JP2011070976A - Lithium ion secondary battery, vehicle, and battery loading equipment - Google Patents

Lithium ion secondary battery, vehicle, and battery loading equipment Download PDF

Info

Publication number
JP2011070976A
JP2011070976A JP2009221771A JP2009221771A JP2011070976A JP 2011070976 A JP2011070976 A JP 2011070976A JP 2009221771 A JP2009221771 A JP 2009221771A JP 2009221771 A JP2009221771 A JP 2009221771A JP 2011070976 A JP2011070976 A JP 2011070976A
Authority
JP
Japan
Prior art keywords
active material
negative electrode
battery
lithium ion
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009221771A
Other languages
Japanese (ja)
Inventor
Tatsuya Koga
達哉 古賀
Hiromoto Awano
宏基 粟野
Hiroyuki Yamaguchi
裕之 山口
Yoshio Wada
吉修 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009221771A priority Critical patent/JP2011070976A/en
Publication of JP2011070976A publication Critical patent/JP2011070976A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery equipped with a negative electrode plate having a negative electrode active material layer suppressing a decrease of a battery capacity involved in use, and to provide a vehicle and battery loading equipment loaded with the lithium ion secondary battery. <P>SOLUTION: The lithium ion secondary battery 1 includes a power generation element 10 formed by winding the belt-like negative electrode plate 20, a belt-like positive electrode plate 30, and a belt-like separator 50 interposed between the negative electrode plate 20 and the positive electrode plate 30 and impregnating the separator 50 with electrolyte 60, wherein the negative electrode active material layer includes belt-like end edge parts 21E respectively located at both ends in a width direction DW and a belt-like central part 21C located in the center in the width direction DW, and wherein the center part has a layer characteristic of a resistance lower than that of the end edge parts. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、負極活物質層を有する負電極板を備えるリチウムイオン二次電池、このリチウムイオン二次電池を搭載した車両及び電池搭載機器に関する。   The present invention relates to a lithium ion secondary battery including a negative electrode plate having a negative electrode active material layer, a vehicle equipped with the lithium ion secondary battery, and a battery-equipped device.

近年、ハイブリッド自動車やノート型パソコン、ビデオカムコーダなどのポータブル電子機器の駆動用電源に、リチウムイオン二次電池が利用されている。
このようなリチウムイオン二次電池には、いずれも帯状の、負電極板と正電極板と、これらの間に介在してなるセパレータとを捲回してなり、セパレータに電解液を含浸した発電要素を備えるリチウムイオン二次電池(以下、単に電池という)が挙げられる。
In recent years, lithium ion secondary batteries have been used as power sources for driving portable electronic devices such as hybrid cars, notebook computers, and video camcorders.
In such a lithium ion secondary battery, a strip-shaped negative electrode plate, a positive electrode plate, and a separator interposed between them are wound, and the separator is impregnated with an electrolytic solution. Lithium ion secondary batteries (hereinafter simply referred to as batteries).

このような電池において、特許文献1では、さらに負極(負極活物質層)の幅方向両端部側領域(端縁部)の電極密度を、負極の幅方向中央部領域(中央部)の電極密度より高く構成することにより、電池の充放電サイクル寿命を向上させた非水電解質二次電池(リチウムイオン二次電池)が開示されている。   In such a battery, in Patent Document 1, the electrode density in the width direction both ends side region (edge portion) of the negative electrode (negative electrode active material layer) is further defined as the electrode density in the width direction central region (center portion) of the negative electrode. A non-aqueous electrolyte secondary battery (lithium ion secondary battery) is disclosed which has a higher charge / discharge cycle life by being configured higher.

特開2005−209411号公報JP 2005-209411 A

ところで、発明者らの研究によれば、電池を繰り返し充放電した場合、負極活物質層の幅方向の両端部に位置する端縁部付近の電解液と、幅方向の中央に位置する中央部付近の電解液とのリチウムイオンの濃度を比べると、端縁部の方が中央部よりもリチウムイオンの濃度が高くなることが判ってきた。その理由としては、中央部よりも外部に近い端縁部では、充放電の際に生じる活物質層及びこれによる発電要素の膨張・収縮に伴って、電解液の溶媒が電池ケース内の外部に向けて移動しやすいためであると考えられる。
ところで、リチウムイオンの濃度が低い部位では、濃度の高い部位よりも移動できるリチウムイオンが少なく、電解液と負極活物質層とを併せた総合の電気抵抗が高く見える。従って、図1(a)に示すように、負極活物質層に生じる電気抵抗が中央部及び端縁部に限らず一様であったとしても、電解液と負極活物質層とを併せた総合の電気抵抗は、図1(b)に示すように、中央部が端縁部に比して高く見える。
このように電解液と負極活物質層とを併せた総合の電気抵抗に高低が生じている電池をほぼ満充電まで充電して(充電末期)、負極活物質層の平均の電位(対リチウム金属電位(Vvs.Li/Li+))が0Vに近い値(例えば、0.1V)になった場合について考える。
このような状態では、負極活物質層の電位分布は、図1(c)に示すようになり、最も低い中央部では0V以下の電位になることがある。このため、中央部の表面に金属リチウムが析出してしまう虞がある。一旦析出した金属リチウムは、その後の充放電に関与しなくなるので、充放電を繰り返す等の使用に伴って、この電池の電池容量が低下してしまう。
By the way, according to the research of the inventors, when the battery is repeatedly charged and discharged, the electrolyte solution near the edge portion located at both ends in the width direction of the negative electrode active material layer and the center portion located in the center in the width direction Comparing the concentration of lithium ions with the nearby electrolyte, it has been found that the edge portion has a higher lithium ion concentration than the center portion. The reason for this is that at the edge part closer to the outside than the center part, the solvent of the electrolyte solution is exposed to the outside in the battery case as the active material layer generated during charging and discharging and the power generation element thereby expand and contract. It is thought that it is because it is easy to move toward.
By the way, in the site | part with a low density | concentration of lithium ion, there are few lithium ions which can move compared with a site | part with a high density | concentration, and the total electrical resistance which combined electrolyte solution and the negative electrode active material layer looks high. Therefore, as shown in FIG. 1 (a), even if the electrical resistance generated in the negative electrode active material layer is not limited to the central portion and the edge portion, it is a comprehensive combination of the electrolytic solution and the negative electrode active material layer. As shown in FIG. 1B, the electric resistance of the center portion appears higher than the edge portion.
In this way, the battery in which the total electric resistance including the electrolyte and the negative electrode active material layer is high or low is charged to almost full charge (at the end of charging), and the average potential of the negative electrode active material layer (with respect to lithium metal) Consider a case where the potential (Vvs. Li / Li + ) is a value close to 0 V (for example, 0.1 V).
In such a state, the potential distribution of the negative electrode active material layer is as shown in FIG. 1C, and the potential may be 0 V or less in the lowest central portion. For this reason, there exists a possibility that metallic lithium may precipitate on the surface of a center part. The metal lithium once deposited does not participate in subsequent charging / discharging, and thus the battery capacity of this battery is reduced with repeated use of charging / discharging.

これに対して、特許文献1のリチウムイオン二次電池を用いることが考えられるが、この特許文献1のリチウムイオン二次電池では、その負極活物質層の、端縁部と中央部との間で電極密度(固形分密度)を異ならせているので、充放電の際に負極活物質層に生じる膨張・収縮の程度についても、端縁部と中央部との間で異なる。つまり、電極密度が高い端縁部の方が、中央部よりも大きく膨張・収縮する。このため、例えば、端縁部と中央部との境界部分で亀裂や剥離等の不具合が生じて、電池性能が低下してしまう虞がある。   On the other hand, it is conceivable to use the lithium ion secondary battery disclosed in Patent Document 1. However, in the lithium ion secondary battery disclosed in Patent Document 1, the negative electrode active material layer is formed between the edge portion and the central portion. Therefore, the degree of expansion / contraction that occurs in the negative electrode active material layer during charge / discharge also differs between the edge portion and the central portion. That is, the edge portion having a higher electrode density expands and contracts more than the center portion. For this reason, there exists a possibility that malfunctions, such as a crack and peeling, may arise in the boundary part of an edge part and a center part, and battery performance may fall.

本発明は、かかる問題点に鑑みてなされたものであって、使用に伴う電池容量の低下を抑制した負極活物質層を有する負電極板を備えるリチウムイオン二次電池、このリチウムイオン二次電池を搭載した車両及び電池搭載機器を提供することを目的とする。   The present invention has been made in view of such problems, and a lithium ion secondary battery including a negative electrode plate having a negative electrode active material layer in which a decrease in battery capacity due to use is suppressed, and the lithium ion secondary battery An object of the present invention is to provide a vehicle equipped with a battery and a battery-equipped device.

本発明の一態様は、導電性を有する帯状の負極集電板、及び、この負極集電板上に配置されて、負極活物質粒子を含み、この負極集電板の長手方向に延びる帯状の負極活物質層を有する帯状の負電極板と、上記負電極板と対向してなる帯状の正電極板と、上記負電極板と上記正電極板との間に介在してなるセパレータと、を捲回してなり、上記セパレータにリチウムイオンを含む電解液を含浸させた発電要素を備えるリチウムイオン二次電池であって、上記負極活物質層は、上記長手方向に直交する幅方向の両端部にそれぞれ位置する帯状の端縁部と、上記幅方向の中央に位置して、上記端縁部にそれぞれ隣接する帯状の中央部と、からなり、上記中央部は、上記端縁部よりも低抵抗の層特性を有するリチウムイオン二次電池である。   One embodiment of the present invention is a strip-shaped negative electrode current collector plate having conductivity, and a strip-shaped negative electrode current collector plate disposed on the negative electrode current collector plate and including negative electrode active material particles and extending in the longitudinal direction of the negative electrode current collector plate A strip-shaped negative electrode plate having a negative electrode active material layer, a strip-shaped positive electrode plate facing the negative electrode plate, and a separator interposed between the negative electrode plate and the positive electrode plate. A lithium ion secondary battery comprising a power generation element wound and impregnated with an electrolyte solution containing lithium ions in the separator, wherein the negative electrode active material layer is formed at both ends in the width direction orthogonal to the longitudinal direction. Each of the strip-shaped end edges is located at the center in the width direction and is adjacent to each of the end edges, and the center is lower in resistance than the end edges. This is a lithium ion secondary battery having the following layer characteristics.

上述の電池の負極活物質層は、中央部が、端縁部よりも低抵抗の層特性を有する。つまり、図2(a)に示すように、電解液を加味しない、負極活物質層のみに生じる電気抵抗について見ると、中央部が端縁部よりも低くされている。
そこで、この電池について充放電を繰り返し、従来と同様に、電解液のうち、幅方向の中央部付近におけるリチウムイオンの濃度が、端縁部付近よりも低くなった場合を考える。すると、電解液と負極活物質層とを併せた総合の電気抵抗は、図2(b)に示したようになる。即ち、負極活物質層のうち中央部の電気抵抗を端縁部よりも低くした分、電解液と負極活物質層とを併せた総合の電気抵抗について、中央部と端縁部との間の差を小さく抑え、中央部で極端に高くなることが防止できる。
これにより、この電池に充電して、例えば、負極活物質層の平均電位が前述と同様に0.1Vになった場合でも、図2(c)に示すように、負極活物質層の中央部の電位が0V以下になるのを防止できる。つまり、充電時に、負極活物質層に金属リチウムが析出するのを防止できる。かくして、使用に伴う電池容量の低下を抑制した電池とすることができる。
The negative electrode active material layer of the battery described above has a layer characteristic in which the central portion has a lower resistance than the edge portion. That is, as shown in FIG. 2A, when the electric resistance generated only in the negative electrode active material layer without taking the electrolytic solution into consideration is seen, the central portion is set lower than the edge portion.
Therefore, the battery is repeatedly charged and discharged, and the case where the lithium ion concentration in the vicinity of the central portion in the width direction of the electrolytic solution is lower than that in the vicinity of the edge portion, as in the conventional case. Then, the total electrical resistance combining the electrolytic solution and the negative electrode active material layer is as shown in FIG. That is, the total electrical resistance of the negative electrode active material layer combined with the electrolytic solution and the negative electrode active material layer is reduced between the central portion and the edge portion by the amount that the electrical resistance of the central portion is lower than the edge portion. The difference can be kept small and can be prevented from becoming extremely high at the center.
Thus, even when the battery is charged and, for example, the average potential of the negative electrode active material layer becomes 0.1 V as described above, as shown in FIG. Can be prevented from becoming 0 V or less. That is, metallic lithium can be prevented from being deposited on the negative electrode active material layer during charging. Thus, a battery in which a decrease in battery capacity due to use is suppressed can be obtained.

