JP2011073953A - Method for production of synthetic quartz glass, and synthetic quartz glass - Google Patents

Method for production of synthetic quartz glass, and synthetic quartz glass Download PDF

Info

Publication number
JP2011073953A
JP2011073953A JP2009230408A JP2009230408A JP2011073953A JP 2011073953 A JP2011073953 A JP 2011073953A JP 2009230408 A JP2009230408 A JP 2009230408A JP 2009230408 A JP2009230408 A JP 2009230408A JP 2011073953 A JP2011073953 A JP 2011073953A
Authority
JP
Japan
Prior art keywords
quartz glass
synthetic quartz
hydrogen
temperature
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009230408A
Other languages
Japanese (ja)
Inventor
Tadashi Enomoto
正 榎本
Toshio Danzuka
俊雄 弾塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009230408A priority Critical patent/JP2011073953A/en
Publication of JP2011073953A publication Critical patent/JP2011073953A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Glass Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To equalize a hydrogen concentration distribution in a glass by efficiently impregnating a synthetic quartz glass with hydrogen necessary for providing resistance to the long-term irradiation of UV laser beam or UV light. <P>SOLUTION: There is provided a method including: a first heating process of heating a synthetic quartz glass at a first temperature in a hydrogen-containing atmosphere; a second heating process of heating the glass at a second temperature equal to or higher than the first one in a hydrogen-free atmosphere; and a third heating process of heating the glass at a third temperature equal to or lower than the second temperature in a hydrogen-containing atmosphere. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、合成石英ガラスの製造方法及び合成石英ガラスに関する。   The present invention relates to a method for producing synthetic quartz glass and synthetic quartz glass.

合成石英ガラスは、例えば、露光装置、レーザ加工装置、光洗浄装置等の各種装置において、UVレーザ(例えば、ArFやKrFなどのエキシマレーザ、YAG−FHG等)光やUVランプ(例えば、エキシマランプ等)光を透過するUV光学系材料として広く用いられており、現在では、特に、紫外域の透過特性に優れている高純度合成石英ガラスが用いられている。   Synthetic quartz glass is used in various apparatuses such as an exposure apparatus, a laser processing apparatus, and an optical cleaning apparatus, for example, with UV laser (eg, excimer laser such as ArF or KrF, YAG-FHG, etc.) light or UV lamp (eg, excimer lamp). Etc.) It is widely used as a UV optical system material that transmits light, and at present, high-purity synthetic quartz glass that is particularly excellent in transmission characteristics in the ultraviolet region is used.

前記高純度合成石英ガラスは、強力なUVレーザ光やUV光が長期照射されると、経時的に紫外線透過率の低下が生じることが知られている。この経時的な透過率の低下は、前記UVレーザ光やUV光の時間当たりのエネルギーが比較的高いため、ガラスに加わる負荷が大きくなり、該負荷によってガラス内部にガラス欠陥が生成され、該欠陥部分が透過するUVレーザ光やUV光を吸収することから発生するものと考えられる。   The high-purity synthetic quartz glass is known to have a decrease in ultraviolet transmittance over time when irradiated with a strong UV laser light or UV light for a long time. This decrease in transmittance over time is because the energy per unit time of the UV laser light and UV light is relatively high, so that a load applied to the glass is increased, and a glass defect is generated inside the glass by the load. This is considered to be caused by absorption of UV laser light or UV light transmitted through the portion.

前記透過率の低下を抑制するために、合成石英ガラスを水素雰囲気中で熱処理して該合成石英ガラスに水素を含浸することにより、強力なUVレーザ光やUV光の長期照射による合成石英ガラスの経時的な紫外線透過率の低下を抑制する方法が知られている(例えば、特許文献1参照)。   In order to suppress the decrease in the transmittance, the synthetic quartz glass is heat treated in a hydrogen atmosphere and impregnated with hydrogen. A method for suppressing a decrease in ultraviolet transmittance over time is known (for example, see Patent Document 1).

特許第2660531号公報Japanese Patent No. 2660531

ところで、強力なUVレーザ光やUV光の長期照射に対する耐性を備えるのに必要な水素を合成石英ガラスに対して含浸させるには、高温高圧の水素雰囲気中で長時間の処理が必要であるが、水素は爆発性ガスであって危険性を有するため、高温高圧の水素雰囲気中での処理時間を短縮することが望ましい。   By the way, in order to impregnate synthetic quartz glass with hydrogen necessary for providing resistance to strong UV laser light or long-term irradiation with UV light, long-time treatment is required in a high-temperature and high-pressure hydrogen atmosphere. Since hydrogen is an explosive gas and has danger, it is desirable to shorten the processing time in a high-temperature and high-pressure hydrogen atmosphere.

また、水素は、加熱工程でガラス表面側からガラス内側へ拡散浸透する。そのため、水素が含浸された合成石英ガラスは、ガラス表面側の水素濃度がガラス内側の水素濃度よりも高いという水素濃度分布を持つことになる。しかしながら、前記のような水素濃度分布を持つ合成石英ガラスでは、水素濃度の違いによりUV光学用材料の屈折率が不均一となるおそれがある。この屈折率の不均一があると、透過するUVレーザ光やUV光の光軸方向のずれが生じるため、光源に対する位置調整が難しくなってしまう問題が生じる。   Further, hydrogen diffuses and penetrates from the glass surface side to the glass inner side in the heating process. Therefore, the synthetic quartz glass impregnated with hydrogen has a hydrogen concentration distribution in which the hydrogen concentration on the glass surface side is higher than the hydrogen concentration on the glass inner side. However, in the synthetic quartz glass having the hydrogen concentration distribution as described above, the refractive index of the UV optical material may become non-uniform due to the difference in hydrogen concentration. If the refractive index is non-uniform, there is a problem that the position adjustment with respect to the light source becomes difficult because the transmitted UV laser light and the optical axis of the UV light are displaced.

