288A
JP2011082288A JP2009232185A JP2009232185A JP2011082288A JP 2011082288 A JP2011082288 A JP 2011082288A JP 2009232185 A JP2009232185 A JP 2009232185A JP 2009232185 A JP2009232185 A JP 2009232185A JP 2011082288 A JP2011082288 A JP 2011082288A
Authority
JP
Japan
Prior art keywords
manufacturing apparatus
outer tube
semiconductor manufacturing
insulating film
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009232185A
Other languages
Japanese (ja)
Inventor
Makoto Tsutsue
誠 筒江
Kotaro Nomura
晃太郎 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009232185A priority Critical patent/JP2011082288A/en
Priority to PCT/JP2010/002669 priority patent/WO2011043009A1/en
Publication of JP2011082288A publication Critical patent/JP2011082288A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02203Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76825Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by exposing the layer to particle radiation, e.g. ion implantation, irradiation with UV light or electrons etc.
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/10Applying interconnections to be used for carrying current between separate components within a device
    • H01L2221/1005Formation and after-treatment of dielectrics
    • H01L2221/1042Formation and after-treatment of dielectrics the dielectric comprising air gaps
    • H01L2221/1047Formation and after-treatment of dielectrics the dielectric comprising air gaps the air gaps being formed by pores in the dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor manufacturing device that has superior efficiency of cooling, capable of stably reforming an insulating film to a desired characteristics, and having an ultraviolet radiation device with a cooling mechanism. <P>SOLUTION: The semiconductor manufacturing device includes an ultraviolet light emission section 101, and an overcoat tube 102 arranged so that the ultraviolet light emission section 101 may be covered such that a space 103 is formed between the ultraviolet light emitting section 101 and the overcoat tube. The overcoat tube 102 includes a cooling medium flow-in port 104 to which a cooling medium flows to the inside of the space 103 and a cooing medium flow-out port 105 from which the cooling medium flows outside the space 103. Upper height of an inner wall of the overcoat tube 102 near the cooling medium flow-out port 105 is higher than that of the overcoat tube 102 near the cooling medium flow-in port 105. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、冷却機構を有する紫外線照射装置を備えた半導体製造装置、及び該半導体製造装置を用いた半導体装置の製造方法に関する。   The present invention relates to a semiconductor manufacturing apparatus including an ultraviolet irradiation device having a cooling mechanism, and a semiconductor device manufacturing method using the semiconductor manufacturing apparatus.

紫外線照射技術は従来から工業的に広く用いられており、半導体装置の製造においても絶縁膜の改質などに用いられている。近年の半導体装置の微細化及び高集積化に伴い、配線抵抗及び配線間容量の増大に起因する電気信号の伝搬速度の遅延が深刻な問題となっている。そこで、多層配線構造に用いられる導電層として、アルミニウム(Al)系合金材料に代わり、抵抗率のより低い銅(Cu)が導入されるようになっている。Cuは従来から使われているAlなどの金属材料とは異なり、ドライエッチングによるパターンニングが困難である。このため、Cuを用いた多層配線の形成方法としては、絶縁膜に配線溝を形成し、該配線溝にCu膜を埋め込んだ後、化学的機械的研磨(CMP:Chemical Mechanical Polishing)法により余分なCuを除去することにより、配線パターンを形成するダマシン法が一般に適用されている。特に、デュアルダマシン法は、ビアホールと配線溝とを形成した上で、Cu膜の埋め込みをビアホール及び配線溝に同一の工程で行うことによって配線及びビアを形成する方法であって、工程数の削減にとって有効であることから広く実用化されている。   The ultraviolet irradiation technique has been widely used industrially from the past, and is also used for the modification of insulating films in the manufacture of semiconductor devices. With the recent miniaturization and high integration of semiconductor devices, delays in the propagation speed of electrical signals due to increases in wiring resistance and inter-wiring capacitance have become serious problems. Therefore, copper (Cu) having a lower resistivity is introduced as a conductive layer used in the multilayer wiring structure instead of an aluminum (Al) -based alloy material. Unlike conventional metal materials such as Al, Cu is difficult to pattern by dry etching. For this reason, as a method of forming a multilayer wiring using Cu, after forming a wiring groove in the insulating film, embedding the Cu film in the wiring groove, an extra layer is formed by a chemical mechanical polishing (CMP) method. In general, a damascene method for forming a wiring pattern by removing Cu is applied. In particular, the dual damascene method is a method of forming wirings and vias by forming via holes and wiring trenches, and then performing Cu film filling in the via holes and wiring trenches in the same process, and reducing the number of processes. It is widely used because of its effectiveness.

また、高集積半導体装置では、配線間容量の増大が半導体装置の動作速度の低下を招くため、層間絶縁膜として比誘電率の低い材料(以下、Lowk膜という)を用いることにより、配線間容量の増大が抑制されている。Lowk膜の材料としては、比誘電率が3.5程度であるフッ素含有シリコン酸化膜(FSG)、又は比誘電率が3.0前後の炭素含有シリコン酸化膜(SiOC)が実用化されている。絶縁膜の誘電率を減少させることは、一般的に、その材料の機械的強度も減少させることになる。したがって、例えば化学的機械的研磨などに代表される半導体装置の製造プロセス中、又は、例えばウェハダイシング若しくはワイヤーボンディングなどに代表される半導体装置が形成されたウェハのアセンブリプロセス中に半導体装置に印加される応力により、Lowk膜の剥離又は破壊が発生しやすくなるなどの問題が生じる。このような問題に対し、例えば特許文献1に示すような紫外線ランプが提案されており、このような紫外線ランプを用いてLowk膜に紫外線を照射することにより、Lowk膜の機械的強度を高めることも可能である。   In a highly integrated semiconductor device, an increase in inter-wire capacitance causes a decrease in the operation speed of the semiconductor device. Therefore, by using a material having a low relative dielectric constant (hereinafter referred to as a Lowk film) as an interlayer insulating film, an inter-wire capacitance is obtained. Increase is suppressed. As a material of the Lowk film, a fluorine-containing silicon oxide film (FSG) having a relative dielectric constant of about 3.5 or a carbon-containing silicon oxide film (SiOC) having a relative dielectric constant of around 3.0 has been put into practical use. . Reducing the dielectric constant of an insulating film generally will also reduce the mechanical strength of the material. Therefore, the semiconductor device is applied to the semiconductor device during the manufacturing process of the semiconductor device represented by, for example, chemical mechanical polishing, or the assembly process of the wafer on which the semiconductor device represented by, for example, wafer dicing or wire bonding is formed. Due to the stress, the lowk film is likely to be peeled off or broken. For such a problem, for example, an ultraviolet lamp as disclosed in Patent Document 1 has been proposed, and the mechanical strength of the Lowk film is increased by irradiating the Lowk film with ultraviolet light using such an ultraviolet lamp. Is also possible.

さらに、近年では、Lowk膜の形成方法として、空孔形成材を用いてSiOC膜を形成した後、空孔形成材を除去することにより、SiOC膜を多孔質化して比誘電率を低減させる材料又はプロセスの開発及び実用化も検討されている。この空孔形成材を除去する方法の1つとして、空孔形成材を含んだSiOC膜に紫外線ランプを用いて紫外線を照射し、紫外線のエネルギーにより空孔形成材を分解除去する方法が開発及び実用化されている。   Further, in recent years, as a method for forming a Lowk film, a material that reduces the dielectric constant by forming a SiOC film using a hole forming material and then removing the hole forming material to make the SiOC film porous. Alternatively, development and practical use of processes are also being considered. As one of the methods for removing the pore forming material, a method of irradiating the SiOC film containing the pore forming material with ultraviolet rays using an ultraviolet lamp and decomposing and removing the pore forming material by the energy of ultraviolet rays has been developed and It has been put into practical use.

以上のように、Lowk膜の改質に紫外線ランプを用いると、該紫外線ランプが水冷機構を備えている場合には、紫外線の放射効率を高めるために必要な高密度電流による紫外線ランプの点灯が可能となる。その結果、被照射物に対する紫外線照射効率を高めることができる。   As described above, when an ultraviolet lamp is used to modify the Lowk film, when the ultraviolet lamp has a water cooling mechanism, the ultraviolet lamp is lit with a high-density current necessary to increase the radiation efficiency of the ultraviolet light. It becomes possible. As a result, the ultraviolet irradiation efficiency with respect to the irradiated object can be increased.

