JP2011071049A - Method and device for manufacturing membrane electrode assembly - Google Patents

Method and device for manufacturing membrane electrode assembly Download PDF

Info

Publication number
JP2011071049A
JP2011071049A JP2009223005A JP2009223005A JP2011071049A JP 2011071049 A JP2011071049 A JP 2011071049A JP 2009223005 A JP2009223005 A JP 2009223005A JP 2009223005 A JP2009223005 A JP 2009223005A JP 2011071049 A JP2011071049 A JP 2011071049A
Authority
JP
Japan
Prior art keywords
head
sub
catalyst layer
pressure
transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009223005A
Other languages
Japanese (ja)
Other versions
JP5365450B2 (en
Inventor
Hoko Yabushita
法康 藪下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2009223005A priority Critical patent/JP5365450B2/en
Publication of JP2011071049A publication Critical patent/JP2011071049A/en
Application granted granted Critical
Publication of JP5365450B2 publication Critical patent/JP5365450B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and device for manufacturing a membrane electrode assembly, capable of manufacturing the membrane electrode assembly of superior quality. <P>SOLUTION: Force of pressing individual heads 11 to 13 can be made settable individually, by arranging subheads 12, 13 adjacent to the main head 11, and connecting respective heads 11 to 13 to pressing mechanisms 21 to 23, respectively. Moreover, support bodies 14 to 16 are arranged confronting respective heads 11 to 13, so that temperatures of respective heads 11 to 13 and respective support bodies 14 to 16 can be made settable individually by temperature adjustment mechanisms 31 to 33. By this arrangement, the pressing can be carried out by different pressures/temperatures in transcription region and non-transcription region, so that damage is not given to a solid polyelectrolyte membrane 2, thereby transcription can be carried out without wrinkles. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、燃料電池に用いられる、電解質膜の表面に電極触媒層が接合された膜電極接合体の製造方法及び当該膜電極接合体の製造装置に関する。   The present invention relates to a method for producing a membrane electrode assembly in which an electrode catalyst layer is joined to the surface of an electrolyte membrane used in a fuel cell, and an apparatus for producing the membrane electrode assembly.

固体高分子型燃料電池には、固体高分子電解質膜の両面に電極触媒層を接合した膜電極接合体と呼ばれる部品が用いられている。電極触媒層を電解質膜に接合する方法としては、GDL塗布方式、電解質膜塗布方式、転写方式がある。本発明はこのうち、転写シートを用いる転写方式に関するものである。転写方式において膜電極接合体を作製する方法としては、熱プレス方式及び熱ラミネート方式がある。   In a polymer electrolyte fuel cell, a component called a membrane electrode assembly in which an electrode catalyst layer is bonded to both surfaces of a solid polymer electrolyte membrane is used. As a method for joining the electrode catalyst layer to the electrolyte membrane, there are a GDL coating method, an electrolyte membrane coating method, and a transfer method. Of these, the present invention relates to a transfer method using a transfer sheet. As a method for producing a membrane electrode assembly in the transfer method, there are a hot press method and a heat laminating method.

熱プレス方式は、固体高分子電解質膜の表裏に触媒を含んだ電極層を重ね合わせ、熱プレス機により加熱・加圧する方式である。熱プレス方式の主なプロセスパラメータは、加熱時の温度、加圧時の圧力、加圧時間であり、比較的パラメータは少ない。
この熱プレス方式は、枚葉搬送方式に用いられる場合が多いが、ウェブ搬送方式でも用いることは可能である。
The hot press method is a method in which electrode layers containing a catalyst are superimposed on the front and back of a solid polymer electrolyte membrane, and heated and pressurized by a hot press machine. The main process parameters of the hot press method are the temperature during heating, the pressure during pressurization, and the pressurization time, and the parameters are relatively small.
This hot press method is often used for a single wafer conveyance method, but can also be used for a web conveyance method.

一方、熱ラミネート方式の場合、ロールによって固体高分子電解質膜とその表裏に積層された電極触媒層とに熱及び圧力を加える。この方式は、一般的にウェブ搬送方式で採用される場合が多い。熱ラミネート方式のプロセスパラメータとしては、加熱時の温度、加圧時の圧力、加圧時間、ウェブの搬送速度、ウェブのテンション等がある。
一般的にウェブ搬送方式は、枚葉搬送方式よりも生産性が良いが、連続体で成形されるため、高い安定性が求められるという特徴がある。
On the other hand, in the case of the thermal lamination method, heat and pressure are applied to the solid polymer electrolyte membrane and the electrode catalyst layers laminated on the front and back by a roll. In general, this method is often employed in a web conveyance method. The process parameters of the thermal laminating method include a temperature at the time of heating, a pressure at the time of pressurization, a pressurization time, a web conveyance speed, a web tension, and the like.
In general, the web conveyance method is more productive than the single-wafer conveyance method, but has a feature that high stability is required because it is formed in a continuous body.

図5は、膜電極接合体の構造を示す図である。ここで、図5(a)は膜電極接合体の上面図、図5(b)は膜電極接合体の側面図である。
図中、符号1は膜電極接合体である。この膜電極接合体1は、固体高分子電解質膜2の両面に電極触媒層3を接合した構造となっている。
一般に、電極触媒層3は、固体高分子電解質膜2の表裏面全体を覆った状態で接合するのではなく、固体高分子電解質膜2の外縁部を残した状態で接合する。つまり、固体高分子電解質膜2の面積よりも電極触媒層3の面積の方が小さい。
FIG. 5 is a diagram showing the structure of the membrane electrode assembly. Here, FIG. 5A is a top view of the membrane electrode assembly, and FIG. 5B is a side view of the membrane electrode assembly.
In the figure, reference numeral 1 denotes a membrane electrode assembly. This membrane electrode assembly 1 has a structure in which electrode catalyst layers 3 are bonded to both surfaces of a solid polymer electrolyte membrane 2.
Generally, the electrode catalyst layer 3 is not bonded in a state where the entire front and back surfaces of the solid polymer electrolyte membrane 2 are covered, but is bonded in a state where the outer edge portion of the solid polymer electrolyte membrane 2 is left. That is, the area of the electrode catalyst layer 3 is smaller than the area of the solid polymer electrolyte membrane 2.

このように、固体高分子電解質膜2より電極触媒層3を小さくすることにより、電極触媒層3に覆われていない部分にはガスケットが配置でき、燃料ガスや酸素ガスが漏れないようにすることができる。その結果、膜電極接合体1を両側から挟むように設置されるセパレータ間で電気的な短絡が生じないようにすることができる。
固体高分子電解質膜に電極触媒層を転写する方式としては、例えば特許文献1及び特許文献2に記載の技術がある。
Thus, by making the electrode catalyst layer 3 smaller than the solid polymer electrolyte membrane 2, a gasket can be disposed in a portion not covered with the electrode catalyst layer 3, so that fuel gas and oxygen gas do not leak. Can do. As a result, it is possible to prevent an electrical short circuit from occurring between the separators installed so as to sandwich the membrane electrode assembly 1 from both sides.
As a system for transferring the electrode catalyst layer to the solid polymer electrolyte membrane, for example, there are techniques described in Patent Document 1 and Patent Document 2.

特許文献1に記載の技術では、固体高分子電解質膜を挟んで、連続的に電極触媒層が塗布されたフィルムを配置し、熱ロールまたは熱ヘッドで、電極触媒層を転写したい部分だけ加熱・加圧することで、固体高分子電解質膜の外縁部を残した状態で電解触媒層を任意の大きさに転写している。
また、特許文献2に記載の技術では、転写部を有する加熱加圧ロールを用いて、触媒層を上記転写部の形状で固体高分子電解質膜に転写するロールプレス装置において、固体高分子電解質膜へのダメージを軽減するために、加熱加圧ロールの内部に弾性体を配置している。
In the technique described in Patent Document 1, a film on which an electrode catalyst layer is continuously applied is disposed across a solid polymer electrolyte membrane, and only a portion where the electrode catalyst layer is to be transferred is heated / heated with a heat roll or a heat head. By applying pressure, the electrocatalyst layer is transferred to an arbitrary size while leaving the outer edge of the solid polymer electrolyte membrane.
Moreover, in the technique described in Patent Document 2, in a roll press apparatus for transferring a catalyst layer to a solid polymer electrolyte membrane in the shape of the transfer portion using a heat and pressure roll having a transfer portion, the solid polymer electrolyte membrane In order to reduce damage to the elastic body, an elastic body is disposed inside the heating and pressing roll.

