JP2011080145A - Composite member - Google Patents

Composite member Download PDF

Info

Publication number
JP2011080145A
JP2011080145A JP2010202871A JP2010202871A JP2011080145A JP 2011080145 A JP2011080145 A JP 2011080145A JP 2010202871 A JP2010202871 A JP 2010202871A JP 2010202871 A JP2010202871 A JP 2010202871A JP 2011080145 A JP2011080145 A JP 2011080145A
Authority
JP
Japan
Prior art keywords
sic
composite member
composite
magnesium
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010202871A
Other languages
Japanese (ja)
Other versions
JP2011080145A5 (en
JP5503474B2 (en
Inventor
Isao Iwayama
功 岩山
Yoshihiro Nakai
由弘 中井
Taichiro Nishikawa
太一郎 西川
Yoshiyuki Takagi
義幸 高木
Toshiya Ikeda
利哉 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Allied Material Corp
Original Assignee
Sumitomo Electric Industries Ltd
Allied Material Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Allied Material Corp filed Critical Sumitomo Electric Industries Ltd
Priority to JP2010202871A priority Critical patent/JP5503474B2/en
Publication of JP2011080145A publication Critical patent/JP2011080145A/en
Publication of JP2011080145A5 publication Critical patent/JP2011080145A5/en
Application granted granted Critical
Publication of JP5503474B2 publication Critical patent/JP5503474B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite member which is suitable for a heat radiating member of a semiconductor element, to provide a method for producing the same, to provide the heat radiating member, and to provide a semiconductor device. <P>SOLUTION: The composite member is obtained by compounding magnesium or a magnesium alloy with nonmetal inorganic material such as SiC, comprises the SiC by >70 vol.%, and has a thermal expansion coefficient of 4 to 8 ppm/K and a thermal conductivity of ≥180 W/m.K. Since the composite member has excellent consistency with the thermal expansion coefficient of a semiconductor element, and further, has excellent heat radiating properties, it is suitably utilizable for the heat radiating member of a semiconductor element. In the nonmetal inorganic material, by utilizing a compact such as a sintered compact having a network part coupling the nonmetal inorganic material each other, the content of the nonmetal inorganic material in the composite member can be easily increased, and further, by the presence of the network part in the composite member, excellent heat properties can be exhibited. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、マグネシウム(いわゆる純マグネシウム)又はマグネシウム合金とSiCといった非金属無機材料とが複合された複合部材、この複合部材から構成される放熱部材、この放熱部材を具える半導体装置、及び複合部材の製造方法に関するものである。特に、熱特性に優れ、半導体素子の放熱部材に適した複合部材に関するものである。   The present invention relates to a composite member in which magnesium (so-called pure magnesium) or a magnesium alloy and a non-metallic inorganic material such as SiC are combined, a heat radiating member composed of the composite member, a semiconductor device including the heat radiating member, and a composite member It is related with the manufacturing method. In particular, the present invention relates to a composite member having excellent thermal characteristics and suitable for a heat dissipation member of a semiconductor element.

半導体素子の放熱部材(ヒートスプレッダ)の構成材料として、銅といった金属材料のみからなるものの他、Al-SiCといった、金属と非金属無機材料(代表的にはセラミックス)との複合材料が利用されている。近年、放熱部材の軽量化を主目的として、アルミニウム(Al)よりも軽量であるマグネシウム(Mg)やその合金を母材とする複合材料が検討されている(特許文献1参照)。   As a constituent material of a heat dissipation member (heat spreader) of a semiconductor element, a composite material of a metal and a non-metallic inorganic material (typically ceramics) such as Al-SiC is used in addition to a material made of only a metal material such as copper. . In recent years, a composite material using magnesium (Mg) or its alloy as a base material, which is lighter than aluminum (Al), has been studied mainly for the purpose of reducing the weight of the heat dissipation member (see Patent Document 1).

特開2006-299304号公報JP 2006-299304 A

半導体素子の放熱部材には、熱伝導性に優れると共に、半導体素子やその周辺部品の熱膨張係数(4ppm/K(4×10-6/K)〜8ppm/K(8×10-6/K)程度)との整合性に優れることが望まれる。即ち、特許文献1に開示される複合材料と同等以上の高い熱伝導性を有し、かつ半導体素子やその周辺部品の熱膨張係数に更に近い値、例えば、絶縁基板:約4.5ppm/Kやシリコンパッケージ:3.5ppm/Kに近い値を有する複合材料の開発が望まれる。 The heat dissipation member of the semiconductor element has excellent thermal conductivity, and the coefficient of thermal expansion of the semiconductor element and its peripheral components (4 ppm / K (4 × 10 -6 / K) to 8 ppm / K (8 × 10 -6 / K) It is desirable to have excellent consistency with That is, it has a thermal conductivity equal to or higher than that of the composite material disclosed in Patent Document 1, and is closer to the thermal expansion coefficient of the semiconductor element and its peripheral components, for example, an insulating substrate: about 4.5 ppm / K Silicon package: Development of a composite material having a value close to 3.5 ppm / K is desired.

上記複合材料の熱膨張係数を更に小さくするには、複合材料中の非金属無機材料の含有量を高めることが効果的である。しかし、例えば、非金属無機材料の粉末を鋳型に入れてタッピングをしたり(振動を与えたり)、鋳型に入れた後押圧したりして充填し、非金属無機材料の粒子間の隙間に溶融金属を溶浸させる製造方法では、鋳型に充填可能な粉末量に限界がある(特許文献1の明細書段落0015参照)。そのため、上記製造方法により得られた複合材料中の非金属無機材料の含有量は、高々70体積%である。   In order to further reduce the thermal expansion coefficient of the composite material, it is effective to increase the content of the nonmetallic inorganic material in the composite material. However, for example, the powder of a nonmetallic inorganic material is put into a mold and tapped (giving vibration), or after being put into the mold and pressed to be filled and melted in the gap between the particles of the nonmetallic inorganic material. In the manufacturing method in which metal is infiltrated, there is a limit to the amount of powder that can be filled in the mold (see paragraph 0015 of the specification of Patent Document 1). Therefore, the content of the nonmetallic inorganic material in the composite material obtained by the above production method is at most 70% by volume.

そこで、本発明の目的の一つは、半導体素子の放熱部材に適した熱特性を有する複合部材を提供することにある。また、本発明の他の目的は、上記複合部材の製造に適した複合部材の製造方法を提供することにある。更に、本発明の他の目的は、上記複合部材からなる放熱部材、及びこの放熱部材を具える半導体装置を提供することにある。   Accordingly, one of the objects of the present invention is to provide a composite member having thermal characteristics suitable for a heat dissipation member of a semiconductor element. Another object of the present invention is to provide a method for manufacturing a composite member suitable for manufacturing the composite member. Furthermore, the other object of this invention is to provide the heat radiating member which consists of the said composite member, and a semiconductor device provided with this heat radiating member.

本発明者らは、特定の方法により形成したSiC集合体を利用して、複合材料中のSiCの含有量を高めること、及びSiC集合体としてSiC同士を結合するネットワーク部を有するものを利用するなどして、上記ネットワーク部を有する複合材料とすることの少なくとも一方を満たすことで、複合材料の熱特性を向上することができるとの知見を得た。本発明は、上記知見に基づくものである。   The present inventors use a SiC aggregate formed by a specific method to increase the content of SiC in the composite material, and use a SiC aggregate having a network part for bonding SiC to each other. As a result, it was found that the thermal characteristics of the composite material can be improved by satisfying at least one of the composite materials having the network portion. The present invention is based on the above findings.

本発明の複合部材は、マグネシウム又はマグネシウム合金とSiCとが複合された複合部材であり、その熱膨張係数(線熱膨張係数)が4ppm/K以上8ppm/K以下である。特に、本発明複合部材は、以下の(1)及び(2)の少なくとも一方を満たす。
(1)上記SiCを70体積%超含有する。
(2)上記SiCを50体積%以上含有し、かつ上記SiC同士を結合するネットワーク部を有する。
The composite member of the present invention is a composite member in which magnesium or a magnesium alloy and SiC are combined, and the thermal expansion coefficient (linear thermal expansion coefficient) thereof is 4 ppm / K or more and 8 ppm / K or less. In particular, the composite member of the present invention satisfies at least one of the following (1) and (2).
(1) Contain more than 70% by volume of SiC.
(2) It contains 50% by volume or more of the SiC and has a network part for bonding the SiCs together.

本発明複合部材は、70体積%超といった非常に多くのSiCを含有したり、当該複合部材中のSiC集合体が上記ネットワーク部を有することで、従来の複合材料に比較して熱膨張係数が小さく、半導体素子やその周辺部品の熱膨張係数(4ppm/K〜8ppm/K程度)と同等程度の熱膨張係数を有することができる。特に、本発明複合部材は、SiCといったMgよりも熱伝導率が高い材質を主たる構成材料とすることで、熱伝導率が高い上に、マグネシウムといった金属により、熱伝導のための連続した経路(パス)が形成されるため、放熱性に優れる。このようにSiCといった非金属無機材料と金属材料との複合物である本発明複合部材は、半導体素子などに適合した低い熱膨張係数を有しながら放熱性にも優れ、半導体素子の放熱部材に好適に利用することができる。   The composite member of the present invention contains a very large amount of SiC such as more than 70% by volume, or the SiC aggregate in the composite member has the network part, so that the thermal expansion coefficient is higher than that of a conventional composite material. It is small and can have a thermal expansion coefficient equivalent to that of the semiconductor element and its peripheral components (about 4 ppm / K to 8 ppm / K). In particular, the composite member of the present invention is mainly composed of a material having a higher thermal conductivity than Mg, such as SiC, so that the thermal conductivity is high and a continuous path for heat conduction by a metal such as magnesium ( Since a path is formed, heat dissipation is excellent. As described above, the composite member of the present invention, which is a composite of a non-metallic inorganic material such as SiC and a metal material, has excellent heat dissipation while having a low coefficient of thermal expansion suitable for a semiconductor element. It can be suitably used.

一方、非金属無機材料だけで構成される部材では、通常、非金属無機材料間の隙間に気孔(空気)が存在し、上記熱伝導のための連続したパスが少ない。これに対し、本発明複合部材では、空気よりも熱伝導率が高いマグネシウムといった金属が上記隙間を埋めるため、複合部材の全体が熱伝導のための連続したパスとなり、熱伝導性に優れる。また、非金属無機材料から構成される部材には、相対密度が約99%といった緻密な焼結体が存在する。しかし、このような緻密な焼結体と本発明複合部材とを比較した場合であっても、マグネシウムといった金属を具える本発明複合部材は、上述のように(1)熱伝導のための連続したパスが多く、熱伝導率が高い、(2)マグネシウムなどの含有量や組成を調整することで熱膨張係数の調整が可能、(3)平滑な表面を得易いことから、Niなどのめっきを施したり、欠けを防止したりし易い、その他、(4)製造コストが低い、といった利点を有する。   On the other hand, in a member composed only of a nonmetallic inorganic material, there are usually pores (air) in the gaps between the nonmetallic inorganic materials, and there are few continuous paths for the heat conduction. On the other hand, in the composite member of the present invention, a metal such as magnesium having a higher thermal conductivity than air fills the gap, so that the entire composite member becomes a continuous path for heat conduction and is excellent in thermal conductivity. In addition, a dense sintered body having a relative density of about 99% exists in a member made of a nonmetallic inorganic material. However, even when such a dense sintered body is compared with the composite member of the present invention, the composite member of the present invention including a metal such as magnesium is (1) continuous for heat conduction as described above. The thermal expansion coefficient can be adjusted by adjusting the content and composition of magnesium, etc., and (3) it is easy to obtain a smooth surface. In addition, it has an advantage that it is easy to prevent chipping, and (4) the manufacturing cost is low.

また、本発明複合部材は、半導体素子やその周辺部品との熱膨張係数の整合性に優れることで、半導体素子などとの接合箇所に生じる熱応力が少なく、所定の接合強度を維持することができるため、放熱部材を含めた半導体装置の信頼性を高められる。更に、本発明複合部材は、上述のように熱伝導性に優れることから、放熱部材としての信頼性を高められる上に、放熱部材を小型にすることができ、引いては半導体装置の小型化にも寄与することができる。   In addition, the composite member of the present invention has excellent thermal expansion coefficient consistency with the semiconductor element and its peripheral parts, so that the thermal stress generated at the joint portion with the semiconductor element or the like is small, and a predetermined bonding strength can be maintained. Therefore, the reliability of the semiconductor device including the heat dissipation member can be improved. Furthermore, since the composite member of the present invention is excellent in thermal conductivity as described above, the reliability as a heat radiating member can be improved, and the heat radiating member can be reduced in size, which in turn reduces the size of the semiconductor device. Can also contribute.

上記本発明複合部材は、例えば、以下の本発明複合部材の製造方法により製造することができる。本発明の複合部材の製造方法は、マグネシウム又はマグネシウム合金とSiCとが複合された複合部材を製造するための方法であって、以下の成形工程及び複合工程を具える。以下、この製造方法をSiC高充填方法と呼ぶ。
成形工程:スリップキャスト、加圧成形、及びドクターブレード法のいずれか一つを用いてSiC集合体を形成する工程。
複合工程:鋳型に収納された上記SiC集合体に溶融したマグネシウム又はマグネシウム合金を大気圧以下の雰囲気で溶浸させ、上記SiCを70体積%超含有する複合部材を形成する工程。
The composite member of the present invention can be manufactured, for example, by the following manufacturing method of the composite member of the present invention. The method for producing a composite member of the present invention is a method for producing a composite member in which magnesium or a magnesium alloy and SiC are composited, and includes the following forming step and composite step. Hereinafter, this manufacturing method is referred to as a SiC high filling method.
Molding step: A step of forming a SiC aggregate using any one of slip casting, pressure molding, and doctor blade method.
Compounding step: a step of infiltrating molten magnesium or a magnesium alloy into the SiC aggregate housed in a mold in an atmosphere of atmospheric pressure or lower to form a compound member containing more than 70% by volume of SiC.

或いは、本発明の複合部材の製造方法として、マグネシウム又はマグネシウム合金とSiCとが複合された複合部材を製造するための方法であって、以下の成形工程、焼結工程、及び複合工程を具える方法が挙げられる。以下、この製造方法を焼結方法と呼ぶ。
成形工程:SiCの粉末成形体を形成する工程。
焼結工程:上記粉末成形体を焼結して、SiC同士を結合するネットワーク部を有するSiC集合体を形成する工程。
複合工程:鋳型に収納された上記SiC集合体に溶融したマグネシウム又はマグネシウム合金を大気圧以下の雰囲気で溶浸させ、上記ネットワーク部を有すると共に、上記SiCを50体積%以上含有する複合部材を形成する工程。
Alternatively, as a method for producing a composite member of the present invention, a method for producing a composite member in which magnesium or a magnesium alloy and SiC are composited, comprising the following forming step, sintering step, and composite step A method is mentioned. Hereinafter, this manufacturing method is called a sintering method.
Molding process: A process of forming a SiC powder compact.
Sintering step: a step of sintering the above powder compact to form a SiC aggregate having a network part for bonding SiC.
Composite step: Infiltrate molten magnesium or magnesium alloy in the SiC aggregate housed in the mold in an atmosphere of atmospheric pressure or lower to form a composite member having the network part and containing 50% by volume or more of SiC. Process.