特開2006−260795号公報JP 2006-260795 A

しかしながら、特許文献1の紫外線ランプは水冷機構を備えるため、紫外線ランプの他に冷却媒体である水を循環する装置、及び水の温度調節機から構成されたシステムが必要である。このシステムで冷媒を循環させた場合、循環系統外部からの空気、水に溶存していた空気、又は紫外光に誘起されて発生した空気などが冷却媒体中に気泡として混入する。特に、冷却媒体の循環系などにおいて、紫外線ランプが垂直方向において最も高い位置に配置される場合、気泡が紫外線ランプ内に蓄積することになる。このようにして、冷却媒体中に混入した気泡が紫外線ランプ内に蓄積すると、紫外線ランプの冷却効率が低下する。その結果、紫外線ランプの温度が上昇し、安全上の問題が生じる。また、紫外線ランプから放出された紫外線の一部が、混入した気泡が集まって形成した空気層を通過することにより、放出光の特性変化が生じる。このため、紫外線を照射した絶縁膜の機械強度にばらつきが生じたり、空孔形成材の除去率にばらつきが発生するなど、絶縁膜を所望の特性に改質できない。その結果、半導体装置の歩留まりの低下又は信頼性の低下などの問題が生じる。   However, since the ultraviolet lamp of Patent Document 1 includes a water cooling mechanism, a system including an apparatus for circulating water as a cooling medium and a water temperature controller is required in addition to the ultraviolet lamp. When the refrigerant is circulated in this system, air from outside the circulation system, air dissolved in water, or air generated by being induced by ultraviolet light is mixed in the cooling medium as bubbles. In particular, when the ultraviolet lamp is disposed at the highest position in the vertical direction in the cooling medium circulation system, bubbles are accumulated in the ultraviolet lamp. In this way, if bubbles mixed in the cooling medium accumulate in the ultraviolet lamp, the cooling efficiency of the ultraviolet lamp decreases. As a result, the temperature of the ultraviolet lamp rises, causing a safety problem. In addition, a part of the ultraviolet rays emitted from the ultraviolet lamp passes through the air layer formed by collecting the mixed bubbles, thereby changing the characteristics of the emitted light. For this reason, the insulating film cannot be modified to a desired characteristic, for example, the mechanical strength of the insulating film irradiated with ultraviolet rays varies or the removal rate of the hole forming material varies. As a result, problems such as a decrease in yield of semiconductor devices or a decrease in reliability occur.

前記に鑑み、本発明の目的は、冷却効率に優れ、安定的に絶縁膜を所望の特性に改質できる、冷却機構を有する紫外線照射装置を備えた半導体製造装置を実現することである。また、該半導体製造装置を用いて、安定的に所望の特性に改質された絶縁膜を有する半導体装置の製造方法を実現することである。   In view of the above, an object of the present invention is to realize a semiconductor manufacturing apparatus including an ultraviolet irradiation apparatus having a cooling mechanism that has excellent cooling efficiency and can stably modify an insulating film to have desired characteristics. Another object of the present invention is to realize a method of manufacturing a semiconductor device having an insulating film that is stably modified to have desired characteristics using the semiconductor manufacturing apparatus.

前記の目的を達成するため、本発明の一側面に係る半導体製造装置は、紫外線発光部と、前記紫外線発光部との間に空間が形成されるように、紫外線発光部を覆うように配置された外套管とを備えており、外套管は、冷却媒体が前記空間の内部に流入する流入口と、冷却媒体が空間の外部に流出する流出口とを有し、流出口近傍における外套管の内壁の上部高さは、流入口近傍における外套管の内壁の上部高さよりも大きい。   In order to achieve the above object, a semiconductor manufacturing apparatus according to one aspect of the present invention is disposed so as to cover an ultraviolet light emitting part so that a space is formed between the ultraviolet light emitting part and the ultraviolet light emitting part. The outer tube has an inflow port through which the cooling medium flows into the space, and an outflow port through which the cooling medium flows out of the space, and the outer tube in the vicinity of the outflow port. The upper height of the inner wall is larger than the upper height of the inner wall of the outer tube in the vicinity of the inlet.

本発明の一側面に係る半導体製造装置において、外套管の内壁の上部高さは、流入口近傍から流出口近傍に向かって徐々に高くなっていてもよい。   In the semiconductor manufacturing apparatus according to one aspect of the present invention, the upper height of the inner wall of the outer tube may gradually increase from the vicinity of the inlet to the vicinity of the outlet.

本発明の一側面に係る半導体製造装置において、外套管の内壁は、流入口近傍から流出口近傍に向かって傾斜していてもよい。   In the semiconductor manufacturing apparatus according to one aspect of the present invention, the inner wall of the outer tube may be inclined from the vicinity of the inlet to the vicinity of the outlet.

本発明の一側面に係る半導体製造装置において、流入口近傍における外套管の内壁の少なくとも上部の厚さは、流出口近傍における外套管の内壁の少なくとも上部の厚さよりも大きくてもよい。   In the semiconductor manufacturing apparatus according to one aspect of the present invention, the thickness of at least the upper part of the inner wall of the outer tube in the vicinity of the inflow port may be larger than the thickness of at least the upper part of the inner wall of the outer tube in the vicinity of the outflow port.

本発明の一側面に係る半導体製造装置において、外套管の内壁の厚さは、その厚さ方向において均一であってもよい。   In the semiconductor manufacturing apparatus according to one aspect of the present invention, the thickness of the inner wall of the outer tube may be uniform in the thickness direction.

本発明の一側面に係る半導体製造装置において、流入口近傍における外套管の内径は、流出口近傍における外套管の内径よりも小さくてもよい。   In the semiconductor manufacturing apparatus according to one aspect of the present invention, the inner diameter of the outer tube in the vicinity of the inflow port may be smaller than the inner diameter of the outer tube in the vicinity of the outflow port.

本発明の一側面に係る半導体製造装置において、流入口は、外套管の長さ方向に対して垂直上方向に配置されていてもよい。   In the semiconductor manufacturing apparatus according to one aspect of the present invention, the inflow port may be arranged in an upward direction perpendicular to the length direction of the outer tube.

本発明の一側面に係る半導体製造装置において、流出口は、外套管の長さ方向に対して垂直上方向に配置されていてもよい。   In the semiconductor manufacturing apparatus according to one aspect of the present invention, the outflow port may be arranged in an upward direction perpendicular to the length direction of the outer tube.

本発明の一側面に係る半導体製造装置において、外套管は、円筒形状であってもよい。   In the semiconductor manufacturing apparatus according to one aspect of the present invention, the outer tube may be cylindrical.

本発明の一側面に係る半導体製造装置において、外套管と紫外線発光部との間に形成された空間は、水からなる冷却媒体で満たされていてもよい。   In the semiconductor manufacturing apparatus according to one aspect of the present invention, the space formed between the outer tube and the ultraviolet light emitting unit may be filled with a cooling medium made of water.

本発明の一側面に係る半導体製造装置を用いた半導体装置の製造方法であって、半導体基板上に絶縁膜を形成する工程(a)と、絶縁膜に紫外線を照射する工程(b)とを備える。   A method of manufacturing a semiconductor device using a semiconductor manufacturing apparatus according to one aspect of the present invention, comprising: a step (a) of forming an insulating film on a semiconductor substrate; and a step (b) of irradiating the insulating film with ultraviolet rays. Prepare.

本発明の一側面に係る半導体装置の製造方法において、工程(a)における絶縁膜は、比誘電率が3.0以下の膜からなる場合でもよい。   In the method for manufacturing a semiconductor device according to one aspect of the present invention, the insulating film in the step (a) may be a film having a relative dielectric constant of 3.0 or less.

本発明の一側面に係る半導体装置の製造方法において、工程(a)における絶縁膜は、空孔形成材を含有し、工程(b)は、絶縁膜から空孔形成材を除去する工程を含んでもよい。   In the method for manufacturing a semiconductor device according to one aspect of the present invention, the insulating film in the step (a) includes a hole forming material, and the step (b) includes a step of removing the hole forming material from the insulating film. But you can.

本発明の一側面に係る半導体装置の製造方法において、工程(b)により、絶縁膜の膜強度が高くなることが好ましい。   In the method for manufacturing a semiconductor device according to one aspect of the present invention, it is preferable that the film strength of the insulating film is increased by the step (b).