特開2006−185762号公報JP 2006-185762 A 特開2003−267438号公報JP 2003-267438 A

しかしながら、特許文献1に記載の技術では、熱ロールまたは熱ヘッドにより圧力がかかる部分(固体高分子電解質膜上で電極触媒層が転写される中央部分)と圧力がかからない部分(固体高分子電解質膜上で電極触媒層が転写されない外縁部分)とで、加圧・加熱の差が大きくなる。そのため、この部分で固体高分子電解質膜がよれてダメージが入り、しわが発生する。   However, in the technique described in Patent Document 1, a portion to which pressure is applied by a heat roll or a thermal head (a central portion where the electrode catalyst layer is transferred on the solid polymer electrolyte membrane) and a portion where no pressure is applied (solid polymer electrolyte membrane) The difference in pressurization and heating increases with the outer edge portion where the electrode catalyst layer is not transferred above. For this reason, the solid polymer electrolyte membrane is crushed and damaged at this portion, and wrinkles are generated.

すなわち、図6に示すように、固体高分子電解質膜2と電極触媒層3が形成された触媒層形成膜4とを、ヘッド101と該ヘッド101に対峙する支持体102との間に配置し、ヘッド101及び支持体103の温度を温度調節機構104で所定の転写温度に加熱しながら、加圧機構103でヘッド101を支持体103側に押し当てることで、固体高分子電解質膜2上に電極触媒層3を熱転写した場合、ヘッド101により圧力がかかる部分と圧力がかからない部分との境界部分でダメージ200が発生してしまう。   That is, as shown in FIG. 6, the solid polymer electrolyte membrane 2 and the catalyst layer forming film 4 on which the electrode catalyst layer 3 is formed are arranged between the head 101 and the support 102 facing the head 101. The head 101 and the support 103 are heated to a predetermined transfer temperature by the temperature adjustment mechanism 104, and the head 101 is pressed against the support 103 by the pressure mechanism 103, so that the solid polymer electrolyte membrane 2 is When the electrode catalyst layer 3 is thermally transferred, damage 200 occurs at a boundary portion between a portion where pressure is applied by the head 101 and a portion where pressure is not applied.

また、特許文献2に記載の技術では、固体高分子電解質膜上の電極触媒層が転写される中央部分と固体高分子電解質膜の外縁部とで、圧力の差を縮小することができる可能性はあるものの、転写圧はプロセス条件で固定されているため、弾性体の硬度を変えることで圧力の差の調整を行う必要があり、当該圧力の差を最適化することは難しい。また、加熱温度に関しては調整ができない。したがって、固体高分子電解質膜へのダメージを完全に無くすことは難しい。
そこで、本発明は、品質の良い膜電極接合体を製造することができる膜電極接合体の製造方法及び膜電極接合体の製造装置を提供することを課題としている。
In the technique described in Patent Document 2, there is a possibility that the pressure difference can be reduced between the central portion where the electrode catalyst layer on the solid polymer electrolyte membrane is transferred and the outer edge portion of the solid polymer electrolyte membrane. However, since the transfer pressure is fixed under process conditions, it is necessary to adjust the pressure difference by changing the hardness of the elastic body, and it is difficult to optimize the pressure difference. Also, the heating temperature cannot be adjusted. Therefore, it is difficult to completely eliminate damage to the solid polymer electrolyte membrane.
Then, this invention makes it a subject to provide the manufacturing method of a membrane electrode assembly and the manufacturing apparatus of a membrane electrode assembly which can manufacture a membrane electrode assembly with good quality.

上記課題を解決するために、請求項1に係る膜電極接合体の製造方法は、電解質膜の表面に電極触媒層を接合した膜電極接合体の製造方法であって、前記電極触媒層を転写基材上に形成した触媒層形成基材を準備する準備工程と、前記電極触媒層が前記電解質膜の表面と対向するように、前記触媒層形成基材を配置する配置工程と、前記触媒層形成基材と前記電解質膜とを、前記電解質膜上の任意の転写領域で加熱圧着して、前記電解質膜上の前記転写領域に前記電極触媒層を熱転写する熱転写工程と、少なくとも前記熱転写工程の実行中に、前記触媒層形成基材と前記電解質膜とを、前記転写領域に隣接する、前記電解質膜上の前記電極触媒層を転写しない非転写領域において、前記転写領域に与える圧力より低い圧力で狭圧する狭圧工程と、を備えることを特徴としている。
また、請求項2に係る膜電極接合体の製造方法は、請求項1に係る発明において、前記狭圧工程において、前記非転写領域を、前記転写領域の加熱温度より低い温度で狭圧することを特徴としている。
In order to solve the above-mentioned problem, a manufacturing method of a membrane electrode assembly according to claim 1 is a manufacturing method of a membrane electrode assembly in which an electrode catalyst layer is bonded to the surface of an electrolyte membrane, and the electrode catalyst layer is transferred. A preparation step of preparing a catalyst layer forming substrate formed on the substrate, an arrangement step of arranging the catalyst layer forming substrate such that the electrode catalyst layer faces the surface of the electrolyte membrane, and the catalyst layer A thermal transfer step of heat-pressing the forming substrate and the electrolyte membrane in an arbitrary transfer region on the electrolyte membrane to thermally transfer the electrode catalyst layer to the transfer region on the electrolyte membrane; and at least the thermal transfer step During execution, a pressure lower than the pressure applied to the transfer region in the non-transfer region that does not transfer the electrode catalyst layer on the electrolyte membrane adjacent to the transfer region between the catalyst layer forming substrate and the electrolyte membrane. Narrow pressure process It is characterized in that it comprises.
According to a second aspect of the present invention, there is provided the method for manufacturing a membrane electrode assembly according to the first aspect of the invention, wherein, in the narrowing step, the non-transfer area is narrowed at a temperature lower than a heating temperature of the transfer area. It is a feature.

さらに、請求項3に係る膜電極接合体の製造装置は、電解質膜の表面に電極触媒層を接合した膜電極接合体の製造装置であって、任意形状の加圧面を有するメインヘッドと、加圧面を有し、当該加圧面を前記メインヘッドの加圧面と同一方向に向けて前記メインヘッドに隣接して配置するサブヘッドと、前記電極触媒層を転写基材上に形成した触媒層形成基材と前記電解質膜とを、前記電極触媒層が前記電解質膜の表面と対向するように積層した積層部材を介して、前記メインヘッド及び前記サブヘッドの各加圧面に対峙する受圧面を有する支持体と、前記メインヘッドを所定の転写温度に加熱するメイン温度調節手段と、前記積層部材に、前記メインヘッドの加圧面を、前記電極触媒層を前記電解質膜上に転写可能な加圧力で圧接することで、前記積層部材を前記メインヘッドと前記支持体とで狭圧するメイン加圧手段と、前記積層部材に、前記サブヘッドの加圧面を、前記メインヘッドの前記積層部材に対する加圧力より低い加圧力で圧接することで、前記積層部材を前記サブヘッドと前記支持体とで狭圧するサブ加圧手段と、を備えることを特徴としている。   Further, a manufacturing apparatus for a membrane electrode assembly according to claim 3 is a manufacturing apparatus for a membrane electrode assembly in which an electrode catalyst layer is bonded to the surface of an electrolyte membrane, and includes a main head having a pressurizing surface having an arbitrary shape, A sub-head having a pressure surface, the pressure surface being arranged in the same direction as the pressure surface of the main head and adjacent to the main head, and a catalyst layer-forming substrate on which the electrode catalyst layer is formed on a transfer substrate And a support having a pressure receiving surface facing each pressure surface of the main head and the sub head through a laminated member in which the electrode catalyst layer is laminated so that the surface of the electrolyte membrane faces the surface of the electrolyte membrane. A main temperature adjusting means for heating the main head to a predetermined transfer temperature; and a pressure surface of the main head is pressed against the laminated member with a pressure capable of transferring the electrode catalyst layer onto the electrolyte membrane. A main pressurizing means for narrowing the laminated member with the main head and the support; and a pressure surface of the sub head is pressed against the laminated member with a pressure lower than a pressure applied to the laminated member of the main head. Thus, a sub-pressurizing means for narrowing the laminated member with the sub-head and the support is provided.

また、請求項4に係る膜電極接合体の製造装置は、請求項3に係る発明において、前記サブヘッドの温度を、前記転写温度より低い温度に調節するサブ温度調節手段を備えることを特徴としている。
さらにまた、請求項5に係る膜電極整合体の製造装置は、請求項4に係る発明において、前記支持体は、前記積層部材を介して前記メインヘッド及び前記サブヘッドにそれぞれ対峙し、前記メインヘッド及び前記サブヘッドの各加圧面とそれぞれ同一形状の受圧面を有するメイン支持体及びサブ支持体から構成され、前記メイン温度調節手段は、前記メインヘッド及び前記メイン支持体を前記転写温度に加熱し、前記サブ温度調節手段は、前記サブヘッド及び前記サブ支持体の温度を、前記転写温度より低い温度に調節することを特徴としている。
According to a fourth aspect of the present invention, there is provided the membrane electrode assembly manufacturing apparatus according to the third aspect of the invention, further comprising sub-temperature adjusting means for adjusting the temperature of the sub-head to a temperature lower than the transfer temperature. .
The apparatus for manufacturing a membrane electrode alignment body according to claim 5 is the invention according to claim 4, wherein the support body faces the main head and the sub head via the laminated member, and the main head And a main support and a sub support having a pressure receiving surface having the same shape as each pressure surface of the sub head, and the main temperature adjusting means heats the main head and the main support to the transfer temperature, The sub temperature adjusting means adjusts the temperature of the sub head and the sub support to a temperature lower than the transfer temperature.