なお、各部の層特性の測定方法としては、例えば、負電極板のうち、負極活物質層の端縁部が存在する部位と中央部が存在する部位とをそれぞれ所定形状に打ち抜いて、これらを負極とする電池をそれぞれ構成し、これら負極の抵抗を交流インピーダンス法で測定する手法が挙げられる。
また、負極活物質粒子としては、例えば、鱗片状黒鉛、塊状黒鉛等の天然黒鉛や人造黒鉛の黒鉛(グラファイト)、非晶質炭素が挙げられる。
In addition, as a method for measuring the layer characteristics of each part, for example, in the negative electrode plate, the part where the edge part of the negative electrode active material layer exists and the part where the center part exist are punched into predetermined shapes, respectively, Examples include a method in which batteries for negative electrodes are configured and the resistance of these negative electrodes is measured by an AC impedance method.
Examples of the negative electrode active material particles include natural graphite such as flaky graphite and massive graphite, artificial graphite (graphite), and amorphous carbon.

さらに、上述のリチウムイオン二次電池であって、前記端縁部と前記中央部とは、固形分密度が互いに等しいリチウムイオン二次電池とすると良い。   Further, in the above-described lithium ion secondary battery, the edge portion and the central portion may be lithium ion secondary batteries having the same solid content density.

上述の電池では、端縁部及び中央部の固形分密度が互いに等しい。このため、端縁部と中央部との間で、充放電に伴う膨張・収縮の程度を同じにすることができる。従って、両者の境界部分で亀裂や剥離等の不具合の発生を防止できる。   In the above-described battery, the solid content densities of the edge portion and the central portion are equal to each other. For this reason, the degree of expansion / contraction accompanying charge / discharge can be made the same between the edge portion and the central portion. Therefore, it is possible to prevent the occurrence of defects such as cracks and peeling at the boundary between the two.

なお、固形分密度とは、端縁部(或いは中央部)における単位体積当たりの端縁部(或いは中央部)の重量をいう。なお、固形分密度は、(固形分密度)=(端縁部(中央部)の重量)/((端縁部(中央部)の面積)×(端縁部(中央部)の層厚))で与えられる。   In addition, solid content density means the weight of the edge part (or center part) per unit volume in an edge part (or center part). The solid density is (solid content density) = (weight of edge portion (center portion)) / ((area of edge portion (center portion)) × (layer thickness of edge portion (center portion)). ).

さらに、上述のリチウムイオン二次電池であって、前記端縁部と前記中央部とは、厚みが互いに等しく、前記負極活物質粒子のうち、上記中央部に含まれる第1活物質粒子は、その第1平均粒径が、上記端縁部に含まれる第2活物質粒子の第2平均粒径に比して小さいリチウムイオン二次電池とすると良い。   Further, in the above lithium ion secondary battery, the edge portion and the central portion have the same thickness, and among the negative electrode active material particles, the first active material particles contained in the central portion are: The first average particle size may be a lithium ion secondary battery that is smaller than the second average particle size of the second active material particles contained in the edge portion.

上述の電池では、中央部に含まれる第1活物質粒子の第1平均粒径が、端縁部に含まれる第2活物質粒子の第2平均粒径に比して小さい。ところで、粒径が小さい負極活物質粒子は、リチウムイオン或いは電子がその活物質粒子の奥(中心)にまで到達し易いので、平均粒径が小さいほど、その負極活物質粒子自身の抵抗は低くなる。従って、第1活物質粒子の方が第2活物質粒子よりも低抵抗である。その上、端縁部と中央部との固形分密度を互いに等しく、しかも端縁部と中央部とで厚みを互いに等しくした。これにより、低抵抗の第1活物質粒子を含む中央部全体の層特性も、端縁部に比べて、低抵抗とすることができる。従って、充電時に、負極活物質層に金属リチウムが析出するのを防止できる。かくして、使用に伴う電池容量の低下を確実に抑制できる電池とすることができる。
また、端縁部と中央部との固形分密度を互いに等しく、かつ、端縁部と中央部とで厚みを互いに等しくしながら、中央部における負極活物質粒子の平均粒径を端縁部に比して小さく異ならせることで、容易に中央部を端縁部よりも低抵抗の層特性にすることができる。
In the above-described battery, the first average particle diameter of the first active material particles included in the central portion is smaller than the second average particle diameter of the second active material particles included in the edge portion. By the way, since the negative electrode active material particles having a small particle size easily reach lithium ions or electrons (in the center) of the active material particles, the smaller the average particle size, the lower the resistance of the negative electrode active material particles themselves. Become. Therefore, the first active material particles have a lower resistance than the second active material particles. In addition, the solid density of the edge portion and the central portion is equal to each other, and the thickness is equal to that of the edge portion and the central portion. Thereby, the layer characteristic of the whole center part containing the 1st active material particle of low resistance can also be made low resistance compared with an edge part. Accordingly, it is possible to prevent metallic lithium from being deposited on the negative electrode active material layer during charging. Thus, a battery capable of reliably suppressing a decrease in battery capacity due to use can be provided.
Further, the average particle size of the negative electrode active material particles in the central part is set to the edge part while the solid content densities of the edge part and the central part are equal to each other and the thicknesses are equal to each other in the edge part and the central part. By making the difference smaller, the center portion can be easily made to have a layer characteristic having a lower resistance than the edge portion.

さらに、上述のいずれかのリチウムイオン二次電池であって、前記端縁部と前記中央部とは、厚みが互いに等しく、前記負極活物質粒子は黒鉛であり、上記負極活物質粒子のうち、上記中央部に含まれている第1活物質粒子は、その第1黒鉛純度が、前記端縁部に含まれている第2活物質粒子の第2黒鉛純度に比して高いリチウムイオン二次電池とすると良い。   Furthermore, in the lithium ion secondary battery described above, the edge portion and the central portion are equal in thickness to each other, the negative electrode active material particles are graphite, and among the negative electrode active material particles, The first active material particles contained in the central portion have a lithium ion secondary whose first graphite purity is higher than the second graphite purity of the second active material particles contained in the edge portion. Use batteries.

上述の電池では、負極活物質粒子に用いる黒鉛について、中央部における第1活物質粒子の第1黒鉛純度が、端縁部における第2活物質粒子の第2黒鉛純度に比して高い。ところで、黒鉛純度が高いと、黒鉛以外の不純物の割合が小さいので、黒鉛純度が高くなるに連れて、負極活物質粒子の抵抗が低くなる。従って、第1活物質粒子の方が第2活物質粒子よりも低抵抗である。その上、端縁部と中央部との固形分密度を互いに等しく、しかも端縁部と中央部とで厚みを互いに等しくした。これにより、低抵抗の第1活物質粒子を含む中央部全体の層特性も、端縁部に比べて、低抵抗とすることができる。従って、充電時に、負極活物質層に金属リチウムが析出するのを防止できる。かくして、使用に伴う電池容量の低下を確実に抑制できる電池とすることができる。
また、端縁部と中央部との固形分密度を互いに等しく、かつ、端縁部と中央部とで厚みを互いに等しくしながら、中央部における負極活物質粒子の黒鉛純度を端縁部に比して高く異ならせることで、容易に中央部を端縁部よりも低抵抗の層特性にすることができる。
In the above-described battery, for the graphite used for the negative electrode active material particles, the first graphite purity of the first active material particles at the center is higher than the second graphite purity of the second active material particles at the edge. By the way, since the ratio of impurities other than graphite is small when the graphite purity is high, the resistance of the negative electrode active material particles decreases as the graphite purity increases. Therefore, the first active material particles have a lower resistance than the second active material particles. In addition, the solid density of the edge portion and the central portion is equal to each other, and the thickness is equal to that of the edge portion and the central portion. Thereby, the layer characteristic of the whole center part containing the 1st active material particle of low resistance can also be made low resistance compared with an edge part. Accordingly, it is possible to prevent metallic lithium from being deposited on the negative electrode active material layer during charging. Thus, a battery capable of reliably suppressing a decrease in battery capacity due to use can be provided.
Further, the solid content density of the edge portion and the central portion is equal to each other, and the thickness of the edge portion and the central portion is equal to each other, while the graphite purity of the negative electrode active material particles in the central portion is compared with that of the edge portion. Thus, by making the difference high, it is possible to easily make the central portion have a layer characteristic having a resistance lower than that of the edge portion.

なお、黒鉛純度とは、負極活物質粒子における黒鉛の占める割合をいい、例えば、灰分試験(600℃で燃焼した際の灰分の成分を分析)やX線回折(回折面(101)と(100)との強度比を測定)により測定することができる。   The graphite purity refers to the proportion of graphite in the negative electrode active material particles. For example, ash content (analysis of ash content when burned at 600 ° C.) and X-ray diffraction (diffractive surface (101) and (100 )) To measure the intensity ratio.

或いは、本発明の他の態様は、前述のいずれかのリチウムイオン二次電池を搭載し、このリチウムイオン二次電池に蓄える電気エネルギを動力源の全部又は一部に使用する車両である。   Or the other aspect of this invention is a vehicle which mounts one of the above-mentioned lithium ion secondary batteries, and uses the electrical energy stored in this lithium ion secondary battery for all or one part of a motive power source.

上記の車両は、使用に伴う電池容量の低下を抑制できる電池を搭載しているので、安定した性能を有する車両とすることができる。   Since the above vehicle is equipped with a battery that can suppress a decrease in battery capacity due to use, the vehicle can have stable performance.

なお、車両としては、電池による電気エネルギを動力源の全部又は一部に使用する車両であれば良く、例えば、電気自動車、ハイブリッド自動車、プラグインハイブリッド自動車、ハイブリッド鉄道車両、フォークリフト、電気車いす、電動アシスト自転車、電動スクータが挙げられる。   The vehicle may be a vehicle that uses electric energy from a battery as a whole or a part of a power source. For example, an electric vehicle, a hybrid vehicle, a plug-in hybrid vehicle, a hybrid railway vehicle, a forklift, an electric wheelchair, electric Examples include assist bicycles and electric scooters.

或いは、本発明の他の態様は、前述のいずれかのリチウムイオン二次電池を搭載し、このリチウムイオン二次電池に蓄える電気エネルギをエネルギ源の全部又は一部に使用する電池搭載機器である。   Alternatively, another aspect of the present invention is a battery-equipped device in which any of the above-described lithium ion secondary batteries is mounted and the electric energy stored in the lithium ion secondary battery is used for all or part of the energy source. .

上記の電池搭載機器は、使用に伴う電池容量の低下を抑制できる電池を搭載しているので、安定した性能を有する電池搭載機器とすることができる。   Since the battery-equipped device is equipped with a battery that can suppress a decrease in battery capacity due to use, it can be a battery-equipped device having stable performance.