或いは、本発明の複合部材の製造方法として、マグネシウム又はマグネシウム合金とSiCとが複合された複合部材を製造するための方法であって、以下の成形工程、結合工程、及び複合工程を具える方法が挙げられる。以下、この製造方法をゾルゲル方法と呼ぶ。
成形工程:SiCの粉末成形体を形成する工程。
結合工程:非金属無機材料の前駆体の溶液を上記粉末成形体に含浸させた後加熱して、上記前駆体に基づく非金属無機材料を生成し、この生成された非金属無機材料から構成されるネットワーク部により上記SiC同士が結合されたSiC集合体を形成する工程。
複合工程:鋳型に収納された上記SiC集合体に溶融したマグネシウム又はマグネシウム合金を大気圧以下の雰囲気で溶浸させ、上記ネットワーク部を有すると共に、上記SiCを50体積%以上含有する複合部材を形成する工程。
Alternatively, as a method for producing a composite member of the present invention, a method for producing a composite member in which magnesium or a magnesium alloy and SiC are composited, the method comprising the following forming step, bonding step, and composite step Is mentioned. Hereinafter, this production method is referred to as a sol-gel method.
Molding process: A process of forming a SiC powder compact.
Bonding step: The powder compact is impregnated with a solution of a precursor of a nonmetallic inorganic material and then heated to produce a nonmetallic inorganic material based on the precursor, which is composed of the produced nonmetallic inorganic material. Forming a SiC aggregate in which the SiC is bonded to each other by a network part.
Composite step: Infiltrate molten magnesium or magnesium alloy in the SiC aggregate housed in the mold in an atmosphere of atmospheric pressure or lower to form a composite member having the network part and containing 50% by volume or more of SiC. Process.

或いは、上記複合部材の別の製造方法として、マグネシウム又はマグネシウム合金とSiCとが複合された複合部材を製造するための方法であって、以下の成形工程、及び複合工程を具える方法が挙げられる。以下、この製造方法を反応結合方法と呼ぶ。
成形工程:SiC粉末と、ホウ素及び酸素の少なくとも1種を含有する反応用粉末との混合粉末を用いて、粉末成形体を形成する工程。
複合工程:鋳型に収納された上記粉末成形体に溶融したマグネシウム又はマグネシウム合金を大気圧以下の雰囲気で溶浸させる。かつ、上記反応用粉末と溶融したマグネシウム成分との反応により、新たな非金属無機材料からなる生成物を生成して上記SiC同士を結合する。そして、この新たな生成物から構成されるネットワーク部を有すると共に、上記SiCを50体積%以上含有する複合部材を形成する工程。
Alternatively, another method for producing the composite member is a method for producing a composite member in which magnesium or a magnesium alloy and SiC are composited, and includes the following forming step and a method including the composite step. . Hereinafter, this production method is referred to as a reaction bonding method.
Molding step: A step of forming a powder compact using a mixed powder of SiC powder and a reaction powder containing at least one of boron and oxygen.
Compounding process: Molten magnesium or magnesium alloy is infiltrated in an atmosphere of atmospheric pressure or less in the powder compact accommodated in the mold. In addition, a product made of a new nonmetallic inorganic material is generated by the reaction between the reaction powder and the molten magnesium component, and the SiC is bonded to each other. And the process of forming the composite member which has the network part comprised from this new product, and contains the said SiC 50 volume% or more.

或いは、上記複合部材の別の製造方法として、マグネシウム又はマグネシウム合金とSiCとが複合された複合部材を製造するための方法であって、以下の成形工程、焼結工程、及び複合工程を具える方法が挙げられる。以下、この製造方法を反応焼結方法と呼ぶ。
成形工程:SiC粉末と、窒素又は酸素と反応して酸化物又は窒化物を生成する前駆体粉末との混合粉末を用いて、粉末成形体を形成する工程。
焼結工程:窒素雰囲気又は酸素雰囲気で上記粉末成形体を焼結し、上記前駆体粉末と窒素又は酸素との反応により上記窒化物又は酸化物を生成する。そして、この生成物から構成されるネットワーク部により上記SiC同士が結合されたSiC集合体を形成する工程。
複合工程:鋳型に収納された上記SiC集合体に溶融したマグネシウム又はマグネシウム合金を大気圧以下の雰囲気で溶浸させ、上記ネットワーク部を有すると共に、上記SiCを50体積%以上含有する複合部材を形成する工程。
Alternatively, as another method for producing the composite member, a method for producing a composite member in which magnesium or a magnesium alloy and SiC are composited, comprising the following forming step, sintering step, and composite step A method is mentioned. Hereinafter, this manufacturing method is referred to as a reactive sintering method.
Molding step: A step of forming a powder compact using a mixed powder of SiC powder and a precursor powder that reacts with nitrogen or oxygen to produce an oxide or nitride.
Sintering step: The powder compact is sintered in a nitrogen atmosphere or an oxygen atmosphere, and the nitride or oxide is produced by a reaction between the precursor powder and nitrogen or oxygen. And the process of forming the SiC aggregate | assembly by which said SiC was couple | bonded by the network part comprised from this product.
Composite step: Infiltrate molten magnesium or magnesium alloy in the SiC aggregate housed in the mold in an atmosphere of atmospheric pressure or lower to form a composite member having the network part and containing 50% by volume or more of SiC. Process.

上記製造方法によれば、SiC集合体を特定の方法により形成したり、SiCの充填率を高めたSiC集合体、例えば焼結体を形成したりすることで、高密度なSiC集合体を容易に製造することができる。そして、このような高密度なSiC集合体と溶融したマグネシウム又はマグネシウム合金(以下、溶融Mgと呼ぶ)とを複合することで、SiCを70体積%超含有する本発明複合部材を容易に製造することができる。また、SiC同士を結合するネットワーク部を有するSiC集合体を形成したり、溶浸中に上記ネットワーク部を形成したりすることで、複合部材中に上記ネットワーク部が存在する本発明複合部材を容易に製造することができる。得られた複合部材は、熱膨張係数が4ppm/K〜8ppm/Kを満たす。   According to the above manufacturing method, a high-density SiC aggregate can be easily formed by forming a SiC aggregate by a specific method or by forming a SiC aggregate with a high SiC filling rate, for example, a sintered compact. Can be manufactured. Then, by combining such a high-density SiC aggregate and molten magnesium or a magnesium alloy (hereinafter referred to as molten Mg), the composite member of the present invention containing more than 70% by volume of SiC is easily manufactured. be able to. In addition, by forming a SiC aggregate having a network part for bonding SiC to each other or forming the network part during infiltration, the composite member of the present invention in which the network part is present in the composite member can be easily obtained. Can be manufactured. The obtained composite member satisfies a thermal expansion coefficient of 4 ppm / K to 8 ppm / K.

特に、上記焼結方法やゾルゲル方法によれば、上記SiC高充填方法と比較して、(1)上記ネットワーク部を有する複合部材が得られることで、熱膨張係数が小さく、かつ熱伝導率が高い複合部材が得られる、(2)SiCの含有量が更に多い複合部材を容易に製造できる、(3)上記ネットワーク部を有するSiC集合体は強度が高く、鋳型への配置などが容易である、といった利点を有する。また、上記焼結方法やゾルゲル方法において粉末成形体の形成を上記SiC高充填方法に既定する方法により行うことで、緻密なSiC集合体が得られ、このようなSiC集合体を利用することで、SiCの含有量が更に高く、熱特性に優れる複合部材が得られる。   In particular, according to the sintering method and the sol-gel method, compared to the SiC high filling method, (1) a composite member having the network part is obtained, so that the thermal expansion coefficient is small and the thermal conductivity is low. A high composite member can be obtained, (2) a composite member having a higher SiC content can be easily manufactured, and (3) the SiC aggregate having the above network part has high strength and is easy to place in a mold, etc. And so on. In addition, by forming the powder compact in the above-mentioned sintering method or sol-gel method by a method defined as the above SiC high filling method, a dense SiC aggregate can be obtained, and by using such a SiC aggregate, Further, a composite member having a higher SiC content and excellent thermal characteristics can be obtained.

特に、上記焼結方法では、SiC同士が直接結合されるように焼結する、即ちネットワーク部がSiCにより構成されるようにすると、複合部材中に存在する非金属無機材料が実質的にSiCのみとなる。SiCは、熱伝導率が特に高いことから、この複合部材は、熱伝導率が高い。   In particular, in the above sintering method, if the SiC is sintered so that the SiCs are directly bonded, that is, if the network part is made of SiC, the non-metallic inorganic material present in the composite member is substantially only SiC. It becomes. Since SiC has a particularly high thermal conductivity, this composite member has a high thermal conductivity.

特に、上記ゾルゲル方法では、前駆体の溶液が必要であるものの、上記焼結方法における焼結温度に比較して低温の加熱により、或いは溶液の種類によっては全く加熱することなく室温でネットワーク部を形成することができる。また、非金属無機材料の中でも熱伝導率が特に高いSiCが生成される前駆体を利用し、ネットワーク部がSiCにより構成されるようにすると、上述のように熱伝導率が高い複合部材が得られる。   In particular, the sol-gel method requires a solution of the precursor, but the network portion is formed at room temperature by heating at a low temperature compared to the sintering temperature in the sintering method or without heating at all depending on the type of the solution. Can be formed. In addition, using a precursor that produces SiC having a particularly high thermal conductivity among non-metallic inorganic materials and making the network part composed of SiC, a composite member having a high thermal conductivity as described above is obtained. It is done.

一方、上記反応結合方法では、焼結や別途加熱する工程を有することなく上記ネットワーク部を有する複合部材を容易に製造できる上に、SiC集合体と溶融Mgとの複合と同時にネットワーク部を生成できるため、複合部材の製造性にも優れる。上記反応焼結方法では、SiC同士を直接結合するように焼結する場合に比較して、焼結温度を低くしてもネットワーク部を生成することができる。なお、反応結合方法や反応焼結方法では、ネットワーク部がSiCよりも熱伝導率が低い非金属無機材料により構成されることがある。従って、熱伝導率の向上を考慮すると、上記焼結方法やゾルゲル方法が好ましい。   On the other hand, in the above-described reaction bonding method, the composite member having the network part can be easily manufactured without having a step of sintering or separately heating, and the network part can be generated simultaneously with the composite of the SiC aggregate and molten Mg. Therefore, it is excellent also in the productivity of a composite member. In the reaction sintering method described above, the network portion can be generated even when the sintering temperature is lowered as compared with the case of sintering so that SiCs are directly bonded to each other. In the reaction bonding method and reaction sintering method, the network part may be composed of a nonmetallic inorganic material having a lower thermal conductivity than SiC. Therefore, the above-described sintering method and sol-gel method are preferable in consideration of improvement in thermal conductivity.

その他、市販のSiC焼結体を用意し、このSiC焼結体に溶融Mgを溶浸させることでも、本発明複合部材を形成することができる。上記SiC焼結体は、複合部材中のSiCの含有量が50体積%以上となるものであって、複合部材中に存在し得るネットワーク部を有し、かつ溶融Mgが溶浸するための開気孔を有するものを適宜選択するとよい。   In addition, the composite member of the present invention can also be formed by preparing a commercially available SiC sintered body and infiltrating molten Mg into the SiC sintered body. The SiC sintered body has a SiC content in the composite member of 50% by volume or more, has a network portion that can exist in the composite member, and is open for molten Mg to infiltrate. What has a pore is good to choose suitably.

以下、本発明をより詳細に説明する。
[複合部材]
本発明複合部材の形態として、マグネシウム又はマグネシウム合金と、非金属無機材料(主としてSiC)とが複合された複合材料からなる基板のみの形態と、上記基板と、この基板の少なくとも一面を覆う金属被覆層とを具える形態とが挙げられる。まず、上記基板を説明する。
Hereinafter, the present invention will be described in more detail.
[Composite material]
As a form of the composite member of the present invention, a form of only a substrate made of a composite material in which magnesium or a magnesium alloy and a nonmetallic inorganic material (mainly SiC) are composited, the above-mentioned substrate, and a metal coating covering at least one surface of this substrate And a form having a layer. First, the substrate will be described.

<金属成分>
上記基板中の金属成分は、99.8質量%以上のMg及び不純物からなるいわゆる純マグネシウム、又は添加元素と残部がMg及び不純物からなるマグネシウム合金とする。上記金属成分が純マグネシウムである場合、合金である場合と比較して、(1)複合部材の熱伝導性を高められる、(2)凝固時に晶出物が不均一に析出するなどの不具合が生じ難いため、均一的な組織を有する複合部材を得易い、といった利点を有する。上記金属成分がマグネシウム合金であると、液相線温度が低下するため、溶融する際の温度を低下できる上に、複合部材の耐食性や機械的特性(強度など)を高められる。添加元素は、Li,Ag,Ni,Ca,Al,Zn,Mn,Si,Cu,及びZrの少なくとも1種が挙げられる。これらの元素は、含有量が多くなると熱伝導率の低下を招くため、合計で20質量%以下(当該金属成分を100質量%とする。以下、添加元素の含有量について同様)が好ましい。特に、Alは3質量%以下、Znは5質量%以下、その他の元素はそれぞれ10質量%以下が好ましい。Liを添加すると、複合部材の軽量化、及び加工性の向上の効果がある。公知のマグネシウム合金、例えば、AZ系,AS系,AM系,ZK系,ZC系,LA系などでもよい。所望の組成となるように金属原料を用意する。
<Metal component>
The metal component in the substrate is so-called pure magnesium composed of 99.8% by mass or more of Mg and impurities, or a magnesium alloy composed of additive elements and the balance Mg and impurities. When the metal component is pure magnesium, compared to the case of an alloy, (1) the thermal conductivity of the composite member can be improved, and (2) the crystallized product is deposited unevenly during solidification. Since it does not easily occur, there is an advantage that it is easy to obtain a composite member having a uniform structure. When the metal component is a magnesium alloy, the liquidus temperature is lowered, so that the temperature at the time of melting can be lowered and the corrosion resistance and mechanical properties (strength, etc.) of the composite member can be improved. Examples of the additive element include at least one of Li, Ag, Ni, Ca, Al, Zn, Mn, Si, Cu, and Zr. Since these elements cause a decrease in thermal conductivity when the content increases, the total content is preferably 20% by mass or less (the metal component is 100% by mass; the same applies to the content of the additive element). In particular, Al is preferably 3% by mass or less, Zn is 5% by mass or less, and other elements are each preferably 10% by mass or less. Addition of Li has the effect of reducing the weight of the composite member and improving the workability. Known magnesium alloys such as AZ, AS, AM, ZK, ZC, and LA may be used. A metal raw material is prepared so as to have a desired composition.

