JP2011080155A - Aluminum alloy sheet for can body having satisfactory bottom wrinkle property - Google Patents

Aluminum alloy sheet for can body having satisfactory bottom wrinkle property Download PDF

Info

Publication number
JP2011080155A
JP2011080155A JP2010260597A JP2010260597A JP2011080155A JP 2011080155 A JP2011080155 A JP 2011080155A JP 2010260597 A JP2010260597 A JP 2010260597A JP 2010260597 A JP2010260597 A JP 2010260597A JP 2011080155 A JP2011080155 A JP 2011080155A
Authority
JP
Japan
Prior art keywords
strength
aluminum alloy
formability
rolling
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010260597A
Other languages
Japanese (ja)
Inventor
Satoru Suzuki
鈴木覚
Yasuyuki Takao
高尾康之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP2010260597A priority Critical patent/JP2011080155A/en
Publication of JP2011080155A publication Critical patent/JP2011080155A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy sheet for a can body which is improved in bottom wrinkle properties without impairing characteristics such as ironing formability, flange formability and the can body strength. <P>SOLUTION: The aluminum alloy sheet has a composition containing 0.8 to 1.5% Mg, 0.7 to 1.5% Mn, 0.05 to 0.25% Cu, 0.1 to 0.4% Si and 0.2 to 0.6% Fe, and further comprising 0.005 to 0.05% Ti, 0.0001 to 0.001% B and the balance Al with inevitable impurities, and in which the average of the r value in the final sheet stock is ≥0.75, and also, the in-plane anisotropy Δr of the r value lies in the range from -0.15 to +0.05, and elongation is ≥5%. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ボトムしわ性に優れたキャンボディ用アルミニウム合金板に関するものである。   The present invention relates to an aluminum alloy plate for a can body having excellent bottom wrinkling properties.

飲料缶等には通常アルミニウム合金板にDI(Draw&Ironing)成形を施して缶胴とし、これに缶蓋を巻き締めた2ピース缶が用いられている。前記アルミニウム合金板は例えばJIS3004合金鋳塊を均質化処理後、熱間圧延、焼鈍処理、冷間圧延、仕上げ焼鈍を施して製造される。更には脱脂、洗浄、潤滑油が塗布される。   For beverage cans and the like, a two-piece can is generally used in which an aluminum alloy plate is subjected to DI (Draw & Ironing) molding to form a can body, and a can lid is wound around the can body. The aluminum alloy plate is produced, for example, by homogenizing a JIS 3004 alloy ingot, followed by hot rolling, annealing, cold rolling, and finish annealing. Furthermore, degreasing, washing and lubricating oil are applied.

ところで缶胴用アルミニウム合金板には 1)低耳率 2)強度(耐圧強度、座屈強度) 3)成形性(しごき成形性、フランジ成形性、ボトムしわ性)が要求されている。例えば耳率が悪い材料はDI成形後のトリミングしろが増すだけではなく、DI成形時に耳の部分が一部引きちぎれてアルミ片として混入し、しごき時の割れ(破胴)を引き起こしたりする場合もある。また、強度が低すぎれば缶成形後の強度(缶体強度)が確保できず、例えば内容物による内圧上昇により缶が変形したり、巻き締め時の座屈を招いたりすることがある。成形性は缶の生産性に大きな影響を与えしごき成形性が不足するとDI成形時の割れ発生頻度が高くなり、生産性が低下する。フランジ成形性が不足すると成形時の割れによる生産性だけでなく、最悪巻き締め工程にて発生すると内容物の漏洩さえ起こす場合がある。ボトムしわ性が悪いとボトムしわが発生し、直接缶体としての機能を損なうものではなくても生産ライン上ではねられる事となり生産性が低下し、また、外観上好ましいものでもない。   By the way, aluminum alloy plates for can bodies are required to 1) low ear rate 2) strength (pressure strength, buckling strength) 3) formability (ironing formability, flange formability, bottom wrinkle property). For example, a material with a low ear ratio not only increases the trimming margin after DI molding, but also part of the ear part is torn off during DI molding and mixed as an aluminum piece, which may cause cracking (collapse) during ironing. is there. Further, if the strength is too low, strength after can molding (can strength) cannot be ensured, and for example, the can may be deformed due to an increase in internal pressure due to the contents, or buckling may be caused during winding. Formability has a great influence on the productivity of cans, and if the iron formability is insufficient, the frequency of cracking during DI molding increases and the productivity decreases. If the flange formability is insufficient, not only the productivity due to cracking at the time of molding, but also the content may leak even if it occurs in the worst winding process. If the bottom wrinkle is poor, the bottom wrinkle is generated, and even if it does not directly impair the function as a can body, it will be repelled on the production line, resulting in a decrease in productivity and an undesirable appearance.