本発明は、このような問題に対処することを課題とするものである。すなわち、合成石英ガラスに対して水素を効率的に含浸させること、ガラス内の水素濃度分布の平準化を図ること等が本発明の目的である。さらに、平準な水素濃度分布を有する合成石英ガラスの提供が本発明の目的である。   An object of the present invention is to deal with such a problem. That is, it is an object of the present invention to efficiently impregnate synthetic quartz glass with hydrogen, level the hydrogen concentration distribution in the glass, and the like. Furthermore, it is an object of the present invention to provide a synthetic quartz glass having a uniform hydrogen concentration distribution.

前記目的を達成するため、本発明にかかる合成石英ガラスの製造方法は、次の工程を少なくとも具備する。   In order to achieve the above object, a method for producing a synthetic quartz glass according to the present invention comprises at least the following steps.

すなわち、合成石英ガラスに水素含浸処理を行う光学硝材用の合成石英ガラスの製造方法であって、合成石英ガラスを、水素を含む雰囲気中で、第1温度で加熱する第1加熱工程と、前記合成石英ガラスを、水素を含まない雰囲気中で、前記第1温度以上の第2温度で加熱する第2加熱工程と、前記合成石英ガラスを、水素を含む雰囲気中で、前記第2温度以下の第3温度で加熱する第3加熱工程と、を有することを特徴とする。   That is, a synthetic quartz glass manufacturing method for optical glass material for performing hydrogen impregnation treatment on synthetic quartz glass, wherein the synthetic quartz glass is heated at a first temperature in an atmosphere containing hydrogen; A second heating step of heating the synthetic quartz glass in a hydrogen-free atmosphere at a second temperature equal to or higher than the first temperature; and the synthetic quartz glass in a hydrogen-containing atmosphere at a temperature equal to or lower than the second temperature. And a third heating step of heating at a third temperature.

また、前記第1加熱工程〜第3加熱工程による製造方法で製造された合成石英ガラスを、水素を含まない雰囲気中で、前記第1温度以上の温度で加熱する第4加熱工程を更に有する製造方法としてもよい。また、前記第1加熱工程〜第3加熱工程による製造方法で製造された合成石英ガラスを、水素を含まない雰囲気中で、前記第1温度以上の温度で加熱する第4加熱工程と、前記合成石英ガラスを、水素を含む雰囲気中で、前記第2温度以下の温度で加熱する第5加熱工程と、を更に有し、前記第4加熱工程と前記第5加熱工程とを1サイクルとして、前記第3加熱工程の後に、該サイクルを1回又は2回以上繰り返し行う製造方法としてもよい、   The manufacturing further includes a fourth heating step of heating the synthetic quartz glass manufactured by the manufacturing method according to the first heating step to the third heating step in an atmosphere not containing hydrogen at a temperature equal to or higher than the first temperature. It is good also as a method. In addition, a fourth heating step of heating the synthetic quartz glass manufactured by the first heating step to the third heating step in a hydrogen-free atmosphere at a temperature equal to or higher than the first temperature, and the synthesis A fifth heating step of heating the quartz glass at a temperature equal to or lower than the second temperature in an atmosphere containing hydrogen, and the fourth heating step and the fifth heating step as one cycle, It is good also as a manufacturing method which repeats this cycle once or twice after the 3rd heating process,

また、前記第1加熱工程〜第3加熱工程による製造方法で製造された合成石英ガラスを、水素を含まない雰囲気中で、前記第1温度以上の温度で加熱する第4加熱工程と、前記合成石英ガラスを、水素を含む雰囲気中で、前記第2温度以下の温度で加熱する第5加熱工程と、前記合成石英ガラスを、水素を含まない雰囲気中で、前記第1温度以上の温度で加熱する第6加熱工程と、を更に有し、前記第5加熱工程と前記第6加熱工程とを1サイクルとして、前記第4加熱工程の後に、該サイクルを1回又は2回以上繰り返し行う製造方法としてもよい。   Moreover, the 4th heating process which heats the synthetic quartz glass manufactured with the manufacturing method by the said 1st heating process-the 3rd heating process at the temperature more than said 1st temperature in the atmosphere which does not contain hydrogen, and the said synthesis | combination A fifth heating step of heating the quartz glass in an atmosphere containing hydrogen at a temperature not higher than the second temperature; and heating the synthetic quartz glass in an atmosphere not containing hydrogen at a temperature not lower than the first temperature. A sixth heating step, wherein the fifth heating step and the sixth heating step are one cycle, and the cycle is repeated once or twice or more after the fourth heating step. It is good.

また、前記第1温度が500℃以下であることが好ましく、前記第1温度が300℃〜150℃であることがより好ましい。   In addition, the first temperature is preferably 500 ° C. or lower, and the first temperature is more preferably 300 ° C. to 150 ° C.

また、前記目的を達成するため、本発明にかかる合成石英ガラスは、次の構成を少なくとも具備する。   Moreover, in order to achieve the said objective, the synthetic quartz glass concerning this invention comprises at least the following structure.

すなわち、前記光学硝材用の合成石英ガラスの製造方法で製造された光学硝材用の合成石英ガラスであって、表層領域を除いた領域での水素濃度の最大値と最小値との比が1.5倍以下であることを特徴とする。   That is, synthetic quartz glass for optical glass produced by the method for producing synthetic quartz glass for optical glass, wherein the ratio between the maximum value and the minimum value of the hydrogen concentration in the region excluding the surface layer region is 1.5 times. It is characterized by the following.

合成石英ガラス中の水素濃度分布を示す分布図であり、(a)は実施例の分布図、(b)は比較例1の分布図、(c)は、比較例2の分布図である。It is a distribution map which shows hydrogen concentration distribution in a synthetic quartz glass, (a) is a distribution map of an Example, (b) is a distribution map of the comparative example 1, (c) is a distribution map of the comparative example 2. FIG.

本実施形態の合成石英ガラスは、UV光学系に用いられる材料であり、例えば、露光装置、レーザ加工装置、光洗浄装置等の各種装置のUV光学系に用いられ、紫外域の透過特性に優れた高純度の合成石英ガラスである。   The synthetic quartz glass of the present embodiment is a material used for the UV optical system. For example, it is used for the UV optical system of various apparatuses such as an exposure apparatus, a laser processing apparatus, and an optical cleaning apparatus, and has excellent ultraviolet transmission characteristics. High purity synthetic quartz glass.