<非金属無機材料>
《組成》
上記基板中の非金属無機材料は、熱膨張係数がMgよりも小さく、熱伝導性に優れ、かつMgと反応し難いものが挙げられる。このような非金属無機材料として、SiCなどのセラミックスが代表的である。その他、Si3N4、Si、MgO、Mg3N2、Mg2Si、MgB2、MgCl2、Al2O3、AlN、CaO、CaCl2、ZrO2、ダイヤモンド、グラファイト、h-BN、c-BN、B4C、Y2O3、NaClの少なくとも1種が挙げられる。特に、SiCは、(1)熱膨張係数が3ppm/K〜4ppm/K程度であり半導体素子やその周辺部品の熱膨張係数に近い、(2)非金属無機材料の中でも熱伝導率が特に高い(単結晶:390W/m・K〜490W/m・K程度)、(3)種々の形状、大きさの粉末や焼結体が市販されている、(4)機械的強度が高い、といった点から、本発明では、SiCを採用する。本発明では、SiC以外の上記列記した非金属無機材料を含有することを許容する。即ち、上記複数種の非金属無機材料を含有していてもよい。SiC以外の非金属無機材料は、例えば、ネットワーク部として存在する。
<Non-metallic inorganic material>
"composition"
Examples of the non-metallic inorganic material in the substrate include those having a thermal expansion coefficient smaller than Mg, excellent thermal conductivity, and hardly reacting with Mg. As such a non-metallic inorganic material, a ceramic such as SiC is representative. Others, Si 3 N 4 , Si, MgO, Mg 3 N 2 , Mg 2 Si, MgB 2 , MgCl 2 , Al 2 O 3 , AlN, CaO, CaCl 2 , ZrO 2 , diamond, graphite, h-BN, c -At least one of BN, B 4 C, Y 2 O 3 , and NaCl is included. In particular, SiC has (1) a coefficient of thermal expansion of about 3 ppm / K to 4 ppm / K, which is close to the coefficient of thermal expansion of semiconductor elements and peripheral components, and (2) has a particularly high thermal conductivity among non-metallic inorganic materials. (Single crystal: about 390W / m · K to 490W / m · K), (3) Various shapes and sizes of powders and sintered bodies are commercially available, and (4) High mechanical strength Therefore, in the present invention, SiC is employed. In the present invention, it is allowed to contain the non-metallic inorganic materials listed above other than SiC. That is, you may contain the said multiple types of nonmetallic inorganic material. Non-metallic inorganic materials other than SiC exist as a network part, for example.

《形状》
本発明複合部材中のSiCは、代表的には、マグネシウムやマグネシウム合金中にばらばらに分散した形態(以下、分散形態と呼ぶ)、ネットワーク部により結合された形態(以下、結合形態と呼ぶ)で存在する。特に、ネットワーク部を有する結合形態では、SiCの全体がネットワーク部により連結されて連続し、SiC間にマグネシウムやマグネシウム合金が充填された形態、即ち、マグネシウムやマグシウム合金を除去した場合、開気孔を有する多孔質体であることが好ましい。特に、この多孔質体は、閉気孔が少ない、具体的には複合部材中の非金属無機材料の全体積に対して10体積%以下、好ましくは3体積%以下であることが好ましい。複合部材中の非金属無機材料は、原料に用いた非金属無機材料がほぼそのままの状態で存在する。従って、原料のSiC集合体として、上述のような閉気孔が少ない多孔質体を利用すると、溶融Mgが含浸するための経路を十分に有することができ、かつ、上記開気孔に溶融Mgが充填されることで、得られた複合部材自体も気孔が少なくなる。気孔が少ないことで、この複合部材は、熱伝導率が高くなる。複合部材(基板)が所定の形状となるように、原料の粉末を充填する金型の形状や、原料に利用する上記多孔質体の全体形状を適宜選択するとよい。複合部材中のネットワーク部の存在や閉気孔の割合は、例えば、当該複合部材の断面を光学顕微鏡や走査型電子顕微鏡(SEM)で観察することで確認したり、測定したりすることができる。
"shape"
The SiC in the composite member of the present invention is typically in a form dispersed in magnesium or a magnesium alloy (hereinafter referred to as a dispersed form) or in a form joined by a network portion (hereinafter referred to as a joined form). Exists. In particular, in a bonded form having a network part, the entire SiC is continuously connected by the network part, and a form in which SiC or magnesium alloy is filled between SiC, that is, when magnesium or magnesium alloy is removed, open pores are formed. It is preferable that it is a porous body. In particular, the porous body has less closed pores, specifically, 10% by volume or less, preferably 3% by volume or less, based on the total volume of the nonmetallic inorganic material in the composite member. As the nonmetallic inorganic material in the composite member, the nonmetallic inorganic material used as a raw material is present almost as it is. Therefore, if a porous body with few closed pores as described above is used as the raw material SiC aggregate, it can have a sufficient path for impregnation with molten Mg, and the open pores are filled with molten Mg. As a result, the resulting composite member itself has fewer pores. Due to the small number of pores, this composite member has a high thermal conductivity. The shape of the mold for filling the raw material powder and the overall shape of the porous body used for the raw material may be appropriately selected so that the composite member (substrate) has a predetermined shape. The presence of the network portion and the ratio of closed pores in the composite member can be confirmed or measured by, for example, observing a cross section of the composite member with an optical microscope or a scanning electron microscope (SEM).

《含有量》
上記複合材料からなる基板中のSiCの含有量は、この基板を100体積%とするとき、ネットワーク部を有する結合形態では、50体積%以上とし、ネットワーク部を有さない分散形態では、70体積%超とする。基板中のSiCの含有量が多いほど熱伝導率κが高まる上、熱膨張係数αが小さくなり易く、半導体素子(4ppm/K〜8ppm/K程度(例えば、Si:4.2ppm/K、GaAs:6.5ppm/K))やその周辺部品(絶縁基板:約4.5ppm/K、シリコンパッケージ:約3ppm/K、アルミナパッケージ:6.5ppm/K)の熱膨張係数に整合し易い。従って、SiCの含有量は、上記結合形態及び分散形態のいずれの形態においても、75体積%以上、特に80体積%以上、更に85体積%以上が好ましく、特に上限を設けない。SiCの含有量が90体積%を超えると、原料に用いる高密度のSiC集合体を形成するにあたり、大きな加圧力を必要としたり、その後の焼結などの工程で閉気孔ができ易くなり、閉気孔が10体積%超のSiC集合体となる恐れがある。従って、工業的な生産性、溶融Mgの溶浸性を考慮すると、SiCの含有量は、80体積%〜90体積%程度が実用的であると考えられる。
"Content"
The content of SiC in the substrate made of the composite material is 50% by volume or more in a bonded form having a network part when the substrate is 100% by volume, and 70% in a dispersed form having no network part. More than%. The higher the SiC content in the substrate, the higher the thermal conductivity κ, and the smaller the thermal expansion coefficient α, the semiconductor element (about 4 ppm / K to 8 ppm / K (e.g., Si: 4.2 ppm / K, GaAs: 6.5ppm / K)) and its peripheral components (insulating substrate: about 4.5ppm / K, silicon package: about 3ppm / K, alumina package: 6.5ppm / K). Accordingly, the content of SiC is preferably 75% by volume or more, particularly 80% by volume or more, and more preferably 85% by volume or more in any of the above bonded form and dispersed form, and there is no particular upper limit. If the SiC content exceeds 90% by volume, a large pressing force is required to form a high-density SiC aggregate used as a raw material, and closed pores are easily formed in subsequent processes such as sintering. There is a risk that the pores may become SiC aggregates with more than 10% by volume. Therefore, considering industrial productivity and infiltration of molten Mg, it is considered practical that the SiC content is about 80 to 90 volume%.

上記範囲でSiCを含有する複合部材(基板)は、熱伝導率κが高く、180W/m・K以上を満たす。SiCの含有量やネットワーク部の形態、金属成分の組成などにもよるが、200W/m・K以上、特に250W/m・K以上、更に300W/m・K以上の熱伝導率κを有する複合部材とすることができる。   A composite member (substrate) containing SiC within the above range has high thermal conductivity κ and satisfies 180 W / m · K or more. Composite with thermal conductivity κ of 200W / m · K or more, especially 250W / m · K or more, and 300W / m · K or more, depending on the SiC content, network configuration, metal composition, etc. It can be a member.

複合部材中の非金属無機材料の含有量は、原料の量に実質的に等しいため、複合部材(基板)が所望の熱特性となるように、原料の量を適宜選択するとよい。   Since the content of the nonmetallic inorganic material in the composite member is substantially equal to the amount of the raw material, the amount of the raw material may be appropriately selected so that the composite member (substrate) has desired thermal characteristics.

《ネットワーク部の材質》
複合部材中のネットワーク部の構成材料は、SiCといった非金属無機材料の他、Moといった金属材料が挙げられる。ネットワーク部をもSiCで構成される場合、この複合部材は、実質的にSiCとマグネシウム(又はマグネシウム合金)とで構成され、上述のように放熱性に優れる。ネットワーク部を構成するその他の非金属無機材料は、シリコン窒化物(Si3N4)、マグネシウム化合物(例えば、MgB2,MgO,Mg3N2)、その他の窒化物(例えば、BN,AlN)、酸化物(例えば、CaO)が挙げられる。特に、Si3N4は、熱膨張係数が小さく、熱膨張係数が小さい複合部材とすることができる。
《Material of network part》
Examples of the constituent material of the network portion in the composite member include non-metallic inorganic materials such as SiC and metallic materials such as Mo. When the network part is also composed of SiC, this composite member is substantially composed of SiC and magnesium (or magnesium alloy), and is excellent in heat dissipation as described above. Other non-metallic inorganic materials constituting the network part are silicon nitride (Si 3 N 4 ), magnesium compounds (for example, MgB 2 , MgO, Mg 3 N 2 ), other nitrides (for example, BN, AlN) And oxides (for example, CaO). In particular, Si 3 N 4 can be a composite member having a low thermal expansion coefficient and a low thermal expansion coefficient.

《ネットワーク部の太さ》
本発明者らが調べたところ、複合部材中のSiCの含有量が同等であっても、熱的特性が異なっていた。この原因を調べたところ、複合部材中のネットワーク部の形態が異なっていた。具体的には、複合部材の断面において所定の長さの線分を任意にとり、SiCとネットワーク部とから構成されるSiC集合体の輪郭線が上記線分を横断する箇所の長さ、つまり、上記輪郭線において上記線分との交点であって、隣り合う交点間の長さが異なっていた。上記交点間の長さが長いもの、即ち、ネットワーク部が太いものは、熱特性に優れ、特に熱膨張係数が小さくなる傾向にあり、上記交点間の長さが短いもの、即ち、ネットワーク部が細いものは、機械的特性に優れ、特に引張強度や曲げ強度が高い傾向にあった。そこで、熱特性に優れる構成として、ネットワーク部が太いことを規定する。具体的には、ネットワーク部が太くなると、上記線分における交点数が少なくなることから、複合部材の断面において、当該複合部材の実寸に対して長さ1mmの線分を任意にとり、上記SiCと上記ネットワーク部とから構成されるSiC集合体の輪郭線と上記線分との交点の数が50以下を満たすものを提案する。上記交点の数が少ないほど、熱特性に更に優れると期待されることから、上記交点の数の下限は特に設けない。一方、上記交点の数が50超、特に100以上であると、機械的特性に更に優れると期待される。上記ネットワーク部の太さを変化させるには、例えば、後述する製造条件などを調整することが挙げられる。
<< Thickness of the network part >>
When the present inventors investigated, even if the content of SiC in a composite member was equivalent, the thermal characteristics differed. When this cause was investigated, the form of the network part in the composite member was different. Specifically, a line segment of a predetermined length is arbitrarily taken in the cross-section of the composite member, and the length of the location where the outline of the SiC aggregate composed of SiC and the network part crosses the line segment, that is, The contour line has an intersection with the line segment, and the length between adjacent intersections is different. Those having a long length between the intersections, that is, those having a thick network portion are excellent in thermal characteristics, and in particular, tend to have a small coefficient of thermal expansion. The thin ones were excellent in mechanical properties, and particularly tended to have high tensile strength and bending strength. Therefore, it is defined that the network portion is thick as a configuration having excellent thermal characteristics. Specifically, when the network portion becomes thicker, the number of intersections in the line segment decreases, so in the cross section of the composite member, a line segment with a length of 1 mm is arbitrarily taken with respect to the actual size of the composite member, and the SiC and We propose that the number of intersections between the outline of the SiC aggregate composed of the network part and the line segment satisfy 50 or less. Since it is expected that the smaller the number of intersections, the better the thermal characteristics, there is no particular lower limit for the number of intersections. On the other hand, if the number of intersections is more than 50, particularly 100 or more, it is expected that the mechanical properties are further improved. In order to change the thickness of the network part, for example, adjustment of manufacturing conditions to be described later can be cited.

<基板の厚さ>
上記基板の厚さは、適宜選択することができるが、半導体素子の放熱部材として利用する場合、10mm以下、特に5mm以下が好ましい。後述する金属被覆層を具えていない場合、当該基板は、SiCを多く含有していたり、ネットワーク部を有することで、熱膨張係数を4ppm/K〜6ppm/K程度にすることができる。
<Thickness of substrate>
The thickness of the substrate can be selected as appropriate, but when used as a heat dissipation member for a semiconductor element, it is preferably 10 mm or less, particularly preferably 5 mm or less. When the metal coating layer to be described later is not provided, the substrate can have a thermal expansion coefficient of about 4 ppm / K to 6 ppm / K by containing a large amount of SiC or having a network portion.

<金属被覆層>
《組成、組織》
放熱部材と半導体素子や半導体素子を冷却するための冷却装置とを半田により接合することがある。非金属無機材料からなる焼結体や、上記複合材料からなる基板は、半田との濡れ性が良くなく、Niなどのめっきを施して半田との濡れ性を向上する必要がある。上記めっきは、生産性を考慮すると電気めっきが好ましいが、非金属無機材料は電気絶縁性が高いものが多いため、電気めっきを行うことが難しい。そこで、上記基板の少なくとも一面に金属被覆層を具え、この金属被覆層を上記電気めっきの下地として利用することで、上記複合材料からなる基板にNiなどのめっきを容易に施すことができる。
<Metal coating layer>
<Composition, organization>
The heat radiating member and the semiconductor element or a cooling device for cooling the semiconductor element may be joined by solder. A sintered body made of a non-metallic inorganic material or a substrate made of the above composite material does not have good wettability with solder, and it is necessary to improve the wettability with solder by plating with Ni or the like. The plating is preferably electroplating in consideration of productivity, but it is difficult to perform electroplating because many nonmetallic inorganic materials have high electrical insulation. Therefore, by providing a metal coating layer on at least one surface of the substrate and using the metal coating layer as a base for the electroplating, the substrate made of the composite material can be easily plated with Ni or the like.

金属被覆層の構成金属は、電気めっきに必要な導通が取れる程度の導電率を有する金属であればよく、上記複合材料からなる基板の金属成分と異なる組成でも、同一組成でもよい。特に、同一組成とする場合、上述した製造方法の複合工程において、複合化と同時に金属被覆層の形成を行うと、金属被覆層を有する複合部材を生産性よく製造することができる。この場合、得られた複合部材において、上記基板中の金属成分と上記金属被覆層を構成する金属とは、連続する組織(鋳造組織)を有する。   The constituent metal of the metal coating layer may be a metal having an electrical conductivity sufficient to provide electrical conduction necessary for electroplating, and may have a composition different from or the same as the metal component of the substrate made of the composite material. In particular, when the same composition is used, when the metal coating layer is formed simultaneously with the compounding in the compounding step of the manufacturing method described above, a composite member having the metal coating layer can be manufactured with high productivity. In this case, in the obtained composite member, the metal component in the substrate and the metal constituting the metal coating layer have a continuous structure (cast structure).