近年では製缶技術の向上、材料の改善により高品質なものが高い生産性で製造できるようになってきているが更なるコストダウンのためゲージダウンの要求は高い。その場合もっとも問題になるのはボトムしわ性であり、ボトムしわの問題のない従来材のままゲージダウンを行なった場合でもしわが発生する事が十分考えられる。
これを改善するため例えば特許文献1では耐力と表面粗度を規定することでボトムしわを改善できるとしている。ただしこの場合強度の上限が限られているため高強度材には適用できない。またゲージダウンの際には耐圧強度確保の観点からあわせて高強度化が望まれるケースも十分に考えられる。そこで強度が高くてもボトムしわ性が良好な材料が望まれていた。
特開平3−215646号公報
In recent years, it has become possible to manufacture high quality products with high productivity by improving can manufacturing technology and materials, but the demand for gauge down is high for further cost reduction. In this case, the most serious problem is bottom wrinkle, and it is considered that wrinkles are generated even when the gauge is downed with a conventional material having no bottom wrinkle problem.
In order to improve this, for example, Patent Document 1 states that the bottom wrinkle can be improved by defining the proof stress and the surface roughness. However, in this case, since the upper limit of strength is limited, it cannot be applied to high-strength materials. In addition, when the gauge is down, there may be a case where a high strength is desired from the viewpoint of securing the pressure strength. Therefore, there has been a demand for a material having a high bottom wrinkling property even if the strength is high.
JP-A-3-215646

本発明の目的はしごき成形性、フランジ成形性、缶体強度等の特性を損なう事なくボトムしわ性を向上させた缶胴用アルミニウム合金板およびその製造方法の提供することを目的とする。   An object of the present invention is to provide an aluminum alloy plate for a can body and a method for producing the same, which have improved bottom wrinkle properties without impairing properties such as iron formability, flange formability, and can body strength.

上記課題を解決するために、鋭意研究の結果、発明者等は、合金成分範囲と熱間圧延条件と冷間圧延条件を規制し、最終板のr値を制御することによって、ボトムしわ性を向上させ、しごき成形性、フランジ成形性、缶強度を適正範囲内とできることを見出した。   In order to solve the above-mentioned problems, as a result of earnest research, the inventors controlled the r-value of the final sheet by regulating the alloy component range, hot rolling conditions and cold rolling conditions, and controlling the r value of the final plate. It has been found that iron moldability, flange moldability and can strength can be within the appropriate ranges.

すなわち、請求項1記載の発明は、Mg:0.8〜1.5%(質量%、以下同じ)、Mn:0.7〜1.5%、Cu:0.05〜0.25%、Si:0.1〜0.4%、Fe:0.2〜0.6%を含有し、更にTi:0.005〜0.05%,B:0.0001〜0.001%を含有し、残部Alと不可避不純物からなるアルミニウム合金板で、最終冷間圧延のラストパスを120℃以上の高温で仕上げた最終素板の、r値の平均が0.75以上、かつ、r値の面内異方性Δrが−0.15から+0.05の範囲内、伸びが5%以上である事を特徴とするボトムしわ性が良好なキャンボディ用アルミニウム合金板である。   That is, the invention according to claim 1 is Mg: 0.8-1.5% (mass%, the same shall apply hereinafter), Mn: 0.7-1.5%, Cu: 0.05-0.25%, Si: 0.1 to 0.4%, Fe: 0.2 to 0.6%, Ti: 0.005 to 0.05%, B: 0.0001 to 0.001% An average r value of 0.75 or more and an r value in-plane of the final base plate finished with a final pass of the final cold rolling at a high temperature of 120 ° C. or more with an aluminum alloy plate composed of the balance Al and inevitable impurities An aluminum alloy sheet for a can body having good bottom wrinkle, characterized in that anisotropy Δr is in a range of −0.15 to +0.05 and elongation is 5% or more.

本発明によれば、ボトムしわ性に優れ、かつしごき成形性、フランジ成形性、缶体強度が良好なキャンボディ用アルミニウム合金板が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the aluminum alloy plate for can bodies which is excellent in bottom wrinkle property, and is excellent in ironing formability, flange moldability, and can strength is obtained.

まず、合金成分の規制範囲について説明する。   First, the control range of alloy components will be described.

Mgは強度を付与するとともに熱延時に歪みを蓄えることにより再結晶粒を微細化させる元素であるが、0.8%未満では効果が十分ではなく、1.5%を超えると強度は上昇するもののしごき成形性、フランジ成形性が低下する。   Mg is an element that imparts strength and refines the recrystallized grains by accumulating strain during hot rolling, but if less than 0.8%, the effect is not sufficient, and if it exceeds 1.5%, the strength increases. The ironing formability and flange formability of things are reduced.

Mnは強度を付与すると共に晶出物を形成し、結晶粒の微細化に寄与すると共に、その中のAl12(Fe、Mn)Si相(α相)はしごき成形時にその固体潤滑作用により焼き付き防止に寄与する。添加量が0.7%未満ではその効果が十分ではなく、1.5%を超えると粗大な晶出物を形成し、逆にしごき成形性やフランジ成形性を悪化させる。 Mn imparts strength and forms a crystallized product, contributing to the refinement of crystal grains, and the Al 12 (Fe, Mn) 3 Si phase (α phase) therein has a solid lubricating action during iron forming. Contributes to preventing seizure. If the added amount is less than 0.7%, the effect is not sufficient, and if it exceeds 1.5%, a coarse crystallized product is formed, and on the contrary, the iron moldability and flange moldability are deteriorated.