なお、電池搭載機器としては、電池を搭載し、これをエネルギ源の全部又は一部に使用する機器であれば良く、例えば、パーソナルコンピュータ、携帯電話、電池駆動の電動工具、無停電電源装置など、電池で駆動される各種の家電製品、オフィス機器、産業機器が挙げられる。   In addition, as a battery mounting apparatus, what is necessary is just an apparatus which mounts a battery and uses this for all or one part of an energy source, for example, a personal computer, a mobile telephone, a battery-powered electric tool, an uninterruptible power supply, etc. And various home appliances driven by batteries, office equipment, and industrial equipment.

従来の電池の説明図であり、(a)は負極活物質層の各部位における電気抵抗の大きさを示すグラフ、(b)は電解液と負極活物質層とを併せた総合の電気抵抗の各部位における大きさを示すグラフ、(c)は充電末期における負極活物質層の電位を示すグラフである。It is explanatory drawing of the conventional battery, (a) is a graph which shows the magnitude | size of the electrical resistance in each site | part of a negative electrode active material layer, (b) is the total electrical resistance which combined electrolyte solution and the negative electrode active material layer. The graph which shows the magnitude | size in each site | part, (c) is a graph which shows the electric potential of the negative electrode active material layer in the charge end stage. 実施形態1,変形形態1にかかる電池の説明図であり、(a)は負極活物質層の各部位における電気抵抗の大きさを示すグラフ、(b)は電解液と負極活物質層とを併せた総合の電気抵抗の各部位における大きさを示すグラフ、(c)は充電末期における負極活物質層の電位を示すグラフである。It is explanatory drawing of the battery concerning Embodiment 1, modification 1, (a) is a graph which shows the magnitude | size of the electrical resistance in each site | part of a negative electrode active material layer, (b) is electrolyte solution and a negative electrode active material layer. The graph which shows the magnitude | size in each site | part of the combined electric resistance combined, (c) is a graph which shows the electric potential of the negative electrode active material layer in the charge end stage. 実施形態1,変形形態1にかかる電池の斜視図である。2 is a perspective view of a battery according to Embodiment 1 and Modification 1. FIG. 実施形態1,変形形態1の正電極板の斜視図である。It is a perspective view of the positive electrode plate of Embodiment 1 and Modification 1. 実施形態1,変形形態1の負電極板の斜視図である。It is a perspective view of the negative electrode plate of Embodiment 1 and Modification 1. 実施形態1,変形形態1の負電極板の製造工程の説明図である。It is explanatory drawing of the manufacturing process of the negative electrode plate of Embodiment 1, modification 1. FIG. 実施形態2にかかる車両の説明図である。It is explanatory drawing of the vehicle concerning Embodiment 2. FIG. 実施形態3にかかる電池搭載機器の説明図である。It is explanatory drawing of the battery mounting apparatus concerning Embodiment 3. FIG.

(実施形態1)
次に、本発明の実施形態1について、図面を参照しつつ説明する。
まず、本実施形態1にかかる電池1について、図3を参照して説明する。
この電池1は、帯状の負電極板20と、帯状の正電極板30と、負電極板20と正電極板30との間に介在させた帯状のセパレータ50とを捲回し、このセパレータ50に電解液60を含浸させた発電要素10を備えるリチウムイオン二次電池である(図3参照)。この電池1は、発電要素10を電池ケース80に収容してなる。
(Embodiment 1)
Next, Embodiment 1 of the present invention will be described with reference to the drawings.
First, the battery 1 according to the first embodiment will be described with reference to FIG.
The battery 1 is formed by winding a strip-shaped negative electrode plate 20, a strip-shaped positive electrode plate 30, and a strip-shaped separator 50 interposed between the negative electrode plate 20 and the positive electrode plate 30. It is a lithium ion secondary battery provided with the electric power generation element 10 impregnated with the electrolyte solution 60 (refer FIG. 3). The battery 1 includes a power generation element 10 accommodated in a battery case 80.

この電池ケース80は、共にアルミニウム製の電池ケース本体81及び封口蓋82を有する。このうち電池ケース本体81は有底矩形箱形であり、この電池ケース80と発電要素10との間には、樹脂からなり、箱状に折り曲げた絶縁フィルム(図示しない)が介在させてある。また、封口蓋82は矩形板状であり、電池ケース本体81の開口を閉塞して、この電池ケース本体81に溶接されている。この封口蓋82には、発電要素10と接続している正極集電部材91及び負極集電部材92のうち、それぞれ先端に位置する正極端子部91A及び負極端子部92Aが貫通しており、図3中、上方に向く蓋表面82aから突出している。これら正極端子部91A及び負極端子部92Aと封口蓋82との間には、それぞれ絶縁性の樹脂からなる絶縁部材95が介在し、互いを絶縁している。さらに、この封口蓋82には矩形板状の安全弁97も封着されている。   The battery case 80 has a battery case body 81 and a sealing lid 82 both made of aluminum. Among these, the battery case main body 81 has a bottomed rectangular box shape, and an insulating film (not shown) made of resin and bent into a box shape is interposed between the battery case 80 and the power generation element 10. The sealing lid 82 has a rectangular plate shape, closes the opening of the battery case body 81, and is welded to the battery case body 81. Of the positive electrode current collecting member 91 and the negative electrode current collecting member 92 connected to the power generation element 10, the positive electrode terminal portion 91 </ b> A and the negative electrode terminal portion 92 </ b> A located at the tips of the sealing lid 82 pass through, respectively. 3 protrudes from the lid surface 82a facing upward. Insulating members 95 made of insulating resin are interposed between the positive electrode terminal portion 91A and the negative electrode terminal portion 92A and the sealing lid 82 to insulate each other. Further, a rectangular plate-shaped safety valve 97 is also sealed on the sealing lid 82.

また、電解液60は、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを、体積比でEC:EMC=3:7に調整した混合有機溶媒に、溶質としてLiPF6を添加し、リチウムイオンを1mol/lの濃度とした非水電解液である。 In addition, the electrolytic solution 60 is obtained by adding LiPF 6 as a solute to a mixed organic solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) are adjusted to EC: EMC = 3: 7 by volume ratio, and lithium ion Is a non-aqueous electrolyte having a concentration of 1 mol / l.

また、発電要素10は、帯状の負電極板20及び正電極板30が、帯状のセパレータ50を介して扁平形状に捲回されてなる捲回型の形態である(図3参照)。なお、この発電要素10の負電極板20及び正電極板30はそれぞれ、クランク状に屈曲した板状の負極集電部材92又は正極集電部材91と接合している(図3参照)。このうち、多孔性のポリプロピレンからなる帯状のセパレータ50は、正電極板30と負電極板20との間に介在して、これらを離間させている。このセパレータ50には、全体に上述した電解液60が含浸させてある。   The power generation element 10 has a wound-type configuration in which a strip-shaped negative electrode plate 20 and a positive electrode plate 30 are wound into a flat shape via a strip-shaped separator 50 (see FIG. 3). The negative electrode plate 20 and the positive electrode plate 30 of the power generation element 10 are joined to a plate-like negative electrode current collecting member 92 or positive electrode current collecting member 91 bent in a crank shape (see FIG. 3). Among these, the strip-shaped separator 50 made of porous polypropylene is interposed between the positive electrode plate 30 and the negative electrode plate 20 to separate them. The separator 50 is entirely impregnated with the electrolytic solution 60 described above.

また、正電極板30は、図4に示すように、長手方向DLに延びる帯状で、導電性のアルミニウムからなるアルミ箔38と、このアルミ箔38の主面上にそれぞれ帯状に形成された2つの正極活物質層31,31とを有している。
この正極活物質層31は、LiCoO2からなる正極活物質粒子34、カーボンブラックからなる導電材35、及び、ポリフッ化ビニリデン(PVDF)からなる結着材36を含む(図4参照)。なお、正極活物質層31内における、これらの重量比を、正極活物質粒子34:導電材35:結着材36=85:5:10とした。また、この正極活物質層31の層厚T31を26μmとした。
Further, as shown in FIG. 4, the positive electrode plate 30 has a strip shape extending in the longitudinal direction DL, and an aluminum foil 38 made of conductive aluminum, and two strips formed on the main surface of the aluminum foil 38. Two positive electrode active material layers 31, 31.
The positive electrode active material layer 31 includes positive electrode active material particles 34 made of LiCoO 2 , a conductive material 35 made of carbon black, and a binder 36 made of polyvinylidene fluoride (PVDF) (see FIG. 4). The weight ratio in the positive electrode active material layer 31 was set to positive electrode active material particles 34: conductive material 35: binder 36 = 85: 5: 10. The layer thickness T31 of the positive electrode active material layer 31 was set to 26 μm.

また、負電極板20は、図5に示すように、長手方向DLに延びる帯状で、導電性の銅からなる銅箔28と、この銅箔28の主面上にそれぞれ帯状に形成された2つの負極活物質層21,21とを有している。
このうち負極活物質層21は、黒鉛からなる負極活物質粒子(次述する第1活物質粒子24C,第2活物質粒子24E)、及び、PVDFからなる結着材(図示しない)を含む。
Further, as shown in FIG. 5, the negative electrode plate 20 has a strip shape extending in the longitudinal direction DL, and a copper foil 28 made of conductive copper and 2 formed on the main surface of the copper foil 28 in a strip shape. Two negative electrode active material layers 21, 21.
Among these, the negative electrode active material layer 21 includes negative electrode active material particles (first active material particles 24C and second active material particles 24E described below) made of graphite, and a binder (not shown) made of PVDF.

なお、負極活物質層21は、図5に示すように、長手方向DLに直交する幅方向DW(図5中、左上から右下方向)の両端部にそれぞれ位置し、長手方向DLに延びる帯状の2つの端縁部21E,21Eと、幅方向DWの中央に位置して、端縁部21E,21Eにそれぞれ隣接する帯状の中央部21Cとからなる。
このうち端縁部21Eは、第2平均粒径REが17.2μmの黒鉛からなる第2活物質粒子24Eを含む。また、この端縁部21Eの第2層厚TEは32μm、端縁部21Eの固形分密度は1.4g/cm3である。
一方、中央部21Cは、第1平均粒径RCが、第2平均粒径REに比して小さな3.2μmの黒鉛からなる第1活物質粒子24Cを含む。また、この中央部21Cの第1層厚TCは32μmであり、端縁部21Eの第2層厚TEと等しい。また、この中央部21Cの固形分密度は1.4g/cm3であり、端縁部21Eの固形分密度と等しい。
As shown in FIG. 5, the negative electrode active material layer 21 is located at both ends in the width direction DW (upper left to lower right in FIG. 5) perpendicular to the longitudinal direction DL, and extends in the longitudinal direction DL. The two edge portions 21E and 21E, and a belt-like central portion 21C that is located in the center of the width direction DW and is adjacent to the edge portions 21E and 21E, respectively.
Among these, the edge part 21E contains the 2nd active material particle 24E which consists of graphite whose 2nd average particle diameter RE is 17.2 micrometers. The second layer thickness TE of the edge portion 21E is 32 μm, and the solid density of the edge portion 21E is 1.4 g / cm 3 .
On the other hand, the central portion 21C includes first active material particles 24C made of graphite having a first average particle size RC smaller than the second average particle size RE and 3.2 μm. Further, the first layer thickness TC of the central portion 21C is 32 μm, which is equal to the second layer thickness TE of the edge portion 21E. Further, the solid content density of the central portion 21C is 1.4 g / cm 3 , which is equal to the solid content density of the edge portion 21E.