また、本発明の一側面に係る半導体製造装置は、紫外線発光部と、紫外線発光部との間に空間が形成されるように、紫外線発光部を覆うように配置された外套管とを備えており、外套管は、冷却媒体が空間の内部に流入する流入口と、冷却媒体が空間の外部に流出する流出口とを有し、外套管と紫外線発光部との間に形成された空間内を流れる冷却媒体中の気泡を除去する気泡除去手段を有する。   In addition, a semiconductor manufacturing apparatus according to one aspect of the present invention includes an ultraviolet light emitting unit and an outer tube disposed so as to cover the ultraviolet light emitting unit so that a space is formed between the ultraviolet light emitting unit. The outer tube has an inflow port through which the cooling medium flows into the space and an outflow port through which the cooling medium flows out of the space, and is formed in the space formed between the outer tube and the ultraviolet light emitting unit. There is a bubble removing means for removing bubbles in the cooling medium flowing through.

本発明の一側面に係る半導体製造装置によると、紫外線ランプの冷却効率の低下を防止して安全性に優れると共に、紫外線ランプからの放出光の特性変動を防止して安定的に絶縁膜を所望の特性に改質することができる。これにより、本発明の一側面に係る半導体製造装置を用いた半導体装置の製造方法によると、安定的に絶縁膜を所望の特性に改質することができるため、半導体装置の歩留まりの低下又は信頼性の低下を防止できる。   According to the semiconductor manufacturing apparatus according to one aspect of the present invention, the cooling efficiency of the ultraviolet lamp is prevented from being lowered and the safety is excellent, and the characteristics of the emitted light from the ultraviolet lamp is prevented from changing and the insulating film is stably desired. It can be modified to the characteristics of Thus, according to the method for manufacturing a semiconductor device using the semiconductor manufacturing apparatus according to one aspect of the present invention, the insulating film can be stably modified to have desired characteristics, so that the yield or reliability of the semiconductor device can be reduced. It is possible to prevent a decrease in sex.

図1は、本発明の一実施形態に係る半導体製造装置としての紫外線照射装置の構造を示す模式図である。FIG. 1 is a schematic diagram showing the structure of an ultraviolet irradiation apparatus as a semiconductor manufacturing apparatus according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る半導体製造装置を構成する紫外線ランプの構造を示す断面図である。FIG. 2 is a sectional view showing the structure of an ultraviolet lamp constituting the semiconductor manufacturing apparatus according to one embodiment of the present invention. 図3(a)〜(e)は、本発明の一実施形態に係る半導体製造装置としての紫外線照射装置を用いた半導体装置の製造方法を工程順に示す断面図である。3A to 3E are cross-sectional views illustrating a method for manufacturing a semiconductor device using an ultraviolet irradiation apparatus as a semiconductor manufacturing apparatus according to an embodiment of the present invention in the order of steps. 図4は、本発明の一実施形態に係る半導体製造装置としての紫外線照射装置の変形例の構造を示す模式図である。FIG. 4 is a schematic diagram showing a structure of a modified example of the ultraviolet irradiation apparatus as the semiconductor manufacturing apparatus according to an embodiment of the present invention.

以下では、図面及び詳細な説明をもって本発明の技術的思想を明確に説明するものであり、当該技術分野におけるいずれの当業者であれば、本発明の好ましい実施例を理解した後に、本発明が開示する技術により、変更及び付加を加えることが可能であり、これは本発明の技術的思想及び範囲を逸脱するものではない。   The technical idea of the present invention will be clearly described below with reference to the drawings and detailed description. Any person skilled in the art will understand the present invention after understanding the preferred embodiments of the present invention. Modifications and additions can be made according to the disclosed technology, which does not depart from the technical idea and scope of the present invention.

(一実施形態)
図1は、本発明の一実施形態に係る半導体製造装置としての紫外線照射装置の構造を模式的に示している。
(One embodiment)
FIG. 1 schematically shows the structure of an ultraviolet irradiation apparatus as a semiconductor manufacturing apparatus according to an embodiment of the present invention.

図1に示すように、半導体基板21を搭載する基板支持台22を備える真空室20の上には、石英ガラス30を介して配置され、内部に紫外線照射板12を有する紫外線ランプユニット10が設けられている。紫外線ランプユニット10内には、冷却機構及び気泡を除去する機構を有する紫外線ランプ11が設置されている。紫外線ランプ11は、配管40を介して、温度調節機50及びポンプ60に接続され、例えば水からなる冷却媒体を循環させる系統が構成されている。また、紫外線ランプ11は、電源ケーブル80を介して、紫外線ランプ制御電源70に接続されている。   As shown in FIG. 1, an ultraviolet lamp unit 10 is provided on a vacuum chamber 20 including a substrate support 22 on which a semiconductor substrate 21 is mounted via a quartz glass 30 and has an ultraviolet irradiation plate 12 inside. It has been. An ultraviolet lamp 11 having a cooling mechanism and a mechanism for removing bubbles is installed in the ultraviolet lamp unit 10. The ultraviolet lamp 11 is connected to a temperature controller 50 and a pump 60 via a pipe 40, and a system for circulating a cooling medium made of water, for example, is configured. The ultraviolet lamp 11 is connected to an ultraviolet lamp control power supply 70 via a power cable 80.

ここで、図2は、図1で示した紫外線ランプ11の断面構造を具体的に示している。   Here, FIG. 2 specifically shows a cross-sectional structure of the ultraviolet lamp 11 shown in FIG.

図2に示すように、紫外線ランプ11は、紫外線発光部101と、該紫外線発光部101との間に空間103が形成されるように、紫外線発光部101の外面を覆うように形成された外套管102とによって構成されている。また、紫外線ランプ11の一方の端部近傍には、冷却媒体を空間103に流入する冷媒流入口104が形成されており、他方の端部近傍には、冷却媒体を外部に流出する冷媒流出口105が形成されている。このような構成において、冷媒流入口104から紫外線ランプ10内部に流入した冷却媒体は空間103内を満たし、該冷却媒体は冷媒流出口105より紫外線ランプ10外部へ流出する。このように循環する冷却媒体により、紫外線発光部101の発光中の発熱によって生じる紫外線ランプ11の温度上昇が抑制される。   As shown in FIG. 2, the ultraviolet lamp 11 is a jacket that is formed so as to cover the outer surface of the ultraviolet light emitting unit 101 so that a space 103 is formed between the ultraviolet light emitting unit 101 and the ultraviolet light emitting unit 101. And a tube 102. Further, a refrigerant inlet 104 through which the cooling medium flows into the space 103 is formed near one end of the ultraviolet lamp 11, and a refrigerant outlet through which the cooling medium flows out to the outside near the other end. 105 is formed. In such a configuration, the cooling medium flowing into the ultraviolet lamp 10 from the refrigerant inlet 104 fills the space 103, and the cooling medium flows out of the ultraviolet lamp 10 through the refrigerant outlet 105. Thus, the circulating cooling medium suppresses the temperature rise of the ultraviolet lamp 11 caused by the heat generated during the light emission of the ultraviolet light emitting unit 101.

また、上記外套管102は、図2に示すように、内壁の厚さが長さ方向に変化する形状を有しており、好ましくは円筒形状を有している。具体的には、外套管102は、その厚さが、冷媒流入口104近傍側から冷媒流出口105近傍側に向かって減少するように構成されている。つまり、外套管102の内壁の厚さは、図2の領域2aにおける厚さt1と図2の領域2bにおける厚さt2とが、t1>t2の関係を満たすように加工されている。なお、図2においては、外套管102の内壁の厚さが、冷媒流入口104側から冷媒流出口105側に向かって、滑らかに、均一的に、又は、徐々に、減少するように加工された場合を示しており、その内壁は傾斜している。しかしながら、段階的にその厚さが減少するように加工される場合であってもよい。外套管102がこのような形状を有することにより、循環する冷却媒体中の気泡が紫外線ランプ11の冷媒流入口104を通して流入すると、気泡は空間103を満たした冷却媒体中を上昇して外套管102の内壁の上部に到達した後、外套管102の内壁の上部における傾斜に沿うようにして冷媒流出口105側へ移動する。このため、冷却媒体中の気泡は冷媒流出口105を通して紫外線ランプ11の外部へ冷却媒体と共に流出する。   Further, as shown in FIG. 2, the outer tube 102 has a shape in which the thickness of the inner wall changes in the length direction, and preferably has a cylindrical shape. Specifically, the outer tube 102 is configured so that its thickness decreases from the vicinity of the refrigerant inlet 104 toward the vicinity of the refrigerant outlet 105. That is, the thickness of the inner wall of the outer tube 102 is processed so that the thickness t1 in the region 2a in FIG. 2 and the thickness t2 in the region 2b in FIG. 2 satisfy the relationship of t1> t2. In FIG. 2, the thickness of the inner wall of the outer tube 102 is processed so as to decrease smoothly, uniformly, or gradually from the refrigerant inlet 104 side toward the refrigerant outlet 105 side. The inner wall is inclined. However, it may be processed so that the thickness decreases step by step. Due to the outer tube 102 having such a shape, when bubbles in the circulating cooling medium flow in through the refrigerant inlet 104 of the ultraviolet lamp 11, the bubbles rise in the cooling medium filling the space 103 and the outer tube 102. After reaching the upper part of the inner wall of the outer tube 102, it moves to the refrigerant outlet 105 side along the inclination at the upper part of the inner wall of the outer tube 102. For this reason, the bubbles in the cooling medium flow out together with the cooling medium to the outside of the ultraviolet lamp 11 through the refrigerant outlet 105.