Cuも強度を付与する元素であるが、添加量が0.05%未満ではその効果が無く、0.25%を超えると強度が上昇しすぎてしごき成形性やフランジ成形性、ボトムしわ性が低下する。   Cu is also an element that imparts strength, but if the added amount is less than 0.05%, there is no effect, and if it exceeds 0.25%, the strength increases excessively, and ironing formability, flange formability, and bottom wrinkle properties are reduced. descend.

SiはFe、Mn系晶出物をα相に変態させしごき成形性を向上させる元素であるが0.4%を超えると晶出物が粗大化し逆にしごき成形性やフランジ成形性が低下する。また、熱延中に微細に析出したα相が熱延終了後の再結晶を阻害し、熱延板を再結晶組織とすることが困難となる。熱延板を再結晶状態としないと強度が高くなり、耳率が悪化する。そのためしごき成形性、ボトムしわ性、が悪化する。通常の地金を使用すると0.1%未満とするのは困難である。   Si is an element that transforms Fe and Mn-based crystallized substances into an α phase to improve iron moldability. However, if it exceeds 0.4%, the crystallized substances become coarse and reversely iron moldability and flange formability deteriorate. . In addition, the α phase finely precipitated during hot rolling hinders recrystallization after the end of hot rolling, and it becomes difficult to make the hot rolled plate into a recrystallized structure. If the hot-rolled sheet is not recrystallized, the strength increases and the ear rate deteriorates. For this reason, ironing moldability and bottom wrinkle property are deteriorated. If ordinary bullion is used, it is difficult to make it less than 0.1%.

Feは前述の晶出物形成に寄与する元素であり、結晶粒の微細化、しごき成形性に寄与するが、0.6%を超えるとやはり晶出物が粗大化し、逆にしごき成形性、フランジ成形性、ボトムしわ性が低下する。通常の地金を使用すると0.2%未満とするのは困難である。   Fe is an element that contributes to the formation of the crystallized matter described above, and contributes to refinement of crystal grains and iron moldability. However, if it exceeds 0.6%, the crystallized substance becomes coarse, and conversely, iron moldability. Flange formability and bottom wrinkle properties are reduced. If normal bullion is used, it is difficult to make it less than 0.2%.

Ti及びBは鋳塊の結晶粒を均一微細化させる元素であるが、Ti:0.005%未満、B:0.0001%未満だとその効果は十分に得られず、Ti:0.1%、B:0.001%を超えると粗大な晶出物を形成し、しごき成形性を低下させ、缶側壁のピンホールを生じさせやすくなる。   Ti and B are elements that uniformly refine the crystal grains of the ingot. However, when Ti is less than 0.005% and B is less than 0.0001%, the effect cannot be sufficiently obtained. %, B: If it exceeds 0.001%, a coarse crystallized product is formed, the iron moldability is lowered, and pinholes on the side wall of the can are easily generated.

なお不純物については、本発明の効果が損なわれない程度であれば許容される。たとえばZnは1%以下、Cr、Zr、Vは0.1%以下であれば問題ない。   In addition, about an impurity, it will be accept | permitted if it is a grade which does not impair the effect of this invention. For example, there is no problem if Zn is 1% or less and Cr, Zr, and V are 0.1% or less.

次に特性について説明する。
r値の平均値を0.75以上としたのは、0.75未満ではボトムしわ性が悪化するからである。
r値の面内異方性Δrを−0.15から+0.05としたのは、このΔrは材料の異方性(耳率)と非常に大きな相関があり、Δrの絶対値が大きいほど絞りやネッキング加工時に耳を生じやすい。また、プラス側にはずれると0°位置の耳が極端に高くなるいわゆる2点耳となり、耳の上端部か切れてアルミ片がダイス内に混入し、しごき時に破胴の原因となる場合があるのでマイナス側より厳しい規制を必要とする。よってr値の面内異方性Δrは−0.15から+0.05とした。この範囲を外れるとしごき成形後のトリミングしろが増大したり、破胴の原因となるアルミ片がダイス内に混入したりしやすくなる。r値の制御のためには後述の製造工程、特に熱間仕上げ圧延の条件規制が重要である。
Next, characteristics will be described.
The reason why the average value of the r values is set to 0.75 or more is that the bottom wrinkle property is deteriorated if it is less than 0.75.
The reason why the in-plane anisotropy Δr of the r value is set to −0.15 to +0.05 is that this Δr has a very large correlation with the anisotropy (ear ratio) of the material, and the larger the absolute value of Δr is, Ears are easily generated during drawing and necking. In addition, if it shifts to the plus side, the ear at the 0 ° position becomes so high that it becomes a so-called two-point ear, and the upper end of the ear is cut off and an aluminum piece is mixed into the die, which may cause a broken case when ironing. So it requires stricter regulation than the minus side. Therefore, the in-plane anisotropy Δr of the r value is set to −0.15 to +0.05. If it is out of this range, the trimming margin after ironing will increase, and aluminum pieces that cause breakage will easily be mixed into the die. In order to control the r value, it is important to regulate the conditions of the manufacturing process described later, particularly hot finish rolling.