ところで、本発明者らは、上述した電池1の電池特性(容量維持率)を評価すべく、電池1と同様の正極活物質層、負極活物質層、セパレータ及び電解液60を用いた円筒形状の試料電池1を用意し、評価を行った。
具体的には、LiCoO2からなる正極活物質粒子34、カーボンブラックからなる導電材35、及び、PVDFからなる結着材36を、重量比で正極活物質粒子34:導電材35:結着材36=85:5:10となるように混合した。この混合物の中に、分散材としてN−メチル−2−ピロリドン(NMP)を適量添加し、ペースト状の正極ペーストを作製した。この正極ペーストをアルミ箔の両主面に塗布し、乾燥させた後、ロールプレスで高密度化して、正極活物質層を作製した。
作製した正極活物質層は、アルミ箔と共に、52mm×720mmの形状に切断し(このうち、正極活物質層を担持した部位の寸法は52mm×680mm)、正電極板とした。
By the way, in order to evaluate the battery characteristics (capacity maintenance ratio) of the battery 1 described above, the present inventors have a cylindrical shape using the same positive electrode active material layer, negative electrode active material layer, separator, and electrolytic solution 60 as the battery 1. Sample battery 1 was prepared and evaluated.
Specifically, the positive electrode active material particles 34 made of LiCoO 2 , the conductive material 35 made of carbon black, and the binder 36 made of PVDF are, in weight ratio, positive electrode active material particles 34: conductive material 35: binder. It mixed so that it might become 36 = 85: 5: 10. An appropriate amount of N-methyl-2-pyrrolidone (NMP) was added to the mixture as a dispersing material to prepare a paste-like positive electrode paste. The positive electrode paste was applied to both main surfaces of the aluminum foil, dried, and then densified with a roll press to prepare a positive electrode active material layer.
The produced positive electrode active material layer was cut into a shape of 52 mm × 720 mm together with the aluminum foil (among these, the dimension of the portion carrying the positive electrode active material layer was 52 mm × 680 mm) to obtain a positive electrode plate.

また一方で、第1平均粒径RC(=3.2μm)の第1活物質粒子24C、及び、PVDFからなる結着材(図示しない)を、重量比で第1活物質粒子24C:結着材=90:10となるように混合した。この混合物の中に、分散材のNMPを適量添加し、ペースト状の第1負極ペースト21CPを作製した。同様にして、第2平均粒径RE(=17.2μm)の第2活物質粒子24E、及び、PVDFからなる結着材(図示しない)を、重量比で第2活物質粒子24E:結着材=90:10となるように混合し、第2負極ペースト21EPを作製した。   On the other hand, the first active material particles 24C having the first average particle diameter RC (= 3.2 μm) and the binder (not shown) made of PVDF are mixed in a weight ratio. It mixed so that it might become material = 90: 10. An appropriate amount of NMP as a dispersion material was added to this mixture to prepare a paste-like first negative electrode paste 21CP. Similarly, a second active material particle 24E having a second average particle diameter RE (= 17.2 μm) and a binder (not shown) made of PVDF are mixed in a weight ratio. The mixture was mixed so that the material = 90: 10, and the second negative electrode paste 21EP was produced.

これら第1負極ペースト21CP及び第2負極ペースト21EPを銅箔CFに塗布した。具体的には、図6に示すダイコータDCを用いて、第1負極ペースト21CP及び第2負極ペースト21EPを、長手方向DLに延びる帯状の銅箔CFの両主面に塗布した。   The first negative electrode paste 21CP and the second negative electrode paste 21EP were applied to the copper foil CF. Specifically, using the die coater DC shown in FIG. 6, the first negative electrode paste 21CP and the second negative electrode paste 21EP were applied to both main surfaces of the strip-shaped copper foil CF extending in the longitudinal direction DL.

このダイコータDCは、各ペースト21CP,21EPを内部に貯留するペースト貯留部DCTと、このペースト貯留部DCTの各ペースト21CP,21EPを銅箔CFに向けて連続的に吐出する吐出口DCSとを有する。
このうち、ペースト貯留部DCTは、内部の2箇所で板状の仕切り板PT,PTに仕切られ、銅箔CFの幅方向DWの一方の端側に位置する第1貯留部DCT1、他方の端側に位置する第3貯留部DCT3、及び、幅方向の中央に位置する第2貯留部DCT2の3つに分かれている。第2貯留部DCT2には、第1負極ペースト21CPが、第1貯留部DCT1及び第3貯留部DCT3には、第2負極ペースト21EPが、それぞれ貯留されている。
また、吐出口DCSは、スリット状で幅方向DWに平行に開口している。この吐出口DCSもまた、ペースト貯留部DCTと同様、2つの仕切り板PT,PTに仕切られており、第1貯留部DCT1に対応した第1吐出口DCS1、第2貯留部DCT2に対応した第2吐出口DCS2、及び、第3貯留部DCT3に対応した第3吐出口DCS3の3つに分かれている。
This die coater DC has a paste storage part DCT for storing the pastes 21CP and 21EP therein, and a discharge port DCS for continuously discharging the pastes 21CP and 21EP of the paste storage part DCT toward the copper foil CF. .
Among these, the paste storage part DCT is divided into plate-like partition plates PT, PT at two locations inside, the first storage part DCT1 located on one end side in the width direction DW of the copper foil CF, the other end The third reservoir DCT3 located on the side and the second reservoir DCT2 located in the center in the width direction are divided into three. The first negative electrode paste 21CP is stored in the second storage part DCT2, and the second negative electrode paste 21EP is stored in the first storage part DCT1 and the third storage part DCT3, respectively.
Further, the discharge port DCS is slit-shaped and opened in parallel with the width direction DW. The discharge port DCS is also divided into two partition plates PT and PT, similar to the paste storage portion DCT, and the first discharge port DCS1 corresponding to the first storage portion DCT1 and the second storage portion DCT2 corresponding to the second storage portion DCT2. The two discharge ports DCS2 and the third discharge port DCS3 corresponding to the third reservoir DCT3 are divided into three.

このようなダイコータDCを用いて、幅方向DWに、第2負極ペースト21EP、第1負極ペースト21CP及び第2負極ペースト21EPの順序に並ぶよう、吐出口DCSを通じて各ペーストを銅箔CFに向けて塗布した。   Using such a die coater DC, each paste is directed to the copper foil CF through the discharge port DCS so that the second negative electrode paste 21EP, the first negative electrode paste 21CP, and the second negative electrode paste 21EP are arranged in the width direction DW in this order. Applied.

銅箔CF上に塗布した第1負極ペースト21CP及び第2負極ペースト21EPを乾燥させた後、ロールプレスで高密度化して、幅方向DWの両端部にそれぞれ位置する帯状の2つの端縁部と、幅方向DWの中央に位置して、端縁部にそれぞれ隣接する帯状の中央部とからなる負極活物質層を作製した。なお、この負極活物質層の層厚は、中央部、端縁部にかかわらず、32μmで一定である。
作製した負極活物質層は、銅箔と共に、55mm×740mmの形状に切断し(このうち、正極活物質層を担持した部位の寸法は55mm×720mm)、負電極板とした。なお、幅方向DWの、中央部の寸法は25mm、端縁部(1つ分)の寸法は15mmである。また、中央部及び端縁部の固形分密度は互いに等しい。
The first negative electrode paste 21CP and the second negative electrode paste 21EP applied on the copper foil CF are dried and then densified by a roll press to have two strip-shaped edge portions respectively positioned at both ends in the width direction DW Then, a negative electrode active material layer was produced, which was located at the center in the width direction DW and was composed of a strip-shaped center portion adjacent to the edge portion. In addition, the layer thickness of this negative electrode active material layer is constant at 32 μm regardless of the central portion and the edge portion.
The produced negative electrode active material layer was cut into a shape of 55 mm × 740 mm together with the copper foil (among these, the size of the portion carrying the positive electrode active material layer was 55 mm × 720 mm) to obtain a negative electrode plate. In the width direction DW, the dimension of the central part is 25 mm, and the dimension of the edge part (for one) is 15 mm. Moreover, the solid content density of a center part and an edge part is mutually equal.

なお、上述した負電極板における中央部及び端縁部の抵抗値を別途測定した。
具体的には、作製した負電極板の、中央部及び端縁部をそれぞれ円形に打ち抜き、対極に用いる金属リチウムと共にコイン型セルを作製し、このセルの交流インピーダンスを測定した。その測定結果から得られたナイキストプロットの円弧の径を比較して、各部位における抵抗値とした。
以上より、中央部の抵抗値は7.5Ω、端縁部の抵抗値は14.0Ωであり、中央部が端縁部に比べて低抵抗の層特性を有していることが判る。
In addition, the resistance value of the center part and edge part in the negative electrode plate mentioned above was measured separately.
Specifically, the center part and the edge part of the produced negative electrode plate were each punched out into a circle, a coin-type cell was produced together with metallic lithium used for the counter electrode, and the AC impedance of this cell was measured. The Nyquist plot arc diameters obtained from the measurement results were compared to determine the resistance value at each part.
From the above, it can be seen that the resistance value of the central portion is 7.5Ω and the resistance value of the edge portion is 14.0Ω, and the central portion has a low resistance layer characteristic compared to the edge portion.

上述の正電極板と負電極板との間に、ポリプロピレン製のセパレータを介在させて積層し、これら正電極板、負電極板及びセパレータを捲回して、捲回型の発電要素を作製した。この発電要素を18650型円筒ケースに挿入し、電解液60をその中に注入した後、封止して試料電池1を製造した。   A laminate made of polypropylene was interposed between the positive electrode plate and the negative electrode plate, and the positive electrode plate, the negative electrode plate and the separator were wound to produce a wound power generation element. The power generation element was inserted into a 18650 type cylindrical case, and the electrolytic solution 60 was injected therein, and then sealed to manufacture the sample battery 1.

まず、上述の試料電池1のうち、製造して間もない新品(初期)のものの電池容量について測定した。具体的には、まず、25℃の温度環境下で、試料電池1について、3.0〜4.1Vの電圧範囲で定電流充電及び定電流放電(共に0.10A)を、1組の充放電を1サイクルとして3サイクル繰り返した(コンディショニング)。続いて、1.0Aの電流値で、4.1Vまで充電し、その後、25℃の温度環境下で、その電圧を保ちつつ電流値を徐々に低下させ、90分間保持した(定電流−定電圧充電)。さらに、25℃の温度環境下で、0.33Aの電流値で3.0Vとなるまで定電流放電を行い、放電した電池容量を測定した。なお、このときの電池容量を初期容量(1C)とした。   First, among the sample batteries 1 described above, the battery capacity of a new (initial) battery that was just manufactured was measured. Specifically, first, in a temperature environment of 25 ° C., the sample battery 1 was charged with a set of constant current charge and constant current discharge (both 0.10 A) in a voltage range of 3.0 to 4.1 V. The discharge was repeated for 3 cycles (conditioning). Subsequently, the battery was charged to 4.1 V at a current value of 1.0 A, and then gradually decreased while maintaining the voltage in a temperature environment of 25 ° C. and held for 90 minutes (constant current-constant). Voltage charging). Further, under a temperature environment of 25 ° C., constant current discharge was performed until the current value of 0.33 A reached 3.0 V, and the discharged battery capacity was measured. The battery capacity at this time was defined as the initial capacity (1C).

上述の測定を行った試料電池1について、60℃の温度環境下で、3.0〜4.1Vの電圧範囲で定電流による充放電(電流値は2C)を繰り返すサイクル試験を実施した。具体的には、1組の充放電を1サイクルとして、500サイクルを連続して繰り返した。
その後、試料電池1の電池容量を、上述と同様にして測定した。そして、サイクル試験後における試料電池1の容量維持率を算出した。この容量維持率は、サイクル試験後の電池容量の値を、サイクル試験前の、初期の初期容量で割ったものである。
About the sample battery 1 which performed the above-mentioned measurement, the cycle test which repeats charging / discharging by a constant current (current value is 2C) was performed in the voltage range of 3.0-4.1V in a 60 degreeC temperature environment. Specifically, 500 cycles were repeated continuously, with one set of charging / discharging as one cycle.
Thereafter, the battery capacity of the sample battery 1 was measured in the same manner as described above. Then, the capacity retention rate of the sample battery 1 after the cycle test was calculated. This capacity maintenance ratio is obtained by dividing the value of the battery capacity after the cycle test by the initial initial capacity before the cycle test.