上記基板の金属成分と上記金属被覆層の構成金属とが異なる組成である場合、金属被覆層の構成金属は、例えば、上記基板の金属成分と異なる組成のMg合金や、Mg及びMg合金以外の金属、例えば、純度が99%以上のAl,Cu,Ni、及びAl,Cu,Niを主成分とする合金(Al,Cu,Niを50質量%超含有する合金)からなる群から選択される1種の金属が挙げられる。   When the metal component of the substrate and the constituent metal of the metal coating layer have different compositions, the constituent metal of the metal coating layer is, for example, an Mg alloy having a composition different from the metal component of the substrate, or other than Mg and Mg alloy Selected from the group consisting of metals, for example, Al, Cu, Ni with a purity of 99% or more and alloys containing Al, Cu, Ni as the main component (alloys containing more than 50% by mass of Al, Cu, Ni) One kind of metal is mentioned.

《形成箇所》
上記金属被覆層は、上記基板を構成する面のうち、少なくともめっきが必要とされる面に存在していればよい。具体的には、半導体素子が実装される実装面、この実装面と対向し、冷却装置に接触する冷却面の少なくとも一方に金属被覆層を具える。上記基板の端面(上記実装面及び冷却面を連結する面)を含む全面に金属被覆層を具えていてもよい。金属被覆層を具える複合部材は、電気めっきを施せることに加えて、耐食性を高めたり、表面が平滑で外観に優れることから複合部材の商品価値を高めたりすることができる。
<Formation point>
The said metal coating layer should just exist in the surface where plating is required among the surfaces which comprise the said board | substrate. Specifically, a metal coating layer is provided on at least one of the mounting surface on which the semiconductor element is mounted and the cooling surface that faces the mounting surface and contacts the cooling device. A metal coating layer may be provided on the entire surface including the end surface of the substrate (the surface connecting the mounting surface and the cooling surface). In addition to being able to perform electroplating, the composite member provided with the metal coating layer can enhance corrosion resistance and can increase the commercial value of the composite member because of its smooth surface and excellent appearance.

《厚さ》
上記各金属被覆層の厚さは、厚過ぎると、熱膨張係数の増加や複合部材の熱伝導率の低下を招くことから、2.5mm以下、特に1mm以下、更に0.5mm以下が好ましく、1μm以上、特に0.05mm(50μm)以上0.1mm(100μm)以下であれば、めっきの下地としての機能を十分に果たす上に、複合部材の搬送時や実装時などで金属被覆層を破損し難いと考えられる。本発明複合部材に具える基板は、上述のように熱膨張係数が小さく、熱伝導性にも優れることから、当該基板の対向する二面にそれぞれ金属被覆層を具える場合、二層の金属被覆層の厚さの総和は、ネットワーク部を有する結合形態では2.5mm以下、分散形態では0.5mm以下であれば、基板と金属被覆層とを具える複合部材全体の熱膨張係数を8ppm/K以下することができる。金属被覆層は、厚く形成しておき、研磨などにより所望の厚さにしてもよく、研磨により、複合部材の外観をより良好にすることができる。なお、金属被覆層を具える複合部材の熱膨張係数は、当該複合部材から試験片を作製して、市販の装置により測定すると簡単に求められる。或いは、金属被覆層を具える複合部材の熱膨張係数は、当該複合部材を構成する各材料の剛性などを考慮して複合則により算出してもよい。
"thickness"
If the thickness of each metal coating layer is too thick, it causes an increase in the coefficient of thermal expansion and a decrease in the thermal conductivity of the composite member, so 2.5 mm or less, particularly 1 mm or less, more preferably 0.5 mm or less, preferably 1 μm or more In particular, if it is 0.05 mm (50 μm) or more and 0.1 mm (100 μm) or less, it will function sufficiently as a base for plating, and the metal coating layer is unlikely to be damaged during transportation or mounting of composite parts. It is done. Since the substrate provided in the composite member of the present invention has a low coefficient of thermal expansion and excellent thermal conductivity as described above, when the metal coating layer is provided on each of two opposing surfaces of the substrate, two layers of metal are provided. If the total thickness of the covering layer is 2.5 mm or less in the bonded form having the network portion and 0.5 mm or less in the dispersed form, the thermal expansion coefficient of the entire composite member including the substrate and the metal covering layer is 8 ppm / K. You can: The metal coating layer may be formed thick and may have a desired thickness by polishing or the like, and the appearance of the composite member can be improved by polishing. The thermal expansion coefficient of a composite member having a metal coating layer can be easily obtained by preparing a test piece from the composite member and measuring it with a commercially available device. Alternatively, the thermal expansion coefficient of the composite member including the metal coating layer may be calculated by a composite rule in consideration of the rigidity of each material constituting the composite member.

<用途>
上記複合部材は、放熱部材に好適に利用することができる。この放熱部材は、半導体素子及びその周辺部品との熱膨張係数の整合性に優れる上に、熱伝導性が高いため、半導体素子の放熱部材に好適に利用することができる。また、上記放熱部材と、この放熱部材に搭載される半導体素子とを具える半導体装置は、各種の電子機器の部品に好適に利用することができる。
<Application>
The said composite member can be utilized suitably for a heat radiating member. This heat dissipating member is excellent in the consistency of the thermal expansion coefficient with the semiconductor element and its peripheral components, and has high thermal conductivity, and therefore can be suitably used as a heat dissipating member for the semiconductor element. Moreover, the semiconductor device provided with the said heat radiating member and the semiconductor element mounted in this heat radiating member can be utilized suitably for the components of various electronic devices.

[製造方法]
本発明複合部材は、上述のようにSiC集合体を形成し、このSiC集合体と溶融Mgとを複合する(溶浸→凝固)ことで製造することができる。また、ネットワーク部を有する結合形態の複合部材を製造する場合、適宜な方法でネットワーク部を形成する。
[Production method]
The composite member of the present invention can be manufactured by forming a SiC aggregate as described above and combining the SiC aggregate and molten Mg (infiltration → solidification). Further, when a combined composite member having a network part is manufactured, the network part is formed by an appropriate method.

《原料》
上記SiC集合体の原料には、主として、SiC粉末を利用する。上述した焼結方法において焼結時にシリコン窒化物を生成させる形態とする場合、SiC粉末に加えて、Si粉末やSiを含有する化合物の粉末を用意して、これらの混合粉末を利用することができる。上述した反応焼結方法では、SiC粉末に加えて、上述した前駆体粉末(例えば、SiCl4,有機Si化合物)を用意して、これらの混合粉末を利用することができる。上述した反応結合方法では、SiC粉末に加えて、上述した反応用粉末(例えば、ホウ素,BN,TiB2,ホウ酸(B2O3)、四ホウ酸ナトリウム(Na2B4O5(OH)4・8H2O)といった単体元素の粉末、酸化物や硼化物、ホウ酸化物の粉末)を用意して、これらの混合粉末を利用することができる。これらの粉末は、粒子状や繊維状のいずれでもよく、平均粒径(繊維状の場合、平均短径)が1μm以上3000μm以下、特に、10μm以上200μm以下であると、SiC集合体を製造し易く好ましい。また、平均粒径が異なる複数種の粉末を組み合わせて用いると、SiCなどの充填率を更に高め易い。
"material"
SiC powder is mainly used as a raw material for the SiC aggregate. In the above-described sintering method, when silicon nitride is generated at the time of sintering, in addition to the SiC powder, it is possible to prepare a powder of Si powder or a compound containing Si, and use these mixed powders. it can. In the reaction sintering method described above, in addition to the SiC powder, the above-described precursor powder (for example, SiCl 4 , organic Si compound) is prepared, and these mixed powders can be used. In the reaction bonding method described above, in addition to the SiC powder, the above-described reaction powder (for example, boron, BN, TiB 2 , boric acid (B 2 O 3 ), sodium tetraborate (Na 2 B 4 O 5 (OH 4 ) 8H 2 O) powders of simple elements, oxides, borides, and borate powders) are prepared, and these mixed powders can be used. These powders may be in the form of particles or fibers, and if the average particle diameter (in the case of fibers, the average short diameter) is 1 μm or more and 3000 μm or less, particularly 10 μm or more and 200 μm or less, an SiC aggregate is produced. It is easy and preferable. Further, when a plurality of types of powders having different average particle sizes are used in combination, the filling rate of SiC or the like can be further increased.

《成形工程:粉末成形体の形成》
上述したSiC高充填方法では、後述するスリップキャスト、加圧成形、及びドクターブレード法のいずれか一つにより、ネットワーク部を有していない粉末成形体を形成する。これらの方法により得られた粉末成形体は、ハンドリングが可能な強度を持つ。上述した焼結方法、ゾルゲル方法、反応焼結方法、反応結合方法では、上述の方法の他、タッピングなどにより、粉末成形体を形成する。
<< Molding process: Formation of powder compact >>
In the SiC high filling method described above, a powder molded body having no network part is formed by any one of slip casting, pressure molding, and doctor blade method, which will be described later. The powder compact obtained by these methods has a strength capable of handling. In the above-described sintering method, sol-gel method, reaction sintering method, and reaction bonding method, a powder compact is formed by tapping or the like in addition to the above method.

〈スリップキャスト〉
上述した原料の粉末と、水及び分散剤とを用いてスラリーを作製し、このスラリーを成形後、乾燥させることでスリップキャストにより粉末成形体を形成することができる。分散剤には、一般的な界面活性剤が利用できる。スリップキャストでは、複雑な形状の成形体を容易に成形することができる、微細な粉末を使用した場合であっても充填率(密度)が高い成形体が得られる、大型な成形体であっても容易に成形することができ、設備コストの増大が少ない、といった利点を有する。
<Slip cast>
A powder compact can be formed by slip casting by preparing a slurry using the raw material powder described above, water and a dispersing agent, and drying this slurry after molding. A general surfactant can be used as the dispersant. Slip casting is a large molded body that can easily form a molded body with a complicated shape, and can obtain a molded body with a high filling rate (density) even when fine powder is used. Can be easily molded, and there is an advantage that there is little increase in equipment cost.

〈加圧成形〉
加圧成形には、乾式プレス、湿式プレス、一軸加圧成形、CIP(静水圧プレス)、押出成形が挙げられる。乾式プレス成形の場合、上述した原料の粉末を加圧成形することで、湿式プレス成形の場合、原料の粉末と水などの液体とを混合した混合粉末を加圧成形して液体を押し出すことで、粉末成形体を形成することができる。加圧成形時の圧力(成形圧)は、適宜選択するとよい。乾式、湿式のいずれの場合も、粉末成形に利用されているバインダを適宜利用することができる。加圧成形では、原料の粉末の粒度を均一的にし易い、スリップキャストと比較して工程数が少なく生産性に優れる、といった利点を有する。
<Pressure molding>
Examples of pressure molding include dry press, wet press, uniaxial pressure molding, CIP (hydrostatic press), and extrusion molding. In the case of dry press molding, the above-mentioned raw material powder is pressure-molded. In the case of wet press molding, a mixed powder obtained by mixing the raw material powder and a liquid such as water is pressure-molded to extrude the liquid. A powder molded body can be formed. The pressure during molding (molding pressure) may be appropriately selected. In either case of dry type or wet type, a binder used for powder molding can be appropriately used. The pressure molding has the advantages that it is easy to make the particle size of the raw material powder uniform, and that the number of steps is small and the productivity is excellent compared to slip casting.

〈ドクターブレード法〉
上述した原料の粉末と、溶媒、消泡剤、樹脂などを用いてスラリーを作製し、このスラリーをドクターブレードの受け口に流し込み、シート状体を形成後、溶媒を蒸発させることで粉末成形体を形成することができる。ドクターブレード法は、板状の成形体を形成する場合に好適に利用することができる。
<Doctor blade method>
A slurry is prepared using the raw material powder described above, a solvent, an antifoaming agent, a resin, and the like, and the slurry is poured into a receptacle of a doctor blade to form a sheet-like body. Can be formed. The doctor blade method can be suitably used when forming a plate-shaped molded body.

上述したSiC高充填方法では、上述のスリップキャストなどで形成した粉末成形体をSiC集合体としてもよいし、この粉末成形体を更に焼結して得られた焼結体をSiC集合体として、溶融Mgと複合させてもよい。このときの焼結条件は、例えば、(1)真空雰囲気、加熱温度:800〜1300℃未満、保持時間:2時間程度、(2)大気雰囲気、加熱温度:800〜1500℃、保持時間:2時間程度が挙げられる。上記焼結条件により焼結を行うことで、(1)上記粉末成形体よりも強度が高く、鋳型に収納する際などで欠けなどが生じ難く、扱い易い、(2)多孔質体を容易に作製することができる、(3)焼結温度や保持時間を調節することで、焼結体を緻密化させてSiCの充填率を向上させることができ、SiCの含有量が70体積%以上である複合部材を得易い、といった利点がある。また、焼結時の加熱により、粉末成形体の作製に用いたバインダなどを蒸発させて除去することができる。これらの焼結体の利点は、後述するネットワーク部を有する焼結体も同様である。但し、上記焼結条件(1),(2)では、ネットワーク部を有していない分散形態の複合部材が得られる傾向にある。従って、ネットワーク部を有して、熱膨張係数が小さい複合部材を得る場合、後述する焼結条件で焼結することが好ましい。   In the SiC high filling method described above, the powder compact formed by the above-mentioned slip cast may be used as the SiC aggregate, or the sintered compact obtained by further sintering the powder compact as the SiC aggregate, It may be combined with molten Mg. The sintering conditions at this time are, for example, (1) vacuum atmosphere, heating temperature: less than 800 to 1300 ° C, holding time: about 2 hours, (2) air atmosphere, heating temperature: 800-1500 ° C, holding time: 2 About time. By performing the sintering under the above sintering conditions, (1) the strength is higher than that of the above powder molded body, it is difficult to cause chipping and the like when stored in a mold, and (2) the porous body can be easily handled. (3) By adjusting the sintering temperature and holding time, the sintered body can be densified and the filling rate of SiC can be improved, and the SiC content is 70% by volume or more. There is an advantage that a certain composite member is easily obtained. Moreover, the binder used for producing the powder compact can be evaporated and removed by heating during sintering. The advantages of these sintered bodies are the same as those of the sintered bodies having a network portion described later. However, in the above sintering conditions (1) and (2), there is a tendency that a dispersed composite member having no network part is obtained. Therefore, when obtaining a composite member having a network portion and a low thermal expansion coefficient, it is preferable to sinter under the sintering conditions described later.

〈タッピング〉
上述した原料の粉末を成形型に充填して一定の振動を加えることで、成形型に沿った形状の粉末成形体を容易に形成することができる。タッピングでは、高密度なSiC集合体を形成することが難しく、複合部材におけるSiCの含有量を50〜70体積%程度とする場合に利用することができる。70体積%を超える場合は、上述のスリップキャストなどの方法が好ましい。
<Tapping>
By filling the above-mentioned raw material powder into a mold and applying a certain vibration, a powder compact having a shape along the mold can be easily formed. In tapping, it is difficult to form a high-density SiC aggregate, which can be used when the SiC content in the composite member is about 50 to 70% by volume. When it exceeds 70% by volume, the above-described method such as slip casting is preferred.