素板の伸びを5%以上としたのは、5%未満ではいかにr値を制御しようともボトムしわ性が悪化するからである。   The reason why the elongation of the base plate is 5% or more is that if it is less than 5%, the bottom wrinkle property deteriorates no matter how the r value is controlled.

これらr値の平均値、かつr値の面内異方性Δr、かつ伸びが同時に上記条件を満たした際にボトムしわ性、しごき成形性、フランジ成形性、耐圧強度等の特性が良好となる。   When the average value of these r values, the in-plane anisotropy Δr of the r values, and the elongation satisfy the above conditions at the same time, the properties such as bottom wrinkle property, iron forming property, flange formability, pressure strength, etc. are improved. .

次に本願発明をなすための好ましい製造工程について説明する。   Next, the preferable manufacturing process for making this invention is demonstrated.

均質化処理は過飽和に固溶した溶質元素を排出すると共に微細な析出物を整理し、熱延終了後に再結晶しやすくするため行なう。その範囲は580℃〜620℃の温度範囲で4hr以上が好ましい。その理由は、580℃未満または4hr未満ではその効果が十分ではなく、620℃を超えると局所的に融解する部分が発生し、表面品質が低下するからである。   Homogenization is performed to discharge solute elements that are supersaturated and to arrange fine precipitates so that they can be easily recrystallized after hot rolling. The range is preferably 580 ° C. to 620 ° C. and preferably 4 hours or more. The reason is that if the temperature is less than 580 ° C. or less than 4 hr, the effect is not sufficient, and if it exceeds 620 ° C., a part that locally melts is generated and the surface quality is deteriorated.

熱間圧延工程は熱延板の結晶粒微細化と最終板のr値の制御に重要な工程であり、r値については立方体方位と圧延集合組織を適度に発達させる必要がある。   The hot rolling process is an important process for crystal grain refinement of the hot-rolled sheet and control of the r value of the final sheet. For the r value, it is necessary to appropriately develop the cube orientation and the rolling texture.

熱間粗圧延の最終パスの前パスの圧下率を30%以下、最終パスの圧下率を40%以下とするのが好ましい。それぞれの圧下率を越えると熱間仕上げ圧延開始までの間に熱間粗圧延板の再結晶が進み粗圧延での歪みを仕上げ圧延に持ち込む量が少なくなり立方体方位が十分に成長せず、r値の平均値は高くてもΔrが−0.15よりマイナス側に外れてしまうためである。   It is preferable that the rolling reduction of the last pass of the hot rough rolling is 30% or less and the rolling reduction of the final pass is 40% or less. When the respective reduction ratios are exceeded, recrystallization of the hot rough rolled sheet proceeds until the start of hot finish rolling, and the amount of distortion caused by rough rolling is reduced into the finish rolling, and the cube orientation does not grow sufficiently. This is because even if the average value is high, Δr deviates from −0.15 to the minus side.

熱間粗圧延を施した後の熱間仕上げ圧延は3スタンド以上のタンデムで行なうのが望ましい。また、前述の立方体方位は圧延方向に長く引き伸ばされた立方体方位の結晶粒(キューブバンド)から核生成し成長するが、その際歪みをより蓄えた方がキューブバンドからの再結晶粒(立方体方位)の成長をより促進でき、結果としてより立方体方位の占める割合の大きい再結晶集合組織とすることができる。シングルミルの圧延機では歪みを多く蓄積できず立方体方位の成長が十分ではなくr値の平均値は高く出来てもΔrが−0.15よりマイナス側に外れてしまうためである。   The hot finish rolling after hot rough rolling is preferably performed in tandem of 3 stands or more. In addition, the above-mentioned cube orientation nucleates and grows from cube-oriented crystal grains (cube band) elongated in the rolling direction, but in this case, the more accumulated strain is the recrystallized grains (cube orientation) from the cube band. ) Can be further promoted, and as a result, a recrystallized texture having a larger proportion of the cubic orientation can be obtained. This is because a single mill rolling mill cannot accumulate a large amount of distortion, and the growth of the cube orientation is not sufficient, and even if the average value of the r value can be increased, Δr deviates from −0.15 to the minus side.

熱間仕上げ圧延の開始温度は400℃〜450℃とすることが好ましい。その理由は400℃未満では後述の熱間仕上げ圧延終了温度の望ましい範囲に入れる事が工業上困難となり、450℃を超えると熱間粗圧延板の再結晶が進み粗圧延での歪みを仕上げ圧延に持ち込む量が少なくなり立方体方位が十分に成長せず、r値の平均値は高くてもΔrが−0.15よりマイナス側に外れてしまうためである。   The start temperature of hot finish rolling is preferably 400 ° C to 450 ° C. The reason is that if it is less than 400 ° C, it is difficult to put it in the desired range of the finish temperature of hot finish rolling described later, and if it exceeds 450 ° C, recrystallization of the hot rough rolled plate proceeds and finishes the distortion in rough rolling. This is because the amount to be brought into the region is reduced and the cube orientation does not grow sufficiently, and even if the average value of the r value is high, Δr deviates from −0.15 to the minus side.