この試料電池1と同様にして、比較例である比較電池C1,C2も製作し、これらの電池特性についての電池特性(容量維持率)を、試料電池1と同様に行った。
なお、比較電池C1は、負極活物質層が第1平均粒径RCの第1活物質粒子24Cのみを含む、即ち、中央部及び端縁部が共に第1活物質粒子24Cのみを含む点で試料電池1と異なる。また、比較電池C2は、負極活物質層が第2平均粒径REの第2活物質粒子24Eのみを含む、即ち、中央部及び端縁部が共に第2活物質粒子24Eのみを含む点で試料電池1と異なる。
これら試料電池1及び比較電池C1,C2の各負極活物質層の構成、及び、容量維持率を表1に示す。
Comparative batteries C1 and C2, which are comparative examples, were also manufactured in the same manner as the sample battery 1, and the battery characteristics (capacity retention ratio) for these battery characteristics were the same as those of the sample battery 1.
Note that the comparative battery C1 is such that the negative electrode active material layer includes only the first active material particles 24C having the first average particle diameter RC, that is, both the central portion and the edge include only the first active material particles 24C. Different from the sample battery 1. Further, the comparative battery C2 is such that the negative electrode active material layer includes only the second active material particles 24E having the second average particle diameter RE, that is, the center portion and the edge portion include only the second active material particles 24E. Different from the sample battery 1.
Table 1 shows the configurations and capacity retention ratios of the negative electrode active material layers of the sample battery 1 and the comparative batteries C1 and C2.

Figure 2011070976
Figure 2011070976

表1によれば、中央部が第1活物質粒子24Cを、端縁部が第2活物質粒子24Eをそれぞれ含む試料電池1の容量維持率は、負極活物質層が第1活物質粒子24Cのみ、或いは、第2活物質粒子24Eのみを含む各比較電池C1,C2よりも高い。このことから、負極活物質層全体に1種類の負極活物質粒子(第1活物質粒子24C,第2活物質粒子24E)を含む電池よりも、負極活物質層の端縁部に第2活物質粒子24Eを、中央部に第2活物質粒子24Eよりも平均粒径の小さな第1活物質粒子24Cを含む電池の方が、その電池の容量維持率を高くできることが判る。   According to Table 1, the capacity retention rate of the sample battery 1 including the first active material particles 24C at the center and the second active material particles 24E at the edge is determined by the negative active material layer as the first active material particles 24C. Or the comparison batteries C1 and C2 including only the second active material particles 24E. From this, the second active material layer has the second active material layer at the edge portion of the negative electrode active material layer, rather than the battery including one type of negative electrode active material particles (first active material particles 24C, second active material particles 24E) in the entire negative electrode active material layer. It can be seen that a battery including the first active material particles 24C having the average particle diameter smaller than the second active material particles 24E in the center can increase the capacity retention rate of the battery.

このようになる理由は以下であると考えられる。即ち、粒径が小さい負極活物質粒子は、リチウムイオン或いは電子がその活物質粒子の奥(中心)にまで到達し易いので、平均粒径が小さいほど、その負極活物質粒子自身の抵抗は低くなる。従って、第2平均粒径RE(=17.2μm)よりも小さな第1平均粒径RC(=3.2μm)の第1活物質粒子24Cの方が第2活物質粒子24Eよりも低抵抗である。その上、端縁部と中央部との固形分密度を互いに等しく、しかも端縁部と中央部とで厚みを互いに等しくした。これにより、低抵抗の第1活物質粒子24Cを含む中央部全体の層特性も、端縁部に比べて、低抵抗とすることができる。   The reason for this is considered as follows. That is, since the negative electrode active material particles having a small particle diameter easily reach lithium ions or electrons to the back (center) of the active material particles, the smaller the average particle diameter, the lower the resistance of the negative electrode active material particles themselves. Become. Accordingly, the first active material particles 24C having the first average particle size RC (= 3.2 μm) smaller than the second average particle size RE (= 17.2 μm) have lower resistance than the second active material particles 24E. is there. In addition, the solid density of the edge portion and the central portion is equal to each other, and the thickness is equal to that of the edge portion and the central portion. Thereby, the layer characteristics of the entire central portion including the low-resistance first active material particles 24 </ b> C can also be made lower resistance than the edge portion.

上述の試料電池1、及び、これと同様の正極活物質層31、負極活物質層21、セパレータ50及び電解液60を用いた電池1について、充放電を繰り返すと、従来と同様、電解液60のうち、中央部21C付近でのリチウムイオンの濃度が、端縁部21E付近の濃度よりも低くなる。ところで、本実施形態1では、図2(a)に示すように、負極活物質層21のうち、中央部21Cが、端縁部21Eよりも低抵抗の層特性を有する。このため、この試料電池1,電池1では、電解液と負極活物質層とを併せた総合の電気抵抗が、図2(b)のようになる。即ち、中央部21Cの電気抵抗を端縁部21Eよりも低くした分、電解液と負極活物質層とを併せた総合の電気抵抗について、中央部21Cと端縁部21Eとの間の差を小さく抑え、中央部21Cで極端に高くなることが防止できる。
これにより、この試料電池1,電池1に充電して、例えば、負極活物質層21の平均電位が0.1Vになった場合でも、図2(c)に示すように、負極活物質層21の中央部21Cの電位が0V(vs.Li/Li+)以下になるのを防止できる。つまり、充電時に、負極活物質層21に金属リチウムが析出するのを防止できる。かくして、使用に伴う電池容量の低下を抑制した試料電池1,電池1とすることができる。
When the above-described sample battery 1 and the battery 1 using the same positive electrode active material layer 31, negative electrode active material layer 21, separator 50, and electrolytic solution 60 are repeatedly charged and discharged, the electrolytic solution 60 is the same as before. Of these, the concentration of lithium ions in the vicinity of the central portion 21C is lower than the concentration in the vicinity of the edge portion 21E. By the way, in this Embodiment 1, as shown to Fig.2 (a), the center part 21C has the layer characteristic of resistance lower than the edge part 21E among the negative electrode active material layers 21. FIG. For this reason, in the sample battery 1 and the battery 1, the total electric resistance combining the electrolytic solution and the negative electrode active material layer is as shown in FIG. That is, the difference between the central portion 21C and the end edge portion 21E is obtained with respect to the total electric resistance of the electrolyte solution and the negative electrode active material layer by the amount that the electric resistance of the central portion 21C is lower than that of the end edge portion 21E. It can be kept small and can be prevented from becoming extremely high at the central portion 21C.
Thus, even when the sample battery 1 and the battery 1 are charged and the average potential of the negative electrode active material layer 21 becomes 0.1 V, for example, as shown in FIG. It is possible to prevent the potential of the central portion 21C of the battery from becoming 0 V (vs. Li / Li + ) or less. That is, it is possible to prevent metallic lithium from being deposited on the negative electrode active material layer 21 during charging. Thus, it can be set as the sample battery 1 and the battery 1 which suppressed the fall of the battery capacity accompanying use.

また、試料電池1及び電池1では、端縁部21E及び中央部21Cの固形分密度が互いに等しい。
前述した特許文献1の電池のように、端縁部21Eと中央部21Cとの間で固形分密度が異なる電池では、充放電の際に負極活物質層に生じる膨張・収縮の程度が、端縁部と中央部との間で異なってしまう。これに対し、上述の試料電池1及び電池1では、端縁部21Eと中央部21Cとの間で、充放電に伴う膨張・収縮の程度を同じにすることができる。従って、両者の境界部分で亀裂や剥離等の不具合の発生を防止できる。
Moreover, in the sample battery 1 and the battery 1, the solid content density of the edge part 21E and the center part 21C is mutually equal.
As in the battery of Patent Document 1 described above, in a battery in which the solid density is different between the edge portion 21E and the central portion 21C, the degree of expansion / contraction that occurs in the negative electrode active material layer during charge / discharge is limited. It will be different between the edge and the center. On the other hand, in the sample battery 1 and the battery 1 described above, the degree of expansion / contraction associated with charge / discharge can be made the same between the edge portion 21E and the central portion 21C. Therefore, it is possible to prevent the occurrence of defects such as cracks and peeling at the boundary between the two.

また、試料電池1及び電池1では、中央部21Cの第1活物質粒子24Cの第1平均粒径RCが、端縁部21Eに含まれる第2活物質粒子24Eの第2平均粒径REに比して小さい。これにより、低抵抗の第1活物質粒子24Cを含む中央部21C全体の層特性を、端縁部21Eに比べて、低抵抗とすることができる。従って、使用に伴う電池容量の低下を確実に抑制できる電池とすることができる。
また、端縁部21Eと中央部21Cとの固形分密度を互いに等しく、かつ、端縁部21Eと中央部21Cとで厚みTE,TCを互いに等しくしながら、中央部21Cにおける負極活物質粒子(第1活物質粒子24C)の平均粒径RCを、端縁部21Eに比して小さく異ならせることで、容易に中央部21Cを端縁部21Eよりも低抵抗の層特性にすることができる。
Moreover, in the sample battery 1 and the battery 1, the first average particle diameter RC of the first active material particles 24C in the central portion 21C is changed to the second average particle diameter RE of the second active material particles 24E included in the edge portion 21E. Smaller than that. Thereby, the layer characteristics of the entire central portion 21C including the low-resistance first active material particles 24C can be made lower resistance than the edge portion 21E. Therefore, it can be set as the battery which can suppress reliably the fall of the battery capacity accompanying use.
Further, the negative electrode active material particles (in the central portion 21C (with the same solid content density in the end portion 21E and the central portion 21C) and in the end portion 21E and the central portion 21C with the same thickness TE and TC). By making the average particle size RC of the first active material particles 24C) smaller than that of the edge portion 21E, the central portion 21C can be easily made to have lower resistance layer characteristics than the edge portion 21E. .

次に、本実施形態1にかかる電池1の製造方法について説明する。
まず、試料電池1とほぼ同様にして、発電要素10を作製する。具体的には、前述した正極活物質粒子34、導電材35及び結着材36を、重量比で正極活物質粒子34:導電材35:結着材36=85:5:10となるように混合した。この混合物の中に、分散材を適量添加し、ペースト状の正極ペーストを作製した。この正極ペーストを公知の手法で、帯状のアルミ箔の両主面に塗布し、乾燥させた後、ロールプレスで高密度化して、正極活物質層を作製し、帯状の正電極板30ができあがる(図4参照)。
Next, a method for manufacturing the battery 1 according to the first embodiment will be described.
First, the power generation element 10 is produced in substantially the same manner as the sample battery 1. Specifically, the positive electrode active material particles 34, the conductive material 35, and the binder 36 described above are in a weight ratio such that the positive electrode active material particles 34: the conductive material 35: the binder 36 = 85: 5: 10. Mixed. An appropriate amount of a dispersing agent was added to the mixture to prepare a paste-like positive electrode paste. This positive electrode paste is applied to both main surfaces of a strip-shaped aluminum foil by a known method, dried, and then densified with a roll press to produce a positive electrode active material layer, and a strip-shaped positive electrode plate 30 is completed. (See FIG. 4).