また、図2では、外套管102の内壁の厚さが、厚さ方向において、下部から上部にかけて均一であって(下部と上部との間の領域は不図示)、且つ、冷媒流入口104近傍側から冷媒流出口105近傍側に向かって減少するように形成されている場合を示しているが、外套管102の内壁の少なくとも上部の厚さがt1>t2の関係を満たすように加工されていれば上記効果が実現される。しかしながら、図2に示すように、外套管102の内壁の厚さが、厚さ方向において、下部から上部にかけて均一であって、且つ、冷媒流入口104近傍側から冷媒流出口105近傍側に向かって減少するように形成されていると、外套管102の内径は、冷媒流入口104近傍における内径R1と冷媒流出口105近傍における内径R2とが、R1<R2の関係を満たすことになり、気泡が紫外線ランプ11の内部に滞留することをより防止することができる。   In FIG. 2, the thickness of the inner wall of the outer tube 102 is uniform from the lower part to the upper part in the thickness direction (the area between the lower part and the upper part is not shown), and in the vicinity of the refrigerant inlet 104. In this example, the thickness of the inner wall of the outer tube 102 is reduced so as to satisfy the relationship of t1> t2. Then, the above effect is realized. However, as shown in FIG. 2, the thickness of the inner wall of the outer tube 102 is uniform from the lower part to the upper part in the thickness direction, and from the vicinity of the refrigerant inlet 104 toward the refrigerant outlet 105. The inner diameter of the outer tube 102 is such that the inner diameter R1 in the vicinity of the refrigerant inlet 104 and the inner diameter R2 in the vicinity of the refrigerant outlet 105 satisfy the relationship R1 <R2. Can be prevented from staying in the ultraviolet lamp 11.

また、冷媒流入口104は、紫外線ランプ11における冷却媒体が流れる方向に垂直上方向に配置されている。つまり、冷媒流入口104は、外套管102の内壁の上面位置よりも高い位置に配置されている。これにより、気泡が紫外線ランプ11の内部に滞留することを防止し、冷却媒体と共に紫外線ランプ11の外部へ排出することができる。同様に、冷媒流出口105は、紫外線ランプ11における冷却媒体が流れる方向に垂直上方向に配置されている。つまり、冷媒流出口105は、外套管102の内壁の上面位置よりも高い位置に配置されている。これにより、気泡が紫外線ランプ11の内部に滞留することを防止し、冷却媒体と共に紫外線ランプ11の外部へ排出することができる。   In addition, the refrigerant inlet 104 is arranged in the upward direction perpendicular to the direction in which the cooling medium in the ultraviolet lamp 11 flows. That is, the refrigerant inlet 104 is disposed at a position higher than the upper surface position of the inner wall of the outer tube 102. Thereby, it is possible to prevent bubbles from staying inside the ultraviolet lamp 11, and to discharge the bubbles together with the cooling medium to the outside of the ultraviolet lamp 11. Similarly, the refrigerant outlet 105 is arranged in an upward direction perpendicular to the direction in which the cooling medium in the ultraviolet lamp 11 flows. That is, the refrigerant outlet 105 is arranged at a position higher than the upper surface position of the inner wall of the outer tube 102. Thereby, it is possible to prevent bubbles from staying inside the ultraviolet lamp 11, and to discharge the bubbles together with the cooling medium to the outside of the ultraviolet lamp 11.

以上のように、本実施形態の半導体製造装置によると、冷却媒体が循環する系統に気泡が混入しても、気泡を除去する機構を構成する外套管102の内壁の少なくとも上部の厚さが、冷媒流入口104近傍側から冷媒流出口105近傍側に向かって減少するように形成されていることにより、紫外線ランプ11の空間103を満たす冷却媒体中に気泡が長時間蓄積することを防止し、冷却媒体中の気泡が成長し空気層が形成されることがない。このため、紫外線ランプ発光部101から放出された紫外線が空気層を通過することがなく、紫外線ランプ11の外套管102の空間103を満たす冷却媒体を透過して放出される。その結果、紫外線の減衰量のばらつきを防いで一定に保持することができるため、外套管102の冷媒流出口105から放出される紫外線が照射される絶縁膜の膜質を安定して改質することができる。その結果、半導体装置の歩留り低下又は信頼性低下を防止できる。さらに、上記のように、紫外線ランプ11内部に混入する気泡が長時間滞留することなく直ちに排出されるため、冷媒中の気泡が成長し空気層を形成することがなく、空間103は常に冷却媒体で満たされている。したがって、紫外線ランプ11の発光に伴う発熱を効率良く冷却でき、冷却効率が低下することもない。その結果、紫外線ランプ11の温度を安定化でき、安全性の低下を招くことがない。   As described above, according to the semiconductor manufacturing apparatus of the present embodiment, the thickness of at least the upper part of the inner wall of the outer tube 102 that constitutes the mechanism for removing air bubbles even when air bubbles are mixed into the system in which the cooling medium circulates, By being formed so as to decrease from the vicinity of the refrigerant inlet 104 toward the vicinity of the refrigerant outlet 105, bubbles are prevented from accumulating for a long time in the cooling medium filling the space 103 of the ultraviolet lamp 11, Air bubbles in the cooling medium do not grow and an air layer is not formed. Therefore, the ultraviolet rays emitted from the ultraviolet lamp light emitting unit 101 do not pass through the air layer, but are transmitted through the cooling medium filling the space 103 of the outer tube 102 of the ultraviolet lamp 11 and emitted. As a result, variation in the amount of attenuation of ultraviolet rays can be prevented and kept constant, so that the quality of the insulating film irradiated with ultraviolet rays emitted from the refrigerant outlet 105 of the outer tube 102 can be stably modified. Can do. As a result, it is possible to prevent a decrease in yield or reliability of the semiconductor device. Further, as described above, since the bubbles mixed in the ultraviolet lamp 11 are immediately discharged without staying for a long time, the bubbles in the refrigerant do not grow and form an air layer, and the space 103 is always a cooling medium. Is filled with. Therefore, the heat generated by the light emission of the ultraviolet lamp 11 can be efficiently cooled, and the cooling efficiency is not lowered. As a result, the temperature of the ultraviolet lamp 11 can be stabilized and the safety is not lowered.

なお、以上では、紫外線ランプ11における外套管102の内壁の厚さ及び内径については、外套管102の形状が円筒形状である場合を想定したものであるが、その形状は種々想定され得る(例えば、円筒形状であっても全体として、冷媒流入口104側から冷媒流出口105側に向かって上又は下方向に傾斜しているような形状や、円錐形状の上部を切り取った形状で、冷媒流入口104側から冷媒流出口105側に向かって広がるような形状など)。したがって、本発明は、少なくとも、冷媒流出口105近傍における外套管102の内壁の上部高さ(位置)が、冷媒流入口104近傍における外套管102の内壁の上部高さ(位置)よりも大きく(高く)なるように、形成された外套管102を有する紫外線ランプ11を備えていれば、上述した効果を実現することができる。   In the above, the thickness and the inner diameter of the inner wall of the outer tube 102 in the ultraviolet lamp 11 are assumed to be a cylindrical shape, but various shapes can be assumed (for example, Even if it has a cylindrical shape, as a whole, it is in a shape that is inclined upward or downward from the refrigerant inlet 104 side toward the refrigerant outlet 105 side, or a shape in which the upper part of the conical shape is cut off. A shape that spreads from the inlet 104 side toward the refrigerant outlet 105 side). Therefore, according to the present invention, at least the upper height (position) of the inner wall of the outer tube 102 near the refrigerant outlet 105 is larger than the upper height (position) of the inner wall of the outer tube 102 near the refrigerant inlet 104 ( If the ultraviolet lamp 11 having the outer tube 102 formed is provided so as to be higher, the above-described effects can be realized.