また、請求項6に係る膜電極接合体の製造装置は、請求項3又は4に係る発明において、前記支持体は、前記メインヘッド及び前記サブヘッドの加圧面と同等以上の大きさの受圧面を有することを特徴としている。
さらに、請求項7に係る膜電極接合体の製造装置は、請求項3〜6の何れかに係る発明において、前記支持体の受圧面が、前記メインヘッド及び前記サブヘッドの各加圧面に対して平行又は略平行となるように調整可能な平行度調整手段を備えることを特徴としている。
The apparatus for manufacturing a membrane electrode assembly according to claim 6 is the invention according to claim 3 or 4, wherein the support has a pressure receiving surface having a size equal to or larger than the pressure surfaces of the main head and the sub head. It is characterized by having.
Furthermore, the manufacturing apparatus of the membrane electrode assembly according to claim 7 is the invention according to any one of claims 3 to 6, wherein the pressure receiving surface of the support is against the pressure surfaces of the main head and the sub head. A parallelism adjusting means that can be adjusted to be parallel or substantially parallel is provided.

請求項1に係る発明よれば、電解質膜と触媒層形成基材とをプレス転写する際に、転写領域に隣接する非転写領域を狭圧しながら、転写領域を加熱・加圧するので、転写領域と非転写領域とで付与される加圧力の差を縮小することができる。その結果、転写領域と非転写領域との境界部における電解質膜のダメージを軽減することができ、しわの無い転写が可能となる。
また、請求項2に係る発明によれば、非転写領域を、転写領域の加熱温度より低い温度で狭圧するので、熱による電解質膜へのダメージを最低限に抑えることができる。
According to the first aspect of the present invention, when the electrolyte membrane and the catalyst layer forming substrate are press-transferred, the transfer region is heated and pressurized while narrowing the non-transfer region adjacent to the transfer region. The difference in pressure applied between the non-transfer area and the non-transfer area can be reduced. As a result, damage to the electrolyte membrane at the boundary between the transfer region and the non-transfer region can be reduced, and transfer without wrinkles becomes possible.
According to the second aspect of the invention, the non-transfer area is narrowed at a temperature lower than the heating temperature of the transfer area, so that damage to the electrolyte membrane due to heat can be minimized.

さらに、請求項3に係る発明によれば、メインヘッドに隣接配置したサブヘッドで、電解質膜と触媒層形成基材とを積層した積層部材を非転写領域で狭圧しながら、メインヘッドで転写領域を加熱圧着することができる。また、メインヘッドの加圧力とサブヘッドの加圧力を個別に調整可能な構成とするので、転写領域と非転写領域との加圧力差を最適化することができる。このように、比較的簡易な構成で、転写領域と非転写領域との境界部における電解質膜のダメージを軽減することができ、しわの無い転写が可能となる。   Furthermore, according to the invention of claim 3, with the sub head arranged adjacent to the main head, the transfer region is formed by the main head while the laminated member in which the electrolyte membrane and the catalyst layer forming base material are laminated is narrowed in the non-transfer region. Thermocompression bonding is possible. In addition, since the main head pressure and the sub head pressure can be individually adjusted, the pressure difference between the transfer area and the non-transfer area can be optimized. Thus, with a relatively simple configuration, damage to the electrolyte membrane at the boundary between the transfer region and the non-transfer region can be reduced, and transfer without wrinkles is possible.

また、請求項4に係る発明によれば、転写領域の温度と非転写領域の温度とを個別に調整可能な構成とするので、転写領域と非転写領域との温度差を最適化することができ、熱による電解質膜へのダメージを最低限に抑えることができる。
さらにまた、請求項5に係る発明によれば、ヘッドに対峙する支持体を、メインヘッド用とサブヘッド用とでそれぞれ別の支持体で構成するので、転写領域と非転写領域とで、温度や加圧力を個別に調整可能となる。そのため、効果的に電解質膜へのダメージを抑えることができる。
According to the fourth aspect of the invention, since the temperature of the transfer region and the temperature of the non-transfer region can be individually adjusted, the temperature difference between the transfer region and the non-transfer region can be optimized. And damage to the electrolyte membrane due to heat can be minimized.
Furthermore, according to the invention according to claim 5, since the support body facing the head is configured as a separate support body for the main head and for the sub head, the temperature and The applied pressure can be adjusted individually. Therefore, damage to the electrolyte membrane can be effectively suppressed.

また、請求項6に係る発明によれば、ヘッドに対峙する支持体を、メインヘッド用とサブヘッド用とで共通の支持体で構成し、支持体の受圧面をヘッドの加圧面と同等かそれ以上の大きさとするので、ヘッドの加圧面と支持体の受圧面との位置合わせを厳密に行う必要がなく、支持体の位置に関係なく転写を行うことができる。
さらに、請求項7に係る発明によれば、支持体の受圧面がヘッドの加圧面に対して平行又は略平行となるように調整可能な構成とするので、ヘッドと支持体との当たりを容易に調整することができる。そのため、段取り時間を短縮することが可能となる。
According to the invention of claim 6, the support body facing the head is constituted by a common support body for the main head and the sub head, and the pressure receiving surface of the support is equal to or equal to the pressure surface of the head. Since the size is as described above, it is not necessary to strictly align the pressure surface of the head and the pressure receiving surface of the support, and transfer can be performed regardless of the position of the support.
Furthermore, according to the seventh aspect of the invention, since the pressure receiving surface of the support can be adjusted so that it is parallel or substantially parallel to the pressure surface of the head, the contact between the head and the support is easy. Can be adjusted. Therefore, the setup time can be shortened.

本発明における触媒転写装置の一例を示す図である。It is a figure which shows an example of the catalyst transfer apparatus in this invention. 膜電極接合体の作製手順を示すフローチャートである。It is a flowchart which shows the preparation procedures of a membrane electrode assembly. 触媒転写装置のプレス時における状態を示す図である。It is a figure which shows the state at the time of the press of a catalyst transfer apparatus. 固体高分子型燃料電池の一例を示す分解斜視図である。It is a disassembled perspective view which shows an example of a polymer electrolyte fuel cell. 膜電極接合体の構造を示す図である。It is a figure which shows the structure of a membrane electrode assembly. 従来方式における固体高分子電解質膜へのダメージを示す図である。It is a figure which shows the damage to the solid polymer electrolyte membrane in a conventional system.

以下、本発明の実施の形態を図面に基づいて説明する。
(第1の実施形態)
(構成)
図1は、本発明における膜電極接合体の製造装置としての触媒転写装置の一例を示す図である。
図中、符号10は触媒転写装置である。この触媒転写装置10は、固体高分子型燃料電池に用いられる膜電極接合体(Membrane and Electrolyte Assembly:MEA)を作製する装置である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
(Constitution)
FIG. 1 is a diagram showing an example of a catalyst transfer device as a device for manufacturing a membrane electrode assembly in the present invention.
In the figure, reference numeral 10 denotes a catalyst transfer device. The catalyst transfer device 10 is a device for producing a membrane and electrode assembly (MEA) used in a polymer electrolyte fuel cell.

固体高分子型燃料電池は、電解質である固体高分子膜を燃料極と空気極との間に配した基本構造を有し、燃料極に水素を含む燃料ガス、空気極に酸素を含むガスを供給し、以下の電気化学反応により発電する装置である。
燃料極:H2→2H++2e- ………(1)
空気極:(1/2)O2+2H++2e-→H2O ………(2)
燃料極および空気極は、電極触媒層とガス拡散層とが積層した構造からなり、各電極触媒層が固体高分子電解質膜を挟んで対向配置されることで燃料電池を構成する。この固体高分子電解質膜の両面に一対の電極触媒層を配置させた接合体を膜電極接合体(MEA)という。
A polymer electrolyte fuel cell has a basic structure in which a solid polymer membrane as an electrolyte is disposed between a fuel electrode and an air electrode. A fuel gas containing hydrogen is contained in the fuel electrode, and a gas containing oxygen is contained in the air electrode. It is a device that supplies and generates power by the following electrochemical reaction.
Fuel electrode: H 2 → 2H + + 2e (1)
Air electrode: (1/2) O 2 + 2H + + 2e → H 2 O (2)
The fuel electrode and the air electrode have a structure in which an electrode catalyst layer and a gas diffusion layer are laminated, and each electrode catalyst layer is disposed opposite to each other with a solid polymer electrolyte membrane interposed therebetween to constitute a fuel cell. A joined body in which a pair of electrode catalyst layers is disposed on both surfaces of the solid polymer electrolyte membrane is referred to as a membrane electrode assembly (MEA).