また一方で、前述した第1負極ペースト21CP及び第2負極ペースト21EPを作製した。これら第1負極ペースト21CP,第2負極ペースト21EPを、前述したダイコータDCを用いて(図6参照)、帯状の銅箔28の両主面に塗布し、乾燥させた後、ロールプレスで高密度化して、負極活物質層21を作製し、負電極板20ができあがる(図5参照)。
上述のように作製した正電極板30と負電極板20との間に、セパレータ50を介在させて捲回し、発電要素10とする。
On the other hand, the first negative electrode paste 21CP and the second negative electrode paste 21EP described above were produced. The first negative electrode paste 21CP and the second negative electrode paste 21EP are applied to both main surfaces of the strip-shaped copper foil 28 using the above-described die coater DC (see FIG. 6), dried, and then high-density by a roll press. Thus, the negative electrode active material layer 21 is produced, and the negative electrode plate 20 is completed (see FIG. 5).
A power generation element 10 is obtained by winding the separator 50 between the positive electrode plate 30 and the negative electrode plate 20 produced as described above.

その後は、正電極板30(アルミ箔38)及び負電極板20(銅箔28)にそれぞれ正極集電部材91及び負極集電部材92を溶接し、電池ケース本体81に挿入し、前述した電解液60を注入後、封口蓋82で電池ケース本体81を溶接で封口する。かくして、電池1が完成する(図3参照)。   Thereafter, the positive electrode current collecting member 91 and the negative electrode current collecting member 92 are respectively welded to the positive electrode plate 30 (aluminum foil 38) and the negative electrode plate 20 (copper foil 28), inserted into the battery case body 81, and the above-described electrolysis. After injecting the liquid 60, the battery case body 81 is sealed with a sealing lid 82 by welding. Thus, the battery 1 is completed (see FIG. 3).

(変形形態1)
次に、本発明の変形形態1にかかる電池101について、図3〜6を参照しつつ説明する。
本変形形態1は、負極活物質層のうち、中央部に含まれる第1活物質粒子、及び、端縁部に含まれる第2活物質粒子が、前述の実施形態1と異なり、それ以外は同様である。
そこで、実施形態1と異なる点を中心に説明し、同様の部分の説明は省略または簡略化する。なお、同様の部分については同様の作用効果を生じる。また、同内容のものには同番号を付して説明する。
(Modification 1)
Next, the battery 101 according to the first modification of the present invention will be described with reference to FIGS.
In the first modification, the first active material particles included in the central portion and the second active material particles included in the edge portion of the negative electrode active material layer are different from those in the first embodiment, and other than that, It is the same.
Therefore, differences from the first embodiment will be mainly described, and description of similar parts will be omitted or simplified. In addition, about the same part, the same effect is produced. In addition, the same contents are described with the same numbers.

本変形形態1にかかる電池101は、帯状の負電極板120と、実施形態1の電池1と同様の正電極板30及びセパレータ50とを捲回してなり、このセパレータ50に電解液60を含浸した発電要素110を備えるリチウムイオン二次電池である(図3参照)。   A battery 101 according to the first modification is formed by winding a strip-shaped negative electrode plate 120, a positive electrode plate 30 and a separator 50 similar to those of the battery 1 of the first embodiment, and impregnating the separator 50 with an electrolytic solution 60. It is a lithium ion secondary battery provided with the electric power generation element 110 (refer FIG. 3).

このうち、負電極板120は、図5に示すように、前述の銅箔28と、この銅箔28の主面上にそれぞれ形成された2つの負極活物質層121,121とを有している。
このうち負極活物質層121は、黒鉛からなる負極活物質粒子(次述する第1活物質粒子124C,第2活物質粒子124E)、及び、PVDFからなる結着材(図示しない)を含む。
Among these, as shown in FIG. 5, the negative electrode plate 120 includes the above-described copper foil 28 and two negative electrode active material layers 121 and 121 respectively formed on the main surface of the copper foil 28. Yes.
Among these, the negative electrode active material layer 121 includes negative electrode active material particles (first active material particles 124C and second active material particles 124E described below) made of graphite, and a binder (not shown) made of PVDF.

なお、負極活物質層121は、実施形態1と同様に、帯状の2つの端縁部121E,121Eと、幅方向DWの中央に位置して、端縁部121E,121Eにそれぞれ隣接する帯状の中央部121Cとからなる(図5参照)。
このうち端縁部121Eは、天然黒鉛からなる第2活物質粒子124Eを含む。なお、この端縁部121Eの第2層厚TEは32μm、固形分密度は1.4g/cm3である。
また、中央部121Cは、人造黒鉛からなる第1活物質粒子124Cを含む。また、この中央部121Cの第1層厚TCは32μmであり、端縁部121Eの第2層厚TEと等しい。また、この中央部121Cの固形分密度は1.4g/cm3であり、端縁部121Eの固形分密度と等しい。
なお、人造黒鉛からなる第1活物質粒子124Cの黒鉛純度(第1黒鉛純度KC)が、天然黒鉛からなる第2活物質粒子124Eの黒鉛純度(第2黒鉛純度KE)に比して高くしてある。
As in the first embodiment, the negative electrode active material layer 121 has two strip-shaped end edge portions 121E and 121E and a strip-like shape that is located at the center in the width direction DW and is adjacent to the end edge portions 121E and 121E, respectively. It consists of a central part 121C (see FIG. 5).
Among these, the edge part 121E contains the 2nd active material particle 124E which consists of natural graphite. The edge layer 121E has a second layer thickness TE of 32 μm and a solid content density of 1.4 g / cm 3 .
The central portion 121C includes first active material particles 124C made of artificial graphite. Further, the first layer thickness TC of the central portion 121C is 32 μm, which is equal to the second layer thickness TE of the edge portion 121E. Moreover, the solid content density of this center part 121C is 1.4 g / cm < 3 >, and is equal to the solid content density of the edge part 121E.
The graphite purity (first graphite purity KC) of the first active material particles 124C made of artificial graphite is made higher than the graphite purity (second graphite purity KE) of the second active material particles 124E made of natural graphite. It is.

ところで、本発明者らは、実施形態1と同様にして、電池101の電池特性(容量維持率)を評価すべく、電池1と同様の正極活物質層、負極活物質層、セパレータ及び電解液60を用いた円筒形状の試料電池101を用意し、評価を行った。
具体的には、第1黒鉛純度KCの第1活物質粒子124C、及び、PVDFからなる結着材(図示しない)を、重量比で第1活物質粒子124C:結着材=90:10となるように混合した。この混合物の中に、分散材のNMPを適量添加し、ペースト状の第1負極ペースト121CPを作製した。同様にして、第2黒鉛純度KEの第2活物質粒子124E、及び、PVDFからなる結着材(図示しない)を、重量比で第2活物質粒子124E:結着材=90:10となるように混合し、第2負極ペースト121EPを作製した。
By the way, in order to evaluate the battery characteristics (capacity retention ratio) of the battery 101, the present inventors have the same positive electrode active material layer, negative electrode active material layer, separator, and electrolytic solution as the battery 1 in the same manner as in the first embodiment. A cylindrical sample battery 101 using 60 was prepared and evaluated.
Specifically, a first active material particle 124C having a first graphite purity KC and a binder (not shown) made of PVDF are expressed by weight ratio of the first active material particle 124C: the binder = 90: 10. It mixed so that it might become. A proper amount of NMP as a dispersion material was added to the mixture to prepare a paste-like first negative electrode paste 121CP. Similarly, the second active material particles 124E having the second graphite purity KE and the binder (not shown) made of PVDF are second active material particles 124E: binder = 90: 10 in weight ratio. Thus, the second negative electrode paste 121EP was produced.

これら第1負極ペースト121CP及び第2負極ペースト121EPを、実施形態1と同様の、図6に示すダイコータDCを用いて、長手方向DLに延びる帯状の銅箔CFの両主面に塗布した。   These first negative electrode paste 121CP and second negative electrode paste 121EP were applied to both main surfaces of the strip-shaped copper foil CF extending in the longitudinal direction DL using the die coater DC shown in FIG.

銅箔CF上に塗布した第1負極ペースト121CP及び第2負極ペースト121EPを乾燥させた後、ロールプレスで高密度化して、幅方向DWの両端部にそれぞれ位置する帯状の2つの端縁部と、幅方向DWの中央に位置して、端縁部にそれぞれ隣接する帯状の中央部とからなる負極活物質層を作製した。なお、この負極活物質層の層厚は、中央部、端縁部にかかわらず、32μmで一定である。
作製した負極活物質層は、銅箔と共に、55mm×740mmの形状に切断し(このうち、正極活物質層を担持した部位の寸法は55mm×720mm)、負電極板とした。なお、幅方向DWの、中央部の寸法は25mm、端縁部(1つ分)の寸法は15mmである。また、中央部及び端縁部の固形分密度は互いに等しい。
The first negative electrode paste 121CP and the second negative electrode paste 121EP applied on the copper foil CF are dried and then densified by a roll press to have two strip-shaped edge portions respectively positioned at both ends in the width direction DW Then, a negative electrode active material layer was produced, which was located at the center in the width direction DW and was composed of a strip-shaped center portion adjacent to the edge portion. In addition, the layer thickness of this negative electrode active material layer is constant at 32 μm regardless of the central portion and the edge portion.
The produced negative electrode active material layer was cut into a shape of 55 mm × 740 mm together with the copper foil (among these, the size of the portion carrying the positive electrode active material layer was 55 mm × 720 mm) to obtain a negative electrode plate. In the width direction DW, the dimension of the central part is 25 mm, and the dimension of the edge part (for one) is 15 mm. Moreover, the solid content density of a center part and an edge part is mutually equal.

なお、上述した負電極板における中央部及び端縁部の抵抗値を、実施形態1と同様に測定したところ、中央部の抵抗値は8.0Ω、端縁部の抵抗値は14.2Ωであり、中央部が端縁部に比べて低抵抗の層特性を有していることが判った。   In addition, when the resistance value of the center part and edge part in the negative electrode plate mentioned above was measured similarly to Embodiment 1, the resistance value of the center part is 8.0Ω, and the resistance value of the edge part is 14.2Ω. In other words, it has been found that the central portion has a low resistance layer characteristic as compared with the edge portion.

上述の負電極板と、実施形態1の試料電池1と同様の正電極板との間に、試料電池1と同様のセパレータを介在させて積層し、これら正電極板、負電極板及びセパレータを捲回して、捲回型の発電要素を作製し、その後も試料電池1と同様にして試料電池101を製造した。   The negative electrode plate described above and the positive electrode plate similar to the sample battery 1 of Embodiment 1 are stacked with the same separator as the sample battery 1 interposed therebetween, and the positive electrode plate, the negative electrode plate, and the separator are stacked. Winding to produce a wound type power generation element, and thereafter, the sample battery 101 was manufactured in the same manner as the sample battery 1.

上述の試料電池101について、実施形態1の試料電池1と同様、初期のものの電池容量について測定した。その後、実施形態1の試料電池1と同様のサイクル試験を実施した。
さらに、サイクル試験後における試料電池101の電池容量を、再度測定した。そして、サイクル試験後における試料電池101の容量維持率を算出した。
Regarding the sample battery 101 described above, the battery capacity of the initial one was measured in the same manner as the sample battery 1 of the first embodiment. Thereafter, a cycle test similar to that of the sample battery 1 of Embodiment 1 was performed.
Furthermore, the battery capacity of the sample battery 101 after the cycle test was measured again. Then, the capacity maintenance rate of the sample battery 101 after the cycle test was calculated.