なお、上述したSiや前駆体、ホウ酸などの成分を含む粉末成形体は、上述した混合粉末を用いて、上記種々の方法により形成する他、SiC粉末のみのSiC粉末成形体を作製した後、別途用意した上記Si粉末や、前駆体粉末、反応用粉末(ホウ酸や四ホウ酸ナトリウム)などを水などの溶媒に混合した混合液(例えば、水溶液)にSiC粉末成形体を含浸させた後、上記溶媒を乾燥させることで作製することができる。上記混合液を利用することで、Siなどの所望の物質を粉末成形体に均一的に分散させ易い上に、SiC粉末以外の粉末を用いて粉末成形体を形成しないため、SiC粉末の添加量が低減されることが無く、粉末成形体におけるSiCの充填率を高め易い。   In addition, the powder molded body containing components such as Si, precursor, and boric acid described above is formed by the above-described various methods using the above-mentioned mixed powder, and after producing a SiC powder molded body of only SiC powder. The SiC powder molded body was impregnated with a mixed liquid (for example, an aqueous solution) obtained by mixing the above-mentioned Si powder, precursor powder, reaction powder (boric acid or sodium tetraborate), etc. prepared in a solvent such as water. Then, it can produce by drying the said solvent. By using the above mixture, it is easy to uniformly disperse a desired substance such as Si in the powder compact, and since the powder compact other than the SiC powder is not formed, the amount of SiC powder added It is easy to increase the filling rate of SiC in the powder compact.

《焼結工程:焼結体の形成》
上述した焼結方法では、上記成形工程により得られた粉末成形体を焼結して一体化したSiC集合体(焼結体)を作製すると共に、ネットワーク部を生成する。特に、上述した焼結方法では、上記ネットワーク部として、焼結体中のネットワーク部が複合部材中にも存在し得るものを積極的に形成する。
<< Sintering process: Formation of sintered body >>
In the above-described sintering method, an SiC aggregate (sintered body) is produced by sintering and integrating the powder compact obtained in the molding step, and a network part is generated. In particular, in the above-described sintering method, the network part in the sintered body is positively formed as the network part that can also exist in the composite member.

上記焼結の条件は、真空雰囲気、加熱温度:1300℃以上2500℃以下、保持時間:2時間程度が挙げられる。この条件で焼結すると、SiC同士を直接結合させることができる。即ち、ネットワーク部をSiCにより形成することができる。SiC同士を直接結合させることで、焼結体の強度がより高くなる上に、この焼結体を用いると、熱膨張係数が小さく、熱伝導率が高い複合部材が得られ易い。また、上述のように焼結条件によって緻密な焼結体が得られ、複合部材中のSiCの含有量(充填率)を向上させることができる。特に、焼結温度を2000℃以上とすると、ネットワーク部を太くすることができ(上述した交点の数が50以下を満たし)、2000℃未満とすると、ネットワーク部が細くなる傾向にある。上記加熱温度や保持時間は、ネットワーク部の形態に応じて適宜選択するとよい。   The sintering conditions include a vacuum atmosphere, a heating temperature of 1300 ° C. to 2500 ° C., and a holding time of about 2 hours. When sintered under these conditions, SiC can be directly bonded together. That is, the network part can be formed of SiC. By directly bonding SiC together, the strength of the sintered body becomes higher, and when this sintered body is used, a composite member having a low thermal expansion coefficient and high thermal conductivity can be easily obtained. Further, as described above, a dense sintered body can be obtained depending on the sintering conditions, and the content (filling rate) of SiC in the composite member can be improved. In particular, when the sintering temperature is 2000 ° C. or higher, the network portion can be thickened (the number of intersections described above satisfies 50 or less), and when it is lower than 2000 ° C., the network portion tends to be thin. The heating temperature and holding time may be appropriately selected according to the form of the network unit.

上述したSi成分を含有する粉末成形体を形成した場合、焼結工程では、上記粉末成形体を窒素雰囲気下で焼結してSi3N4を生成し、上記ネットワーク部を上記Si3N4により形成することができる。このようにしてネットワーク部を形成する場合、焼結時の加熱温度を800〜1800℃程度に低くしても、SiC同士を十分に結合できる上に、ネットワーク部を太くする(上述した交点の数が50以下を満たす)ことができる。 When the powder compact containing the Si component described above is formed, in the sintering step, the powder compact is sintered in a nitrogen atmosphere to produce Si 3 N 4 , and the network portion is the Si 3 N 4 Can be formed. When forming the network portion in this way, even if the heating temperature during sintering is lowered to about 800 to 1800 ° C., SiC can be sufficiently bonded to each other, and the network portion is made thicker (the number of intersection points described above). Is less than 50).

上記Siを含有する粉末成形体は、Siを含有する酸化物、例えば、SiO2、H2SiO3、Na2SiO3といったセラミックスからなる添加剤を利用し、この酸化物を還元することでも形成することができる。具体的には、例えば、SiC粉末と上記酸化物の粉末との混合粉末により粉末成形体を形成し、炭素粉末、又は炭素含有ガスを用いて上記粉末成形体を還元することで、Siを含有する粉末成形体が得られる。或いは、SiC粉末からなる粉末成形体と、上記Siを含有する酸化物の水溶液とを用意し、当該粉末成形体に当該水溶液を含浸させた後、上述のように還元することで、Siを含有する粉末成形体が得られる。この場合、上述した混合液を利用する場合と同様に、Siを均一的に分散させ易い上に、SiCの充填率を高め易い。上記炭素粉末には、市販のカーボン粉末、上記炭素含有ガスには、還元能力が高い一酸化炭素(CO)やメタン(CH4)などの炭化水素を好適に利用することができる。 The above-mentioned powder compact containing Si is formed by reducing the oxide using an additive containing Si, for example, ceramics such as SiO 2 , H 2 SiO 3 , and Na 2 SiO 3. can do. Specifically, for example, a powder compact is formed from a mixed powder of SiC powder and the oxide powder, and the powder compact is reduced using carbon powder or a carbon-containing gas, thereby containing Si. A powder compact is obtained. Alternatively, a powder molded body made of SiC powder and an aqueous solution of the oxide containing Si are prepared, and the powder molded body is impregnated with the aqueous solution and then reduced as described above to contain Si. A powder compact is obtained. In this case, it is easy to uniformly disperse Si and to increase the filling rate of SiC as in the case of using the above-described mixed solution. Commercially available carbon powder can be used for the carbon powder, and hydrocarbons such as carbon monoxide (CO) and methane (CH 4 ) having high reducing ability can be preferably used for the carbon-containing gas.

なお、原料にSiを含有する化合物を利用した場合、Siを除く元素は、溶浸中に気化したり、Mgとの化合物やその他の化合物となって複合部材中に残存すると考えられる。   When a compound containing Si is used as a raw material, elements other than Si are considered to be vaporized during infiltration or remain in the composite member as a compound with Mg or other compounds.

《結合工程》
上述したゾルゲル方法では、上記成形工程により得られた粉末成形体に上述した前駆体の溶液を含浸させてから加熱することで当該前駆体から非金属無機材料(例えばSiC,MgO,CaO)を生成し、この非金属無機材料によりネットワーク部を形成すると共に、一体化したSiC集合体を作製する。上記前駆体は、例えば、ポリカルボシラン、金属アルコキシドなどが挙げられる。加熱温度は、上記前駆体に応じて適宜選択するとよい。ゾルゲル方法では、上述した焼結を行う場合と比較して加熱温度を低くしてネットワーク部を形成でき、SiC集合体の製造性に優れる。また、ポリカルボシランを利用した場合、SiCを新生することができるため、SiCの密度を高められ、SiCの含有量が高い複合部材が得られる。
<< Bonding process >>
In the sol-gel method described above, a non-metallic inorganic material (for example, SiC, MgO, CaO) is generated from the precursor by impregnating the powder compact obtained in the molding step with the precursor solution described above and then heating. Then, the non-metallic inorganic material forms a network part, and an integrated SiC aggregate is produced. Examples of the precursor include polycarbosilane and metal alkoxide. The heating temperature may be appropriately selected according to the precursor. The sol-gel method can form a network portion by lowering the heating temperature as compared with the case where sintering is performed, and is excellent in the productivity of the SiC aggregate. Further, when polycarbosilane is used, SiC can be born, so that the density of SiC can be increased and a composite member having a high SiC content can be obtained.

〈酸化膜の形成〉
更に、溶融Mgに供するSiC集合体として、その表面に酸化膜を具えるものを利用すると、SiC集合体と溶融Mgとの濡れ性が高められて好ましい。酸化膜を具えるSiC集合体とすることで、SiCの含有量が多く、SiC間の隙間が非常に小さい場合であっても、毛管現象により溶融Mgが浸透し易い。ネットワーク部を有する複合部材を得る場合、焼結体などのSiC集合体を作製した後に酸化膜を形成する酸化工程を具えることが好ましく、ネットワーク部を有しない複合部材を得る場合、代表的にはSiCの粉末成形体を溶融Mgに供する場合、SiC粉末といった原料粉末に酸化膜を形成しておき、酸化膜を具える粉末を利用してSiC集合体(粉末成形体)を形成するとよい。
<Oxide film formation>
Furthermore, it is preferable to use a SiC aggregate provided with an oxide film on the surface as the SiC aggregate to be used for molten Mg because wettability between the SiC aggregate and molten Mg is enhanced. By forming a SiC aggregate including an oxide film, molten Mg easily permeates due to capillary action even when the SiC content is large and the gap between SiC is very small. When obtaining a composite member having a network part, it is preferable to provide an oxidation step of forming an oxide film after producing a SiC aggregate such as a sintered body. Typically, when obtaining a composite member having no network part, When a SiC powder compact is subjected to molten Mg, an oxide film is formed on a raw material powder such as SiC powder, and a SiC aggregate (powder compact) is preferably formed using a powder comprising the oxide film.

上記酸化膜を形成するための条件は、粉末の場合も焼結体などの場合も同様であり、加熱温度は、700℃以上、特に750℃以上、更に800℃以上が好ましく、とりわけ850℃以上、更に875℃以上1000℃以下が好ましい。また、上記原料のSiCに対する質量割合が0.4%以上1.5%以下(酸化膜の厚さ:50nm〜300nm程度)、特に1.0%以下を満たすように酸化膜を形成することが好ましい。酸化膜を形成した場合、複合部材中のSiCの近傍(SiC集合体の輪郭線から100〜300nm以内の領域)は、当該近傍以外の箇所よりも酸素濃度が高い傾向にある。   The conditions for forming the oxide film are the same for powders and sintered bodies, and the heating temperature is preferably 700 ° C. or higher, particularly 750 ° C. or higher, more preferably 800 ° C. or higher, especially 850 ° C. or higher. Further, 875 ° C. or higher and 1000 ° C. or lower is preferable. Further, it is preferable to form the oxide film so that the mass ratio of the raw material to SiC is 0.4% or more and 1.5% or less (the thickness of the oxide film: about 50 nm to 300 nm), particularly 1.0% or less. When an oxide film is formed, the oxygen concentration tends to be higher in the vicinity of SiC in the composite member (region within 100 to 300 nm from the outline of the SiC aggregate) than in locations other than the vicinity.

《複合工程:基板の形成》
上述のようにして得られたSiC集合体を鋳型に収納して、溶融Mgを溶浸させた後、溶融Mgを凝固させることで、複合部材(基板)が得られる。上述した反応結合方法では、上記SiC集合体(粉末成形体)と溶融Mgとの複合と同時に、上記粉末成形体中のホウ素や酸素と溶融Mgとを反応させて、新たな生成物(硼化物や酸化物)を生成し、この生成物によりネットワーク部を形成することができる。
《Composite process: substrate formation》
The composite material (substrate) is obtained by storing the SiC aggregate obtained as described above in a mold, infiltrating molten Mg, and then solidifying the molten Mg. In the reaction bonding method described above, a new product (boride) is obtained by reacting boron and oxygen in the powder molded body with molten Mg simultaneously with the composite of the SiC aggregate (powder molded body) and molten Mg. And an oxide) and a network part can be formed by this product.

上記SiC集合体に溶融Mgを溶浸させる複合工程は、大気圧(概ね0.1MPa(1atm))以下の雰囲気で行うと、雰囲気中のガスを取り込み難く、ガスの取り込みに伴う気孔が生じ難い。但し、Mgは蒸気圧が高いため、高真空状態とすると溶融Mgを取り扱い難くなる。従って、上記複合工程の雰囲気圧力を大気圧未満とする場合、0.1×10-5MPa以上が好ましい。また、上記複合工程は、Arといった不活性雰囲気で行うと、特にMg成分と雰囲気ガスとの反応を防止でき、反応生成物の存在に伴う熱特性の劣化を抑制できる。溶浸温度は、650℃以上が好ましく、溶浸温度が高いほど濡れ性が高まるため、700℃以上、特に800℃以上、更に850℃以上が好ましい。但し、1000℃超とすると、引け巣やガスホールといった欠陥が生じたり、Mgが沸騰する恐れがあるため、溶浸温度は1000℃以下が好ましい。また、過剰な酸化膜の生成や晶出物の生成を抑制するために900℃以下が好ましい。 When the combined process of infiltrating molten Mg into the SiC aggregate is performed in an atmosphere of atmospheric pressure (generally 0.1 MPa (1 atm)) or less, it is difficult to take in the gas in the atmosphere, and it is difficult to generate pores accompanying the gas. However, since Mg has a high vapor pressure, it becomes difficult to handle molten Mg in a high vacuum state. Therefore, 0.1 × 10 −5 MPa or more is preferable when the atmospheric pressure in the composite process is less than atmospheric pressure. Further, when the composite process is performed in an inert atmosphere such as Ar, the reaction between the Mg component and the atmospheric gas can be prevented, and the deterioration of the thermal characteristics due to the presence of the reaction product can be suppressed. The infiltration temperature is preferably 650 ° C. or higher. Since the wettability increases as the infiltration temperature increases, 700 ° C. or higher, particularly 800 ° C. or higher, and more preferably 850 ° C. or higher is preferable. However, if the temperature exceeds 1000 ° C., defects such as shrinkage cavities and gas holes may occur, and Mg may boil. Therefore, the infiltration temperature is preferably 1000 ° C. or less. Moreover, 900 degrees C or less is preferable in order to suppress the production | generation of an excessive oxide film and the production | generation of a crystallized substance.

《金属被覆層の形成》
上記複合材料からなる基板の表面に金属被覆層を形成する場合、種々の方法を利用することができる。例えば、上記基板を形成した後に金属被覆層を別途形成してもよい。具体的には、適宜な金属板を用意し、例えば、ロウ付け、超音波接合、鋳ぐるみ、圧延(クラッド圧延)、ホットプレス、酸化物ソルダー法、無機接着剤による接合の少なくとも1つの手法を利用することで、金属被覆層を形成することができる。金属板を利用することで、基板中の金属成分と異なる組成の金属被覆層を容易に形成することができる。
<Formation of metal coating layer>
When forming the metal coating layer on the surface of the substrate made of the composite material, various methods can be used. For example, a metal coating layer may be separately formed after the substrate is formed. Specifically, an appropriate metal plate is prepared, for example, at least one method of brazing, ultrasonic bonding, cast-in, rolling (clad rolling), hot press, oxide solder method, bonding with an inorganic adhesive. By using it, a metal coating layer can be formed. By using a metal plate, a metal coating layer having a composition different from that of the metal component in the substrate can be easily formed.