次に、以上で説明した本実施形態に係る半導体製造装置としての紫外線照射装置を用いた半導体装置の製造方法について、上記図1及び図2、並びに図3(a)〜(e)を参照しながら説明する。以下では、一例として、本実施形態に係る紫外線照射装置を用いて、空孔形成材を含有する絶縁膜を改質し、該絶縁膜中に配線構造を有する半導体装置を製造する方法を説明する。   Next, referring to FIGS. 1 and 2 and FIGS. 3A to 3E for a semiconductor device manufacturing method using the ultraviolet irradiation apparatus as the semiconductor manufacturing apparatus according to the present embodiment described above. While explaining. As an example, a method for manufacturing a semiconductor device having a wiring structure in the insulating film by modifying the insulating film containing the hole forming material using the ultraviolet irradiation apparatus according to the present embodiment will be described below. .

図3(a)〜(e)は、本実施形態に係る半導体製造装置としての紫外線照射装置を用いた半導体装置の製造方法を工程順に示している。   3A to 3E show a semiconductor device manufacturing method using an ultraviolet irradiation device as a semiconductor manufacturing device according to this embodiment in the order of steps.

まず、図3(a)に示すように、半導体基板201の上に、例えばSiOからなる絶縁膜202を形成した後、絶縁膜202の上にレジストを塗布し、リソグラフィー法を用いて配線溝パターン(図示省略)を形成する。続いて、該配線溝パターンをマスクとして、絶縁膜202に対してドライエッチングを行って配線溝を形成した後、アッシングによりレジストを除去する。続いて、配線溝の壁部及び底部を覆うように例えばTaNからなるバリアメタル膜203をスパッタリングにより形成した後、バリアメタル膜203上に配線溝が埋まるように例えばCuからなる配線用導電膜204を電気メッキ法により形成する。その後、配線溝からはみ出した余分なバリアメタル膜203及び配線用導電膜204を例えば化学的機械的研磨法により除去することにより、バリアメタル膜203及び配線用導電膜204からなる配線205を形成する。 First, as shown in FIG. 3A, after an insulating film 202 made of, for example, SiO 2 is formed on a semiconductor substrate 201, a resist is applied on the insulating film 202, and a wiring trench is formed using a lithography method. A pattern (not shown) is formed. Subsequently, using the wiring groove pattern as a mask, the insulating film 202 is dry-etched to form a wiring groove, and then the resist is removed by ashing. Subsequently, a barrier metal film 203 made of TaN, for example, is formed by sputtering so as to cover the wall and bottom of the wiring groove, and then a wiring conductive film 204 made of Cu, for example, so that the wiring groove is filled on the barrier metal film 203. Is formed by electroplating. Thereafter, the excess barrier metal film 203 and the wiring conductive film 204 protruding from the wiring trench are removed by, for example, a chemical mechanical polishing method, thereby forming the wiring 205 including the barrier metal film 203 and the wiring conductive film 204. .

次に、図3(b)に示すように、絶縁膜202の上に配線205を覆うように、例えば化学的気相成長(CVD:Chemical Vapor Deposition)法を用いてSiCからなるライナー絶縁膜206を形成し、次いで、ライナー絶縁膜206の上に、膜骨格が例えばSiOCからなり且つ空孔形成材(ポロジェンと同義)207aを含有する絶縁膜207を例えばCVD法により形成する。ここで、絶縁膜207の比誘電率は3.0以下であることが好ましい。   Next, as illustrated in FIG. 3B, the liner insulating film 206 made of SiC is formed by using, for example, a chemical vapor deposition (CVD) method so as to cover the wiring 205 on the insulating film 202. Next, an insulating film 207 having a film skeleton made of, for example, SiOC and containing a hole forming material (synonymous with porogen) 207a is formed on the liner insulating film 206 by, for example, a CVD method. Here, the relative dielectric constant of the insulating film 207 is preferably 3.0 or less.

ここで、空孔形成材207aを含有する絶縁膜207の形成方法については、具体的に説明する。すなわち、上記ライナー絶縁膜206までを有する半導体基板201が、真空に保持された図示しないCVDチャンバー内に設置され、且つ、200℃以上に保持された基板支持台上に配置した状態で、ジエトキシメチルシラン(DEMS)などの炭素を含有するプリカーサーと、酸素と、αテルピネンなどの空孔形成材料とを少なくとも含む混合ガスを、ヘリウムなどのキャリアガスと共にCVDチャンバー内に供給し、高周波電力を印加する。このようにすると、半導体基板201上のライナー絶縁膜206上に空孔形成材を含有する絶縁膜207が形成される。   Here, a method for forming the insulating film 207 containing the hole forming material 207a will be specifically described. That is, the semiconductor substrate 201 having up to the liner insulating film 206 is placed in a CVD chamber (not shown) kept in a vacuum and placed on a substrate support stand kept at 200 ° C. or higher, and diethoxy A mixed gas containing at least a precursor containing carbon such as methylsilane (DEMS), oxygen, and a pore forming material such as α-terpinene is supplied into the CVD chamber together with a carrier gas such as helium, and high frequency power is applied. To do. As a result, the insulating film 207 containing the hole forming material is formed on the liner insulating film 206 on the semiconductor substrate 201.

次に、図3(c)に示すように、半導体基板201を加熱しながら絶縁膜207に対して、上記図2の紫外線ランプを有する図1の紫外線照射装置を用いて紫外線を照射することにより、絶縁膜207中の空孔形成材207aを分解除去して、複数の空孔207bを有する絶縁膜207を形成する。具体的には、図1に示す真空室20内の基板支持台22上に、空孔形成材207aを含有する絶縁膜207が形成された半導体基板201(図1の符号21に相当する)を配置し、基板支持台22の温度を400℃に保持する。そして、図2に示した紫外線ランプユニット20を用いて、波長領域200〜400nmの紫外線を照射する。このようにすると、半導体基板201上に形成された絶縁膜207中の空孔形成材207aは分解除去され、空孔207bを有する多孔質の絶縁膜207が形成される。   Next, as shown in FIG. 3C, the insulating film 207 is irradiated with ultraviolet rays using the ultraviolet irradiation apparatus shown in FIG. 1 having the ultraviolet lamp shown in FIG. 2 while heating the semiconductor substrate 201. Then, the hole forming material 207a in the insulating film 207 is decomposed and removed to form the insulating film 207 having a plurality of holes 207b. Specifically, a semiconductor substrate 201 (corresponding to reference numeral 21 in FIG. 1) in which an insulating film 207 containing a hole forming material 207a is formed on the substrate support 22 in the vacuum chamber 20 shown in FIG. It arrange | positions and the temperature of the board | substrate support stand 22 is kept at 400 degreeC. Then, ultraviolet rays having a wavelength region of 200 to 400 nm are irradiated using the ultraviolet lamp unit 20 shown in FIG. Thus, the hole forming material 207a in the insulating film 207 formed on the semiconductor substrate 201 is decomposed and removed, and a porous insulating film 207 having the holes 207b is formed.