この試料電池101と同様にして、比較例である比較電池C3,C4も製作し、これらの電池特性についての電池特性(容量維持率)を、試料電池101と同様に行った。
なお、比較電池C3は、負極活物質層が第1黒鉛純度KCの第1活物質粒子124Cのみを含む、即ち、中央部及び端縁部が共に第1活物質粒子124Cのみを含む点で試料電池101と異なる。また、比較電池C4は、負極活物質層が第2黒鉛純度KEの第2活物質粒子124Eのみを含む、即ち、中央部及び端縁部が共に第2活物質粒子124Eのみを含む点で試料電池101と異なる。
これら試料電池101及び比較電池C3,C4の各負極活物質層の構成、及び、容量維持率を表2に示す。
Comparative batteries C3 and C4, which are comparative examples, were also manufactured in the same manner as the sample battery 101, and the battery characteristics (capacity maintenance ratio) for these battery characteristics were the same as those of the sample battery 101.
The comparative battery C3 is a sample in that the negative electrode active material layer includes only the first active material particles 124C having the first graphite purity KC, that is, both the central portion and the edge include only the first active material particles 124C. Different from battery 101. Further, the comparative battery C4 is a sample in that the negative electrode active material layer includes only the second active material particles 124E having the second graphite purity KE, that is, the center portion and the edge portion both include only the second active material particles 124E. Different from battery 101.
Table 2 shows the configurations and capacity retention ratios of the negative electrode active material layers of the sample battery 101 and the comparative batteries C3 and C4.

Figure 2011070976
Figure 2011070976

表2によれば、中央部が第1活物質粒子124Cを、端縁部が第2活物質粒子124Eをそれぞれ含む試料電池101の容量維持率は、負極活物質層が第1活物質粒子124Cのみ、或いは、第2活物質粒子124Eのみを含む各比較電池C3,C4よりも高い。このことから、負極活物質層全体に1種類の負極活物質粒子(第1活物質粒子124C,第2活物質粒子124E)を含む電池よりも、負極活物質層の端縁部に第2活物質粒子124Eを、中央部に第2活物質粒子124Eよりも黒鉛純度の高い第1活物質粒子124Cを含む電池の方が、その電池の容量維持率を高くできることが判る。   According to Table 2, the capacity retention rate of the sample battery 101 including the first active material particles 124C in the central portion and the second active material particles 124E in the edge portion is as follows. The negative electrode active material layer has the first active material particles 124C in the negative electrode active material layer. Or the comparison batteries C3 and C4 including only the second active material particles 124E. Therefore, the second active material layer has a second active material layer at the edge portion of the negative electrode active material layer rather than a battery in which the entire negative electrode active material layer includes one type of negative electrode active material particles (first active material particles 124C and second active material particles 124E). It can be seen that a battery including the material particles 124E in the center and the first active material particles 124C having higher graphite purity than the second active material particles 124E can increase the capacity retention rate of the battery.

このようになる理由は以下であると考えられる。即ち、黒鉛純度が高い負極活物質粒子では、黒鉛以外の不純物の割合が小さいので、黒鉛純度が高くなるに連れて、負極活物質粒子の抵抗は低くなる。従って、黒鉛純度の高い第1活物質粒子124Cの方が第2活物質粒子124Eよりも低抵抗である。その上、端縁部と中央部との固形分密度を互いに等しく、しかも端縁部と中央部とで厚みを互いに等しくした。これにより、低抵抗の第1活物質粒子124Cを含む中央部全体の層特性も、端縁部に比べて、低抵抗とすることができる。   The reason for this is considered as follows. That is, in the negative electrode active material particles having a high graphite purity, since the ratio of impurities other than graphite is small, the resistance of the negative electrode active material particles decreases as the graphite purity increases. Therefore, the first active material particles 124C having a higher graphite purity have a lower resistance than the second active material particles 124E. In addition, the solid density of the edge portion and the central portion is equal to each other, and the thickness is equal to that of the edge portion and the central portion. Thereby, the layer characteristics of the entire central portion including the low-resistance first active material particles 124 </ b> C can also be made lower resistance than the edge portion.

以上より、試料電池101、及び、これと同様の正極活物質層31、負極活物質層121、セパレータ50及び電解液60を用いた電池101では、負極活物質粒子124C,124Eに用いる黒鉛について、中央部121Cにおける第1活物質粒子124Cの第1黒鉛純度KCが、端縁部121Eにおける第2活物質粒子124Eの第2黒鉛純度KEに比して高い。これにより、低抵抗の第1活物質粒子124Cを含む中央部121C全体の層特性も、端縁部121Eに比べて、低抵抗とすることができる。従って、実施形態1と同様、充電時に、負極活物質層に金属リチウムが析出するのを防止できる。かくして、使用に伴う電池容量の低下を確実に抑制できる電池とすることができる。
また、端縁部121Eと中央部121Cとの固形分密度を互いに等しく、かつ、端縁部121Eと中央部121Cとで厚みTE,TCを互いに等しくしながら、中央部121Cにおける負極活物質粒子(第1活物質粒子124C)の第1黒鉛純度KCを端縁部121Eに比して高く異ならせることで、容易に中央部121Cを端縁部121Eよりも低抵抗の層特性にすることができる。
From the above, in the battery 101 using the sample battery 101 and the same positive electrode active material layer 31, negative electrode active material layer 121, separator 50, and electrolytic solution 60, graphite used for the negative electrode active material particles 124C and 124E is as follows. The first graphite purity KC of the first active material particles 124C in the central portion 121C is higher than the second graphite purity KE of the second active material particles 124E in the edge portion 121E. As a result, the layer characteristics of the entire central portion 121C including the low-resistance first active material particles 124C can also be reduced compared to the edge portion 121E. Therefore, similarly to Embodiment 1, it is possible to prevent metallic lithium from being deposited on the negative electrode active material layer during charging. Thus, a battery capable of reliably suppressing a decrease in battery capacity due to use can be provided.
Moreover, while the solid content densities of the edge part 121E and the central part 121C are equal to each other, and the thicknesses TE and TC are equal to each other in the edge part 121E and the central part 121C, the negative electrode active material particles ( By making the first graphite purity KC of the first active material particles 124C) higher than that of the edge portion 121E, the central portion 121C can be easily made to have lower resistance layer characteristics than the edge portion 121E. .

なお、電池101の製造方法は、実施形態1の電池1とほぼ同じであるので説明を省略する。   Note that the manufacturing method of the battery 101 is substantially the same as that of the battery 1 of the first embodiment, and a description thereof will be omitted.

(実施形態2)
本実施形態2にかかる車両200は、前述した電池1,101を複数含むバッテリパック210を搭載したものである。具体的には、図7に示すように、車両200は、エンジン240、フロントモータ220及びリアモータ230を併用して駆動するハイブリッド自動車である。この車両200は、車体290、エンジン240、これに取り付けられたフロントモータ220、リアモータ230、ケーブル250、インバータ260、及び、矩形箱形状のバッテリパック210を有している。このうちバッテリパック210は、前述した電池1,101を複数収容してなる。
(Embodiment 2)
A vehicle 200 according to the second embodiment is equipped with a battery pack 210 including a plurality of the batteries 1 and 101 described above. Specifically, as shown in FIG. 7, vehicle 200 is a hybrid vehicle that is driven by using engine 240, front motor 220, and rear motor 230 in combination. The vehicle 200 includes a vehicle body 290, an engine 240, a front motor 220, a rear motor 230, a cable 250, an inverter 260, and a battery pack 210 having a rectangular box shape. Among these, the battery pack 210 contains a plurality of the above-described batteries 1 and 101.

本実施形態2にかかる車両200は、使用に伴う電池容量の低下を抑制できる電池1,101を搭載しているので、安定した性能を有する車両200とすることができる。   Since the vehicle 200 according to the second embodiment is equipped with the batteries 1 and 101 that can suppress a decrease in battery capacity due to use, the vehicle 200 having stable performance can be obtained.

(実施形態3)
また、本実施形態3のハンマードリル300は、前述した電池1,101を含むバッテリパック310を搭載したものであり、図8に示すように、バッテリパック310、本体320を有する電池搭載機器である。なお、バッテリパック310はハンマードリル300の本体320のうち底部321に可能に収容されている。
(Embodiment 3)
Further, the hammer drill 300 according to the third embodiment is mounted with the battery pack 310 including the batteries 1 and 101 described above, and is a battery-mounted device having the battery pack 310 and the main body 320 as shown in FIG. . Note that the battery pack 310 is accommodated in the bottom portion 321 of the main body 320 of the hammer drill 300.

本実施形態3にかかるハンマードリル300は、使用に伴う電池容量の低下を抑制できる電池1,101を搭載しているので、安定した性能を有する電池搭載機器とすることができる。   Since the hammer drill 300 according to the third embodiment is equipped with the batteries 1 and 101 that can suppress a decrease in battery capacity due to use, a battery-equipped device having stable performance can be obtained.

以上において、本発明を実施形態1〜3及び変形形態1に即して説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態1では粒径の異なる黒鉛を、変形形態1では黒鉛純度の異なる黒鉛を負極活物質粒子に用いたが、例えば、アスペクト比の異なる黒鉛を負極活物質粒子に用いても良い。
In the above, the present invention has been described with reference to the first to third embodiments and the first modified embodiment, but the present invention is not limited to the above-described embodiments, and can be appropriately modified and applied without departing from the gist thereof. Needless to say, you can.
For example, graphite having a different particle diameter is used for the negative electrode active material particles in Embodiment 1 and graphite having a different graphite purity is used for the negative electrode active material particles in Modification 1. For example, graphite having a different aspect ratio may be used for the negative electrode active material particles.

このような場合として、具体的には、黒鉛のうち、ほぼ球状の塊状黒鉛(アスペクト比が1.0〜1.3)と、この塊状黒鉛よりもアスペクト比が大きな鱗片状の鱗片状黒鉛(アスペクト比が2.0以上)が挙げられる。
黒鉛は六角板状結晶であるので、アスペクト比が大きな負極活物質粒子ほど、リチウムイオン或いは電子がその奥(中心)にまで到達し難い。このため、アスペクト比が大きいほど、その負極活物質粒子自身の抵抗は高くなり、逆にアスペクト比が小さいほど、その負極活物質粒子自身の抵抗は低くなる。従って、塊状黒鉛の方が鱗片状黒鉛よりも低抵抗である。
かくして、負極活物質層の中央部に含む第1活物質粒子に塊状黒鉛を、端縁部に含む第2活物質粒子に鱗片状黒鉛をそれぞれ用いた電池でも、充電時に、負極活物質層に金属リチウムが析出するのを防止できて、使用に伴う電池容量の低下を抑制できる。
As such a case, specifically, among graphite, substantially spherical massive graphite (aspect ratio is 1.0 to 1.3), and flaky graphite having an aspect ratio larger than that of massive graphite ( The aspect ratio is 2.0 or more).
Since graphite is a hexagonal plate-like crystal, the negative electrode active material particles having a larger aspect ratio are less likely to reach the back (center) of lithium ions or electrons. For this reason, the larger the aspect ratio, the higher the resistance of the negative electrode active material particle itself. Conversely, the smaller the aspect ratio, the lower the resistance of the negative electrode active material particle itself. Therefore, massive graphite has a lower resistance than flaky graphite.
Thus, even in a battery in which massive graphite is used for the first active material particles included in the central portion of the negative electrode active material layer and flaky graphite is used for the second active material particles included in the edge portion, The precipitation of metallic lithium can be prevented, and the decrease in battery capacity accompanying use can be suppressed.