電極触媒層は、触媒を担持した炭素粒子がイオン交換樹脂(電解質)により結着されてなる層である。また、ガス拡散層は、酸化剤ガスや燃料ガスの通過経路となる。
燃料極においては、供給された燃料中に含まれる水素が上記(1)式に示されるように水素イオンと電子になる。このうち、水素イオンは固体高分子電解質膜の内部を空気極に向かって移動し、電子は外部回路を通って空気極に移動する。
The electrode catalyst layer is a layer formed by binding carbon particles carrying a catalyst with an ion exchange resin (electrolyte). Further, the gas diffusion layer serves as a passage path for the oxidant gas and the fuel gas.
In the fuel electrode, hydrogen contained in the supplied fuel becomes hydrogen ions and electrons as shown in the above equation (1). Among these, hydrogen ions move inside the solid polymer electrolyte membrane toward the air electrode, and electrons move through the external circuit to the air electrode.

一方、空気極においては、空気極に供給された酸化剤ガスに含まれる酸素が燃料極から移動してきた水素イオン及び電子と反応し、上記(2)式に示されるように水が生成する。
このように、外部回路では燃料極から空気極に向かって電子が移動するため、電力が取り出される。
膜電極接合体の作製には、フィルム等の転写基材上に電極触媒層を形成した触媒層形成膜(所謂、転写シート)から、電解触媒層を固体高分子電解質膜に熱転写する方法を用いる。
On the other hand, in the air electrode, oxygen contained in the oxidant gas supplied to the air electrode reacts with hydrogen ions and electrons that have moved from the fuel electrode, and water is generated as shown in the above equation (2).
In this way, in the external circuit, electrons move from the fuel electrode toward the air electrode, so that electric power is taken out.
For the production of a membrane electrode assembly, a method of thermally transferring an electrocatalyst layer to a solid polymer electrolyte membrane from a catalyst layer forming film (so-called transfer sheet) in which an electrode catalyst layer is formed on a transfer substrate such as a film is used. .

触媒転写装置10は、図1に示すように、メインヘッド11と、メインヘッド11に隣接配置したサブヘッド12,13と、メインヘッド11に対峙するメイン支持体14と、サブヘッド12,13にそれぞれ対峙するサブ支持体15,16とを備える。
メインヘッド11及びサブヘッド12,13はそれぞれ加圧面11a及び12a,13aを有し、各加圧面11a〜13aが同一方向を向くように各ヘッド11〜13を配置する。また、メイン支持体14及びサブ支持体15,16はそれぞれ上記加圧面11a〜13aに対向する受圧面14a〜16aを有する。各受圧面14a〜16aは、対向する加圧面11a〜13aとそれぞれ同一形状とする。
As shown in FIG. 1, the catalyst transfer device 10 includes a main head 11, sub heads 12 and 13 disposed adjacent to the main head 11, a main support 14 facing the main head 11, and the sub heads 12 and 13. Sub-supports 15 and 16 are provided.
The main head 11 and the sub heads 12 and 13 have pressure surfaces 11a and 12a and 13a, respectively, and the heads 11 to 13 are arranged so that the pressure surfaces 11a to 13a face the same direction. The main support 14 and the sub-supports 15 and 16 have pressure receiving surfaces 14a to 16a that face the pressurizing surfaces 11a to 13a, respectively. The pressure receiving surfaces 14a to 16a have the same shape as the pressing surfaces 11a to 13a facing each other.

メインヘッド11及びサブヘッド12,13には、それぞれ加圧機構21〜23が接続されており、これら加圧機構21〜23によって、各ヘッド11〜13の各支持体14〜16側への押圧力を設定可能となっている。本実施形態では、サブヘッド12,13からサブ支持体15,16側への押圧力を、メインヘッド11からメイン支持体14側への押圧力より低く設定する。なお、加圧機構21〜23としては、エアーシリンダや油圧シリンダ、バネ、弾性体等を用いることができる。   Pressurization mechanisms 21 to 23 are connected to the main head 11 and the sub heads 12 and 13, respectively, and by these pressurization mechanisms 21 to 23, pressing forces to the support bodies 14 to 16 of the heads 11 to 13 are respectively provided. Can be set. In the present embodiment, the pressing force from the sub heads 12 and 13 toward the sub supports 15 and 16 is set lower than the pressing force from the main head 11 to the main support 14 side. As the pressurizing mechanisms 21 to 23, air cylinders, hydraulic cylinders, springs, elastic bodies, and the like can be used.

また、触媒転写装置10は、メインヘッド11及びメイン支持体14の温度を設定する温度調節機構31と、サブヘッド12及びサブ支持体15の温度を設定する温度調節機構32と、サブヘッド13及びサブ支持体16の温度を設定する温度調節機構33と、を備える。
温度調節機構32及び33は、サブヘッド12,13及びサブ支持体15,16を加熱又は冷却する機構であり、本実施形態では、サブヘッド12,13及びサブ支持体15,16の温度を、メインヘッド11及びメイン支持体14の温度より低く設定する。
In addition, the catalyst transfer device 10 includes a temperature adjustment mechanism 31 that sets the temperatures of the main head 11 and the main support 14, a temperature adjustment mechanism 32 that sets the temperatures of the sub head 12 and the sub support 15, and the sub head 13 and the sub support. And a temperature adjustment mechanism 33 that sets the temperature of the body 16.
The temperature adjusting mechanisms 32 and 33 are mechanisms for heating or cooling the sub heads 12 and 13 and the sub supports 15 and 16. In this embodiment, the temperatures of the sub heads 12 and 13 and the sub supports 15 and 16 are set to the main head. 11 and the temperature of the main support 14 are set lower.

さらに、メイン支持体14及びサブ支持体15,16には、それぞれエアージャイロ41〜43が接続されており、これらエアージャイロ41〜43によって、各ヘッド11〜13と各支持体14〜16との当たりを調整可能となっている。 固体高分子電解質膜2の両面に電極触媒層3を接合した膜電極接合体を作製する際には、先ず、電極触媒層3が形成された触媒層形成膜4と固体高分子電解質膜2とを、電極触媒層3が固体高分子電解質膜2の表面と対向するように積層し、その積層部材をメインヘッド11とメイン支持体14との間に配置する。   Further, air gyros 41 to 43 are connected to the main support body 14 and the sub support bodies 15 and 16, respectively, and the heads 11 to 13 and the support bodies 14 to 16 are connected by the air gyros 41 to 43. The hit can be adjusted. When producing a membrane electrode assembly in which the electrode catalyst layer 3 is bonded to both surfaces of the solid polymer electrolyte membrane 2, first, the catalyst layer forming film 4 on which the electrode catalyst layer 3 is formed, the solid polymer electrolyte membrane 2, Are laminated so that the electrode catalyst layer 3 faces the surface of the solid polymer electrolyte membrane 2, and the laminated member is disposed between the main head 11 and the main support 14.

次に、加圧機構21によって、メインヘッド11の加圧面を上記積層部材に圧接することにより、ホットプレス(加熱・加圧)を行う。このとき、メインヘッド11の加熱温度及び加圧力は、触媒層形成膜4に形成された電極触媒層3が固体高分子電解質膜2に転写される程度に設定する。これにより、メインヘッド11の加圧面11aの形状で電極触媒層3が固体高分子電解質膜2に転写され、これが固体高分子電解質膜2における電極触媒層3の転写領域となる。
したがって、メインヘッド11の加圧面は、電極触媒部3を固体高分子電解質膜2に転写したい大きさ及び形状に設定する。
Next, hot pressing (heating / pressing) is performed by pressing the pressing surface of the main head 11 against the laminated member by the pressing mechanism 21. At this time, the heating temperature and pressure of the main head 11 are set to such an extent that the electrode catalyst layer 3 formed on the catalyst layer forming film 4 is transferred to the solid polymer electrolyte membrane 2. Thereby, the electrode catalyst layer 3 is transferred to the solid polymer electrolyte membrane 2 in the shape of the pressure surface 11 a of the main head 11, and this becomes a transfer region of the electrode catalyst layer 3 in the solid polymer electrolyte membrane 2.
Therefore, the pressure surface of the main head 11 is set to a size and shape that the electrode catalyst portion 3 is desired to be transferred to the solid polymer electrolyte membrane 2.