ネットワーク部を有するSiC集合体では、上述のように比較的強度に優れ、鋳型内で自立可能である。そのため、上記SiC集合体と鋳型との間に所定の隙間を有する状態を維持し、この隙間に溶融Mgが流入される構成とすると、複合化と同時に、上記隙間の大きさに応じた厚さの金属被覆層を簡単に形成することができる。上記隙間を確実に維持できるようにスペーサを配置してもよい。スペーサの構成材料は、ナフタレンなどのように昇華により除去できるものや、カーボン、鉄、ステンレス鋼(SUS430)といった耐熱性に優れるものが利用できる。後者の場合、スペーサを金属被覆層に埋設させたままにしてもよいし、スペーサ部分を切削などにより除去してもよい。スペーサの形態は、板状体や線状体(ワイヤ)が挙げられる。例えば、形成する金属被覆層よりも若干細径の線状体を用意し、この線状体によりSiC集合体を鋳型に固定するなどして、SiC集合体と鋳型との間に隙間を設けてもよい。この場合、線状体の大部分が金属被覆層に埋設されるため、線状体を残存させていても、良好な外観の複合部材が得られる。   As described above, the SiC aggregate having the network portion is relatively excellent in strength and can stand by itself in the mold. Therefore, maintaining a state having a predetermined gap between the SiC aggregate and the mold, and a configuration in which molten Mg flows into this gap, the thickness according to the size of the gap at the same time as the composite The metal coating layer can be easily formed. Spacers may be arranged so as to reliably maintain the gap. As the constituent material of the spacer, a material that can be removed by sublimation such as naphthalene, or a material having excellent heat resistance such as carbon, iron, and stainless steel (SUS430) can be used. In the latter case, the spacer may be left embedded in the metal coating layer, or the spacer portion may be removed by cutting or the like. Examples of the form of the spacer include a plate-like body and a linear body (wire). For example, a linear body having a slightly smaller diameter than the metal coating layer to be formed is prepared, and the SiC aggregate is fixed to the mold by the linear body, so that a gap is provided between the SiC aggregate and the mold. Also good. In this case, since most of the linear body is embedded in the metal coating layer, a composite member having a good appearance can be obtained even if the linear body remains.

本発明複合部材及びこの複合部材から構成される本発明放熱部材は、半導体素子などとの熱膨張係数の整合性に優れる上に、熱伝導性に優れる。本発明複合部材の製造方法は、上記本発明複合部材を生産性よく製造することができる。本発明半導体装置は、上記放熱部材を具えることで熱特性に優れる。   The composite member of the present invention and the heat radiating member of the present invention composed of this composite member are excellent in thermal expansion coefficient consistency with a semiconductor element and the like, and also in thermal conductivity. The manufacturing method of the composite member of the present invention can manufacture the composite member of the present invention with high productivity. The semiconductor device of the present invention has excellent thermal characteristics by including the heat dissipation member.

図1は、実施形態1の複合部材の断面の顕微鏡写真(50倍又は500倍)であり、図1(I)は、ネットワーク部が太い例(50倍)、図1(II)は、ネットワーク部が細い例(500倍)を示す。1 is a micrograph (50 times or 500 times) of a cross section of the composite member of Embodiment 1, FIG. 1 (I) is an example where the network part is thick (50 times), and FIG. 1 (II) is a network. An example where the part is thin (500 times) is shown. 図2は、実施形態2の複合部材の断面の顕微鏡写真(50倍)である。FIG. 2 is a micrograph (50 ×) of a cross section of the composite member of the second embodiment.

(実施形態1)
[試験例1]
純マグネシウムとSiCとを複合した複合材料からなる基板(複合部材)を作製し、熱特性を調べた。
(Embodiment 1)
[Test Example 1]
A substrate (composite member) made of a composite material composed of pure magnesium and SiC was fabricated, and the thermal characteristics were examined.

原料として、99.8質量%以上のMg及び不純物からなる純マグネシウムのインゴット(市販品)、及び市販のSiC焼結体(相対密度80%、長さ200mm×幅100mm×厚さ5mm)を用意した。   As raw materials, a pure magnesium ingot (commercial product) composed of 99.8% by mass or more of Mg and impurities, and a commercially available SiC sintered body (relative density 80%, length 200 mm × width 100 mm × thickness 5 mm) were prepared.

用意したSiC焼結体に875℃×2時間の酸化処理を施して酸化膜を形成し、溶融した純マグネシウムとの濡れ性を高めた。上記酸化処理の工程は、省略してもよい。   The prepared SiC sintered body was oxidized at 875 ° C. for 2 hours to form an oxide film, and the wettability with molten pure magnesium was improved. The oxidation treatment step may be omitted.

上記SiC焼結体を鋳型に収納して、溶融した純マグネシウムを焼結体に溶浸させ、純マグネシウムを凝固させることで複合部材を形成した。   The SiC sintered body was housed in a mold, molten pure magnesium was infiltrated into the sintered body, and solid magnesium was solidified to form a composite member.

上記鋳型は、カーボン製であり、一方が開口した直方体状の箱体であり、複数の分割片を組み合わせて一体に形成される。この鋳型の内部空間が焼結体の収納空間として利用される。ここでは、鋳型の内部空間は、上記焼結体に応じた大きさとし、焼結体を鋳型に収納したとき、焼結体と鋳型との間に実質的に隙間が設けられないようにした。なお、分割片を組み合わせた構成とせず、一体成形された鋳型を利用してもよい。   The said casting_mold | template is a product made from carbon, and is a rectangular parallelepiped box which one side opened, and it is integrally formed combining several division | segmentation pieces. The internal space of the mold is used as a storage space for the sintered body. Here, the inner space of the mold is sized according to the sintered body, and when the sintered body is housed in the mold, substantially no gap is provided between the sintered body and the mold. In addition, you may utilize the casting_mold | template integrally formed without setting it as the structure which combined the division | segmentation piece.

また、ここでは、鋳型の内周面において焼結体と接触する箇所には、市販の離型剤を塗布してから上記焼結体を鋳型に収納した。離型剤を塗布することで、複合部材を取り出し易くすることができる。この離型剤の塗布工程は、省略してもよい。この離型剤に関する事項は、後述する実施形態2についても同様である。   In addition, here, a commercially available mold release agent was applied to a portion of the inner peripheral surface of the mold that contacts the sintered body, and then the sintered body was accommodated in the mold. By applying the release agent, the composite member can be easily taken out. This step of applying the release agent may be omitted. The same applies to the second embodiment to be described later.

上記鋳型は、開口部の周縁に連結されるインゴット載置部を有しており、このインゴット載置部に用意した上記インゴットを配置し、この鋳型を所定の温度に加熱することで当該インゴットを溶融する。鋳型の加熱は、加熱可能な雰囲気炉に鋳型を装入することで行う。   The mold has an ingot mounting part connected to the periphery of the opening, the ingot prepared in the ingot mounting part is disposed, and the ingot is heated by heating the mold to a predetermined temperature. Melt. The mold is heated by inserting the mold into a heatable atmosphere furnace.

ここでは、溶浸温度:775℃、Ar雰囲気、雰囲気圧力:大気圧となるように上記雰囲気炉を調整した。溶融した純マグネシウムは、鋳型の開口部から鋳型の内部空間に流入して、当該内部空間に配置された焼結体に溶浸される。溶浸後、鋳型を冷却して純マグネシウムを凝固した。ここでは、鋳型の底部から開口部に向かって一方向に冷却されるように、底部側を積極的に冷却した。このような冷却を行うことで、大型な複合部材であっても内部欠陥を低減することができ、高品質な複合部材が得られる。なお、小型な複合部材である場合、上述のような一方向の冷却を行わなくても、高品質な複合部材が得られる。   Here, the atmosphere furnace was adjusted so that the infiltration temperature was 775 ° C., the Ar atmosphere, and the atmospheric pressure: atmospheric pressure. The molten pure magnesium flows into the inner space of the mold from the opening of the mold and is infiltrated into the sintered body arranged in the inner space. After infiltration, the mold was cooled to solidify pure magnesium. Here, the bottom side was actively cooled so as to be cooled in one direction from the bottom of the mold toward the opening. By performing such cooling, internal defects can be reduced even with a large composite member, and a high-quality composite member can be obtained. In the case of a small composite member, a high-quality composite member can be obtained without cooling in one direction as described above.

上記鋳型を用いて、長さ200mm×幅100mm×厚さ5mmの複合部材が得られた。得られた複合部材の成分をEDX装置により調べたところ、Mg及びSiC、残部:不可避的不純物であり、用いた原料と同様であった。また、得られた複合部材にCP(Cross-section Polisher)加工を施して断面を出し、SEM観察によりこの断面を調べたところ、SiC同士が直接結合されていた。即ち、ネットワーク部がSiCで形成された多孔質体であり、用いた原料の焼結体と同様であった。更に、得られた複合部材の断面を光学顕微鏡(50倍、又は500倍)で観察したところ、図1(I),(II)に示すようにSiC間の隙間に純マグネシウムが溶浸されていることが確認できた。図1(I)において連続した網目状を構成する部分がSiCであり、粒状に固まった部分が純マグネシウムである。この複合部材は、ネットワーク部が太いことがわかる。図1(II)において色が薄い部分(大きな塊を含む)がSiCであり、色が濃い部分が純マグネシウムである。この複合部材は、ネットワーク部が細いことがわかる。   A composite member having a length of 200 mm, a width of 100 mm, and a thickness of 5 mm was obtained using the mold. The components of the obtained composite member were examined with an EDX apparatus. As a result, Mg and SiC, and the balance: inevitable impurities, were the same as the raw materials used. Further, when the obtained composite member was subjected to CP (Cross-section Polisher) processing to obtain a cross section, and this cross section was examined by SEM observation, SiC was directly bonded to each other. That is, the network part was a porous body formed of SiC and was the same as the sintered material used. Further, when the cross section of the obtained composite member was observed with an optical microscope (50 times or 500 times), pure magnesium was infiltrated into the gaps between SiC as shown in FIGS. 1 (I) and (II). It was confirmed that In FIG. 1 (I), the part constituting the continuous network is SiC, and the part solidified in a granular form is pure magnesium. This composite member has a thick network part. In FIG. 1 (II), the light-colored portion (including a large lump) is SiC, and the dark-colored portion is pure magnesium. It can be seen that this composite member has a thin network portion.

得られた各複合部材についてSiCの含有量を測定したところ、いずれも80体積%であった。SiCの含有量は、複合部材の任意の断面を光学顕微鏡(50倍)で観察し、この観察像を市販の画像解析装置で画像処理して、この断面中のSiCの合計面積を求め、この合計面積を体積割合に換算した値をこの断面に基づく体積割合とし(面積割合≒体積割合)、n=3の断面の体積割合を求め、これらの平均値とした。   When the SiC content of each composite member obtained was measured, it was 80% by volume. The SiC content is determined by observing an arbitrary cross section of the composite member with an optical microscope (50 times), and processing this observation image with a commercially available image analyzer to obtain the total area of SiC in the cross section. A value obtained by converting the total area into a volume ratio was defined as a volume ratio based on this cross section (area ratio≈volume ratio), and a volume ratio of the cross section of n = 3 was obtained and averaged.

得られた各複合部材について熱膨張係数α(ppm/K)及び熱伝導率κ(W/m・K)を測定したところ、ネットワーク部が太い複合部材は、熱膨張係数α:4.0ppm/K、熱伝導率κ:301W/m・Kであり、ネットワーク部が細い複合部材は、熱膨張係数α:4.4ppm/K、熱伝導率κ:270W/m・Kであった。熱膨張係数及び熱伝導率は、得られた複合部材から試験片を切り出し、市販の測定器を用いて測定した。熱膨張係数は、30℃〜150℃の範囲について測定した。   When the thermal expansion coefficient α (ppm / K) and the thermal conductivity κ (W / m · K) were measured for each obtained composite member, the composite member with a thick network part was found to have a thermal expansion coefficient α: 4.0 ppm / K. The composite member having a thermal conductivity κ: 301 W / m · K and a thin network portion had a thermal expansion coefficient α: 4.4 ppm / K and a thermal conductivity κ: 270 W / m · K. The thermal expansion coefficient and the thermal conductivity were measured using a commercially available measuring instrument after cutting out a test piece from the obtained composite member. The thermal expansion coefficient was measured in the range of 30 ° C to 150 ° C.

以上から、得られた複合部材は、熱膨張係数が4ppm/K程度の半導体素子やその周辺部品との整合性に優れる上に、熱伝導率も高い。従って、上記半導体素子の放熱部材の構成材料に好適に利用できると期待される。   From the above, the obtained composite member is excellent in consistency with a semiconductor element having a thermal expansion coefficient of about 4 ppm / K and its peripheral components, and also has a high thermal conductivity. Therefore, it can be suitably used as a constituent material for the heat dissipation member of the semiconductor element.

[試験例2]
種々の条件でSiC集合体を作製して、純マグネシウムを溶浸して複合部材を作製し、得られた複合部材の熱特性を調べた。
[Test Example 2]
SiC aggregates were produced under various conditions, and pure magnesium was infiltrated to produce composite members. The thermal characteristics of the obtained composite members were examined.

原料として、99.8質量%以上のMg及び不純物からなる純マグネシウムのインゴット(市販品)、及び市販のSiC粉末(粒径10〜170μm、平均粒径:120μm)を用意した。そして、表1に記載する条件でSiC集合体(長さ:200mm×幅100mm×厚さ5mm)をそれぞれ作製し、試験例1と同様の条件で、溶融した純マグネシウムをSiC集合体に溶浸した後凝固した。   As raw materials, a pure magnesium ingot (commercial product) composed of 99.8% by mass or more of Mg and impurities, and a commercially available SiC powder (particle size: 10 to 170 μm, average particle size: 120 μm) were prepared. Then, SiC aggregates (length: 200 mm × width 100 mm × thickness 5 mm) were respectively produced under the conditions described in Table 1, and molten magnesium was infiltrated into the SiC aggregates under the same conditions as in Test Example 1. And then solidified.

成形方法が「タッピング」の試料は、上記SiC粉末を用いて粉末成形体を作製した。上記試料のうち、「酸化処理:有り」の試料は、上記SiC粉末に1000℃×2時間の酸化処理を施し、酸化膜を具えるSiC粉末を用いて、SiC集合体を作製した。   As a sample with a molding method of “tapping”, a powder compact was produced using the SiC powder. Among the above samples, the “oxidation treatment: present” sample was obtained by subjecting the SiC powder to an oxidation treatment at 1000 ° C. for 2 hours, and using the SiC powder having an oxide film, a SiC aggregate was produced.

成形方法が「CIP」、「乾式プレス」の試料では、上記SiC粉末を用い、公知の条件で粉末成形体を作製した。成形方法が「湿式プレス」、「ドクターブレード」の試料では、上記SiC粉末に加えて、湿式プレスでは水、ドクターブレード法では有機溶媒を用い、公知の条件で粉末成形体を作製した。   For samples whose molding methods were “CIP” and “dry press”, the above-mentioned SiC powder was used to produce a powder compact under known conditions. For samples with the “wet press” and “doctor blade” molding methods, in addition to the SiC powder, water was used for the wet press, and an organic solvent was used for the doctor blade method, and powder compacts were produced under known conditions.

成形方法が「スリップキャスト」の試料では、SiC粉末、界面活性剤及び水を用意し、体積割合で水:SiC粉末≒5:5とし、界面活性剤を添加してスラリーを作製した。ここでは、尿素20質量%水溶液(スラリー全体を100質量%とする)を用いたスラリーを用意した。その他、市販のポリカルボン酸系水溶液を用いたスラリーなどを利用してもよい。作製したスラリーを成形型に流し込んだ後空気乾燥して、粉末成形体を作製した。   For a sample having a molding method of “slip cast”, a SiC powder, a surfactant and water were prepared, and a volume ratio of water: SiC powder≈5: 5 was added, and a surfactant was added to prepare a slurry. Here, a slurry using a 20% by mass aqueous urea solution (with the entire slurry being 100% by mass) was prepared. In addition, a slurry using a commercially available polycarboxylic acid aqueous solution may be used. The prepared slurry was poured into a mold and then air-dried to prepare a powder compact.