熱間仕上げ圧延の終了温度は320〜340℃とすることが好ましい。その理由は320℃未満では熱延板を再結晶状態とすることが出来ないためであり、340℃を超えると表面性状が悪化する。尚、熱延板の再結晶率は95%以上でないと強度が高くなり、耳率が悪化する。そのためしごき成形性、ボトムしわ性が悪化する。   The end temperature of hot finish rolling is preferably 320 to 340 ° C. The reason is that if it is less than 320 ° C., the hot-rolled sheet cannot be recrystallized. If it exceeds 340 ° C., the surface properties deteriorate. If the recrystallization rate of the hot-rolled sheet is not 95% or more, the strength is increased and the ear rate is deteriorated. For this reason, ironing moldability and bottom wrinkle properties are deteriorated.

熱間仕上げ圧延での総圧下量を90〜93%とすることで、適度に立方体方位を形成することが出来る。90%未満では立方体方位の発達が不十分でΔrが悪化する。93%を超えると立方体方位が過度に発達し、r値の平均値が低下し、Δrもプラス側にはずれてしまうためである。   By setting the total reduction amount in the hot finish rolling to 90 to 93%, the cube orientation can be appropriately formed. If it is less than 90%, the cube orientation is insufficiently developed and Δr deteriorates. If it exceeds 93%, the cube orientation develops excessively, the average value of r values decreases, and Δr also shifts to the plus side.

熱間仕上げ圧延の最終パスでの歪み速度は立方体方位の発達とr値の平均値とΔrに影響するため、80〜120sec−1と規定する。歪み速度が80sec−1未満では立方体方位の発達が不十分でΔrが悪化する。120sec−1を超えると立方体方位が過度に発達し、r値の平均値が低下し、Δrもプラス側にはずれてしまうためである。 Since the strain rate in the final pass of hot finish rolling affects the development of the cube orientation, the average value of r values, and Δr, it is defined as 80 to 120 sec −1 . When the strain rate is less than 80 sec −1 , the cube orientation is not sufficiently developed and Δr is deteriorated. This is because, when exceeding 120 sec −1 , the cube orientation develops excessively, the average value of r values decreases, and Δr also shifts to the plus side.

最終冷間圧延率を85〜88%とするのが好ましい。それは、85%未満では最終板の強度が十分ではなく、缶体強度が低下する。88%を超えると素板強度が高くなりすぎ、しごき成形性が低下し、さらにボトムしわ性が低下するためである。   The final cold rolling rate is preferably 85 to 88%. If it is less than 85%, the strength of the final plate is not sufficient, and the strength of the can body decreases. If the content exceeds 88%, the base plate strength becomes too high, the ironing formability is lowered, and the bottom wrinkle property is further lowered.

最終冷間圧延のラストパスを120℃以上の高温で仕上げ、仕上げ焼鈍を省略することによって、材料が回復し、素板伸び5%以上が達成できる。また、コスト的にはやや不利になるが最終冷間圧延後に120〜160℃の仕上げ焼鈍を施しても良い。   By finishing the last cold rolling last pass at a high temperature of 120 ° C. or higher and omitting the finish annealing, the material can be recovered and a base plate elongation of 5% or more can be achieved. Further, although it is somewhat disadvantageous in terms of cost, finish annealing at 120 to 160 ° C. may be performed after the final cold rolling.

以下実施例を用いて本発明を具体的に説明する。
表1に示す合金成分を常法により溶解鋳造して厚さ500mmのスラブ(板状鋳塊)を得た。次にこのスラブを490mmの厚さに面削し、ついで均質化処理(600℃×4時間)とシングルリバースミルによる熱間粗圧延(開始温度480℃)を順に施し、ついで4スタンドのタンデム圧延機を用いて熱間仕上げ圧延を行なった。続いて常法により冷間圧延をして厚さ0.285mmの冷延板を得た。これに150℃で2時間の最終焼鈍を施して最終板とした。
The present invention will be specifically described below with reference to examples.
The alloy components shown in Table 1 were melted and cast by a conventional method to obtain a slab (plate ingot) having a thickness of 500 mm. Next, the slab is chamfered to a thickness of 490 mm, followed by homogenization (600 ° C. × 4 hours) and hot rough rolling (starting temperature 480 ° C.) using a single reverse mill, followed by 4 stands of tandem rolling. Hot finish rolling was performed using a machine. Subsequently, cold rolling was performed by a conventional method to obtain a cold rolled sheet having a thickness of 0.285 mm. This was subjected to final annealing at 150 ° C. for 2 hours to obtain a final plate.

以上の工程について表2にまとめる。   The above steps are summarized in Table 2.

Figure 2011080155
Figure 2011080155

Figure 2011080155
Figure 2011080155

このようにして得られた合金板について引張試験、耳率、r値、ボトムしわ性、しごき成形性、フランジ成形性、耐圧強度を測定した。各特性の測定・判定方法を以下に示す。   The alloy plate thus obtained was measured for tensile test, ear rate, r value, bottom wrinkle property, iron formability, flange formability, and pressure strength. The measurement / judgment method for each characteristic is shown below.

引張試験:各方向のJIS5号試験片を作製し、200℃×15minの加熱前後の引張強さ、耐力、伸び等を測定し、それぞれの平均値を求めた。   Tensile test: JIS No. 5 test pieces in each direction were prepared, and the tensile strength, proof stress, elongation, and the like before and after heating at 200 ° C. for 15 minutes were measured, and the average value of each was determined.

耳率:前記合金板から57mmφのブランク径で直径33mm、肩R2.5mmのポンチを用いてしわ押さえ力300kgfの条件で行なった。計算式は 耳率(%)=(山平均−谷平均)/谷平均×100 とし、符号は最大山が45°位置の時マイナス、0°または90°のときプラスで表記した。耳率はマイナス耳なら2.5%以内、プラス耳の場合は2点耳の問題がるため1%以内とする必要がある。   Ear rate: A blank diameter of 57 mmφ, a diameter of 33 mm, and a shoulder R of 2.5 mm were punched from the alloy plate under the condition of a wrinkle pressing force of 300 kgf. The calculation formula was ear ratio (%) = (peak average−valley average) / valley average × 100, and the sign was expressed as minus when the maximum peak was at 45 °, and plus when 0 ° or 90 °. The ear rate is within 2.5% for the minus ear, and within 2% for the plus ear, it must be within 1%.

r値は各方向のJIS5号試験片を作製し、これに引張方向と垂直にけがき線をいれ3%の引張歪みを加えた後の幅変化から計算した。   The r value was calculated from the change in width after a JIS No. 5 test piece was prepared in each direction, a marking line was made perpendicular to the tensile direction, and a tensile strain of 3% was applied.

ボトムしわ性:一次絞りカップを成形後、ボディメーカーにて再絞り、しごき加工を行なう際、しごきダイスをはずした状態で成形を行い再絞りカップを採取し、その再絞りカップのテーパー部の起伏を形状測定機にて測定し、その最大振幅にて評価した。振り幅200μm以下を○、200μmを超えたものを×とした。   Bottom wrinkle: After forming the primary drawn cup, when redrawing and ironing at the body maker, forming with the ironing die removed, collecting the redrawn cup, and raising and lowering the taper part of the redrawn cup Was measured with a shape measuring machine and evaluated at its maximum amplitude. A swing width of 200 μm or less was marked with ◯, and a width exceeding 200 μm was marked with ×.

しごき成形性は内径66mmとなるようにDI成形し、3000缶の製缶で全く缶切れしないものを○、連続製缶できるものの、1缶以上缶切れしたもの、または缶切れしなくともしごきダイスにアルミがやきついてゴーリングのような外観不良を起こしたものを△、缶切れが多発し、全く連続製缶できないものを×とした。尚×の場合はサンプル缶の確保が難しく、その後の評価を行なうことができない。   The iron moldability is DI-molded so that the inner diameter is 66 mm, and cans of 3000 cans that cannot be cut at all can be made continuously, but one or more cans can be cut, or even if the cans are not cut The case where the aluminum was too tight and caused an appearance defect such as goling was indicated by Δ, and the case where the can was frequently produced and could not be produced continuously was indicated as x. In the case of x, it is difficult to secure a sample can and subsequent evaluation cannot be performed.

フランジ成形性:前記成形したDI缶をトリミング、洗浄をほどこした後200℃×15min加熱し、ついで4段のネッキング加工を施して開口部径の内径dを57mmに縮小し、最後に角度90°の円錐状の治具をフランジ割れが発生するまで押し込み、割れの発生した時の開口部の径Dを測定し、開口部の径の増加率Pを
P=((D−d)/d)×100(%)
より算出し、Pが15%以上のものを○、15%未満のものを×とした。
Flange moldability: The molded DI can was trimmed, washed, heated at 200 ° C. for 15 minutes, then subjected to four stages of necking to reduce the inner diameter d of the opening to 57 mm, and finally an angle of 90 ° The conical jig is pushed in until flange cracking occurs, the diameter D of the opening when the crack occurs is measured, and the increase rate P of the opening diameter is P = ((D−d) / d) × 100 (%)
From the above, the case where P is 15% or more is indicated by ○, and the case where P is less than 15% is indicated by ×.

耐圧強度:DI成形した缶に200℃×15minのベークを施し、エアー式の耐圧試験機にてドーム成形したボトムがバックリングする圧力を測定した。圧力が6.5kgf/cm2以上のものを○、6.5kgf/cm2未満のものを×とした。   Pressure resistance: The DI molded can was baked at 200 ° C. for 15 minutes, and the pressure at which the bottom formed by the dome was buckled by an air type pressure resistance tester was measured. A sample having a pressure of 6.5 kgf / cm 2 or more was evaluated as “◯”, and a sample having a pressure of less than 6.5 kgf / cm 2 was evaluated as “X”.