また、メインヘッド11とメイン支持体14とで、固体高分子電解質膜2と触媒層形成膜4とにおける上記転写領域を加熱・加圧する際、サブヘッド12,13とサブ支持体15,16とで、固体高分子電解質膜2と触媒層形成膜4とにおける転写領域に隣接する非転写領域(転写領域の外周部)を狭圧する。
ここで、非転写領域で固体高分子電解質膜2と触媒層形成膜4とを狭圧する際の温度及び加圧力は、加圧機構22,23及び温度調節機構32,33によって設定されている。
When the main head 11 and the main support 14 heat and pressurize the transfer region in the solid polymer electrolyte membrane 2 and the catalyst layer forming film 4, the sub heads 12 and 13 and the sub supports 15 and 16 Then, the non-transfer area (outer peripheral part of the transfer area) adjacent to the transfer area in the solid polymer electrolyte membrane 2 and the catalyst layer forming film 4 is narrowed.
Here, the temperature and pressure when the solid polymer electrolyte membrane 2 and the catalyst layer forming film 4 are narrowed in the non-transfer area are set by the pressurizing mechanisms 22 and 23 and the temperature adjusting mechanisms 32 and 33.

すなわち、本実施形態では、非転写領域の温度がサブヘッド12,13とサブ支持体15,16とで転写領域より低い温度となるように加熱又は冷却すると共に、非転写領域を転写領域より低い圧力で狭圧しながら、転写領域をメインヘッド11とメイン支持体14とで加熱・加圧することで、固体高分子電解質膜2上の転写領域に電極触媒層3を転写する。
なお、図1において、加圧機構21がメイン加圧手段に対応し、加圧機構22及び23がサブ加圧手段に対応し、温度調節機構31がメイン温度調節手段に対応し、温度調節機構32及び33がサブ温度調節手段に対応し、エアージャイロ41〜43が平行度調整手段に対応している。
That is, in this embodiment, the temperature of the non-transfer area is heated or cooled by the sub heads 12 and 13 and the sub supports 15 and 16 so as to be lower than the transfer area, and the non-transfer area is lower than the transfer area. The electrode catalyst layer 3 is transferred to the transfer region on the solid polymer electrolyte membrane 2 by heating and pressurizing the transfer region with the main head 11 and the main support 14 while narrowing the pressure.
In FIG. 1, the pressurizing mechanism 21 corresponds to the main pressurizing means, the pressurizing mechanisms 22 and 23 correspond to the sub pressurizing means, the temperature adjusting mechanism 31 corresponds to the main temperature adjusting means, and the temperature adjusting mechanism. Reference numerals 32 and 33 correspond to sub temperature adjusting means, and the air gyros 41 to 43 correspond to parallelism adjusting means.

(動作)
次に、本実施形態における動作について図2を参照しながら説明する。
図2は、膜電極接合体の作製手順を示すフローチャートである。
先ず、触媒層形成膜4を準備する(ステップS1)。ここでは、例えば、電極触媒層3を構成する触媒インクをフィルム等の転写基材上に塗布し、次いで乾燥させることで、触媒層形成膜4を作製する。
(Operation)
Next, the operation in the present embodiment will be described with reference to FIG.
FIG. 2 is a flowchart showing a procedure for producing a membrane electrode assembly.
First, the catalyst layer forming film 4 is prepared (step S1). Here, for example, a catalyst ink forming the electrode catalyst layer 3 is applied on a transfer substrate such as a film, and then dried to produce the catalyst layer forming film 4.

次に、触媒転写装置10の各種設定を行う(ステップS2)。はじめに、加圧機構21〜23でメインヘッド11及びサブヘッド12,13の押圧力を設定する。ここでは、加圧機構21で、メインヘッド11の押圧力を触媒層形成膜4から固体高分子電解質膜2へ電極触媒層3を転写可能な圧力に設定すると共に、加圧機構22及び23で、サブヘッド12,13の押圧力をメインヘッド11の押圧力より低く設定する。   Next, various settings of the catalyst transfer device 10 are performed (step S2). First, the pressing force of the main head 11 and the sub heads 12 and 13 is set by the pressurizing mechanisms 21 to 23. Here, the pressing mechanism 21 sets the pressing force of the main head 11 to a pressure at which the electrode catalyst layer 3 can be transferred from the catalyst layer forming film 4 to the solid polymer electrolyte membrane 2, and the pressing mechanisms 22 and 23 The pressing force of the sub heads 12 and 13 is set lower than the pressing force of the main head 11.

次に、温度調節機構31〜33で、各ヘッド11〜13及び各支持体14〜16の温度をそれぞれ設定する。このとき、サブヘッド12,13及びサブ支持体15,16の温度をメインヘッド11及びメイン支持体14の温度より低く設定する。
さらに、各支持体14〜16の受圧面14a〜16aが、各ヘッド11〜13の加圧面11a〜13aに対して平行となるように、各支持体14〜16の傾きを調整する。はじめに、エアージャイロ41〜43を緩めておき、一度各ヘッド11〜13を加圧機構21〜23によって各支持体14〜16側に押し当てる。このとき、エアージャイロ41〜43により各支持体14〜16はそれぞれのヘッド11〜13の傾きに合わせて微調整される。この状態でエアージャイロ41〜43を固定する。これにより、各ヘッド11〜13と各支持体14〜16との当たりを簡易的に合わせることができる。なお、各支持体14〜16の傾きを調整する動作は、初期設定時のみ行うものとする。
Next, the temperature adjustment mechanisms 31 to 33 set the temperatures of the heads 11 to 13 and the supports 14 to 16, respectively. At this time, the temperatures of the sub heads 12 and 13 and the sub supports 15 and 16 are set lower than the temperatures of the main head 11 and the main support 14.
Furthermore, the inclination of each support body 14-16 is adjusted so that the pressure receiving surfaces 14a-16a of each support body 14-16 become parallel with respect to the pressurization surfaces 11a-13a of each head 11-13. First, the air gyros 41 to 43 are loosened, and the heads 11 to 13 are once pressed against the support bodies 14 to 16 by the pressure mechanisms 21 to 23. At this time, the supports 14-16 are finely adjusted by the air gyros 41-43 in accordance with the inclinations of the heads 11-13. In this state, the air gyros 41 to 43 are fixed. Thereby, each head 11-13 and each support 14-16 can match easily. In addition, the operation | movement which adjusts the inclination of each support body 14-16 shall be performed only at the time of initial setting.

次に、触媒層形成膜4の電極触媒層3が固体高分子電解質膜2に面するように、固体高分子電解質膜2の両面に触媒層形成膜4を配置し、固体高分子電解質膜2と一対の触媒形成膜4とを、触媒転写装置10の各ヘッドと各支持体との間に配置(搬送)する(ステップS3)。このとき、固定高分子電解質膜2と触媒層形成膜4との搬送方式は、枚葉搬送方式でもウェブ搬送方式でもよい。   Next, the catalyst layer forming film 4 is disposed on both sides of the solid polymer electrolyte membrane 2 so that the electrode catalyst layer 3 of the catalyst layer forming film 4 faces the solid polymer electrolyte membrane 2, and the solid polymer electrolyte membrane 2 is disposed. And a pair of catalyst forming films 4 are arranged (conveyed) between each head of the catalyst transfer device 10 and each support (step S3). At this time, the conveyance method of the fixed polymer electrolyte membrane 2 and the catalyst layer forming film 4 may be a single wafer conveyance method or a web conveyance method.

次に、加圧機構21〜23を駆動し、図3に示すように、固定高分子電解質膜2と触媒層形成膜4とを、各ヘッド11〜13と各支持体14〜16とで挟み付ける(ステップS4)。これにより、固定高分子電解質膜2と触媒層形成膜4とは、加圧機構21〜23で設定された加圧力、温度調節機構31〜33で設定された温度で、加圧・加熱される。
このように、メインヘッド11の外周部、つまり固体高分子電解質膜2の外縁部(非転写領域)をメインヘッド11より低い圧力・低い温度で押さえながら、メインヘッド11とメイン支持体14とによって、電極触媒層3が固体高分子電解質膜2の転写領域に転写する。
すなわち、転写領域と非転写領域とで圧力差および温度差を少なくした状態で、転写領域の熱転写を行うことができる。したがって、プレス時に固体高分子電解質膜2にダメージや撚れを防止することができる。
Next, the pressurizing mechanisms 21 to 23 are driven, and the fixed polymer electrolyte membrane 2 and the catalyst layer forming membrane 4 are sandwiched between the heads 11 to 13 and the supports 14 to 16 as shown in FIG. (Step S4). Thereby, the fixed polymer electrolyte membrane 2 and the catalyst layer forming membrane 4 are pressurized and heated at the pressure set by the pressurizing mechanisms 21 to 23 and the temperature set by the temperature adjusting mechanisms 31 to 33. .
Thus, the main head 11 and the main support 14 are used to hold the outer periphery of the main head 11, that is, the outer edge (non-transfer area) of the solid polymer electrolyte membrane 2 at a lower pressure and lower temperature than the main head 11. The electrode catalyst layer 3 is transferred to the transfer region of the solid polymer electrolyte membrane 2.
That is, the transfer region can be thermally transferred with the pressure difference and temperature difference reduced between the transfer region and the non-transfer region. Therefore, damage and twisting of the solid polymer electrolyte membrane 2 can be prevented during pressing.