ネットワーク部の形成方法が「焼結」の試料は、作製した上記粉末成形体を表1の条件で焼結した。ネットワーク部の形成方法が「焼結(Si)」の試料は、SiC粉末とSi粉末(平均粒径:0.1μm)とを混合した混合粉末により粉末成形体を作製し、この粉末成形体を表1の条件で焼結した。   For the sample whose network part was formed by “sintering”, the produced powder compact was sintered under the conditions shown in Table 1. For samples with a network part formation method of `` sintered (Si) '', a powder compact was produced from a mixed powder of SiC powder and Si powder (average particle size: 0.1 μm). Sintered under the condition of 1.

ネットワーク部の形成方法が「ゾルゲル」の試料は、ポリカルボシランの溶液を用意して、作製した粉末成形体に含浸させた後、800℃に加熱した。   A sample having a network part formation method of “sol-gel” was prepared by preparing a solution of polycarbosilane, impregnating the prepared powder compact, and then heating to 800 ° C.

得られた各複合部材の成分をEDX装置により調べたところ、試料No.16,17を除く試料は、Mg及びSiC、残部:不可避的不純物であり、用いた原料と同様であった。試料No.16,17は、SiC同士の間にSi4N3が介在していた。また、得られた複合部材を試験例1と同様にしてSEM観察したところ、1800℃以上で焼結した試料、窒素雰囲気で焼結した試料、ゾルゲル方法を利用した試料は、いずれも、SiC同士を結合するネットワーク部が存在しており、多孔質体となっていた。一方、焼結を行っていなかったり、ゾルゲル方法を採用しなかった試料は、いずれも、純マグネシウムの母材中にSiCの粒子がばらばらに分散した状態となっていた。 When the components of the obtained composite members were examined using an EDX apparatus, the samples other than Sample Nos. 16 and 17 were Mg and SiC, and the remainder: inevitable impurities, which were the same as the raw materials used. In Sample Nos. 16 and 17, Si 4 N 3 was interposed between SiC. Further, when the obtained composite member was observed by SEM in the same manner as in Test Example 1, a sample sintered at 1800 ° C. or higher, a sample sintered in a nitrogen atmosphere, and a sample using the sol-gel method were all made of SiC. The network part which couple | bonds is existed and it became a porous body. On the other hand, all the samples that were not sintered or did not employ the sol-gel method were in a state in which SiC particles were dispersed in a pure magnesium base material.

得られた各複合部材についてSiCの含有量、熱膨張係数α(ppm/K)、熱伝導率κ(W/m・K)を試験例1と同様にして測定した。その結果を表1に示す。   For each of the obtained composite members, the SiC content, the thermal expansion coefficient α (ppm / K), and the thermal conductivity κ (W / m · K) were measured in the same manner as in Test Example 1. The results are shown in Table 1.

表1に示すようにSiCの含有量が70体積%超の試料はいずれも、熱膨張係数が小さく、4ppm/K〜8ppm/Kを満たすことが分かる。また、SiCの含有量が50体積%〜70体積%であっても、ネットワーク部を有する試料は、熱膨張係数が小さく、4ppm/K〜8ppm/Kを満たすことが分かる。更に、SiCの含有量が増加するにつれて、熱膨張係数が小さくなることが分かる。加えて、熱膨張係数が4ppm/K〜8ppm/Kを満たす試料は、いずれも熱伝導率も高く、180W/m・K以上であることが分かる。   As shown in Table 1, it can be seen that any sample having a SiC content exceeding 70% by volume has a small coefficient of thermal expansion and satisfies 4 ppm / K to 8 ppm / K. Moreover, even if SiC content is 50 volume%-70 volume%, it turns out that the sample which has a network part has a small thermal expansion coefficient, and satisfy | fills 4 ppm / K-8 ppm / K. Furthermore, it can be seen that the coefficient of thermal expansion decreases as the SiC content increases. In addition, it can be seen that all the samples satisfying the thermal expansion coefficient of 4 ppm / K to 8 ppm / K have high thermal conductivity and are 180 W / m · K or more.

また、表1から、SiCの含有量が同程度である試料を比較することで、以下のことが分かる。
(1) 焼結を行った試料の方が、熱膨張係数が小さく、熱伝導率が高くなる。
(2) 酸化膜を具えるSiC集合体を利用することで、熱伝導率を向上できる。
(3) SiC同士が直接結合された試料、即ち、ネットワーク部がSiCで構成されている試料の方が、ネットワーク部がSiC以外の非金属無機材料で構成されている試料よりも熱伝導率が高い。
Further, from Table 1, the following can be understood by comparing samples having the same SiC content.
(1) The sintered sample has a smaller thermal expansion coefficient and higher thermal conductivity.
(2) Thermal conductivity can be improved by using SiC aggregates with oxide films.
(3) A sample in which SiC is directly bonded, that is, a sample in which the network part is made of SiC has a higher thermal conductivity than a sample in which the network part is made of a nonmetallic inorganic material other than SiC. high.

また、スリップキャスト、加圧成形、及びドクターブレード法のいずれか一つを用いることで、SiCの含有量が70体積%超の複合部材が得られることが分かる。   Moreover, it turns out that the composite member with more than 70 volume% of SiC content is obtained by using any one of slip casting, pressure molding, and a doctor blade method.

更に、ネットワーク部を有する試料は、図1(I)に示すようにネットワーク部が太い試料と、図1(II)に示すようにネットワーク部が細い試料とが得られた。そこで、ネットワーク部を有する試料に対して、CP加工を施して断面を出し、この断面をSEMで観察し(ここでは50倍)、この断面に、各試料の実寸に対して1mmの線分を任意にとり、複合部材中のSiC集合体の輪郭線と上記線分との交点の数を数える。ここでは、n=5の平均をとり(n:線分の数)、平均の交点の数が50以下のものをネットワーク部が太いとし、50超のものをネットワーク部が細いとする。その結果を表1に示す。なお、断面の倍率は、観察し易いように適宜調整することができる。   Furthermore, as for the sample having the network part, a sample having a thick network part as shown in FIG. 1 (I) and a sample having a thin network part as shown in FIG. 1 (II) were obtained. Therefore, CP processing is performed on a sample having a network part, and a cross section is taken out. This cross section is observed with an SEM (in this case, 50 times), and a 1 mm line segment is drawn on this cross section with respect to the actual size of each sample. Arbitrarily, the number of intersections between the outline of the SiC aggregate in the composite member and the line segment is counted. Here, the average of n = 5 is taken (n: the number of line segments), and the network portion is thick when the average number of intersections is 50 or less, and the network portion is thin when it exceeds 50. The results are shown in Table 1. Note that the magnification of the cross section can be appropriately adjusted so that it can be easily observed.

表1に示すように、焼結温度が2000℃以上であると、ネットワーク部が太くなる傾向にあることが分かる。例えば、焼結温度が異なる点以外は、同じ条件で製造した試料No.5と試料No.7とを比較すると、焼結温度が2000℃未満である試料No.5では、上記交点の数が224であり(n=1〜5の値:130〜320)、焼結温度が2000℃以上である試料No.7では、上記交点の数が11であった(n=1〜5の値:8〜14)。   As shown in Table 1, it can be seen that when the sintering temperature is 2000 ° C. or higher, the network portion tends to become thicker. For example, when comparing sample No. 5 and sample No. 7 manufactured under the same conditions except that the sintering temperature is different, in sample No. 5 where the sintering temperature is less than 2000 ° C., the number of intersection points is 224 (value of n = 1 to 5: 130 to 320), and in sample No. 7 where the sintering temperature is 2000 ° C. or more, the number of the intersections was 11 (value of n = 1 to 5: 8-14).

また、表1に示すように、SiCの含有量が同程度である場合、ネットワーク部が太い試料の方が、細い試料よりも熱膨張係数が小さく、熱伝導率が高く、熱特性に優れることが分かる。一方、ネットワーク部が細い試料は、機械的特性に優れる。例えば、上記試料No.5と試料No.7とを比較すると、ネットワーク部が細い試料No.5は、弾性率が270GPa、引張強度が180MPaであるのに対し、ネットワーク部が太い試料No.7は、弾性率が250GPa、引張強度が60MPaであった。なお、弾性率及び引張強度は、市販の測定装置により測定した。   In addition, as shown in Table 1, when the SiC content is about the same, the sample with a thicker network part has a smaller thermal expansion coefficient, higher thermal conductivity, and better thermal properties than the thinner sample. I understand. On the other hand, a sample with a thin network part is excellent in mechanical characteristics. For example, when comparing sample No. 5 and sample No. 7, sample No. 5 with a narrow network part has an elastic modulus of 270 GPa and a tensile strength of 180 MPa, whereas sample No. 7 with a thick network part. Had an elastic modulus of 250 GPa and a tensile strength of 60 MPa. The elastic modulus and tensile strength were measured with a commercially available measuring device.

更に、表1に示すようにSiを含有したSiC集合体を作製し、かつ窒素雰囲気下で焼結を行った場合、焼結温度が2000℃未満でもネットワーク部が太くなる傾向にあることが分かる。   Furthermore, as shown in Table 1, when an SiC aggregate containing Si is prepared and sintered in a nitrogen atmosphere, it can be seen that the network part tends to be thick even if the sintering temperature is less than 2000 ° C. .

試験例2において熱膨張係数が4ppm/K〜8ppm/Kを満たす複合部材は、熱膨張係数が4ppm/K程度の半導体素子やその周辺部品との整合性に優れる上に、熱伝導率も高い。従って、これらの複合部材も、上記半導体素子の放熱部材の構成材料に好適に利用できると期待される。   The composite material satisfying the thermal expansion coefficient of 4ppm / K to 8ppm / K in Test Example 2 has excellent compatibility with semiconductor elements having a thermal expansion coefficient of about 4ppm / K and its peripheral components, and also has high thermal conductivity. . Therefore, it is expected that these composite members can also be suitably used as a constituent material of the heat dissipation member of the semiconductor element.

(実施形態2)
純マグネシウムとSiCとを複合した複合材料からなる基板と、基板の対向する二面をそれぞれ覆う金属被覆層とを具える複合部材を作製し、得られた複合部材の熱特性を調べた。
(Embodiment 2)
A composite member comprising a substrate made of a composite material in which pure magnesium and SiC were combined and a metal coating layer covering each of the two opposing surfaces of the substrate was produced, and the thermal characteristics of the obtained composite member were examined.

原料として、実施形態1の試験例1と同様の純マグネシウムのインゴット及びSiC焼結体を用意した。また、SiC焼結体には、実施形態1の試験例1と同様の酸化処理を施した。更に、長さ10mm×幅100mm×厚さ0.5mmで、カーボン製の板状のスペーサを一対用意した。   The same pure magnesium ingot and SiC sintered body as those of Test Example 1 of Embodiment 1 were prepared as raw materials. The SiC sintered body was subjected to the same oxidation treatment as in Test Example 1 of Embodiment 1. Further, a pair of carbon plate-like spacers having a length of 10 mm, a width of 100 mm, and a thickness of 0.5 mm were prepared.

ここでは、SiC焼結体と鋳型との間に上記スペーサが配置可能な大きさを有する鋳型を利用する。適宜離型剤を塗布した鋳型にSiC焼結体及び一対のスペーサを収納し、一対のスペーサによりSiC焼結体を挟持した状態とする。上記スペーサに挟まれることで焼結体は、鋳型内に安定して配置されると共に、SiC焼結体と鋳型との間にスペーサの厚さに応じた隙間(ここでは0.5mmの隙間)が設けられる。この鋳型を実施形態1と同様に雰囲気炉に装入した。そして、実施形態1と同様の条件で、SiC焼結体と溶融した純マグネシウムとを複合した。この複合工程では、スペーサにより設けられた鋳型とSiC焼結体との間の隙間に溶融した純マグネシウムが流れ込むことで、複合された基板の対向する二面にそれぞれ純マグネシウムからなる金属被覆層を形成した。   Here, a mold having such a size that the spacer can be disposed between the SiC sintered body and the mold is used. A SiC sintered body and a pair of spacers are housed in a mold appropriately coated with a release agent, and the SiC sintered body is sandwiched between the pair of spacers. By being sandwiched between the spacers, the sintered body is stably placed in the mold, and there is a gap (here, a 0.5 mm gap) according to the thickness of the spacer between the SiC sintered body and the mold. Provided. This mold was charged into an atmospheric furnace as in the first embodiment. Then, a SiC sintered body and molten pure magnesium were combined under the same conditions as in the first embodiment. In this compounding process, the molten pure magnesium flows into the gap between the mold provided by the spacer and the SiC sintered body, so that the metal coating layers made of pure magnesium are respectively formed on the two opposing surfaces of the compounded substrate. Formed.

上述のようにして、SiCと純マグネシウムとが複合された複合材料からなる基板と、基板の対向する二面に純マグネシウムからなる金属被覆層とを具える複合部材が得られた。得られた複合部材の断面を光学顕微鏡(50倍)で観察したところ、図2に示すようにSiCが網目状となっており、即ち、ネットワーク部を有することが確認できた。また、SiC間の隙間に純マグネシウムが溶浸されており、上記基板の表面に純マグネシウムからなる金属被覆層を具えていることが確認できた。この基板及び金属被覆層の構成金属の組成をEDX装置により調べたところ、同一組成(純マグネシウム)であった。また、上記断面の観察像から、各金属被覆層は、上記基板中の純マグネシウムと連続した組織を有していることが確認できた。更に、上記断面の観察像を用いて各金属被覆層の厚さを測定したところ、概ね0.5mm(500μm)であり、上記スペーサの厚さに実質的に一致していることが確認できた。   As described above, a composite member comprising a substrate made of a composite material in which SiC and pure magnesium were composited and a metal coating layer made of pure magnesium on two opposing surfaces of the substrate was obtained. When the cross section of the obtained composite member was observed with an optical microscope (50 ×), it was confirmed that SiC had a mesh shape as shown in FIG. 2, that is, had a network portion. Further, it was confirmed that pure magnesium was infiltrated into the gaps between the SiC, and the surface of the substrate was provided with a metal coating layer made of pure magnesium. When the composition of the constituent metals of the substrate and the metal coating layer was examined with an EDX apparatus, the same composition (pure magnesium) was obtained. Further, from the observation image of the cross section, it was confirmed that each metal coating layer had a structure continuous with pure magnesium in the substrate. Furthermore, when the thickness of each metal coating layer was measured using the observation image of the cross section, it was about 0.5 mm (500 μm), and it was confirmed that it substantially coincided with the thickness of the spacer.

得られた複合部材において、純マグネシウムとSiCとが複合された部分、即ち、金属被覆層を除く部分のSiCの含有量を測定したところ、80体積%であった。SiCの含有量は、実施形態1と同様にして測定した。   In the obtained composite member, the content of SiC in the portion where pure magnesium and SiC were combined, that is, the portion excluding the metal coating layer was measured and found to be 80% by volume. The SiC content was measured in the same manner as in the first embodiment.

また、得られた複合部材について熱膨張係数α(ppm/K)と熱伝導率κ(W/m・K)とを測定したところ、熱膨張係数α:5.1ppm/K、熱伝導率κ:250W/m・Kであった。熱膨張係数及び熱伝導率は、実施形態1と同様にして測定した。   Further, when the thermal expansion coefficient α (ppm / K) and the thermal conductivity κ (W / mK) were measured for the obtained composite member, the thermal expansion coefficient α: 5.1 ppm / K, the thermal conductivity κ: It was 250 W / m · K. The thermal expansion coefficient and the thermal conductivity were measured in the same manner as in the first embodiment.