1,101 電池(リチウムイオン二次電池)
10,110 発電要素
20,120 負電極板
21,121 負極活物質層
21C,121C 中央部
21E,121E 端縁部
24C,124C 第1活物質粒子(負極活物質粒子)
24E,124E 第2活物質粒子(負極活物質粒子)
28 銅箔(負極集電板)
30 正電極板
50 セパレータ
60 電解液
200 車両
300 ハンマードリル(電池搭載機器)
DL 長手方向
DW 幅方向
KC 第1黒鉛純度
KE 第2黒鉛純度
RC 第1平均粒径
RE 第2平均粒径
TC 第1層厚(中央部の厚み)
TE 第2層厚(端縁部の厚み)
1,101 battery (lithium ion secondary battery)
10, 110 Power generation element 20, 120 Negative electrode plate 21, 121 Negative electrode active material layer 21C, 121C Central portion 21E, 121E Edge portion 24C, 124C First active material particles (negative electrode active material particles)
24E, 124E Second active material particles (negative electrode active material particles)
28 Copper foil (Negative electrode current collector)
30 Positive electrode plate 50 Separator 60 Electrolytic solution 200 Vehicle 300 Hammer drill (battery-equipped equipment)
DL Longitudinal direction DW Width direction KC 1st graphite purity KE 2nd graphite purity RC 1st average particle diameter RE 2nd average particle diameter TC 1st layer thickness (thickness of center part)
TE 2nd layer thickness (edge thickness)

Claims (6)

導電性を有する帯状の負極集電板、及び、この負極集電板上に配置されて、負極活物質粒子を含み、この負極集電板の長手方向に延びる帯状の負極活物質層を有する帯状の負電極板と、
上記負電極板と対向してなる帯状の正電極板と、
上記負電極板と上記正電極板との間に介在してなるセパレータと、を捲回してなり、
上記セパレータにリチウムイオンを含む電解液を含浸させた発電要素を備える
リチウムイオン二次電池であって、
上記負極活物質層は、
上記長手方向に直交する幅方向の両端部にそれぞれ位置する帯状の端縁部と、上記幅方向の中央に位置して、上記端縁部にそれぞれ隣接する帯状の中央部と、からなり、
上記中央部は、
上記端縁部よりも低抵抗の層特性を有する
リチウムイオン二次電池。
A strip-shaped negative electrode current collector plate having conductivity, and a band-shaped negative electrode active material layer disposed on the negative electrode current collector plate and including negative electrode active material particles and extending in the longitudinal direction of the negative electrode current collector plate Negative electrode plate of
A belt-like positive electrode plate facing the negative electrode plate;
A separator formed between the negative electrode plate and the positive electrode plate is wound,
A lithium ion secondary battery comprising a power generation element impregnated with an electrolyte containing lithium ions in the separator,
The negative electrode active material layer is
A band-shaped edge located at both ends in the width direction perpendicular to the longitudinal direction, and a band-shaped center located at the center in the width direction and adjacent to the edge, respectively.
The central part is
The lithium ion secondary battery which has a layer characteristic of resistance lower than the said edge part.
請求項1に記載のリチウムイオン二次電池であって、
前記端縁部と前記中央部とは、固形分密度が互いに等しい
リチウムイオン二次電池。
The lithium ion secondary battery according to claim 1,
The edge portion and the central portion are lithium ion secondary batteries having the same solid density.
請求項2に記載のリチウムイオン二次電池であって、
前記端縁部と前記中央部とは、厚みが互いに等しく、
前記負極活物質粒子のうち、上記中央部に含まれる第1活物質粒子は、
その第1平均粒径が、上記端縁部に含まれる第2活物質粒子の第2平均粒径に比して小さい
リチウムイオン二次電池。
The lithium ion secondary battery according to claim 2,
The edge portion and the central portion have the same thickness,
Of the negative electrode active material particles, the first active material particles contained in the central portion are:
The lithium ion secondary battery whose 1st average particle diameter is small compared with the 2nd average particle diameter of the 2nd active material particle contained in the said edge part.
請求項2又は請求項3に記載のリチウムイオン二次電池であって、
前記端縁部と前記中央部とは、厚みが互いに等しく、
前記負極活物質粒子は黒鉛であり、
上記負極活物質粒子のうち、上記中央部に含まれている第1活物質粒子は、
その第1黒鉛純度が、前記端縁部に含まれている第2活物質粒子の第2黒鉛純度に比して高い
リチウムイオン二次電池。
The lithium ion secondary battery according to claim 2 or claim 3,
The edge portion and the central portion have the same thickness,
The negative electrode active material particles are graphite,
Of the negative electrode active material particles, the first active material particles contained in the central portion are:
The lithium ion secondary battery whose 1st graphite purity is high compared with the 2nd graphite purity of the 2nd active material particle contained in the said edge part.
請求項1〜請求項4のいずれか1項に記載のリチウムイオン二次電池を搭載し、このリチウムイオン二次電池に蓄えた電気エネルギを動力源の全部又は一部に使用する車両。 A vehicle on which the lithium ion secondary battery according to any one of claims 1 to 4 is mounted and the electric energy stored in the lithium ion secondary battery is used for all or part of a power source. 請求項1〜請求項4のいずれか1項に記載のリチウムイオン二次電池を搭載し、このリチウムイオン二次電池に蓄えた電気エネルギをエネルギ源の全部又は一部に使用する電池搭載機器。 The battery mounting apparatus which mounts the lithium ion secondary battery of any one of Claims 1-4, and uses the electrical energy stored in this lithium ion secondary battery for all or one part of an energy source.
JP2009221771A 2009-09-28 2009-09-28 Lithium ion secondary battery, vehicle, and battery loading equipment Withdrawn JP2011070976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009221771A JP2011070976A (en) 2009-09-28 2009-09-28 Lithium ion secondary battery, vehicle, and battery loading equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009221771A JP2011070976A (en) 2009-09-28 2009-09-28 Lithium ion secondary battery, vehicle, and battery loading equipment

Publications (1)

Publication Number Publication Date
JP2011070976A true JP2011070976A (en) 2011-04-07

Family

ID=44016060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009221771A Withdrawn JP2011070976A (en) 2009-09-28 2009-09-28 Lithium ion secondary battery, vehicle, and battery loading equipment

Country Status (1)

Country Link
JP (1) JP2011070976A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013247035A (en) * 2012-05-28 2013-12-09 Toyota Motor Corp Electrode and power storage device using the same and manufacturing method therefor and evaluation method of active material
WO2014128946A1 (en) * 2013-02-25 2014-08-28 株式会社 日立製作所 Lithium-ion secondary cell negative electrode, lithium-ion secondary cell using lithium-ion secondary cell negative electrode, and method for manufacturing said electrode and said cell
KR20140146935A (en) * 2013-06-18 2014-12-29 주식회사 엘지화학 Lithium secondary battery with improved life and safety
JP2016012541A (en) * 2014-06-30 2016-01-21 株式会社豊田自動織機 Power storage device and manufacturing method of power storage device
JP2016177876A (en) * 2015-03-18 2016-10-06 凸版印刷株式会社 Lithium ion secondary battery electrode, manufacturing method thereof, and lithium ion secondary battery
WO2019009072A1 (en) * 2017-07-05 2019-01-10 日立造船株式会社 Negative electrode for all-solid-state batteries and all-solid-state battery provided with same
KR20200026629A (en) * 2018-09-03 2020-03-11 주식회사 엘지화학 Electrode Having Pattered Coating Layer And Lithium Secondary Battery Comprising The Same
WO2022141302A1 (en) * 2020-12-30 2022-07-07 宁德时代新能源科技股份有限公司 Secondary battery and preparation method therefor, battery module comprising secondary battery, battery pack, and device
US20220311056A1 (en) * 2021-03-26 2022-09-29 Contemporary Amperex Technology Co., Limited Electrode assembly, battery cell, battery, manufacturing method and device for electrode assembly
CN115842105A (en) * 2022-06-30 2023-03-24 宁德时代新能源科技股份有限公司 Battery pole piece, pole piece assembly, battery and electric equipment

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013247035A (en) * 2012-05-28 2013-12-09 Toyota Motor Corp Electrode and power storage device using the same and manufacturing method therefor and evaluation method of active material
WO2014128946A1 (en) * 2013-02-25 2014-08-28 株式会社 日立製作所 Lithium-ion secondary cell negative electrode, lithium-ion secondary cell using lithium-ion secondary cell negative electrode, and method for manufacturing said electrode and said cell
KR20140146935A (en) * 2013-06-18 2014-12-29 주식회사 엘지화학 Lithium secondary battery with improved life and safety
KR101579575B1 (en) 2013-06-18 2015-12-22 주식회사 엘지화학 Lithium secondary battery with improved life and safety
JP2016012541A (en) * 2014-06-30 2016-01-21 株式会社豊田自動織機 Power storage device and manufacturing method of power storage device
JP2016177876A (en) * 2015-03-18 2016-10-06 凸版印刷株式会社 Lithium ion secondary battery electrode, manufacturing method thereof, and lithium ion secondary battery
WO2019009072A1 (en) * 2017-07-05 2019-01-10 日立造船株式会社 Negative electrode for all-solid-state batteries and all-solid-state battery provided with same
KR20200026629A (en) * 2018-09-03 2020-03-11 주식회사 엘지화학 Electrode Having Pattered Coating Layer And Lithium Secondary Battery Comprising The Same
KR102647160B1 (en) * 2018-09-03 2024-03-12 주식회사 엘지에너지솔루션 Electrode Having Pattered Coating Layer And Lithium Secondary Battery Comprising The Same
WO2022141302A1 (en) * 2020-12-30 2022-07-07 宁德时代新能源科技股份有限公司 Secondary battery and preparation method therefor, battery module comprising secondary battery, battery pack, and device
US20220311056A1 (en) * 2021-03-26 2022-09-29 Contemporary Amperex Technology Co., Limited Electrode assembly, battery cell, battery, manufacturing method and device for electrode assembly
CN115842105A (en) * 2022-06-30 2023-03-24 宁德时代新能源科技股份有限公司 Battery pole piece, pole piece assembly, battery and electric equipment
CN115842105B (en) * 2022-06-30 2024-05-10 宁德时代新能源科技股份有限公司 Battery pole piece, pole piece assembly, battery and electric equipment

Similar Documents

Publication Publication Date Title
JP2011070976A (en) Lithium ion secondary battery, vehicle, and battery loading equipment
US9997768B2 (en) Lithium ion secondary battery and method for manufacturing lithium ion secondary battery
JP5818116B2 (en) Sealed lithium secondary battery and manufacturing method thereof
JP2010113966A (en) Lithium secondary cell and its utilization
JP7253147B2 (en) Non-aqueous electrolyte secondary battery
JP6354991B2 (en) Non-aqueous electrolyte secondary battery
JP2020173941A (en) Non-aqueous electrolyte secondary battery
US20210257618A1 (en) Energy storage device and method for manufacturing energy storage device
JP6128391B2 (en) Non-aqueous electrolyte secondary battery and battery pack
JP5392063B2 (en) Lithium ion secondary battery, vehicle and battery-equipped equipment
JP2011081920A (en) Lithium ion secondary battery, vehicle, and battery mounting equipment
JP6668876B2 (en) Manufacturing method of lithium ion secondary battery
WO2021095818A1 (en) Positive electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP7085149B2 (en) Non-aqueous electrolyte secondary battery
JP7096981B2 (en) Lithium ion secondary battery
JP7054440B2 (en) Secondary battery
JP2011060605A (en) Lithium ion secondary battery, vehicle, battery mounting device, and positive electrode plate
JP2013020784A (en) Nonaqueous electrolyte secondary battery
CN108292752B (en) Electric storage element
JP2021182478A (en) Non-aqueous electrolyte secondary battery
JP2007166698A (en) Charging type power unit
JP2021082479A (en) Nonaqueous electrolyte secondary battery
WO2010067410A1 (en) Lithium ion battery and method for manufacturing the same
JP7329014B2 (en) Method for manufacturing laminated secondary battery
JP6994163B2 (en) Non-aqueous electrolyte lithium ion secondary battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20121204