次に、固定高分子電解質膜2と触媒層形成膜4とをそれぞれ搬送し(ステップS5)、触媒層形成膜4を剥がす(ステップS6)。これにより、図5に示すように、固体高分子電解質膜2の中央部分に電極触媒層3が転写された膜電極接合体1を形成することができる。
次に転写終了判断を行い(ステップS7)、連続して転写を行うと判断した場合には、固定高分子電解質膜2と触媒層形成膜4とを積層した積層部材を搬送又は入れ替え、上記の加熱・加圧処理以降の動作を繰り返す。
このようにして、膜電極接合体1を作製する。
こうして作製した膜電極接合体1は、固体高分子型燃料電池に用いられる。
Next, the fixed polymer electrolyte membrane 2 and the catalyst layer forming film 4 are respectively conveyed (step S5), and the catalyst layer forming film 4 is peeled off (step S6). Thereby, as shown in FIG. 5, the membrane electrode assembly 1 in which the electrode catalyst layer 3 is transferred to the central portion of the solid polymer electrolyte membrane 2 can be formed.
Next, a transfer end determination is made (step S7). If it is determined that the transfer is to be performed continuously, the laminated member in which the fixed polymer electrolyte membrane 2 and the catalyst layer forming film 4 are laminated is conveyed or replaced, The operation after the heating / pressurizing process is repeated.
Thus, the membrane electrode assembly 1 is produced.
The membrane electrode assembly 1 thus produced is used for a polymer electrolyte fuel cell.

図4は、固体高分子型燃料電池の分解斜視図である。
本実施形態における固体高分子型燃料電池にあっては、上述した方法により作製した膜電極接合体1の一対の電極触媒層3にそれぞれ対向して、空気極側ガス拡散層5および燃料極側ガス拡散層6を配置する。空気極側ガス拡散層5側に配置した電極触媒層3と空気極側ガス拡散層5とにより、空気極7が構成され、燃料極側ガス拡散層6側に配置した電極触媒層3と燃料極側ガス拡散層6とにより、電気極8が構成される。
FIG. 4 is an exploded perspective view of the polymer electrolyte fuel cell.
In the polymer electrolyte fuel cell according to the present embodiment, the air electrode side gas diffusion layer 5 and the fuel electrode side are respectively opposed to the pair of electrode catalyst layers 3 of the membrane electrode assembly 1 manufactured by the method described above. A gas diffusion layer 6 is disposed. The electrode catalyst layer 3 disposed on the air electrode side gas diffusion layer 5 side and the air electrode side gas diffusion layer 5 constitute the air electrode 7, and the electrode catalyst layer 3 disposed on the fuel electrode side gas diffusion layer 6 side and the fuel The electrode 8 is constituted by the pole-side gas diffusion layer 6.

そして、1組のセパレータ9を、固体高分子電解質膜2、電極触媒層3およびガス拡散層5,6を挟むように配置する。ここで、セパレータ9は、ガス流通用のガス通路9aと、相対する主面に冷却水流通用の冷却水通路9bとを備え、導電性で且つ不透過性の材料により構成される。
空気極7側のセパレータ9のガス流路9aからは、酸化剤ガスとして、例えば酸素を含むガスが供給される。一方、燃料極8側のセパレータ9のガス流路9aからは、燃料ガスとして、例えば水素ガスが供給される。
この図4に示す固体高分子型燃料電池は、1組のセパレータ9によって固体高分子電解質膜2、電極触媒層3、ガス拡散層5,6が狭持された、いわゆる単セル構造の固体高分子型燃料電池であるが、セパレータ9を介して複数のセルを積層して燃料電池とすることもできる。
A set of separators 9 is arranged so as to sandwich the solid polymer electrolyte membrane 2, the electrode catalyst layer 3, and the gas diffusion layers 5 and 6. Here, the separator 9 includes a gas passage 9a for gas circulation and a cooling water passage 9b for circulation of cooling water on the opposing main surface, and is made of a conductive and impermeable material.
For example, a gas containing oxygen is supplied as an oxidant gas from the gas flow path 9a of the separator 9 on the air electrode 7 side. On the other hand, for example, hydrogen gas is supplied as a fuel gas from the gas flow path 9a of the separator 9 on the fuel electrode 8 side.
The solid polymer type fuel cell shown in FIG. 4 has a so-called single cell structure with a solid polymer electrolyte membrane 2, an electrode catalyst layer 3, and gas diffusion layers 5 and 6 sandwiched by a pair of separators 9. Although it is a molecular type fuel cell, a plurality of cells can be stacked via a separator 9 to form a fuel cell.

(効果)
このように、本実施形態では、電極触媒層の熱転写工程において、転写領域(固体高分子電解質膜の中央部分)に隣接する非転写領域(固体高分子電解質膜の外縁部分)を狭圧しながら、転写領域を熱転写に必要な温度・加圧力で加熱・加圧する。このとき、非転写領域に、転写領域に付与する加圧力より低い加圧力を付与することで、転写領域と非転写領域とで付与される加圧力の差を縮小することができる。その結果、転写領域と非転写領域との境界部における電解質膜のダメージを軽減することができ、しわの無い転写が可能となる。
(effect)
Thus, in this embodiment, in the thermal transfer process of the electrode catalyst layer, while narrowing the non-transfer region (the outer edge portion of the solid polymer electrolyte membrane) adjacent to the transfer region (the central portion of the solid polymer electrolyte membrane), Heat and pressurize the transfer area at the temperature and pressure required for thermal transfer. At this time, by applying a pressing force lower than the pressing force applied to the transfer region to the non-transfer region, the difference in the pressing force applied between the transfer region and the non-transfer region can be reduced. As a result, damage to the electrolyte membrane at the boundary between the transfer region and the non-transfer region can be reduced, and transfer without wrinkles becomes possible.

また、転写領域を加圧するメインヘッドに隣接して、非転写領域を加圧するサブヘッドを配置し、各ヘッドの加圧力を個別に調整可能な加圧機構を設ける構成とするので、比較的簡易な構成で、転写領域と非転写領域との加圧力の差を最適化することができる。
さらに、温度調節機構でメインヘッドの温度とサブヘッドとの温度を個別に調整可能な構成とするので、転写領域と非転写領域との温度差を調節することができる。
In addition, a sub-head that pressurizes the non-transfer area is disposed adjacent to the main head that pressurizes the transfer area, and a pressurizing mechanism that can individually adjust the pressurizing force of each head is provided. With the configuration, the difference in the applied pressure between the transfer area and the non-transfer area can be optimized.
Further, since the temperature adjustment mechanism is configured to individually adjust the temperature of the main head and the temperature of the sub head, the temperature difference between the transfer area and the non-transfer area can be adjusted.

また、メインヘッド及びサブヘッドにそれぞれ対峙する支持体をメイン支持体及びサブ支持体で構成し、温度調節機構で、各支持体の温度を対応するヘッドの温度と同一温度に調節するので、転写領域と非転写領域との温度差を最適化することができる。
さらに、各支持体の傾きを調節する平行度調節機構としてエアージャイロを設けるので、各ヘッドと各支持体との当たりを容易に調節することができ、機構の簡易化と段取り時間の短縮とを実現可能となる。
このように、比較的簡易な構成で、効果的に品質のよい膜電極接合体を連続して得ることができる。
In addition, the support body that faces the main head and the sub head is composed of the main support body and the sub support body, and the temperature adjustment mechanism adjusts the temperature of each support body to the same temperature as the corresponding head. And the temperature difference between the non-transfer area can be optimized.
Furthermore, since an air gyro is provided as a parallelism adjustment mechanism for adjusting the inclination of each support, the contact between each head and each support can be easily adjusted, and the mechanism is simplified and the setup time is shortened. It becomes feasible.
Thus, a membrane electrode assembly with good quality can be obtained continuously with a relatively simple configuration.

(変形例)
なお、上記実施形態においては、加圧機構21〜23によって、メインヘッド11とサブヘッド12,13とを同時に駆動する場合について説明したが、少なくともメインヘッド11による熱転写工程の実行中に、サブヘッド12,13による狭圧工程を行えばよい。したがって、メインヘッド11による熱転写工程の開始前に、サブヘッド12,13による狭圧工程を行っていてもよい。
(Modification)
In the above embodiment, the case where the main head 11 and the sub heads 12 and 13 are simultaneously driven by the pressurization mechanisms 21 to 23 has been described. However, at least during the execution of the thermal transfer process by the main head 11, 13 may be performed. Therefore, the narrow pressure process by the sub heads 12 and 13 may be performed before the start of the thermal transfer process by the main head 11.