以上から、得られた複合部材は、熱膨張係数が4ppm/K程度の半導体素子やその周辺部品との整合性に優れる上に、熱伝導率も高い。従って、上記半導体素子の放熱部材の構成材料に好適に利用できると期待される。また、実施形態2の複合部材は、基材の両面に金属被覆層を具えることで、電気めっきによりNiめっきなどを施すことができる。Niめっきなどを施すことで、半田との濡れ性を高められ、半田が望まれる半導体装置に利用される場合であっても、十分に対応することができる。更に、実施形態2の複合部材は、スペーサの厚さや形状を適宜選択することで、金属被覆層の厚さや形成領域を容易に変更することができる。   From the above, the obtained composite member is excellent in consistency with a semiconductor element having a thermal expansion coefficient of about 4 ppm / K and its peripheral components, and also has a high thermal conductivity. Therefore, it can be suitably used as a constituent material for the heat dissipation member of the semiconductor element. Further, the composite member of Embodiment 2 can be provided with Ni plating or the like by electroplating by providing a metal coating layer on both surfaces of the substrate. By performing Ni plating or the like, wettability with solder can be improved, and even when used in a semiconductor device where solder is desired, it is possible to sufficiently cope with it. Furthermore, in the composite member of Embodiment 2, the thickness and the formation region of the metal coating layer can be easily changed by appropriately selecting the thickness and shape of the spacer.

上記実施形態2では、複合材料からなる基板の両面に金属被覆層を形成する構成を説明したが、いずれか一面にのみ金属被覆層を形成してもよい。この場合、スペーサをSiC集合体の一面にのみ配置するとよい。   In the second embodiment, the configuration in which the metal coating layer is formed on both surfaces of the substrate made of the composite material has been described. However, the metal coating layer may be formed on only one surface. In this case, the spacer may be disposed only on one surface of the SiC aggregate.

本発明は、上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。例えば、複合部材中のSiCの含有量、ネットワーク部の構成材料、金属成分の組成(例えば、マグネシウム合金)、複合部材の大きさ、金属被覆層の厚さ、複合時の条件などを適宜変更することができる。   The present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention. For example, the content of SiC in the composite member, the constituent material of the network part, the composition of the metal component (for example, magnesium alloy), the size of the composite member, the thickness of the metal coating layer, the conditions at the time of composite, etc. are appropriately changed. be able to.

本発明複合部材は、半導体素子やその周辺部品との熱膨張係数の整合性に優れる上に熱伝導性が高いことから、半導体素子のヒートスプレッダ(本発明放熱部材)に好適に利用することができる。本発明複合部材の製造方法は、上記複合部材の製造に好適に利用することができる。本発明半導体装置は、各種の電子機器の部品に好適に利用することができる。   The composite member of the present invention is excellent in the consistency of the thermal expansion coefficient with the semiconductor element and its peripheral components and has high thermal conductivity, and therefore can be suitably used for a heat spreader of the semiconductor element (the heat dissipation member of the present invention). . The manufacturing method of this invention composite member can be utilized suitably for manufacture of the said composite member. The semiconductor device of the present invention can be suitably used for parts of various electronic devices.

Claims (19)

マグネシウム又はマグネシウム合金とSiCとが複合された複合部材であって、
前記SiCを70体積%超含有し、
前記複合部材の熱膨張係数が4ppm/K以上8ppm/K以下であることを特徴とする複合部材。
A composite member in which magnesium or a magnesium alloy and SiC are combined,
Containing more than 70% by volume of SiC,
A composite member, wherein the composite member has a coefficient of thermal expansion of 4 ppm / K or more and 8 ppm / K or less.
マグネシウム又はマグネシウム合金とSiCとが複合された複合部材であって、
前記SiCを50体積%以上含有し、
前記SiC同士を結合するネットワーク部を有しており、
前記複合部材の熱膨張係数が4ppm/K以上8ppm/K以下であることを特徴とする複合部材。
A composite member in which magnesium or a magnesium alloy and SiC are combined,
Containing 50 vol% or more of the SiC,
It has a network part that joins the SiC,
A composite member, wherein the composite member has a coefficient of thermal expansion of 4 ppm / K or more and 8 ppm / K or less.
前記SiCを70体積%超含有することを特徴とする請求項2に記載の複合部材。   3. The composite member according to claim 2, wherein the SiC contains more than 70% by volume. 前記ネットワーク部は、非金属無機材料から構成されていることを特徴とする請求項2又は3に記載の複合部材。   4. The composite member according to claim 2, wherein the network part is made of a nonmetallic inorganic material. 前記ネットワーク部は、SiCから構成されていることを特徴とする請求項4に記載の複合部材。   5. The composite member according to claim 4, wherein the network unit is made of SiC. 前記ネットワーク部は、Si3N4から構成されていることを特徴とする請求項4に記載の複合部材。 5. The composite member according to claim 4, wherein the network part is made of Si 3 N 4 . 前記複合部材の断面において、当該複合部材の実寸に対して長さ1mmの線分を任意にとり、前記SiCと前記ネットワーク部とから構成されるSiC集合体の輪郭線と前記線分との交点の数が50以下であることを特徴とする請求項2〜6のいずれか1項に記載の複合部材。   In the cross-section of the composite member, a line segment having a length of 1 mm is arbitrarily taken with respect to the actual size of the composite member, and the intersection of the contour line of the SiC aggregate composed of the SiC and the network portion and the line segment. The composite member according to any one of claims 2 to 6, wherein the number is 50 or less. 前記複合部材の断面において、当該複合部材の実寸に対して長さ1mmの線分を任意にとり、前記SiCと前記ネットワーク部とから構成されるSiC集合体の輪郭線と前記線分との交点の数が50超であることを特徴とする請求項2〜6のいずれか1項に記載の複合部材。   In the cross-section of the composite member, a line segment having a length of 1 mm is arbitrarily taken with respect to the actual size of the composite member, and the intersection of the contour line of the SiC aggregate composed of the SiC and the network portion and the line segment. The composite member according to any one of claims 2 to 6, wherein the number is more than 50. 前記複合部材は、前記マグネシウム又は前記マグネシウム合金と前記SiCとが複合された複合材料からなる基板と、
前記基板の少なくとも一面を覆う金属被覆層とを具えることを特徴とする請求項1〜8のいずれか1項に記載の複合部材。
The composite member is a substrate made of a composite material in which the magnesium or the magnesium alloy and the SiC are combined;
9. The composite member according to claim 1, further comprising a metal coating layer covering at least one surface of the substrate.
前記基板中のマグネシウム又はマグネシウム合金と前記金属被覆層を構成する金属とが連続する組織からなることを特徴とする請求項9に記載の複合部材。   10. The composite member according to claim 9, wherein the composite member comprises a structure in which magnesium or a magnesium alloy in the substrate and a metal constituting the metal coating layer are continuous. 前記複合部材の熱伝導率が180W/m・K以上であることを特徴とする請求項1〜10のいずれか1項に記載の複合部材。   The composite member according to any one of claims 1 to 10, wherein the composite member has a thermal conductivity of 180 W / m · K or more. 請求項1〜11のいずれか1項に記載の複合部材により構成されることを特徴とする放熱部材。   A heat radiating member comprising the composite member according to any one of claims 1 to 11. 請求項12に記載の放熱部材と、この放熱部材に搭載される半導体素子とを具えることを特徴とする半導体装置。   13. A semiconductor device comprising: the heat radiating member according to claim 12; and a semiconductor element mounted on the heat radiating member. マグネシウム又はマグネシウム合金とSiCとが複合された複合部材を製造する複合部材の製造方法であって、
スリップキャスト、加圧成形、及びドクターブレード法のいずれか一つを用いて、SiC集合体を形成する成形工程と、
鋳型に収納された前記SiC集合体に溶融したマグネシウム又はマグネシウム合金を大気圧以下の雰囲気で溶浸させ、前記SiCを70体積%超含有する複合部材を形成する複合工程とを具えることを特徴とする複合部材の製造方法。
A composite member manufacturing method for manufacturing a composite member in which magnesium or a magnesium alloy and SiC are combined,
Using any one of slip casting, pressure molding, and doctor blade method, a molding process for forming a SiC aggregate,
A compounding step of infiltrating molten magnesium or a magnesium alloy into the SiC aggregate housed in a mold in an atmosphere of atmospheric pressure or less to form a composite member containing more than 70% by volume of SiC. A method for producing a composite member.
マグネシウム又はマグネシウム合金とSiCとが複合された複合部材を製造する複合部材の製造方法であって、
SiCの粉末成形体を形成する成形工程と、
前記粉末成形体を焼結して、SiC同士を結合するネットワーク部を有するSiC集合体を形成する焼結工程と、
鋳型に収納された前記SiC集合体に溶融したマグネシウム又はマグネシウム合金を大気圧以下の雰囲気で溶浸させ、前記ネットワーク部を有すると共に、前記SiCを50体積%以上含有する複合部材を形成する複合工程とを具えることを特徴とする複合部材の製造方法。
A composite member manufacturing method for manufacturing a composite member in which magnesium or a magnesium alloy and SiC are combined,
A molding process for forming a powder compact of SiC;
Sintering the powder compact to form a SiC aggregate having a network part for bonding SiC, and
A composite step of infiltrating molten magnesium or a magnesium alloy in the SiC aggregate housed in a mold in an atmosphere at atmospheric pressure or less to form a composite member having the network portion and containing 50% by volume or more of SiC. A method for producing a composite member, comprising:
前記焼結工程において前記ネットワーク部は、焼結により前記SiC同士を直接結合して形成することを特徴とする請求項15に記載の複合部材の製造方法。   16. The method for producing a composite member according to claim 15, wherein the network part is formed by directly bonding the SiCs by sintering in the sintering step. 前記成形工程では、SiC粉末と、Si粉末又はSiを含有する化合物からなる粉末との混合粉末を用いて、前記粉末成形体を形成し、
前記焼結工程では、前記粉末成形体を窒素雰囲気下で焼結してシリコン窒化物を生成し、前記ネットワーク部を前記シリコン窒化物により形成することを特徴とする請求項15に記載の複合部材の製造方法。
In the molding step, using a mixed powder of SiC powder and powder composed of Si powder or a compound containing Si, the powder compact is formed,
16. The composite member according to claim 15, wherein in the sintering step, the powder compact is sintered in a nitrogen atmosphere to generate silicon nitride, and the network portion is formed of the silicon nitride. Manufacturing method.
マグネシウム又はマグネシウム合金とSiCとが複合された複合部材を製造する複合部材の製造方法であって、
SiCの粉末成形体を形成する成形工程と、
非金属無機材料の前駆体の溶液を前記粉末成形体に含浸させた後加熱して、前記前駆体に基づく非金属無機材料を生成し、この生成された非金属無機材料から構成されるネットワーク部により前記SiC同士が結合されたSiC集合体を形成する結合工程と、
鋳型に収納された前記SiC集合体に溶融したマグネシウム又はマグネシウム合金を大気圧以下の雰囲気で溶浸させ、前記ネットワーク部を有すると共に、前記SiCを50体積%以上含有する複合部材を形成する複合工程とを具えることを特徴とする複合部材の製造方法。
A composite member manufacturing method for manufacturing a composite member in which magnesium or a magnesium alloy and SiC are combined,
A molding process for forming a powder compact of SiC;
The powder molded body is impregnated with a solution of a precursor of a non-metallic inorganic material and then heated to produce a non-metallic inorganic material based on the precursor, and a network portion composed of the produced non-metallic inorganic material A bonding step of forming a SiC aggregate in which the SiC is bonded to each other;
A composite step of infiltrating molten magnesium or a magnesium alloy in the SiC aggregate housed in a mold in an atmosphere at atmospheric pressure or less to form a composite member having the network portion and containing 50% by volume or more of SiC. A method for producing a composite member, comprising:
前記複合工程には、前記SiC集合体として、その表面に酸化膜を具えるものを用いることを特徴とする請求項14〜18のいずれか1項に記載の複合部材の製造方法。   19. The method for manufacturing a composite member according to any one of claims 14 to 18, wherein in the composite step, a SiC aggregate having an oxide film on a surface thereof is used.
JP2010202871A 2010-09-10 2010-09-10 Heat dissipation member, semiconductor device, and method of manufacturing heat dissipation member Active JP5503474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010202871A JP5503474B2 (en) 2010-09-10 2010-09-10 Heat dissipation member, semiconductor device, and method of manufacturing heat dissipation member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010202871A JP5503474B2 (en) 2010-09-10 2010-09-10 Heat dissipation member, semiconductor device, and method of manufacturing heat dissipation member

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009230340A Division JP4594433B1 (en) 2008-10-03 2009-10-02 Heat dissipation member

Publications (3)

Publication Number Publication Date
JP2011080145A true JP2011080145A (en) 2011-04-21
JP2011080145A5 JP2011080145A5 (en) 2012-11-15
JP5503474B2 JP5503474B2 (en) 2014-05-28

Family

ID=44074471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010202871A Active JP5503474B2 (en) 2010-09-10 2010-09-10 Heat dissipation member, semiconductor device, and method of manufacturing heat dissipation member

Country Status (1)

Country Link
JP (1) JP5503474B2 (en)

Also Published As

Publication number Publication date
JP5503474B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
WO2010038483A1 (en) Composite member
JP4251986B2 (en) High thermal conductive diamond sintered body and method for producing the same
US9556501B2 (en) Magnesium-based composite member, heat radiation member, and semiconductor device
WO2000027776A1 (en) Carbon-based metal composite material, method for preparation thereof and use thereof
JP2011524466A (en) Metal-infiltrated silicon titanium and aluminum carbide bodies
JP2004525050A (en) Thermal conductive material
US10919811B2 (en) Aluminum-silicon-carbide composite and method of manufacturing same
WO2000076940A1 (en) Composite material and semiconductor device using the same
JP2012197496A (en) Composite member
JP2004197153A (en) Diamond-metal composite material and method for manufacturing the same
JP4720981B2 (en) Magnesium matrix composite
JP2014001439A (en) Composite member, method for manufacturing composite member and semiconductor device
JP5645048B2 (en) Heat dissipation member, semiconductor device, and method for manufacturing composite material
JP5536409B2 (en) Composite member, heat dissipation member, semiconductor device, and method of manufacturing composite member
JP4594433B1 (en) Heat dissipation member
JP2017039997A (en) Aluminum alloy-ceramic composite material and production method for aluminum alloy-ceramic composite material
JP2015140456A (en) Composite material, semiconductor device, and method for manufacturing composite material
JP5503474B2 (en) Heat dissipation member, semiconductor device, and method of manufacturing heat dissipation member
JP5513058B2 (en) Composite member manufacturing method, composite member, heat dissipation member, and semiconductor device
CN113614266B (en) Composite material
JP2012144767A (en) Composite member, heat radiation member, semiconductor device, and method of manufacturing composite member
JP2017150040A (en) Aluminum alloy-ceramic composite material and manufacturing method of aluminum alloy-ceramic composite material
JP2010235417A (en) Porous body, metal-ceramic composite material and method of manufacturing them
JP5715678B2 (en) Magnesium matrix composite
JP5152682B2 (en) Method for producing magnesium-based composite material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121001

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140314

R150 Certificate of patent or registration of utility model

Ref document number: 5503474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250