前記UV光学系とは、例えば、KrFエキシマレーザ(248nm)、ArFエキシマレーザ(193nm)、F2エキシマレーザ(157nm)、YAG−FHGレーザ(266nm)、Xe2エキシマランプ(172nm)、ArFエキシマランプ(193nm)等を主とする、波長300nm以下の光を発するレーザやランプを光源とする光学系である。   Examples of the UV optical system include KrF excimer laser (248 nm), ArF excimer laser (193 nm), F2 excimer laser (157 nm), YAG-FHG laser (266 nm), Xe2 excimer lamp (172 nm), and ArF excimer lamp (193 nm). ) And the like, and an optical system using a laser or a lamp emitting light having a wavelength of 300 nm or less as a light source.

前記合成石英ガラスは、下記の合成石英ガラス母材製造工程、該合成石英ガラス母材を用いた合成石英ガラス材製造工程、該合成石英ガラス材に対する水素含浸工程を備えた製造方法により構成される。前記製造方法による合成石英ガラスは、表層領域を除いた領域での水素濃度の最大値と最小値との比が1.5倍以下の水素濃度分布に抑えられている。前記「表層領域」とは、厚み方向の外周部およそ20%の領域であり、水素含浸後の合成石英ガラスの加工により除去される領域である。   The synthetic quartz glass is composed of the following synthetic quartz glass base material manufacturing step, a synthetic quartz glass material manufacturing step using the synthetic quartz glass base material, and a manufacturing method including a hydrogen impregnation step for the synthetic quartz glass material. . In the synthetic quartz glass produced by the above manufacturing method, the ratio of the maximum value to the minimum value of the hydrogen concentration in the region excluding the surface layer region is suppressed to a hydrogen concentration distribution of 1.5 times or less. The “surface layer region” is a region of approximately 20% of the outer peripheral portion in the thickness direction, and is a region removed by processing of synthetic quartz glass after hydrogen impregnation.

<合成石英ガラス母材製造工程>
SiCl4を火炎中で加水分解して製造したガラス微粒子堆積体を製造する(VAD(気相軸付け)法など)。該ガラス微粒子堆積体を焼結炉に挿入して加熱処理することにより、透明な円柱状の合成石英ガラス母材を製造する。
<Process for manufacturing synthetic quartz glass base material>
A glass fine particle deposit produced by hydrolysis of SiCl 4 in a flame is produced (such as a VAD (vapor phase axis) method). The glass fine particle deposit is inserted into a sintering furnace and heat-treated to produce a transparent cylindrical synthetic quartz glass base material.

<合成石英ガラス材製造工程>
前記合成石英ガラス母材は直径150mmの円柱状のインゴッドに成形され、該インゴッドを20mmの厚みとなるように、切断するとともに、切断面を研磨して、円盤状の合成石英ガラス材を製造する。なお、ここで挙げた数値は、合成石英ガラス材の一例を示すものであって、本発明を限定するものではない。
<Synthetic quartz glass material manufacturing process>
The synthetic quartz glass base material is formed into a cylindrical ingot having a diameter of 150 mm, and the ingot is cut to a thickness of 20 mm, and the cut surface is polished to produce a disc-shaped synthetic quartz glass material. . In addition, the numerical value quoted here shows an example of the synthetic quartz glass material, and does not limit the present invention.

<水素含浸工程>
前記合成石英ガラスに対する水素の含浸は、例えば、次の3つの工程を含む製造方法によって行うことができる(第1製造方法)。
第1加熱工程:前記合成石英ガラス材を、水素を含む雰囲気中で、第1温度で加熱する。
第2加熱工程:第1加熱工程で加熱した合成石英ガラス材を、水素を含まない雰囲気中で、前記第1温度以上の第2温度で加熱する。
第3加熱工程:第2加熱工程で加熱した合成石英ガラス材を、水素を含む雰囲気中で、前記第2温度以下の第3温度で加熱する。
<Hydrogen impregnation process>
The impregnation of the synthetic quartz glass with hydrogen can be performed, for example, by a manufacturing method including the following three steps (first manufacturing method).
First heating step: The synthetic quartz glass material is heated at a first temperature in an atmosphere containing hydrogen.
Second heating step: The synthetic quartz glass material heated in the first heating step is heated at a second temperature equal to or higher than the first temperature in an atmosphere not containing hydrogen.
Third heating step: The synthetic quartz glass material heated in the second heating step is heated at a third temperature not higher than the second temperature in an atmosphere containing hydrogen.

この第1製造方法により、表層領域を除いた領域での水素濃度の最大値と最小値との比が1.5倍以下の水素濃度分布を備え、ガラス内の水素濃度分布が平準化された合成石英ガラスが製造される。   By this first manufacturing method, the ratio of the maximum value and the minimum value of the hydrogen concentration in the region excluding the surface layer region is 1.5 times or less, and the hydrogen concentration distribution in the glass is leveled. Synthetic quartz glass is produced.

前記第1製造方法の第1温度は、合成石英ガラス材の融点未満の温度であるとともに、水素の防爆ができ、製造設備の簡素化ができ、かつ水素を合成石英ガラス内に効率的に浸透させることができる温度である。この第1温度は、500℃を超えた場合はガラス中に酸素欠乏欠陥が生成され、100℃以下である場合は水素含浸しないため、500℃以下が好ましく、より好ましくは300℃〜150℃である。   The first temperature of the first manufacturing method is a temperature lower than the melting point of the synthetic quartz glass material, hydrogen can be explosion-proof, manufacturing equipment can be simplified, and hydrogen penetrates efficiently into the synthetic quartz glass. It is the temperature that can be made to. When the first temperature exceeds 500 ° C., oxygen deficiency defects are generated in the glass, and when the temperature is 100 ° C. or less, hydrogen impregnation is not preferable. Therefore, the temperature is preferably 500 ° C. or less, more preferably 300 ° C. to 150 ° C. is there.

また、前記第2加熱工程の「第1温度以上の温度」は、合成石英ガラス材の融点未満の温度であるとともに、水素を合成石英ガラス材内に効率的に浸透させることができる温度が好ましい。また、前記第2加熱工程「水素を含まない雰囲気」とは、「実質的に水素を含まない雰囲気」であり、具体的には「加熱工程で合成石英ガラスに水素が含浸されない程度の雰囲気」である。また、各製造方法における水素の気圧や加熱時間等は、各製造方法の加熱温度に応じて、水素を合成石英ガラス材内に効率的に浸透させることができる気圧を任意に選択することができる。   In addition, the “temperature not lower than the first temperature” in the second heating step is preferably a temperature at which hydrogen can be efficiently permeated into the synthetic quartz glass material while being a temperature lower than the melting point of the synthetic quartz glass material. . The second heating step “atmosphere not containing hydrogen” means “atmosphere substantially free of hydrogen”, specifically, “atmosphere that does not impregnate synthetic quartz glass with hydrogen in the heating step”. It is. Moreover, the atmospheric pressure of hydrogen in each manufacturing method, the heating time, etc. can arbitrarily select the atmospheric pressure that allows hydrogen to efficiently penetrate into the synthetic quartz glass material according to the heating temperature of each manufacturing method. .

前記第1製造方法において、前記第3加熱工程で加熱した合成石英ガラス材を、水素を含まない雰囲気中で、前記第1温度以上の温度で加熱する第4加熱工程を行ってもよい(第2製造方法)。   In the first manufacturing method, a fourth heating step of heating the synthetic quartz glass material heated in the third heating step in an atmosphere not containing hydrogen at a temperature equal to or higher than the first temperature may be performed (first step). 2 manufacturing method).

また、前記第1製造方法において、前記第3加熱工程で加熱した合成石英ガラス材を、水素を含まない雰囲気中で、前記第1温度以上の温度で加熱する第4加熱工程と、水素を含む雰囲気中で、前記第2温度以下の温度で加熱する第5加熱工程とを1サイクルとして、該サイクルを1回又は2回以上繰り返し行ってもよい(第3製造方法)。 Moreover, in the said 1st manufacturing method, the 4th heating process of heating the synthetic quartz glass material heated at the said 3rd heating process in the atmosphere which does not contain hydrogen at the temperature more than the said 1st temperature, and hydrogen are included. In the atmosphere, the fifth heating step of heating at a temperature equal to or lower than the second temperature may be one cycle, and the cycle may be repeated once or twice or more (third manufacturing method).

また、前記第1製造方法において、前記第3加熱工程で加熱した合成石英ガラス材を、水素を含まない雰囲気中で、前記第1温度以上の温度で加熱する第4加熱工程を行い、この第4加熱工程の後に、水素を含む雰囲気中で、前記第2温度以下の温度で加熱する第5加熱工程と、水素を含まない雰囲気中で、前記第1温度以上の温度で加熱する第6加熱工程とを1サイクルとして、該サイクルを1回又は2回以上繰り返し行ってもよい(第4製造方法)。   Further, in the first manufacturing method, a fourth heating step is performed in which the synthetic quartz glass material heated in the third heating step is heated at a temperature equal to or higher than the first temperature in an atmosphere not containing hydrogen. 4th heating process WHEREIN: The 5th heating process heated at the temperature below the said 2nd temperature in the atmosphere containing hydrogen, and the 6th heating heated at the temperature more than the said 1st temperature in the atmosphere which does not contain hydrogen The process may be defined as one cycle, and the cycle may be repeated once or twice or more (fourth manufacturing method).

以下、実施例を挙げて本発明を具体的に説明する。本実施例では、前記第1製造方法により水素を含浸した合成石英ガラスを実施例とし、それ以外の方法により得られた合成石英ガラスを比較例とする。なお、本実施例は本発明の範囲を限定するものではない。   Hereinafter, the present invention will be specifically described with reference to examples. In this example, synthetic quartz glass impregnated with hydrogen by the first production method is used as an example, and synthetic quartz glass obtained by other methods is used as a comparative example. In addition, a present Example does not limit the scope of the present invention.

各例の合成石英ガラスは、前記<合成石英ガラス母材製造工程>及び<合成石英ガラス材製造工程>により製造された合成石英ガラス材を用いて構成されている。また、各例では、合成石英ガラスの水素濃度の最小値が、UV光耐性を備えるのに必要な1.0×1018分子/cm3となる条件で水素を含浸処理した。 The synthetic quartz glass of each example is configured using the synthetic quartz glass material manufactured by the above-described <synthetic quartz glass base material manufacturing step> and <synthetic quartz glass material manufacturing step>. In each example, hydrogen was impregnated under the condition that the minimum value of the hydrogen concentration of the synthetic quartz glass was 1.0 × 10 18 molecules / cm 3 necessary for providing UV light resistance.

<比較方法>
各例の合成石英ガラスの軸心位置で、厚み方向に沿って設定した複数の測定点の水素濃度を測定し、測定された水素濃度の分布を比較する。
<水素濃度の測定方法>
水素濃度の測定は、各例共に〔V.S.Khotimchenko,et al.Journal of Applied Spectroscopy,46(1987)632〕に記載の方法により行った。具体的には、レーザラマン分光法を用い、石英ガラスの肉厚方向に貫通するようにArFレーザを照射し、その光路上の所望の肉厚位置からのラマン光のスペクトルを測定し、そのスペクトルから水素分子のラマンバンドである4135cm-1のラマン強度の800cm-1付近の石英ガラスに対する相対強度を算出し、上記文献に記載の換算式を用いて水素濃度を算出した。
<水素濃度測定点>
水素濃度測定点は、各例共に、合成石英ガラスの表面から厚み方向にそって、2mm、4mm、6mm、8mm、10mm(合成石英ガラスの厚み方向中央部)の各点である。
<Comparison method>
At the axial center position of the synthetic quartz glass of each example, the hydrogen concentration at a plurality of measurement points set along the thickness direction is measured, and the distribution of the measured hydrogen concentration is compared.
<Measurement method of hydrogen concentration>
The hydrogen concentration was measured in each case [V. S. Khotimchenko, et al. Journal of Applied Spectroscopy, 46 (1987) 632]. Specifically, using laser Raman spectroscopy, the ArF laser is irradiated so as to penetrate in the thickness direction of the quartz glass, the spectrum of the Raman light from the desired thickness position on the optical path is measured, and from the spectrum The relative intensity of the Raman band of 4135 cm −1, which is the Raman band of hydrogen molecules, with respect to quartz glass near 800 cm −1 was calculated, and the hydrogen concentration was calculated using the conversion formula described in the above document.
<Hydrogen concentration measurement point>
In each example, the hydrogen concentration measurement points are points of 2 mm, 4 mm, 6 mm, 8 mm, and 10 mm (central portion in the thickness direction of the synthetic quartz glass) along the thickness direction from the surface of the synthetic quartz glass.