次に、図3(d)に示すように、リソグラフィー法及びエッチング技術を用いて、ライナー絶縁膜206と絶縁膜207の少なくとも下部とにビアホール3r1を形成すると共に、絶縁膜207の少なくとも上部に配線溝3r2をビアホール3r1と連通するように形成する。具体的には、まず、絶縁膜207上にレジストを塗布し、リソグラフィー法を用いてビアパターン(図示省略)を形成した後、このビアパターンをマスクとして、絶縁膜207に対してドライエッチングを行ってビアホール3r1を形成する。その後、残存したレジストパターン(ビアパターン)をアッシング及び洗浄により除去した後、絶縁膜207上に再度レジストを塗布し、リソグラフィー法を用いて配線パターン(図示省略)を形成する。その後、該配線パターンをマスクとして、絶縁膜207に対して再度ドライエッチングを行って、配線溝3r2をビアホール3r1と連通するように形成する。続いて、ビアホール3r1の底部に露出するライナー絶縁膜206(配線205上のライナー絶縁膜206)をドライエッチングにより除去して、ビアホール3r1を配線205の上面に到達させる。   Next, as shown in FIG. 3D, via holes 3r1 are formed in the liner insulating film 206 and at least the lower part of the insulating film 207 by using a lithography method and an etching technique, and wiring is provided in at least the upper part of the insulating film 207. Groove 3r2 is formed to communicate with via hole 3r1. Specifically, first, a resist is applied on the insulating film 207, and a via pattern (not shown) is formed using a lithography method. Then, the insulating film 207 is dry-etched using the via pattern as a mask. The via hole 3r1 is formed. Thereafter, after the remaining resist pattern (via pattern) is removed by ashing and washing, a resist is applied again on the insulating film 207, and a wiring pattern (not shown) is formed using a lithography method. Thereafter, dry etching is performed again on the insulating film 207 using the wiring pattern as a mask to form the wiring groove 3r2 in communication with the via hole 3r1. Subsequently, the liner insulating film 206 (the liner insulating film 206 on the wiring 205) exposed at the bottom of the via hole 3r1 is removed by dry etching, so that the via hole 3r1 reaches the upper surface of the wiring 205.

次に、図3(e)に示すように、ビアホール3r1及び配線溝3r2の壁部及び底部を覆うように例えばTaNからなるバリアメタル膜208をスパッタリングにより形成した後、バリアメタル膜208上にビアホール3r1及び配線溝3r2が埋まるように例えばCuからなる配線用導電膜209を電気メッキ法により形成する。その後、配線溝3r2からはみ出した余分なバリアメタル膜208及び配線用導電膜209を例えば化学的機械的研磨法により除去し、バリアメタル208と導電膜209とからなる配線210及びビア211を形成する。   Next, as shown in FIG. 3E, a barrier metal film 208 made of, for example, TaN is formed by sputtering so as to cover the wall and bottom of the via hole 3r1 and the wiring groove 3r2, and then the via hole is formed on the barrier metal film 208. A wiring conductive film 209 made of Cu, for example, is formed by electroplating so as to fill 3r1 and the wiring groove 3r2. Thereafter, the excess barrier metal film 208 and the conductive film 209 for wiring protruding from the wiring groove 3r2 are removed by, for example, a chemical mechanical polishing method, and the wiring 210 and the via 211 composed of the barrier metal 208 and the conductive film 209 are formed. .

以上の工程を繰り返すことにより、配線構造を有する半導体装置が完成する。   By repeating the above steps, a semiconductor device having a wiring structure is completed.

本実施形態に係る半導体製造装置を用いた半導体装置の製造方法によると、上述したように、紫外線の減衰量のばらつきを防いで一定に保持することができる紫外線ランプ11を有する紫外線照射装置を用いることにより、空孔形成材207aを含有する絶縁膜207を改質して空孔207bを有する絶縁膜207を安定的に形成し、該絶縁膜207中に配線構造を有する半導体装置を製造することができる。   According to the method for manufacturing a semiconductor device using the semiconductor manufacturing apparatus according to the present embodiment, as described above, the ultraviolet irradiation apparatus having the ultraviolet lamp 11 capable of preventing the variation in the attenuation amount of the ultraviolet light and keeping it constant is used. Thus, the insulating film 207 containing the hole forming material 207a is modified to stably form the insulating film 207 having the hole 207b, and a semiconductor device having a wiring structure in the insulating film 207 is manufactured. Can do.

なお、以上の工程では、配線溝3r2及びビアホール3r1を形成する前に、空孔形成材207aを分解除去することで空孔207bを形成する例を説明したが、これに限られることはない。例えば、配線溝3r2及びビアホール3r1を形成した後に、空孔形成材207aを分解除去して空孔207bを形成してもよい。また、ビアホールを形成した後に、又は、CMP工程により配線及びビアを形成した後に、空孔を形成してもよい。   In the above process, the example in which the hole 207b is formed by disassembling and removing the hole forming material 207a before forming the wiring groove 3r2 and the via hole 3r1 has been described. However, the present invention is not limited to this. For example, after forming the wiring groove 3r2 and the via hole 3r1, the hole forming material 207a may be decomposed and removed to form the hole 207b. Alternatively, the holes may be formed after the via holes are formed or after the wiring and vias are formed by the CMP process.

また、以上の半導体装置の製造方法では、本実施形態の紫外線照射装置を用いた紫外線照射の対象物として、空孔形成材207aを用いた絶縁膜207を例に示したが、これに限定されるものではない。つまり、紫外線照射装置を用いて、半導体基板又は半導体基板上に形成された種々の絶縁膜を改質する工程を含む、半導体装置の製造方法に対して適用可能であり、同様の効果が得られる。例えば、紫外線照射を用いて、絶縁膜の膜強度を高める場合、又は、空孔形成材207aを含有する絶縁膜207に紫外線照射して空孔207bを有する絶縁膜207を形成する代わりに、空孔形成材を含有していない例えば比誘電率が3.0以下の膜からなる絶縁膜に紫外線照射する場合などにも使用することが可能である。   In the above semiconductor device manufacturing method, the insulating film 207 using the hole forming material 207a is shown as an example of the object of ultraviolet irradiation using the ultraviolet irradiation apparatus of the present embodiment, but the present invention is not limited to this. It is not something. That is, the present invention is applicable to a method for manufacturing a semiconductor device including a step of modifying a semiconductor substrate or various insulating films formed on the semiconductor substrate using an ultraviolet irradiation device, and the same effect can be obtained. . For example, when the film strength of the insulating film is increased by using ultraviolet irradiation, or instead of forming the insulating film 207 having the holes 207b by irradiating the insulating film 207 containing the hole forming material 207a with ultraviolet rays, It can also be used when, for example, an insulating film made of a film having no relative dielectric constant of 3.0 or less that does not contain a hole forming material is irradiated with ultraviolet rays.

−変形例−
図4は、本実施形態の半導体製造装置としての紫外線照射装置の変形例の構造を示している。
-Modification-
FIG. 4 shows the structure of a modification of the ultraviolet irradiation apparatus as the semiconductor manufacturing apparatus of this embodiment.

図4に示す本変形例に係る半導体製造装置は、上記図1に示した半導体製造装置の構造と比較すると、紫外線ランプ11と温度調節機50及びポンプ60とを接続する配管40の構造が異なっており、その他の構造は同様である。具体的には、図4における配管40は、紫外線ランプ11の冷媒流入口104(図1参照)と温度調節機50及びポンプ60とを接続する配管40における冷媒流入口104側に近い部分に、紫外線ランプ11の位置よりも高い位置に配置されている配管部分40aを有している点で、そのような配管部分40aを有さない図1における配管40と異なっている。本変形例の配管40の形状により、冷却媒体は、紫外線ランプ11よりも高い位置にある配管部分40aを通過してから降下し、紫外線ランプ11の冷媒流入口104へ導入される。   The semiconductor manufacturing apparatus according to this modification shown in FIG. 4 differs from the structure of the semiconductor manufacturing apparatus shown in FIG. 1 in the structure of the piping 40 that connects the ultraviolet lamp 11, the temperature controller 50, and the pump 60. Other structures are the same. Specifically, the pipe 40 in FIG. 4 is in a portion close to the refrigerant inlet 104 side in the pipe 40 connecting the refrigerant inlet 104 (see FIG. 1) of the ultraviolet lamp 11 to the temperature controller 50 and the pump 60. It differs from the piping 40 in FIG. 1 which does not have such a piping part 40a by the point which has the piping part 40a arrange | positioned in the position higher than the position of the ultraviolet lamp 11. FIG. Due to the shape of the pipe 40 of this modification, the cooling medium descends after passing through the pipe portion 40 a located higher than the ultraviolet lamp 11 and is introduced into the refrigerant inlet 104 of the ultraviolet lamp 11.