結果を表3にまとめた。   The results are summarized in Table 3.

Figure 2011080155
Figure 2011080155

表3から明らかなようにNo.1からNo.7の本発明範囲内のものはしごき成形性、ボトムしわ性、フランジ成形性、耐圧強度が全て良好である。   As apparent from Table 3, No. 1 to No. Those within the scope of the present invention of No. 7 have good ironing formability, bottom wrinkle formability, flange formability, and pressure resistance.

一方、本発明範囲外の、
No.9はSi量が過多のため熱延板の再結晶率が低くなってしまい強度が高く、耳率も悪化している。そのためしごき成形性、トリミング性、ボトムしわ性が悪化している。
No.10はFe量が過多のためしごき成形性、ボトムしわ性、フランジ成形性が悪化している。
No.11はCu量が過多のためしごき成形性、ボトムしわ性、フランジ成形性が悪化している。
No.12はMn量過小のためしごき時にゴーリングが発生した。また、強度が不足し耐圧強度が悪化している。
No.13はMn量過多のためしごき成形性が極端に悪く、まともに製缶が出来なかった。
No.14はMg量が過小のため強度が不足し耐圧強度が悪化している。
No.15はMg量が過多のためしごき成形性が極端に悪く、まともに製缶が出来なかった。
No.16はTi,B量が過多のためしごき成形性が極端に悪く、まともに製缶が出来なかった。
No.17は均質化処理条件が不十分なため、熱間圧延後の再結晶率が低く、そのため強度が高く、耳率が悪化している。そのためしごき成形性、ボトムしわ性が悪化している。
No.18は熱間仕上げ圧延終了温度が低すぎて熱延板の再結晶率が低く、そのため強度が高く、耳率が悪化している。そのためしごき成形性、ボトムしわ性が悪化している。
No.19は熱間仕上げ圧延における総圧下量が高すぎて耳率、r値の平均が低めになりボトムしわ性がやや低下し、更にΔr、耳率がプラス側にシフトしプラス耳1%以内になっていない。
No.20は熱間仕上げ圧延における最終パスの歪み速度が高すぎて耳率、r値の平均が低めになりボトムしわ性がやや低下し、更にΔr、耳率がプラス側にシフトし、プラス耳1%以内に入っていない。
No.21は最終冷延率が低すぎて強度が低く座屈荷重が低下している。
No.22は最終冷延率が高すぎて強度が高くなり、しごき成形性、ボトムしわ性が悪化している。
No.23は冷間圧延の最終パス終了温度が低すぎて素板の伸びが低くボトムしわ性が悪化している。
On the other hand, outside the scope of the present invention,
No. In No. 9, since the Si amount is excessive, the recrystallization rate of the hot-rolled sheet is lowered, the strength is high, and the ear rate is also deteriorated. Therefore, ironing formability, trimming properties, and bottom wrinkle properties are deteriorated.
No. No. 10 has an excessive amount of Fe, and iron formability, bottom wrinkle property, and flange formability are deteriorated.
No. No. 11 has an excessive amount of Cu, and ironing formability, bottom wrinkling property, and flange formability are deteriorated.
No. In No. 12, goling occurred at the time of ironing because the amount of Mn was too small. Further, the strength is insufficient and the pressure strength is deteriorated.
No. No. 13 was extremely poor in ironing moldability due to an excessive amount of Mn and could not be made properly.
No. In No. 14, since the amount of Mg is too small, the strength is insufficient and the pressure resistance is deteriorated.
No. No. 15 was extremely poor in ironing moldability due to an excessive amount of Mg and could not be made properly.
No. No. 16 was extremely poor in ironing moldability due to excessive amounts of Ti and B, and could not be made properly.
No. No. 17 has insufficient homogenization treatment conditions, so the recrystallization rate after hot rolling is low, so the strength is high and the ear rate is deteriorated. For this reason, ironing moldability and bottom wrinkle property are deteriorated.
No. No. 18 has a hot finish rolling end temperature that is too low and the recrystallization rate of the hot-rolled sheet is low, so that the strength is high and the ear rate is deteriorated. For this reason, ironing moldability and bottom wrinkle property are deteriorated.
No. In No. 19, the total reduction amount in hot finish rolling is too high, and the average of the ear ratio and r value is lowered, and the bottom wrinkle is slightly lowered. is not.
No. In No. 20, the distortion rate of the final pass in the hot finish rolling is too high, and the average of the ear rate and r value is lowered, the bottom wrinkle is slightly lowered, and Δr and the ear rate are shifted to the plus side. Not within%.
No. In No. 21, the final cold rolling rate is too low, the strength is low, and the buckling load is reduced.
No. No. 22 has a too high final cold rolling ratio and high strength, and the ironing formability and the bottom wrinkle property are deteriorated.
No. In No. 23, the final pass end temperature of the cold rolling is too low, the elongation of the base plate is low, and the bottom wrinkle property is deteriorated.