<実施例>
本実施例の合成石英ガラスは、加熱炉(図示せず)に入れ、表1に示す各数値とした前記第1製造方法により製造した。その結果、各測定点において図1(a)に示す水素濃度が測定された。
<Example>
The synthetic quartz glass of this example was placed in a heating furnace (not shown) and manufactured by the first manufacturing method with the numerical values shown in Table 1. As a result, the hydrogen concentration shown in FIG. 1 (a) was measured at each measurement point.

Figure 2011073953
Figure 2011073953

<比較例1>
本比較例の合成石英ガラスは、加熱炉(図示せず)に入れ、表2に示す各数値により製造した。その結果、各測定点において図1(b)に示す水素濃度が測定された。
<Comparative Example 1>
The synthetic quartz glass of this comparative example was put into a heating furnace (not shown) and manufactured according to the numerical values shown in Table 2. As a result, the hydrogen concentration shown in FIG. 1 (b) was measured at each measurement point.

Figure 2011073953
Figure 2011073953

<実施例と比較例1との対比>
比較例1の水素濃度の分布は、図1(b)に示すように、2mmの測定点で水素濃度が最大値となり、該2mmの測定点から10mmの測定点に向かって水素濃度が徐々に減少し、10mmの測定点で水素濃度が最小値となる分布であり、該最大値と最小値との比がおよそ2.5倍となる分布であることが確認された。
<Contrast between Example and Comparative Example 1>
As shown in FIG. 1B, the hydrogen concentration distribution in Comparative Example 1 has a maximum hydrogen concentration at a measurement point of 2 mm, and the hydrogen concentration gradually increases from the measurement point of 2 mm toward the measurement point of 10 mm. It was confirmed that the distribution was such that the hydrogen concentration was a minimum value at a measurement point of 10 mm, and the ratio between the maximum value and the minimum value was approximately 2.5 times.

比較例1に対して実施例の水素濃度の分布は、図1(a)に示すように、2mmの測定点で水素濃度が最大値となり、10mmの測定点で水素濃度が最小値となる分布であり、該最大値と最小値との比がおよそ1.177倍となる分布であることが確認された。すなわち、実施例は、比較例に比べて水素濃度の最大値と最小値との比が小さく、水素濃度の分布が平準なものであることが示された。   As shown in FIG. 1A, the hydrogen concentration distribution of the example with respect to the comparative example 1 is a distribution in which the hydrogen concentration becomes the maximum value at the measurement point of 2 mm and the hydrogen concentration becomes the minimum value at the measurement point of 10 mm. It was confirmed that the distribution was such that the ratio of the maximum value to the minimum value was approximately 1.177 times. That is, the example shows that the ratio between the maximum value and the minimum value of the hydrogen concentration is smaller than that of the comparative example, and the hydrogen concentration distribution is uniform.

さらに、前記第1製造方法の第1加熱工程の加熱時間は、表1に示すように310時間である。さらに、第1加熱工程及び第3加熱工程で計328時間であり、第1加熱工程乃至第3加熱工程の総加熱時間で338時間である。すなわち、前記第1製造方法は、比較例1に比べて水素雰囲気中の加熱時間で72時間の短縮ができ、総加熱時間でも62時間の短縮ができることが示された。   Furthermore, as shown in Table 1, the heating time of the first heating process of the first manufacturing method is 310 hours. Further, the total time of the first heating step and the third heating step is 328 hours, and the total heating time of the first to third heating steps is 338 hours. That is, it was shown that the first production method can shorten the heating time in the hydrogen atmosphere by 72 hours compared with Comparative Example 1, and can reduce the total heating time by 62 hours.

第1製造方法により水素濃度の分布が平準化される理由としては、次のとおりである。前記第1加熱工程で合成石英ガラス材に水素を含浸した場合、該合成石英ガラス材の水素濃度の分布は、図1(b)に示す比較例1の水素濃度の分布と近い分布が示される。ただし、この場合、水素濃度の最大値は、第1加熱工程の加熱時間が比較例の加熱時間よりも短いため低くなる。この分布状態の合成石英ガラス材に対して第2加熱工程で加熱を行うと、水素濃度が高く水素が抜け易い表面側から水素が抜けていくため、表面側の水素濃度は減少するが、第3加熱工程で不足した水素を補うことにより、水素濃度の分布が平準となる。   The reason why the hydrogen concentration distribution is leveled by the first manufacturing method is as follows. When the synthetic quartz glass material is impregnated with hydrogen in the first heating step, the hydrogen concentration distribution of the synthetic quartz glass material is close to the hydrogen concentration distribution of Comparative Example 1 shown in FIG. . However, in this case, the maximum value of the hydrogen concentration is low because the heating time of the first heating step is shorter than the heating time of the comparative example. When the synthetic quartz glass material in this distributed state is heated in the second heating step, hydrogen escapes from the surface side where the hydrogen concentration is high and hydrogen easily escapes, so that the hydrogen concentration on the surface side decreases. By compensating for the shortage of hydrogen in the three heating steps, the hydrogen concentration distribution is leveled.

前記第1製造方法によれば、合成石英ガラスに対して水素を効率的に含浸させることができるとともに、ガラス内の水素濃度分布を平準化することができる。そして、第1製造方法により製造された実施例の合成石英ガラスは、平準な水素濃度分布を有することができる。したがって、屈折率の均一性が良好な合成石英ガラスを提供することができる。   According to the first manufacturing method, the synthetic quartz glass can be efficiently impregnated with hydrogen, and the hydrogen concentration distribution in the glass can be leveled. And the synthetic quartz glass of the Example manufactured by the 1st manufacturing method can have a uniform hydrogen concentration distribution. Therefore, it is possible to provide a synthetic quartz glass having a good refractive index uniformity.

<比較例2>
本比較例の合成石英ガラスは、加熱炉(図示せず)に入れ、表3に示す各数値により、次の2つの工程を含む製造方法により製造した。
第1加熱工程:前記石英ガラス材を、水素を含む雰囲気中で、第1温度で加熱する。
第2加熱工程:第1加熱工程で加熱した石英ガラス材を、水素を含まない雰囲気中で、前記第1温度以上の第2温度で加熱する。
その結果、各測定点において図1(c)に示す水素濃度が測定された。
<Comparative Example 2>
The synthetic quartz glass of this comparative example was put into a heating furnace (not shown), and manufactured by a manufacturing method including the following two steps according to the numerical values shown in Table 3.
First heating step: The quartz glass material is heated at a first temperature in an atmosphere containing hydrogen.
Second heating step: The quartz glass material heated in the first heating step is heated at a second temperature equal to or higher than the first temperature in an atmosphere not containing hydrogen.
As a result, the hydrogen concentration shown in FIG. 1 (c) was measured at each measurement point.

Figure 2011073953
Figure 2011073953

<実施例と比較例2との対比>
比較例2の水素濃度の分布は、図1(c)に示すように、4mmの測定点で水素濃度が最大値となり、10mmの測定点で水素濃度が最小値となる分布であり、該最大値と最小値との比がおよそ1.67倍となる分布であることが確認された。また、比較例2の製造方法の加熱時間は、第1加熱工程及び第2加熱工程で計370時間であることが確認された。
<Contrast between Example and Comparative Example 2>
As shown in FIG. 1 (c), the hydrogen concentration distribution of Comparative Example 2 is a distribution in which the hydrogen concentration is the maximum value at the measurement point of 4 mm and the hydrogen concentration is the minimum value at the measurement point of 10 mm. It was confirmed that the distribution was such that the ratio between the value and the minimum value was approximately 1.67 times. Moreover, it was confirmed that the heating time of the manufacturing method of Comparative Example 2 is a total of 370 hours in the first heating step and the second heating step.

この比較例2は、比較例1と比較すると、水素濃度の分布が平準化され、水素雰囲気中での加熱時間及び総加熱時間が短縮されているため、ある程度の効果が認められるが、実施例と比較すると、水素濃度の分布は平準でなく、水素雰囲気中での加熱時間及び総加熱時間が長いことが示されている。すなわち、実施例の製造方法は、比較例2と比べても、屈折率の均一性が良好な合成石英ガラスを効率的に製造するという点において効果的な製造方法であると認められる。   In Comparative Example 2, compared with Comparative Example 1, the hydrogen concentration distribution is leveled, and the heating time and the total heating time in the hydrogen atmosphere are shortened. Compared with, the hydrogen concentration distribution is not level, and the heating time and the total heating time in the hydrogen atmosphere are long. That is, it can be recognized that the manufacturing method of the example is an effective manufacturing method in terms of efficiently manufacturing a synthetic quartz glass having a good refractive index uniformity as compared with the comparative example 2.

前記第2製造方法は、前記第1製造方法において平準化された合成石英ガラスを、水素を含まない雰囲気中で、例えば、500℃(第1加熱工程の温度以上)の温度で加熱する第4加熱工程により水素を抜くことによって、水素濃度の分布の平準状態を微調整する工程である。すなわち、この第2製造方法によって水素濃度の分布のより良好な平準化が期待できる。   The second manufacturing method is a fourth method in which the synthetic quartz glass leveled in the first manufacturing method is heated in a hydrogen-free atmosphere at a temperature of, for example, 500 ° C. (above the temperature of the first heating step). This is a step of finely adjusting the leveling state of the hydrogen concentration distribution by removing hydrogen in the heating step. That is, better leveling of the hydrogen concentration distribution can be expected by this second production method.

前記第3製造方法は、前記第1製造方法において平準化された合成石英ガラスを、水素を含まない雰囲気中で、例えば、500℃(第1加熱工程の温度以上)の温度で加熱する第4加熱工程により水素を抜き、該第4加熱工程で加熱した合成石英ガラス材を、7気圧水素の雰囲気中で、例えば、300℃(第2加熱工程の温度以下)の温度で加熱する第5加熱工程により不足する水素を補うことによって、水素濃度の分布の平準状態を微調整する工程を含む。この第3製造方法は、第4加熱工程と第5加熱工程を1サイクルとし、このサイクルを1回又は2回以上繰り返し行う。すなわち、この第3製造方法によって、水素濃度の分布のより良好な平準化が期待できる。   The third manufacturing method is a fourth method in which the synthetic quartz glass leveled in the first manufacturing method is heated in a hydrogen-free atmosphere at a temperature of, for example, 500 ° C. (above the temperature of the first heating step). Fifth heating in which hydrogen is extracted by the heating process and the synthetic quartz glass material heated in the fourth heating process is heated at a temperature of, for example, 300 ° C. (below the temperature of the second heating process) in an atmosphere of 7 atm hydrogen. The process includes the step of finely adjusting the leveling state of the hydrogen concentration distribution by making up for insufficient hydrogen in the process. In the third manufacturing method, the fourth heating step and the fifth heating step are defined as one cycle, and this cycle is repeated once or twice or more. That is, better leveling of the hydrogen concentration distribution can be expected by this third production method.

前記第4製造方法は、前記第1製造方法において平準化された合成石英ガラスを、水素を含まない雰囲気中で、例えば、500℃(第1加熱工程の温度以上)の温度で加熱する第4加熱工程により水素を抜き、該第4加熱工程で加熱した合成石英ガラス材を、7気圧水素の雰囲気中で、例えば、300℃(第2加熱工程の温度以下)の温度で加熱する第5加熱工程により不足する水素を補い、更に、該第5加熱工程で加熱した合成石英ガラス材を、水素を含まない雰囲気中で、例えば、500℃(第1加熱工程の温度以上)の温度で加熱する第6加熱工程により水素を抜くことによって、水素濃度の分布の平準状態を微調整する工程を含む。この第4製造方法は、第5加熱工程と第6加熱工程を1サイクルとし、このサイクルを1回又は2回以上繰り返し行う。すなわち、この第4製造方法によって水素濃度の分布のより良好な平準化が期待できる。この第4製造方法での前記第6加熱工程は、前記第4加熱工程と同じ条件の加熱工程であり、前記第4加熱工程と同じ作用をする工程である。   In the fourth manufacturing method, the synthetic quartz glass leveled in the first manufacturing method is heated in a hydrogen-free atmosphere at a temperature of, for example, 500 ° C. (above the temperature of the first heating step). Fifth heating in which hydrogen is extracted by the heating process and the synthetic quartz glass material heated in the fourth heating process is heated at a temperature of, for example, 300 ° C. (below the temperature of the second heating process) in an atmosphere of 7 atm hydrogen. The shortage of hydrogen is compensated for in the process, and the synthetic quartz glass material heated in the fifth heating process is heated at a temperature of, for example, 500 ° C. (above the temperature of the first heating process) in an atmosphere not containing hydrogen. A step of finely adjusting the leveling state of the hydrogen concentration distribution by removing hydrogen in the sixth heating step is included. In the fourth manufacturing method, the fifth heating step and the sixth heating step are defined as one cycle, and this cycle is repeated once or twice or more. That is, better leveling of the hydrogen concentration distribution can be expected by the fourth production method. The sixth heating step in the fourth manufacturing method is a heating step under the same conditions as the fourth heating step, and is a step that performs the same action as the fourth heating step.

前記第4加熱工程及び第5加熱工程は、前記第2加熱工程及び第3加熱工程と同じ作用をするが、第1製造方法において平準化された合成石英ガラスから水素を抜いたり、第2製造工程で平準化された合成石英ガラスに水素を補ったりすることから、抜かれる水素量及び補う水素量は、前記第2加熱工程及び第3加熱工程の水素量よりも少ない。そのため、第4加熱工程及び第5加熱工程の加熱時間は、第2加熱工程及び第3加熱工程よりも短くてもよい。   The fourth heating step and the fifth heating step operate in the same manner as the second heating step and the third heating step, but hydrogen is extracted from the synthetic quartz glass leveled in the first manufacturing method, or the second manufacturing step. Since the synthetic quartz glass leveled in the process is supplemented with hydrogen, the amount of hydrogen extracted and the amount of hydrogen to be supplemented are smaller than the amount of hydrogen in the second heating process and the third heating process. Therefore, the heating time of the 4th heating process and the 5th heating process may be shorter than the 2nd heating process and the 3rd heating process.

Claims (7)

合成石英ガラスに水素含浸処理を行う光学硝材用の合成石英ガラスの製造方法であって、
合成石英ガラスを、水素を含む雰囲気中で、第1温度で加熱する第1加熱工程と、
前記合成石英ガラスを、水素を含まない雰囲気中で、前記第1温度以上の第2温度で加熱する第2加熱工程と、
前記合成石英ガラスを、水素を含む雰囲気中で、前記第2温度以下の第3温度で加熱する第3加熱工程と、
を有することを特徴とする光学硝材用の合成石英ガラスの製造方法。
A method for producing synthetic quartz glass for optical glass material that performs hydrogen impregnation treatment on synthetic quartz glass,
A first heating step of heating the synthetic quartz glass at a first temperature in an atmosphere containing hydrogen;
A second heating step of heating the synthetic quartz glass in a hydrogen-free atmosphere at a second temperature not lower than the first temperature;
A third heating step of heating the synthetic quartz glass in a hydrogen-containing atmosphere at a third temperature not higher than the second temperature;
A method for producing synthetic quartz glass for optical glass materials, comprising:
前記請求項1の製造方法で製造された合成石英ガラスを、水素を含まない雰囲気中で、前記第1温度以上の温度で加熱する第4加熱工程を更に有することを特徴とする請求項1記載の光学硝材用の合成石英ガラスの製造方法。   2. The fourth heating step of heating the synthetic quartz glass manufactured by the manufacturing method of claim 1 at a temperature equal to or higher than the first temperature in an atmosphere not containing hydrogen. Of manufacturing synthetic quartz glass for optical glass materials. 前記請求項1の製造方法で製造された合成石英ガラスを、水素を含まない雰囲気中で、前記第1温度以上の温度で加熱する第4加熱工程と、
前記合成石英ガラスを、水素を含む雰囲気中で、前記第2温度以下の温度で加熱する第5加熱工程と、
を更に有し、
前記第4加熱工程と前記第5加熱工程とを1サイクルとして、前記第3加熱工程の後に、該サイクルを1回又は2回以上繰り返し行う、
ことを特徴とする請求項1記載の光学硝材用の合成石英ガラスの製造方法。
A fourth heating step of heating the synthetic quartz glass produced by the production method of claim 1 in a hydrogen-free atmosphere at a temperature equal to or higher than the first temperature;
A fifth heating step of heating the synthetic quartz glass in an atmosphere containing hydrogen at a temperature equal to or lower than the second temperature;
Further comprising
The fourth heating step and the fifth heating step are defined as one cycle, and the cycle is repeated once or twice or more after the third heating step.
The method for producing a synthetic quartz glass for an optical glass material according to claim 1.
前記請求項1の製造方法で製造された合成石英ガラスを、水素を含まない雰囲気中で、前記第1温度以上の温度で加熱する第4加熱工程と、
前記合成石英ガラスを、水素を含む雰囲気中で、前記第2温度以下の温度で加熱する第5加熱工程と、
前記合成石英ガラスを、水素を含まない雰囲気中で、前記第1温度以上の温度で加熱する第6加熱工程と、
を更に有し、
前記第5加熱工程と前記第6加熱工程とを1サイクルとして、前記第4加熱工程の後に、該サイクルを1回又は2回以上繰り返し行う、
ことを特徴とする請求項1記載の光学硝材用の合成石英ガラスの製造方法。
A fourth heating step of heating the synthetic quartz glass produced by the production method of claim 1 in a hydrogen-free atmosphere at a temperature equal to or higher than the first temperature;
A fifth heating step of heating the synthetic quartz glass in an atmosphere containing hydrogen at a temperature equal to or lower than the second temperature;
A sixth heating step of heating the synthetic quartz glass at a temperature equal to or higher than the first temperature in an atmosphere containing no hydrogen;
Further comprising
The fifth heating step and the sixth heating step are defined as one cycle, and the cycle is repeated once or twice or more after the fourth heating step.
The method for producing a synthetic quartz glass for an optical glass material according to claim 1.
前記第1温度が500℃以下である、
ことを特徴とする請求項1乃至請求項4いずれか1項記載の光学硝材用の合成石英ガラスの製造方法。
The first temperature is 500 ° C. or less;
The method for producing a synthetic quartz glass for an optical glass material according to any one of claims 1 to 4.
前記第1温度が300℃〜150℃である、
ことを特徴とする請求項1乃至請求項4いずれか1項記載の光学硝材用の合成石英ガラスの製造方法。
The first temperature is 300 ° C to 150 ° C;
The method for producing a synthetic quartz glass for an optical glass material according to any one of claims 1 to 4.
前記請求項1乃至請求項6いずれかに記載の光学硝材用の合成石英ガラスの製造方法で製造された光学硝材用の合成石英ガラスであって、
表層領域を除いた領域での水素濃度の最大値と最小値との比が1.5倍以下である、
ことを特徴とする光学硝材用の合成石英ガラス。
A synthetic quartz glass for an optical glass produced by the method for producing a synthetic quartz glass for an optical glass according to any one of claims 1 to 6,
The ratio of the maximum value and the minimum value of the hydrogen concentration in the region excluding the surface layer region is 1.5 times or less,
Synthetic quartz glass for optical glass materials.
JP2009230408A 2009-10-02 2009-10-02 Method for production of synthetic quartz glass, and synthetic quartz glass Pending JP2011073953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009230408A JP2011073953A (en) 2009-10-02 2009-10-02 Method for production of synthetic quartz glass, and synthetic quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009230408A JP2011073953A (en) 2009-10-02 2009-10-02 Method for production of synthetic quartz glass, and synthetic quartz glass

Publications (1)

Publication Number Publication Date
JP2011073953A true JP2011073953A (en) 2011-04-14

Family

ID=44018329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009230408A Pending JP2011073953A (en) 2009-10-02 2009-10-02 Method for production of synthetic quartz glass, and synthetic quartz glass

Country Status (1)

Country Link
JP (1) JP2011073953A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021107326A (en) * 2018-01-23 2021-07-29 信越化学工業株式会社 Synthetic quartz glass substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000076923A1 (en) * 1999-06-10 2000-12-21 Asahi Glass Company, Limited Synthetic quartz glass and method for preparing the same
JP2004123420A (en) * 2002-09-30 2004-04-22 Shinetsu Quartz Prod Co Ltd Synthetic silica glass member for optical use and its manufacturing process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000076923A1 (en) * 1999-06-10 2000-12-21 Asahi Glass Company, Limited Synthetic quartz glass and method for preparing the same
JP2004123420A (en) * 2002-09-30 2004-04-22 Shinetsu Quartz Prod Co Ltd Synthetic silica glass member for optical use and its manufacturing process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021107326A (en) * 2018-01-23 2021-07-29 信越化学工業株式会社 Synthetic quartz glass substrate
JP7044189B2 (en) 2018-01-23 2022-03-30 信越化学工業株式会社 Synthetic quartz glass substrate

Similar Documents

Publication Publication Date Title
JP5650528B2 (en) Fused silica having low OH and OD levels and method for producing the same
Kashaykin et al. Radiation-induced attenuation in silica optical fibers fabricated in high O 2 excess conditions
EP2692705B1 (en) Method for manufacturing optical fiber base material
JP6536036B2 (en) Optical fiber
JP6048105B2 (en) Optical fiber manufacturing method and optical fiber
WO2015022966A1 (en) Low scattering silica glass, and method for thermally treating silica glass
TW201235719A (en) Photodarkening resistant optical fibers and fiber lasers incorporating the same
JP5700699B2 (en) Broadband low-loss optical fiber manufacturing method
JP2011073953A (en) Method for production of synthetic quartz glass, and synthetic quartz glass
KR20000035198A (en) Core glass for a preform for an optical fiber, preform made from the core glass, and method for making the core glass and an optical fiber
JP4191935B2 (en) Method for producing synthetic quartz glass member for excimer laser
JP5368935B2 (en) Synthetic silica glass for fiber
JP2014043378A (en) Method for manufacturing optical fiber, and optical fiber
US9067823B2 (en) Synthetic silica glass, especially for the cladding of an optical fiber and a manufacturing method for the synthetic silica glass
JP2016534959A (en) Mirror blank for EUV lithography that does not expand under EUV irradiation
JP2017043512A (en) Optical fiber preform manufacturing method, optical fiber manufacturing method, and lens manufacturing method
JP2005181414A (en) Method for manufacturing optical fiber
JP4459875B2 (en) Optical fiber preform and manufacturing method thereof, and optical fiber manufacturing method
JP4459608B2 (en) Method for producing synthetic quartz glass member
EP2508491B1 (en) A synthetic silica glass, especially for the cladding of an optical fiber
JP4364583B2 (en) Method for producing UV-resistant glass material
JP2009203142A (en) Fluorine-added quartz glass
JP2011057490A (en) Method for producing optical fiber preform
JP4219741B2 (en) Method for producing quartz glass
JP2006176377A (en) Method for manufacturing synthetic silica glass having controlled oh group concentration and silica glass body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140513