以上のような配管構成を有する冷却媒体を循環させる系統を備えることにより、配管40中の気泡が紫外線ランプ11よりも高いところに留まり、紫外線ランプ11に流入することを防止できる。このため、紫外線ランプ11内の冷却媒体中の気泡が成長して空気層を形成することがなくなり、空間103は常に冷却媒体で満たされる。その結果、紫外線ランプ11の発光に伴う発熱を効率よく冷却することができ、さらに、紫外線ランプ11の放射光が発光部から外套管102の外部に放射されるまでに空気層により減衰することがなく、常に安定した放射光を得ることができる。これにより、紫外線照射による絶縁膜の改質をより安定して行うことができ、半導体装置の歩留り低下又は信頼性低下などを確実に防止できる。   By providing the system for circulating the cooling medium having the above-described piping configuration, it is possible to prevent bubbles in the piping 40 from staying higher than the ultraviolet lamp 11 and flowing into the ultraviolet lamp 11. For this reason, bubbles in the cooling medium in the ultraviolet lamp 11 do not grow and form an air layer, and the space 103 is always filled with the cooling medium. As a result, the heat generated by the emission of the ultraviolet lamp 11 can be efficiently cooled, and further, the emitted light of the ultraviolet lamp 11 can be attenuated by the air layer before being emitted from the light emitting portion to the outside of the outer tube 102. And stable radiation can always be obtained. As a result, the insulating film can be more stably modified by ultraviolet irradiation, and the yield reduction or reliability reduction of the semiconductor device can be reliably prevented.

なお、図示していないが、冷却媒体を循環させる系統を構成する各種部材の中で、紫外線照射ランプ11は、垂直方向(外套管102の厚さ方向)において、循環系統中で最も低い位置に配置される構成としてもよい。さらには、紫外線ランプ11の冷媒流出口105に接続される配管40は、紫外線ランプ11よりも低い位置へ直ちに引き回されない構成(つまり、紫外線ランプ11よりも高い位置へ一旦引き回す構成)としてもよい。いずれの構成によっても、循環系統中の気泡が紫外線ランプ11内に滞留することをより防止する効果がある。   Although not shown, among the various members constituting the system for circulating the cooling medium, the ultraviolet irradiation lamp 11 is positioned at the lowest position in the circulation system in the vertical direction (thickness direction of the outer tube 102). It is good also as a structure arranged. Further, the pipe 40 connected to the refrigerant outlet 105 of the ultraviolet lamp 11 may be configured not to be immediately routed to a position lower than the ultraviolet lamp 11 (that is, configured to be temporarily routed to a position higher than the ultraviolet lamp 11). . Any of the configurations has an effect of further preventing air bubbles in the circulation system from staying in the ultraviolet lamp 11.

また、本変形例では、紫外線ランプ11の構造は、図1に示した紫外線ランプ11の構成と同様であると説明したが、この場合、循環系統中に生じる気泡を除去する機構として、配管40の形状と紫外線ランプ11の外套管102の形状とによって、より効果的な構造となっている。しかしながら、本変形例においては、少なくとも配管40の形状に特徴を有するものであればよく、例えば、紫外線ランプ11の代わりに従来の形態の紫外線ランプを用いてもよい。   Further, in this modification, the structure of the ultraviolet lamp 11 has been described as being the same as the structure of the ultraviolet lamp 11 shown in FIG. 1, but in this case, as a mechanism for removing bubbles generated in the circulation system, a pipe 40 is used. And the shape of the outer tube 102 of the ultraviolet lamp 11 provide a more effective structure. However, in this modification, it is only necessary to have at least the shape of the pipe 40. For example, instead of the ultraviolet lamp 11, a conventional ultraviolet lamp may be used.

本発明は、冷却機構を有する紫外線照射装置を備えた半導体製造装置、及び該半導体製造装置を用いた半導体装置の製造方法にとって有用である。   The present invention is useful for a semiconductor manufacturing apparatus including an ultraviolet irradiation device having a cooling mechanism and a semiconductor device manufacturing method using the semiconductor manufacturing apparatus.

10 紫外線ランプユニット
11 紫外線ランプ
12 紫外線照射板
20 真空室
21 半導体基板
22 基板支持台
30 石英ガラス
40 配管
40a 配管の部分
50 温度調節機
60 ポンプ
70 紫外線ランプ制御電源
80 電源ケーブル
101 紫外線発光部
102 外套管
103 冷媒が満たされる空間
104 冷媒流入口
105 冷媒流出口
201 半導体基板
202 絶縁膜
203 バリアメタル膜
204 配線用導電膜
205 配線
206 ライナー絶縁膜
207 絶縁膜
207a 空孔形成材(ポロジェン)
207b 空孔
208 バリアメタル膜
209 配線用導電膜
210 配線
211 ビア
3r1 ビアホール
3r2 配線溝
DESCRIPTION OF SYMBOLS 10 Ultraviolet lamp unit 11 Ultraviolet lamp 12 Ultraviolet irradiation board 20 Vacuum chamber 21 Semiconductor substrate 22 Substrate support stand 30 Quartz glass 40 Piping 40a Piping part 50 Temperature controller 60 Pump 70 Ultraviolet lamp control power supply 80 Power cable 101 Ultraviolet light emission part 102 Jacket Pipe 103 Space 104 filled with refrigerant Refrigerant inlet 105 Refrigerant outlet 201 Semiconductor substrate 202 Insulating film 203 Barrier metal film 204 Wiring conductive film 205 Wiring 206 Liner insulating film 207 Insulating film 207a Pore forming material (porogen)
207b Hole 208 Barrier metal film 209 Wiring conductive film 210 Wiring 211 Via 3r1 Via hole 3r2 Wiring groove

Claims (16)