Claims (1)

Mg:0.8〜1.5%(質量%、以下同じ)、Mn:0.7〜1.5%、Cu:0.05〜0.25%、Si:0.1〜0.4%、Fe:0.2〜0.6%を含有し、更にTi:0.005〜0.05%,B:0.0001〜0.001%を含有し、残部Alと不可避不純物からなるアルミニウム合金板で、最終冷間圧延のラストパスを120℃以上の高温で仕上げた最終素板の、r値の平均が0.75以上、かつ、r値の面内異方性Δrが−0.15から+0.05の範囲内、伸びが5%以上である事を特徴とするボトムしわ性が良好なキャンボディ用アルミニウム合金板。   Mg: 0.8 to 1.5% (mass%, the same applies hereinafter), Mn: 0.7 to 1.5%, Cu: 0.05 to 0.25%, Si: 0.1 to 0.4% , Fe: 0.2 to 0.6%, further Ti: 0.005 to 0.05%, B: 0.0001 to 0.001%, the balance being aluminum and inevitable impurities An average r value of 0.75 and an in-plane anisotropy Δr of r value from −0.15 of a final base plate finished with a final cold rolling last pass at a high temperature of 120 ° C. or higher. An aluminum alloy plate for a can body with good bottom wrinkle, characterized in that the elongation is 5% or more within a range of +0.05.
JP2010260597A 2010-11-22 2010-11-22 Aluminum alloy sheet for can body having satisfactory bottom wrinkle property Pending JP2011080155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010260597A JP2011080155A (en) 2010-11-22 2010-11-22 Aluminum alloy sheet for can body having satisfactory bottom wrinkle property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010260597A JP2011080155A (en) 2010-11-22 2010-11-22 Aluminum alloy sheet for can body having satisfactory bottom wrinkle property

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005235100A Division JP2007051307A (en) 2005-08-15 2005-08-15 Aluminum alloy sheet for can body having excellent bottom wrinkle property, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2011080155A true JP2011080155A (en) 2011-04-21

Family

ID=44074474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010260597A Pending JP2011080155A (en) 2010-11-22 2010-11-22 Aluminum alloy sheet for can body having satisfactory bottom wrinkle property

Country Status (1)

Country Link
JP (1) JP2011080155A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064290A1 (en) * 2013-10-30 2015-05-07 株式会社Uacj Aluminum alloy plate for can ends, and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064290A1 (en) * 2013-10-30 2015-05-07 株式会社Uacj Aluminum alloy plate for can ends, and method for manufacturing same
JPWO2015064290A1 (en) * 2013-10-30 2017-03-09 株式会社Uacj Aluminum alloy plate for can end and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP3913260B1 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent neck formability
JP5858208B1 (en) Steel plate for high-strength container and manufacturing method thereof
JP6336434B2 (en) Aluminum alloy plate for can body and manufacturing method thereof
JP5568031B2 (en) Aluminum alloy cold rolled sheet for bottle cans
JP2006291326A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
WO2016140054A1 (en) Aluminum alloy sheet for negative-pressure can lids
JP5449693B2 (en) Aluminum alloy cold-rolled plate for bottle can and method for producing the same
JP6405014B1 (en) Aluminum alloy plate for bottle can body and manufacturing method thereof
JP2017160521A (en) Manufacturing method of aluminum alloy sheet for beverage can body excellent in anisotropy and neck moldability and bottle can body excellent in anisotropy and bottle neck moldability
JP2004244701A (en) Aluminum alloy cold rolled sheet for can barrel, and aluminum alloy hot rolled sheet to be used as the stock therefor
JP6912886B2 (en) Aluminum alloy plate for beverage can body and its manufacturing method
JP2006283113A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JP2007051307A (en) Aluminum alloy sheet for can body having excellent bottom wrinkle property, and its manufacturing method
JP2009235475A (en) Aluminum alloy sheet for can body excellent in circularity of drawn cup, and method for producing the same
JP4460406B2 (en) Aluminum alloy plate for bottle can and manufacturing method thereof
JP7138396B2 (en) Aluminum alloy plate for can body and manufacturing method thereof
JP2006257470A (en) Method for manufacturing aluminum alloy sheet for can lid
JP2009242830A (en) Aluminum alloy sheet for bottle can and method for producing the same
JP5480688B2 (en) Aluminum alloy plate for PP cap and method for producing the same
JP2011080155A (en) Aluminum alloy sheet for can body having satisfactory bottom wrinkle property
JP4467443B2 (en) Method for producing aluminum alloy plate
JP6435268B2 (en) Aluminum alloy plate for can end and manufacturing method thereof
JP2001262261A (en) Aluminum alloy sheet for can barrel excellent in can bottom formability and its producing method
JP2017082277A (en) Manufacturing method of aluminum alloy sheet for beverage can body or beverage bottle can body excellent in anisotropy and neck moldability
KR102026001B1 (en) Steel sheet for crown cap, method for manufacturing steel sheet for crown cap, and crown cap

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20130927

Free format text: JAPANESE INTERMEDIATE CODE: A621

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20140128