また、上記実施形態においては、ヘッドに対峙する支持体を、メインヘッド用とサブヘッド用とでそれぞれ別の支持体で構成する場合について説明したが、メインヘッド用とサブヘッド用とで共通の支持体で構成することもできる。このとき、支持体の受圧面の大きさは、各ヘッドの加圧面と同等かそれ以上の大きさとする。この場合、ヘッドの加圧面と支持体の受圧面との位置合わせを厳密に行う必要がないので、支持体の位置に関係なく転写を行うことができる。   Further, in the above-described embodiment, the description has been given of the case where the support body facing the head is configured as a separate support body for the main head and the sub head, but a common support body for the main head and the sub head is used. Can also be configured. At this time, the size of the pressure receiving surface of the support is equal to or larger than the pressure surface of each head. In this case, since it is not necessary to strictly align the pressure surface of the head and the pressure receiving surface of the support, transfer can be performed regardless of the position of the support.

1…膜電極接合体(MEA)、2…固体高分子電解質膜、3…電極触媒層、4…触媒層形成膜、5…空気極側ガス拡散層、6…燃料極側ガス拡散層、7…空気極、8…燃料極、9…セパレータ、9a…ガス流路、9b…冷却水流路、10…触媒転写装置、11…ヘッド、12,13…隣接ヘッド、14…支持体、15,16…隣接支持体、21〜23…加圧機構、31〜33…温度調節機構、41〜43…エアージャイロ、101…ヘッド、102…支持体、103…加圧機構、104…温度調節機構、200…ダメージ   DESCRIPTION OF SYMBOLS 1 ... Membrane electrode assembly (MEA), 2 ... Solid polymer electrolyte membrane, 3 ... Electrode catalyst layer, 4 ... Catalyst layer formation film, 5 ... Air electrode side gas diffusion layer, 6 ... Fuel electrode side gas diffusion layer, 7 DESCRIPTION OF SYMBOLS ... Air electrode, 8 ... Fuel electrode, 9 ... Separator, 9a ... Gas flow path, 9b ... Cooling water flow path, 10 ... Catalyst transfer apparatus, 11 ... Head, 12, 13 ... Adjacent head, 14 ... Support, 15, 16 ... adjacent support, 21-23 ... pressure mechanism, 31-33 ... temperature adjustment mechanism, 41-43 ... air gyro, 101 ... head, 102 ... support, 103 ... pressure mechanism, 104 ... temperature adjustment mechanism, 200 …damage

Claims (7)

電解質膜の表面に電極触媒層を接合した膜電極接合体の製造方法であって、
前記電極触媒層を転写基材上に形成した触媒層形成基材を準備する準備工程と、
前記電極触媒層が前記電解質膜の表面と対向するように、前記触媒層形成基材を配置する配置工程と、
前記触媒層形成基材と前記電解質膜とを、前記電解質膜上の任意の転写領域で加熱圧着して、前記電解質膜上の前記転写領域に前記電極触媒層を熱転写する熱転写工程と、
少なくとも前記熱転写工程の実行中に、前記触媒層形成基材と前記電解質膜とを、前記転写領域に隣接する、前記電解質膜上の前記電極触媒層を転写しない非転写領域において、前記転写領域に与える圧力より低い圧力で狭圧する狭圧工程と、を備えることを特徴とする膜電極接合体の製造方法。
A method for producing a membrane electrode assembly in which an electrode catalyst layer is bonded to the surface of an electrolyte membrane,
A preparation step of preparing a catalyst layer-forming substrate in which the electrode catalyst layer is formed on a transfer substrate;
An arrangement step of arranging the catalyst layer-forming substrate so that the electrode catalyst layer faces the surface of the electrolyte membrane;
A thermal transfer step in which the catalyst layer forming substrate and the electrolyte membrane are heat-pressed in an arbitrary transfer region on the electrolyte membrane, and the electrode catalyst layer is thermally transferred to the transfer region on the electrolyte membrane;
At least during the execution of the thermal transfer step, the catalyst layer forming substrate and the electrolyte membrane are placed in the transfer region in the non-transfer region adjacent to the transfer region and not transferring the electrode catalyst layer on the electrolyte membrane. And a narrow pressure step of narrowing with a pressure lower than the pressure to be applied.
前記狭圧工程において、前記非転写領域を、前記転写領域の加熱温度より低い温度で狭圧することを特徴とする請求項1に記載の膜電極接合体の製造方法。   2. The method for producing a membrane electrode assembly according to claim 1, wherein, in the narrowing step, the non-transfer area is narrowed at a temperature lower than a heating temperature of the transfer area. 電解質膜の表面に電極触媒層を接合した膜電極接合体の製造装置であって、
任意形状の加圧面を有するメインヘッドと、
加圧面を有し、当該加圧面を前記メインヘッドの加圧面と同一方向に向けて前記メインヘッドに隣接して配置するサブヘッドと、
前記電極触媒層を転写基材上に形成した触媒層形成基材と前記電解質膜とを、前記電極触媒層が前記電解質膜の表面と対向するように積層した積層部材を介して、前記メインヘッド及び前記サブヘッドの各加圧面に対峙する受圧面を有する支持体と、
前記メインヘッドを所定の転写温度に加熱するメイン温度調節手段と、
前記積層部材に、前記メインヘッドの加圧面を、前記電極触媒層を前記電解質膜上に転写可能な加圧力で圧接することで、前記積層部材を前記メインヘッドと前記支持体とで狭圧するメイン加圧手段と、
前記積層部材に、前記サブヘッドの加圧面を、前記メインヘッドの前記積層部材に対する加圧力より低い加圧力で圧接することで、前記積層部材を前記サブヘッドと前記支持体とで狭圧するサブ加圧手段と、を備えることを特徴とする膜電極接合体の製造装置。
An apparatus for manufacturing a membrane electrode assembly in which an electrode catalyst layer is bonded to the surface of an electrolyte membrane,
A main head having a pressure surface of any shape;
A sub-head having a pressure surface, the pressure surface being arranged adjacent to the main head in the same direction as the pressure surface of the main head;
The main head through a laminated member in which the electrode layer is formed on the transfer substrate so that the electrode catalyst layer faces the surface of the electrolyte membrane. And a support having a pressure receiving surface facing each pressure surface of the sub head,
Main temperature adjusting means for heating the main head to a predetermined transfer temperature;
A main surface that narrows the laminated member between the main head and the support by pressing the pressing surface of the main head against the laminated member with a pressure capable of transferring the electrode catalyst layer onto the electrolyte membrane. Pressurizing means;
Sub-pressurizing means for narrowing the laminated member between the sub-head and the support by pressing the pressing surface of the sub-head to the laminated member with a pressure lower than the pressure applied to the laminated member of the main head. An apparatus for producing a membrane electrode assembly, comprising:
前記サブヘッドの温度を、前記転写温度より低い温度に調節するサブ温度調節手段を備えることを特徴とする請求項3に記載の膜電極接合体の製造装置。   4. The apparatus for manufacturing a membrane electrode assembly according to claim 3, further comprising sub temperature adjusting means for adjusting the temperature of the sub head to a temperature lower than the transfer temperature. 前記支持体は、前記積層部材を介して前記メインヘッド及び前記サブヘッドにそれぞれ対峙し、前記メインヘッド及び前記サブヘッドの各加圧面とそれぞれ同一形状の受圧面を有するメイン支持体及びサブ支持体から構成され、
前記メイン温度調節手段は、前記メインヘッド及び前記メイン支持体を前記転写温度に加熱し、
前記サブ温度調節手段は、前記サブヘッド及び前記サブ支持体の温度を、前記転写温度より低い温度に調節することを特徴とする請求項4に記載の膜電極接合体の製造装置。
The support body includes a main support body and a sub support body that face the main head and the sub head through the laminated member, respectively, and have pressure receiving surfaces having the same shape as the pressure surfaces of the main head and the sub head, respectively. And
The main temperature adjusting means heats the main head and the main support to the transfer temperature,
The apparatus for manufacturing a membrane electrode assembly according to claim 4, wherein the sub temperature adjusting means adjusts the temperature of the sub head and the sub support to a temperature lower than the transfer temperature.
前記支持体は、前記メインヘッド及び前記サブヘッドの加圧面と同等以上の大きさの受圧面を有することを特徴とする請求項3又は4に記載の膜電極接合体の製造装置。   5. The membrane electrode assembly manufacturing apparatus according to claim 3, wherein the support has a pressure receiving surface having a size equal to or greater than a pressure surface of the main head and the sub head. 6. 前記支持体の受圧面が、前記メインヘッド及び前記サブヘッドの各加圧面に対して平行又は略平行となるように調整可能な平行度調整手段を備えることを特徴とする請求項3〜6の何れか1項に記載の膜電極接合体の製造装置。   7. The parallelism adjusting unit according to claim 3, further comprising a parallelism adjusting unit that can be adjusted so that a pressure receiving surface of the support is parallel or substantially parallel to the pressure surfaces of the main head and the sub head. The manufacturing apparatus of the membrane electrode assembly of Claim 1.
JP2009223005A 2009-09-28 2009-09-28 Membrane electrode assembly manufacturing method and membrane electrode assembly manufacturing apparatus Expired - Fee Related JP5365450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009223005A JP5365450B2 (en) 2009-09-28 2009-09-28 Membrane electrode assembly manufacturing method and membrane electrode assembly manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009223005A JP5365450B2 (en) 2009-09-28 2009-09-28 Membrane electrode assembly manufacturing method and membrane electrode assembly manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2011071049A true JP2011071049A (en) 2011-04-07
JP5365450B2 JP5365450B2 (en) 2013-12-11