紫外線発光部と、
前記紫外線発光部との間に空間が形成されるように、前記紫外線発光部を覆うように配置された外套管とを備えており、
前記外套管は、
冷却媒体が前記空間の内部に流入する流入口と、
前記冷却媒体が前記空間の外部に流出する流出口とを有し、
前記流出口近傍における前記外套管の内壁の上部高さは、前記流入口近傍における前記外套管の内壁の上部高さよりも大きい、半導体製造装置。
An ultraviolet light emitter,
An outer tube disposed so as to cover the ultraviolet light emitting part so that a space is formed between the ultraviolet light emitting part and
The outer tube is
An inlet through which the cooling medium flows into the space;
An outlet through which the cooling medium flows out of the space;
The semiconductor manufacturing apparatus, wherein an upper height of an inner wall of the outer tube in the vicinity of the outlet is greater than an upper height of an inner wall of the outer tube in the vicinity of the inlet.
請求項1に記載の半導体製造装置において、
前記外套管の内壁の上部高さは、前記流入口近傍から前記流出口近傍に向かって徐々に高くなっている、半導体製造装置。
The semiconductor manufacturing apparatus according to claim 1,
The upper part of the inner wall of the mantle tube is a semiconductor manufacturing apparatus that gradually increases from the vicinity of the inlet to the vicinity of the outlet.
請求項1又は2に記載の半導体製造装置において、
前記外套管の内壁は、前記流入口近傍から前記流出口近傍に向かって傾斜している、半導体製造装置。
In the semiconductor manufacturing apparatus according to claim 1 or 2,
The semiconductor manufacturing apparatus, wherein an inner wall of the outer tube is inclined from the vicinity of the inlet to the vicinity of the outlet.
請求項1〜3のうちのいずれか1項に記載の半導体製造装置において、
前記流入口近傍における前記外套管の内壁の少なくとも上部の厚さは、前記流出口近傍における前記外套管の内壁の少なくとも上部の厚さよりも大きい、半導体製造装置。
The semiconductor manufacturing apparatus according to any one of claims 1 to 3,
The semiconductor manufacturing apparatus, wherein a thickness of at least an upper portion of the inner wall of the outer tube in the vicinity of the inflow port is larger than a thickness of at least an upper portion of the inner wall of the outer tube in the vicinity of the outflow port.
請求項4に記載の半導体製造装置において、
前記外套管の内壁の厚さは、その厚さ方向において均一である、半導体製造装置。
The semiconductor manufacturing apparatus according to claim 4,
The semiconductor manufacturing apparatus, wherein the inner wall of the outer tube has a uniform thickness in the thickness direction.
請求項1〜5のうちのいずれか1項に記載の半導体製造装置において、
前記流入口近傍における前記外套管の内径は、前記流出口近傍における前記外套管の内径よりも小さい、半導体製造装置。
In the semiconductor manufacturing apparatus of any one of Claims 1-5,
The semiconductor manufacturing apparatus, wherein an inner diameter of the outer tube in the vicinity of the inlet is smaller than an inner diameter of the outer tube in the vicinity of the outlet.
請求項1〜6のうちのいずれか1項に記載の半導体製造装置において、
前記流入口は、前記外套管の長さ方向に対して垂直上方向に配置されている、半導体製造装置。
In the semiconductor manufacturing apparatus of any one of Claims 1-6,
The semiconductor manufacturing apparatus, wherein the inflow port is arranged vertically upward with respect to the length direction of the outer tube.
請求項1〜7のうちのいずれか1項に記載の半導体製造装置において、
前記流出口は、前記外套管の長さ方向に対して垂直上方向に配置されている、半導体製造装置。
In the semiconductor manufacturing apparatus of any one of Claims 1-7,
The semiconductor manufacturing apparatus, wherein the outflow port is arranged vertically upward with respect to the length direction of the outer tube.
請求項1〜8のうちのいずれか1項に記載の半導体製造装置において、
前記外套管は、円筒形状である、半導体製造装置。
In the semiconductor manufacturing apparatus of any one of Claims 1-8,
The outer tube is a semiconductor manufacturing apparatus having a cylindrical shape.
請求項1〜9のうちのいずれか1項に記載の半導体製造装置において、
前記外套管と前記紫外線発光部との間に形成された前記空間は、水からなる前記冷却媒体で満たされている、半導体製造装置。
In the semiconductor manufacturing apparatus of any one of Claims 1-9,
The semiconductor manufacturing apparatus, wherein the space formed between the outer tube and the ultraviolet light emitting part is filled with the cooling medium made of water.
請求項1〜10のうちのいずれか1項に記載の半導体製造装置を用いた半導体装置の製造方法であって、
半導体基板上に絶縁膜を形成する工程(a)と、
前記絶縁膜に紫外線を照射する工程(b)とを備える、半導体装置の製造方法。
A method for manufacturing a semiconductor device using the semiconductor manufacturing apparatus according to claim 1,
Forming an insulating film on the semiconductor substrate (a);
And (b) irradiating the insulating film with ultraviolet rays.
請求項11に記載の半導体装置の製造方法であって、
前記工程(a)における前記絶縁膜は、比誘電率が3.0以下の膜からなる、半導体装置の製造方法。
A method for manufacturing a semiconductor device according to claim 11, comprising:
The method for manufacturing a semiconductor device, wherein the insulating film in the step (a) is a film having a relative dielectric constant of 3.0 or less.
請求項11又は12に記載の半導体装置の製造方法であって、
前記工程(a)における前記絶縁膜は、空孔形成材を含有し、
前記工程(b)は、前記絶縁膜から前記空孔形成材を除去する工程を含む、半導体装置の製造方法。
A method of manufacturing a semiconductor device according to claim 11 or 12,
The insulating film in the step (a) contains a pore forming material,
The step (b) is a method of manufacturing a semiconductor device, including a step of removing the hole forming material from the insulating film.
請求項11〜13のうちのいずれか1項に記載の半導体装置の製造方法であって、
前記工程(b)により、前記絶縁膜の膜強度が高くなる、半導体装置の製造方法。
It is a manufacturing method of the semiconductor device according to any one of claims 11 to 13,
A method of manufacturing a semiconductor device, wherein the film strength of the insulating film is increased by the step (b).
紫外線発光部と、
前記紫外線発光部との間に空間が形成されるように、前記紫外線発光部を覆うように配置された外套管とを備えており、
前記外套管は、
冷却媒体が前記空間の内部に流入する流入口と、
前記冷却媒体が前記空間の外部に流出する流出口とを有し、
前記外套管と前記紫外線発光部との間に形成された前記空間内を流れる前記冷却媒体中の気泡を除去する気泡除去手段を有する、半導体製造装置。
An ultraviolet light emitter,
An outer tube disposed so as to cover the ultraviolet light emitting part so that a space is formed between the ultraviolet light emitting part and
The outer tube is
An inlet through which the cooling medium flows into the space;
An outlet through which the cooling medium flows out of the space;
A semiconductor manufacturing apparatus comprising bubble removing means for removing bubbles in the cooling medium flowing in the space formed between the outer tube and the ultraviolet light emitting section.
請求項15に記載の半導体製造装置を用いた半導体装置の製造方法であって、
半導体基板上に絶縁膜を形成する工程(a)と、
前記絶縁膜に紫外線を照射する工程(b)とを備える、半導体装置の製造方法。
A method for manufacturing a semiconductor device using the semiconductor manufacturing apparatus according to claim 15, comprising:
Forming an insulating film on the semiconductor substrate (a);
And (b) irradiating the insulating film with ultraviolet rays.
JP2009232185A 2009-10-06 2009-10-06 Semiconductor manufacturing device and method of manufacturing semiconductor device using the same Pending JP2011082288A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009232185A JP2011082288A (en) 2009-10-06 2009-10-06 Semiconductor manufacturing device and method of manufacturing semiconductor device using the same
PCT/JP2010/002669 WO2011043009A1 (en) 2009-10-06 2010-04-13 Semiconductor manufacturing device and method for manufacturing semiconductor device using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009232185A JP2011082288A (en) 2009-10-06 2009-10-06 Semiconductor manufacturing device and method of manufacturing semiconductor device using the same

Publications (1)

Publication Number Publication Date
JP2011082288A true JP2011082288A (en) 2011-04-21

Family

ID=43856495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009232185A Pending JP2011082288A (en) 2009-10-06 2009-10-06 Semiconductor manufacturing device and method of manufacturing semiconductor device using the same

Country Status (2)

Country Link
JP (1) JP2011082288A (en)
WO (1) WO2011043009A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114875474A (en) * 2021-01-21 2022-08-09 陕西铟杰半导体有限公司 Protection device for semiconductor material production

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430763Y2 (en) * 1986-11-22 1992-07-24
JP3972126B2 (en) * 2004-05-28 2007-09-05 独立行政法人産業技術総合研究所 Ultraviolet generation source, ultraviolet irradiation processing apparatus and semiconductor manufacturing apparatus
US7763869B2 (en) * 2007-03-23 2010-07-27 Asm Japan K.K. UV light irradiating apparatus with liquid filter
JP4947370B2 (en) * 2007-09-05 2012-06-06 ウシオ電機株式会社 UV light source device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114875474A (en) * 2021-01-21 2022-08-09 陕西铟杰半导体有限公司 Protection device for semiconductor material production

Also Published As

Publication number Publication date
WO2011043009A1 (en) 2011-04-14

Similar Documents

Publication Publication Date Title
JP5173863B2 (en) Semiconductor device and manufacturing method thereof
CN1298045C (en) Electronic device manufacturing method
JP7454668B2 (en) Package core assembly and manufacturing method
US20040099951A1 (en) Air gap interconnect structure and method
JP2009530871A (en) Method for etching a dielectric barrier layer with high selectivity
CN1783479A (en) Interconnection structure and its forming method
US20110101492A1 (en) Semiconductor device having thermally formed air gap in wiring layer and method of fabricating same
JP2007523465A (en) Method for manufacturing substrate having porous dielectric layer and air gap, and substrate
US20070224827A1 (en) Methods for etching a bottom anti-reflective coating layer in dual damascene application
JP4555320B2 (en) Low dielectric constant insulating film damage recovery method and semiconductor device manufacturing method
US20160049365A1 (en) Interconnect structure
JP4567587B2 (en) Manufacturing method of semiconductor device
JP4419025B2 (en) Manufacturing method of semiconductor device
JP5232455B2 (en) Two-step etching of the bottom anti-reflection coating layer in dual damascene applications
US9130018B2 (en) Plasma etching method and storage medium
JP5147751B2 (en) Manufacturing method of semiconductor device
WO2011043009A1 (en) Semiconductor manufacturing device and method for manufacturing semiconductor device using same
US9004914B2 (en) Method of and apparatus for active energy assist baking
JP2010245235A (en) Semiconductor device, and manufacturing method of the same
JP5470687B2 (en) Silicon compound, ultraviolet absorber, multilayer wiring device manufacturing method, and multilayer wiring device
KR100877095B1 (en) Method of fabricating interconnection in semicondutor device
CN1571624A (en) Miniature circulating flow passage system and manufacturing method thereof
JP2011124351A (en) Semiconductor device and method for manufacturing same
JP2010245562A (en) Method for recovering damage of low dielectric constant insulating film and method for manufacturing semiconductor device
JP2010050118A (en) Semiconductor device, and method for manufacturing the same