Family

ID=44016124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009223005A Expired - Fee Related JP5365450B2 (en) 2009-09-28 2009-09-28 Membrane electrode assembly manufacturing method and membrane electrode assembly manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP5365450B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012525318A (en) * 2009-04-30 2012-10-22 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー Proximity catalytic method and system for carbon nanotube synthesis
US8784937B2 (en) 2010-09-14 2014-07-22 Applied Nanostructured Solutions, Llc Glass substrates having carbon nanotubes grown thereon and methods for production thereof
US8815341B2 (en) 2010-09-22 2014-08-26 Applied Nanostructured Solutions, Llc Carbon fiber substrates having carbon nanotubes grown thereon and processes for production thereof
JP2014175241A (en) * 2013-03-12 2014-09-22 Toppan Printing Co Ltd Membrane-electrode assembly manufacturing device and membrane-electrode assembly manufacturing method
JP2014199741A (en) * 2013-03-29 2014-10-23 凸版印刷株式会社 Method of manufacturing membrane electrode assembly, and manufacturing apparatus for membrane electrode assembly
JP2014237319A (en) * 2014-06-27 2014-12-18 新東工業株式会社 Heating plate, heating apparatus and heating method
US8951632B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor
US8951631B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused metal fiber materials and process therefor
US8969225B2 (en) 2009-08-03 2015-03-03 Applied Nano Structured Soultions, LLC Incorporation of nanoparticles in composite fibers
US9005755B2 (en) 2007-01-03 2015-04-14 Applied Nanostructured Solutions, Llc CNS-infused carbon nanomaterials and process therefor
WO2017038028A1 (en) * 2015-08-31 2017-03-09 Canon Kabushiki Kaisha Modeling device
US10138128B2 (en) 2009-03-03 2018-11-27 Applied Nanostructured Solutions, Llc System and method for surface treatment and barrier coating of fibers for in situ CNT growth
CN109312471A (en) * 2016-05-20 2019-02-05 株式会社不二机贩 The method for preventing aluminium from adhering to
CN116180123A (en) * 2023-04-19 2023-05-30 国家电投集团氢能科技发展有限公司 Large-size membrane electrode preparation device and membrane electrode preparation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004179092A (en) * 2002-11-28 2004-06-24 Sanyo Electric Co Ltd Method and device of manufacturing solid polymer fuel cell
JP2007026915A (en) * 2005-07-19 2007-02-01 Dainippon Printing Co Ltd Manufacturing method of catalyst layer-electrolyte membrane assembly of polymer electrolyte fuel cell, and catalyst layer-electrolyte membrane assembly
JP2007250477A (en) * 2006-03-17 2007-09-27 Dainippon Printing Co Ltd Transcription device and transcription method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004179092A (en) * 2002-11-28 2004-06-24 Sanyo Electric Co Ltd Method and device of manufacturing solid polymer fuel cell
JP2007026915A (en) * 2005-07-19 2007-02-01 Dainippon Printing Co Ltd Manufacturing method of catalyst layer-electrolyte membrane assembly of polymer electrolyte fuel cell, and catalyst layer-electrolyte membrane assembly
JP2007250477A (en) * 2006-03-17 2007-09-27 Dainippon Printing Co Ltd Transcription device and transcription method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9573812B2 (en) 2007-01-03 2017-02-21 Applied Nanostructured Solutions, Llc CNT-infused metal fiber materials and process therefor
US8951632B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor
US8951631B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused metal fiber materials and process therefor
US9005755B2 (en) 2007-01-03 2015-04-14 Applied Nanostructured Solutions, Llc CNS-infused carbon nanomaterials and process therefor
US9574300B2 (en) 2007-01-03 2017-02-21 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor
US10138128B2 (en) 2009-03-03 2018-11-27 Applied Nanostructured Solutions, Llc System and method for surface treatment and barrier coating of fibers for in situ CNT growth
JP2012525318A (en) * 2009-04-30 2012-10-22 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー Proximity catalytic method and system for carbon nanotube synthesis
US8969225B2 (en) 2009-08-03 2015-03-03 Applied Nano Structured Soultions, LLC Incorporation of nanoparticles in composite fibers
US8784937B2 (en) 2010-09-14 2014-07-22 Applied Nanostructured Solutions, Llc Glass substrates having carbon nanotubes grown thereon and methods for production thereof
US8815341B2 (en) 2010-09-22 2014-08-26 Applied Nanostructured Solutions, Llc Carbon fiber substrates having carbon nanotubes grown thereon and processes for production thereof
JP2014175241A (en) * 2013-03-12 2014-09-22 Toppan Printing Co Ltd Membrane-electrode assembly manufacturing device and membrane-electrode assembly manufacturing method
JP2014199741A (en) * 2013-03-29 2014-10-23 凸版印刷株式会社 Method of manufacturing membrane electrode assembly, and manufacturing apparatus for membrane electrode assembly
JP2014237319A (en) * 2014-06-27 2014-12-18 新東工業株式会社 Heating plate, heating apparatus and heating method
WO2017038028A1 (en) * 2015-08-31 2017-03-09 Canon Kabushiki Kaisha Modeling device
CN109312471A (en) * 2016-05-20 2019-02-05 株式会社不二机贩 The method for preventing aluminium from adhering to
CN109312471B (en) * 2016-05-20 2021-02-23 株式会社不二机贩 Method for preventing aluminum adhesion
CN116180123A (en) * 2023-04-19 2023-05-30 国家电投集团氢能科技发展有限公司 Large-size membrane electrode preparation device and membrane electrode preparation method

Also Published As

Publication number Publication date
JP5365450B2 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
JP5365450B2 (en) Membrane electrode assembly manufacturing method and membrane electrode assembly manufacturing apparatus
KR101479627B1 (en) Method for manufacturing fuel cell membrane electrode assembly and apparatus for manufacturing fuel cell membrane electrode assembly
JP4736787B2 (en) Membrane electrode assembly and method for producing reinforced electrolyte membrane in polymer electrolyte fuel cell
JP2013069652A (en) Manufacturing method of fuel cell membrane electrode assembly using supersonic vibration bonding
JP2006134611A (en) Manufacturing device and manufacturing method of junction
KR101745114B1 (en) Manufacturing method for Membrane-electrode assembly
JP2004303627A (en) Manufacturing method of electrolyte membrane-electrode jointed assembly for direct methanol type fuel cell
JP2007172844A (en) Method of manufacturing fuel cell and equipment of manufacturing fuel cell
JP2005216598A (en) Solid polymer membrane type fuel cell and its manufacturing method
JP4085385B2 (en) Method for fixing and holding three-layer MEA membrane and bonding method
JP6155989B2 (en) Membrane electrode assembly manufacturing apparatus and manufacturing method
JP5024606B2 (en) Fuel cell and manufacturing method thereof
US7651581B2 (en) Catalyst coated diffusion media
JP2006147231A (en) Junction device for membrane electrode assembly and junction method for membrane electrode assembly
JP4784077B2 (en) Membrane electrode assembly joining apparatus and membrane electrode assembly joining method
JP2006066161A (en) Manufacturing method of fuel cell film/electrode junction
JP6127598B2 (en) Membrane electrode assembly manufacturing apparatus and membrane electrode assembly manufacturing method
JP6079381B2 (en) Membrane electrode assembly manufacturing method and membrane electrode assembly manufacturing apparatus
KR101350186B1 (en) The sub-gasket adhesion method for fuel cell membrane electrode assembly production using ultrasonic vibration
JP2020119838A (en) Apparatus for manufacturing assembly for fuel battery cell
JP2004214001A (en) Jointing method and jointing device for electrode and solid polyelectrolyte membrane
JP2006164887A (en) Apparatus and method of forming laminate for fuel battery
JP4043351B2 (en) Method and apparatus for producing polymer electrolyte fuel cell
JP2022135896A (en) Manufacturing apparatus for film-electrode gasket assembly
KR20230100274A (en) Fuel cell manufacturing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130826

R150 Certificate of patent or registration of utility model

Ref document number: 5365450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees