JP2011068985A - Co-Fe-BASED ALLOY FOR SOFT MAGNETIC FILM, AND SPUTTERING TARGET MATERIAL OF Co-Fe-BASED ALLOY FOR FORMING SOFT MAGNETIC FILM - Google Patents

Co-Fe-BASED ALLOY FOR SOFT MAGNETIC FILM, AND SPUTTERING TARGET MATERIAL OF Co-Fe-BASED ALLOY FOR FORMING SOFT MAGNETIC FILM Download PDF

Info

Publication number
JP2011068985A
JP2011068985A JP2010177560A JP2010177560A JP2011068985A JP 2011068985 A JP2011068985 A JP 2011068985A JP 2010177560 A JP2010177560 A JP 2010177560A JP 2010177560 A JP2010177560 A JP 2010177560A JP 2011068985 A JP2011068985 A JP 2011068985A
Authority
JP
Japan
Prior art keywords
soft magnetic
based alloy
magnetic film
alloy
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010177560A
Other languages
Japanese (ja)
Inventor
Tomonori Ueno
友典 上野
Atsushi Fukuoka
淳 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2010177560A priority Critical patent/JP2011068985A/en
Publication of JP2011068985A publication Critical patent/JP2011068985A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Co-Fe-based alloy for a soft magnetic film which is used for a vertical magnetic recording medium and the like, keeps its soft magnetic characteristics high, further is superior in weatherability and is an amorphous film, and to provide a sputtering target material of the Co-Fe-based alloy for forming the soft magnetic film. <P>SOLUTION: The Co-Fe-based alloy for the soft magnetic film is a Co-Fe-based alloy having a composition ratio of Co:Fe set to 90:10 to 35:65, by atomic ratio, and further includes 4 atom% or more Y, and 3 atom% or more of one or two elements selected from (Ta and Nb) as additive elements, while the total amount of the additive elements is 15 atom% or less. The sputtering target material of the Co-Fe-based alloy for forming the soft magnetic film is made from the above alloy. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、垂直磁気記録媒体等の軟磁性膜に用いられるCo−Fe系合金および軟磁性膜を形成するためのCo−Fe系合金スパッタリングターゲット材に関するものである。   The present invention relates to a Co—Fe alloy used for a soft magnetic film such as a perpendicular magnetic recording medium and a Co—Fe alloy sputtering target material for forming a soft magnetic film.

近年、磁気記録技術の進歩は著しく、ドライブの大容量化のために、磁気記録媒体の高記録密度化が進められている。しかしながら、従来から広く世の中で使用されている面内磁気記録方式の磁気記録媒体では、高記録密度化を実現しようとすると、記録ビットが微細化し、記録ヘッドで記録できないほどの高保磁力が要求される。そこで、これらの問題を解決し、記録密度を向上させる手段として垂直磁気記録方式が提案され実用化されている。
垂直磁気記録方式とは、垂直磁気記録媒体の磁性膜を媒体面に対して磁化容易軸が垂直方向に配向するように形成したものであり、記録密度を上げていってもビット内の反磁界が小さく、記録再生特性の低下が少ない高記録密度に適した方法である。そして、垂直磁気記録方式においては、記録感度を高めた磁気記録膜層と軟磁性膜層とを有する記録媒体が開発されている。
In recent years, the progress of magnetic recording technology has been remarkable, and the recording density of magnetic recording media has been increased to increase the capacity of drives. However, in the longitudinal magnetic recording type magnetic recording medium that has been widely used in the past, when trying to achieve a high recording density, the recording bit becomes finer and a high coercive force that cannot be recorded by the recording head is required. The Therefore, a perpendicular magnetic recording method has been proposed and put into practical use as a means for solving these problems and improving the recording density.
Perpendicular magnetic recording is a method in which the magnetic film of a perpendicular magnetic recording medium is formed so that the axis of easy magnetization is oriented perpendicular to the medium surface. Even if the recording density is increased, the demagnetizing field in the bit is used. This is a method suitable for high recording density with a small decrease in recording and reproduction characteristics. In the perpendicular magnetic recording system, a recording medium having a magnetic recording film layer and a soft magnetic film layer with improved recording sensitivity has been developed.

このような磁気記録媒体の軟磁性膜としては、高い飽和磁束密度を有することが要求されており、飽和磁束密度が大きいCo−Fe系合金が利用されている。このようなCo−Fe系合金としては、Co−Fe合金に希土類元素が添加された軟磁性膜が提案されている(例えば、特許文献1参照)。一方では、垂直磁気記録媒体用の軟磁性膜としては、アモルファス(非晶質)構造とすることで、膜の表面粗さが大きくなることを防ぎ磁気ヘッドの浮上量を低減出来ることが指摘されている。また、Feを主成分とする軟磁性材料では高温高湿下でFeが腐食する問題が指摘されている(例えば、特許文献2および特許文献3参照)。   The soft magnetic film of such a magnetic recording medium is required to have a high saturation magnetic flux density, and a Co—Fe based alloy having a high saturation magnetic flux density is used. As such a Co—Fe based alloy, a soft magnetic film in which a rare earth element is added to a Co—Fe alloy has been proposed (for example, see Patent Document 1). On the other hand, it is pointed out that the soft magnetic film for perpendicular magnetic recording media has an amorphous structure, so that the surface roughness of the film can be prevented and the flying height of the magnetic head can be reduced. ing. In addition, it has been pointed out that a soft magnetic material containing Fe as a main component corrodes Fe under high temperature and high humidity (see, for example, Patent Document 2 and Patent Document 3).

特開2004−118977号公報JP 2004-118977 A 特開2007−073136号公報JP 2007-073136 A 特開2007−172783号公報JP 2007-172783 A

上述の特許文献1に開示される軟磁性膜は、Fe−Co合金に希土類元素を添加することで、比較的大きな飽和磁化と一軸異方性を得ることが可能となり磁気記録媒体の軟磁性膜として有効である。しかしながら、本発明者の検討によれば、希土類元素のみの添加では、高温高湿下での膜の腐食を抑制可能な程度に十分な耐候性を得ることが出来ないことやスパッタリングで非晶質膜が得られない場合があることを確認した。   The soft magnetic film disclosed in Patent Document 1 described above can obtain a relatively large saturation magnetization and uniaxial anisotropy by adding a rare earth element to an Fe—Co alloy. It is effective as However, according to the study of the present inventor, it is not possible to obtain sufficient weather resistance to suppress corrosion of the film under high temperature and high humidity by adding only rare earth elements, or it is amorphous by sputtering. It was confirmed that a film could not be obtained.

本発明の目的は、上記の問題を解決し、飽和磁化を高く維持した上で、耐候性に優れた非晶質膜である垂直磁気記録媒体等に用いられる軟磁性膜用Co−Fe系合金および軟磁性膜形成用Co−Fe系合金スパッタリングターゲット材を提供することである。   An object of the present invention is to solve the above-mentioned problems, maintain a high saturation magnetization, and use a Co-Fe alloy for a soft magnetic film used for a perpendicular magnetic recording medium or the like that is an amorphous film having excellent weather resistance. And providing a Co—Fe based alloy sputtering target material for soft magnetic film formation.

本発明者らは、垂直磁気記録媒体等に用いられる軟磁性膜を形成するための希土類元素を含有するCo−Fe系合金について、耐候性の改善およびスパッタリングによって非晶質膜が効果的に得られる合金組成の検討を行った結果、希土類元素の中で特にYを選択し、さらに(Ta、Nb)から選ばれる1種または2種を複合添加すると同時に、その適切な添加量を設定することが有効であることを見出し本発明に到達した。   The present inventors have effectively obtained an amorphous film by improving the weather resistance and sputtering of a Co—Fe alloy containing a rare earth element for forming a soft magnetic film used for a perpendicular magnetic recording medium or the like. As a result of studying the alloy composition to be obtained, Y is selected from among rare earth elements, and one or two selected from (Ta, Nb) are added in combination, and at the same time, an appropriate addition amount is set. Has been found to be effective, and the present invention has been reached.

すなわち、本発明は、原子比でCo:Fe=90:10〜35:65の組成比のCo−Fe系合金において、添加元素としてYを4原子%以上および(Ta、Nb)から選ばれる1種または2種の元素を3原子%以上含有し、かつ該添加元素の含有量の総和が15原子%以下である軟磁性膜用Co−Fe系合金である。
また、本発明は、原子比でCo:Fe=90:10〜35:65の組成比のCo−Fe系合金において、添加元素としてYを4原子%以上および(Ta、Nb)から選ばれる1種または2種の元素を3原子%以上含有し、かつ該添加元素の含有量の総和が15原子%以下である軟磁性膜形成用Co−Fe系合金スパッタリングターゲット材である。
That is, according to the present invention, in a Co—Fe based alloy having a composition ratio of Co: Fe = 90: 10 to 35:65 in atomic ratio, Y is selected from 4 atomic% or more and (Ta, Nb) as an additive element 1 This is a Co—Fe based alloy for soft magnetic films containing 3 atomic% or more of seeds or two kinds of elements and the total content of the additive elements is 15 atomic% or less.
Further, according to the present invention, in a Co—Fe-based alloy having a composition ratio of Co: Fe = 90: 10 to 35:65 in atomic ratio, Y is selected from 4 atomic% or more and (Ta, Nb) as an additive element 1 This is a Co—Fe based alloy sputtering target material for soft magnetic film formation containing 3 atomic% or more of seeds or two kinds of elements and a total content of the additive elements of 15 atomic% or less.

また、本発明の軟磁性膜用Co−Fe系合金および軟磁性膜形成用Co−Fe系合金スパッタリングターゲット材は、さらに5原子%以下の範囲でTiを含むことができる。   In addition, the Co—Fe based alloy for soft magnetic films and the Co—Fe based alloy sputtering target material for forming soft magnetic films of the present invention may further contain Ti in a range of 5 atomic% or less.

本発明により、軟磁気特性を高く維持した上で、耐候性に優れた非晶質である垂直磁気記録媒体等に用いられる軟磁性膜用Co−Fe系合金を提供でき、垂直磁気記録媒体を製造する上で極めて有効な技術となる。   According to the present invention, it is possible to provide a Co—Fe based alloy for a soft magnetic film used for an amorphous perpendicular magnetic recording medium having excellent weather resistance while maintaining a high soft magnetic property. This is an extremely effective technique for manufacturing.

本発明の最も重要な特徴は、希土類元素を含有する軟磁性膜用のCo−Fe系合金について、軟磁気特性を大きく損なうことなく、耐候性の向上およびスパッタリングで非晶質膜を効果的に実現するための最適な添加元素として、希土類元素の中で特にYを、さらに(Ta、Nb)を選択して複合添加すると同時に、上記の効果を実現するための最適な添加元素量を見出した点にある。   The most important feature of the present invention is that a Co-Fe alloy for a soft magnetic film containing a rare earth element can effectively improve the weather resistance and effectively form an amorphous film by sputtering without significantly impairing the soft magnetic characteristics. As the optimum additive element for realizing, Y was selected among rare earth elements, and (Ta, Nb) was further selected and added at the same time, and at the same time, the optimum additive element amount for realizing the above effect was found. In the point.

まず、本発明のベースとなるCo−Fe系合金に関して説明する。
本発明のCo−Fe系合金のベースとなるCo−Fe合金は、原子比でCo:Fe=90:10〜35:65の組成比である。それは、この組成範囲にあるCo−Fe合金は飽和磁化が大きく軟磁性膜として適切であるためである。FeとCoの原子比において、Coが90を超える場合には飽和磁化が低くなり、Coが35に満たない場合には耐候性の劣化が大きくなる。なお、飽和磁化と耐候性のバランスを考慮するとCo:Fe=80:20〜60:40であることが好ましい。
First, the Co—Fe alloy used as the base of the present invention will be described.
The Co—Fe alloy used as the base of the Co—Fe based alloy of the present invention has a composition ratio of Co: Fe = 90: 10 to 35:65 in atomic ratio. This is because a Co—Fe alloy in this composition range has a large saturation magnetization and is suitable as a soft magnetic film. In the atomic ratio of Fe and Co, when Co exceeds 90, the saturation magnetization becomes low, and when Co is less than 35, the weather resistance deteriorates greatly. In consideration of the balance between saturation magnetization and weather resistance, it is preferable that Co: Fe = 80: 20 to 60:40.

さらに、本発明の軟磁性膜形成用Co−Fe系合金では、上記のCo−Fe合金に、Yを4原子%以上および(Ta、Nb)から選ばれる1種または2種の元素を3原子%以上含有させ、かつ、その添加元素であるY、Ta、Nbの含有量の総和を15原子%以下とする。
希土類元素をCo−Fe系合金に含有させた場合には、スパッタリングに際してアモルファス化を促進することが知られており、中でも軽希土類元素であるYを選択した場合には少量の含有量でアモルファス化を促進しやすく飽和磁化の低下を抑えながらアモルファス化を促進する元素としてYを含有させることが有効である。なお、Yは、アモルファス化の促進のため4原子%以上含有することが効果的である。また、本発明者の検討によれば、Yを単独で含有させてもアモルファス化の促進には十分ではなく耐候性の向上になお課題があるため、さらに、(Ta、Nb)から選ばれる1種または2種の元素を3原子%以上で複合的に含有させることとする。Taおよび/またはNbをYとともに含有させることで、アモルファス化の促進を顕著にすると同時に、耐候性の向上が可能となる。TaとNbとは、同族元素であり耐候性の向上については同様の効果を有するものである。
Furthermore, in the Co—Fe based alloy for forming a soft magnetic film of the present invention, Y is 4 atom% or more and one or two elements selected from (Ta, Nb) are added to 3 atoms in the above Co—Fe alloy. %, And the total content of Y, Ta, and Nb, which are additive elements, is 15 atomic% or less.
When a rare earth element is included in a Co-Fe alloy, it is known to promote amorphization at the time of sputtering. Especially when Y, which is a light rare earth element, is selected, it becomes amorphous with a small content. It is effective to contain Y as an element that promotes amorphization while suppressing the decrease in saturation magnetization. In addition, it is effective to contain 4 atomic% or more of Y in order to promote amorphization. Further, according to the study of the present inventor, even if Y alone is contained, it is not sufficient for promoting the amorphization and there is still a problem in improving the weather resistance. Species or two kinds of elements are contained in a composite at 3 atomic% or more. By including Ta and / or Nb together with Y, the promotion of amorphization becomes remarkable, and at the same time, the weather resistance can be improved. Ta and Nb are homologous elements and have the same effect for improving the weather resistance.

また、Y、Ta、Nbの添加元素は、その含有量を増加させることで、耐候性やアモルファス化の促進効果が増加するが、含有量の増加とともに、Co−Fe系合金の飽和磁化が低下するため、添加元素含有量の総和の上限を15原子とする。なお、飽和磁化と耐候性のバランスを考慮すると添加元素の含有量の総和は、10原子%以下であることが望ましい。   Moreover, the additive elements of Y, Ta, and Nb increase the weather resistance and the effect of promoting amorphization by increasing the content, but the saturation magnetization of the Co-Fe alloy decreases as the content increases. Therefore, the upper limit of the total additive element content is 15 atoms. In consideration of the balance between saturation magnetization and weather resistance, the total content of additive elements is preferably 10 atomic% or less.

また、本発明のCo−Fe系合金においては、さらに耐候性を向上させるため、Tiを含有させることが望ましい。電位−pH図から、Tiは広いpH範囲で不動態域が存在することが確認される元素であるため、Nbおよび/またはTaとともにCo−Fe系合金に含有させることで、より耐候性を向上させるのに有効な元素であるためである。但し、Tiを多量に含有させると飽和磁化の低下が大きくなるため、Y、Ta、NbとTiの含有量の総和は15原子%であり、Tiの含有量としては5原子%以下とすることが望ましい。   Further, in the Co—Fe based alloy of the present invention, it is desirable to contain Ti in order to further improve the weather resistance. From the potential-pH diagram, Ti is an element that is confirmed to have a passive region in a wide pH range. Therefore, it is possible to improve weather resistance by adding it to the Co-Fe alloy together with Nb and / or Ta. This is because it is an effective element for the purpose. However, when Ti is contained in a large amount, the decrease in saturation magnetization increases. Therefore, the total content of Y, Ta, Nb and Ti is 15 atomic%, and the Ti content should be 5 atomic% or less. Is desirable.

上述した軟磁性膜用Co−Fe系合金は、例えば、基板上に物理蒸着法によって形成することが可能である。物理蒸着法の中でも、特に軟磁性膜用Co−Fe系合金と同一組成のCo−Fe系合金スパッタリングターゲット材を使用してスパッタリング成膜することが、耐候性に優れた非晶質の軟磁性膜を形成するのに望ましい。   The above-described Co—Fe alloy for soft magnetic film can be formed on a substrate by physical vapor deposition, for example. Among the physical vapor deposition methods, the amorphous soft magnetism with excellent weather resistance can be obtained by sputtering using a Co-Fe alloy sputtering target material having the same composition as the Co-Fe alloy for soft magnetic films. Desirable to form a film.

また、軟磁性膜形成用Co−Fe系合金スパッタリングターゲット材の製造方法としては、溶解鋳造法や粉末焼結法が適用可能である。溶解鋳造法では、鋳造インゴット、もしくは、鋳造インゴットに塑性加工や加圧加工を加えたバルク体とすることで製造可能となる。また、粉末焼結法では、ガスアトマイズ法でCo−Fe系合金の最終組成の合金粉末を製造し原料粉末とすることや、複数の合金粉末や純金属粉末をCo−Fe系合金の最終組成となるように混合した混合粉末を原料粉末とすることが可能である。原料粉末の焼結方法としては、熱間静水圧プレス、ホットプレス、放電プラズマ焼結、押し出しプレス焼結等の加圧焼結を用いることが可能である。   As a method for producing a Co—Fe alloy sputtering target material for forming a soft magnetic film, a melt casting method or a powder sintering method can be applied. In the melt casting method, it can be manufactured by forming a cast ingot or a bulk body obtained by applying plastic processing or pressure processing to the cast ingot. Moreover, in the powder sintering method, an alloy powder having the final composition of the Co—Fe based alloy is manufactured by a gas atomizing method and used as a raw material powder, or a plurality of alloy powders and pure metal powders are combined with the final composition of the Co—Fe based alloy. The mixed powder thus mixed can be used as a raw material powder. As a method for sintering the raw material powder, it is possible to use pressure sintering such as hot isostatic pressing, hot pressing, discharge plasma sintering, and extrusion press sintering.

以下の実施例で本発明を更に詳しく説明する。
まず、表1に示す試料1、2では、Co−Fe系合金組成の鋳造インゴットを作製した。なお、鋳造インゴットは、純度99.9%以上の原料を用い真空中の高周波加熱炉で加熱・溶解したのち、鉄製の鋳型に鋳造し作製した。作製したインゴットを加工して、直径200mm×厚さ20mmのCo−Fe系合金バルク体を作製した。Co−Fe系合金バルク体より、直径180mm×厚さ4mmのターゲット材を作製した。
The following examples further illustrate the present invention.
First, in samples 1 and 2 shown in Table 1, a casting ingot having a Co—Fe based alloy composition was produced. The cast ingot was prepared by casting a steel mold after heating and melting in a high-frequency heating furnace in a vacuum using a raw material having a purity of 99.9% or higher. The produced ingot was processed to produce a Co—Fe alloy bulk body having a diameter of 200 mm × thickness of 20 mm. A target material having a diameter of 180 mm and a thickness of 4 mm was produced from a Co—Fe based alloy bulk body.

次に、試料3〜6では、純度99.9%以上の純Co、Fe−8Ta原子%、Co−20Nb原子%のガスアトマイズ粉末と純Fe粉末、純Ta粉末、純Ti粉末、Co−20Y原子%粉末を準備し、250μmの篩で分級した。これら各粉末を表1に示すCo−Fe系合金組成となるよう秤量、混合して混合粉末を作製した。得られた混合粉末を、軟鋼カプセルに充填し脱気封止した後、温度950℃、圧力100MPa、保持時間2時間の条件で熱間静水圧プレス(HIP)によって加圧焼結し、焼結体を作製した。Co−Fe系合金焼結体より、直径180mm×厚さ4mmのターゲット材を作製した。
上記で得られた各ターゲット材を用いてマグネトロンスパッタリング法よって、ガラス基板上に膜厚200nmの薄膜を成膜した。なお、スパッタリング条件はAr圧0.6Pa、投入電力は500Wで行った。
Next, in Samples 3 to 6, pure Co, Fe-9Ta atom%, Co-20Nb atom% gas atomized powder and pure Fe powder, pure Ta powder, pure Ti powder, Co-20Y atom with a purity of 99.9% or more % Powder was prepared and classified with a 250 μm sieve. These powders were weighed and mixed so as to have a Co—Fe alloy composition shown in Table 1 to prepare a mixed powder. The obtained mixed powder is filled into a mild steel capsule and degassed and sealed, and then subjected to pressure sintering by hot isostatic pressing (HIP) under conditions of a temperature of 950 ° C., a pressure of 100 MPa, and a holding time of 2 hours. The body was made. A target material having a diameter of 180 mm and a thickness of 4 mm was prepared from a Co—Fe based alloy sintered body.
A thin film having a thickness of 200 nm was formed on a glass substrate by magnetron sputtering using each of the target materials obtained above. The sputtering conditions were Ar pressure 0.6 Pa and input power 500 W.

成膜した各試料を純水中に24時間浸漬した耐候性試験を行った結果を表1に示す。なお、表1では、腐食領域が面積率で20%以下ものを◎、腐食領域が面積率で20%を超えて40%以下のものを○、腐食領域が面積率で40%を超えるものを×と表示している。
次に、成膜した各試料をX線回折した結果を表1に示す。なお、表1では、結晶相から得られるピークが確認されたものを結晶質、確認出来なかったものを非晶質と表示している。
また、成膜した各試料の飽和磁化評価を行った結果を表1に示す。飽和磁化は東英工業(株)製振動試料型磁力計VSM−3を用いて測定した。なお、測定試料は、膜厚300nmの薄膜をマグネトロンスパッタリング法によってSi基板上に成膜後、基板を10mm×10mmに切り出して、外部磁場800(kA/m)印加して測定をした。
Table 1 shows the results of a weather resistance test in which the deposited samples were immersed in pure water for 24 hours. In Table 1, when the corrosion area is 20% or less in the area ratio, ◎, the corrosion area is over 20% and the area ratio is over 40%, and the corrosion area is over 40% in the area ratio. X is displayed.
Next, Table 1 shows the result of X-ray diffraction of each sample formed. In Table 1, those in which the peak obtained from the crystal phase is confirmed are indicated as crystalline, and those in which the peak cannot be confirmed are indicated as amorphous.
Table 1 shows the results of the saturation magnetization evaluation of each sample formed. Saturation magnetization was measured using a vibrating sample magnetometer VSM-3 manufactured by Toei Kogyo Co., Ltd. As a measurement sample, a thin film having a thickness of 300 nm was formed on a Si substrate by a magnetron sputtering method, and then the substrate was cut out to 10 mm × 10 mm and measured by applying an external magnetic field 800 (kA / m).

Figure 2011068985
Figure 2011068985

表1から、本発明の試料2、3および6のCo−Fe系合金は、YとTaやTiとを複合的に含有させることにより、比較例のYを単独で含有する試料1のCo−Fe系合金より高い耐候性を有した、十分な飽和磁化を示す非晶質膜となっていることが分かる。尚、比較例のYを単独で含有する試料1のCo−Fe系合金では、結晶質になっていることからYを単独で含有する場合ではアモルファス化が不十分であることが分かる。比較例のYの含有量が4原子%に満たない試料4および試料5のCo−Fe系合金では、NbあるいはTaを複合的に含有させているがYの含有量が4原子%未満であるため、アモルファス化の効果が低く、結晶質になっていることが分かる。また、試料2、3および6のCo−Fe系合金の比較から、TaやTiの含有量が多くなるほど飽和磁化が低下するが、本発明の範囲であれば、1.3(T)以上と十分に垂直磁気記録の軟磁性膜用に使用可能なレベルであることが確認できる。   From Table 1, the Co—Fe based alloys of Samples 2, 3 and 6 of the present invention contain Y and Ta or Ti in a composite manner, whereby the Co— of Sample 1 containing Y of Comparative Example alone. It can be seen that the amorphous film has sufficient weather resistance and higher weather resistance than the Fe-based alloy. In addition, in the Co-Fe type alloy of the sample 1 which contains Y of the comparative example independently, since it is crystalline, it turns out that amorphization is inadequate when Y is contained independently. In the Co-Fe alloys of Sample 4 and Sample 5 in which the Y content in the comparative example is less than 4 atomic%, Nb or Ta is contained in a composite, but the Y content is less than 4 atomic%. Therefore, it turns out that the effect of amorphization is low and it has become crystalline. Further, from the comparison of the Co—Fe-based alloys of Samples 2, 3 and 6, the saturation magnetization decreases as the content of Ta or Ti increases, but within the scope of the present invention, it is 1.3 (T) or more. It can be confirmed that the level is sufficiently usable for a soft magnetic film for perpendicular magnetic recording.

本発明の軟磁性膜用Co−Fe系合金は、軟磁気特性を維持した上で、耐候性に優れているため、安定して垂直磁気記録媒体等の軟磁性膜として有効である。   The Co—Fe-based alloy for soft magnetic films of the present invention is effective as a soft magnetic film for a perpendicular magnetic recording medium and the like because it has excellent weather resistance while maintaining soft magnetic properties.

Claims (4)

原子比でCo:Fe=90:10〜35:65の組成比のCo−Fe系合金において、添加元素としてYを4原子%以上および(Ta、Nb)から選ばれる1種または2種の元素を3原子%以上含有し、かつ該添加元素の含有量の総和が15原子%以下であることを特徴とする軟磁性膜用Co−Fe系合金。   In a Co—Fe alloy having a composition ratio of Co: Fe = 90: 10 to 35:65 in atomic ratio, Y is 4 atomic% or more as an additive element and one or two elements selected from (Ta, Nb) Co-Fe alloy for soft magnetic films, characterized in that the total content of the additive elements is 15 atomic% or less. 前記添加元素として、さらにTiを5原子%以下含有することを特徴とする請求項1に記載の軟磁性膜用Co−Fe系合金。   2. The Co—Fe based alloy for soft magnetic films according to claim 1, wherein the additive element further contains 5 atomic% or less of Ti. 原子比でCo:Fe=90:10〜35:65の組成比のCo−Fe系合金において、添加元素としてYを4原子%以上および(Ta、Nb)から選ばれる1種または2種の元素を3原子%以上含有し、かつ該添加元素の含有量の総和が15原子%以下であることを特徴とする軟磁性膜形成用Co−Fe系合金スパッタリングターゲット材。   In a Co—Fe alloy having a composition ratio of Co: Fe = 90: 10 to 35:65 in atomic ratio, Y is 4 atomic% or more as an additive element and one or two elements selected from (Ta, Nb) Co-Fe based alloy sputtering target material for soft magnetic film formation, characterized in that the total content of the additive elements is 15 atomic% or less. 前記添加元素として、さらにTiを5原子%以下含有することを特徴とする請求項3に記載の軟磁性膜形成用Co−Fe系合金スパッタリングターゲット材。   The Co-Fe based alloy sputtering target material for soft magnetic film formation according to claim 3, further comprising Ti at 5 atomic% or less as the additive element.
JP2010177560A 2009-08-20 2010-08-06 Co-Fe-BASED ALLOY FOR SOFT MAGNETIC FILM, AND SPUTTERING TARGET MATERIAL OF Co-Fe-BASED ALLOY FOR FORMING SOFT MAGNETIC FILM Pending JP2011068985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010177560A JP2011068985A (en) 2009-08-20 2010-08-06 Co-Fe-BASED ALLOY FOR SOFT MAGNETIC FILM, AND SPUTTERING TARGET MATERIAL OF Co-Fe-BASED ALLOY FOR FORMING SOFT MAGNETIC FILM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009190752 2009-08-20
JP2010177560A JP2011068985A (en) 2009-08-20 2010-08-06 Co-Fe-BASED ALLOY FOR SOFT MAGNETIC FILM, AND SPUTTERING TARGET MATERIAL OF Co-Fe-BASED ALLOY FOR FORMING SOFT MAGNETIC FILM

Publications (1)

Publication Number Publication Date
JP2011068985A true JP2011068985A (en) 2011-04-07

Family

ID=44014515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010177560A Pending JP2011068985A (en) 2009-08-20 2010-08-06 Co-Fe-BASED ALLOY FOR SOFT MAGNETIC FILM, AND SPUTTERING TARGET MATERIAL OF Co-Fe-BASED ALLOY FOR FORMING SOFT MAGNETIC FILM

Country Status (1)

Country Link
JP (1) JP2011068985A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032573A (en) * 2011-08-03 2013-02-14 Hitachi Metals Ltd METHOD FOR MANUFACTURING Fe-Co-Ta SPUTTERING TARGET MATERIAL AND THE Fe-Co-Ta SPUTTERING TARGET MATERIAL
CN103911587A (en) * 2012-12-31 2014-07-09 比亚迪股份有限公司 Application of amorphous alloy material source, composite material and preparation method thereof
WO2022191428A1 (en) * 2021-03-12 2022-09-15 코오롱인더스트리 주식회사 Sputtering target and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032573A (en) * 2011-08-03 2013-02-14 Hitachi Metals Ltd METHOD FOR MANUFACTURING Fe-Co-Ta SPUTTERING TARGET MATERIAL AND THE Fe-Co-Ta SPUTTERING TARGET MATERIAL
CN103911587A (en) * 2012-12-31 2014-07-09 比亚迪股份有限公司 Application of amorphous alloy material source, composite material and preparation method thereof
WO2022191428A1 (en) * 2021-03-12 2022-09-15 코오롱인더스트리 주식회사 Sputtering target and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP5359890B2 (en) Fe-Co alloy sputtering target material for soft magnetic film formation
JP5726615B2 (en) Alloy for seed layer of magnetic recording medium and sputtering target material
JP2010018869A (en) Alloy for soft magnetic film layer in perpendicular magnetic recording medium, sputtering target material and method for producing the same
JP5370917B2 (en) Method for producing Fe-Co-Ni alloy sputtering target material
JP5477724B2 (en) Co-Fe alloy for soft magnetic film, soft magnetic film and perpendicular magnetic recording medium
JP2009155722A (en) Ni-W BASED SINTERED TARGET MATERIAL
JP2008260969A (en) Fe-Co ALLOY SPUTTERING TARGET MATERIAL, AND METHOD FOR MANUFACTURING Fe-Co ALLOY SPUTTERING TARGET MATERIAL
CN103098135B (en) Magnetic recording media non-retentive alloy, sputtering target material and magnetic recording media
WO2013115384A1 (en) Alloy for soft magnetic film layers, which has low saturation magnetic flux density and is to be used in magnetic recording medium, and sputtering target material
JP2011068985A (en) Co-Fe-BASED ALLOY FOR SOFT MAGNETIC FILM, AND SPUTTERING TARGET MATERIAL OF Co-Fe-BASED ALLOY FOR FORMING SOFT MAGNETIC FILM
JP2009191359A (en) Fe-Co-Zr BASED ALLOY TARGET MATERIAL
JP5397755B2 (en) Fe-Co alloy sputtering target material for soft magnetic film formation
JP5385018B2 (en) Raw material powder for sputtering target material for producing soft magnetic film having high sputtering rate and sputtering target material
JP6094848B2 (en) Method for producing Fe-Co alloy soft magnetic film for perpendicular magnetic recording medium
JP2010095794A (en) METHOD FOR PRODUCING Co-Fe-Ni-BASED ALLOY SPUTTERING TARGET MATERIAL
JP6575775B2 (en) Soft magnetic film
JP2010150591A (en) Cobalt-iron based alloy for soft-magnetic film
JP2016149170A (en) Fe-Co-Nb BASED ALLOY SPUTTERING TARGET MATERIAL AND SOFT MAGNETIC FILM
JP2020027677A (en) Soft magnetic film of heat-assisted magnetic recording medium and sputtering target for forming soft magnetic film of heat-assisted magnetic recording medium
JP2011181140A (en) Fe-Co BASED ALLOY SOFT MAGNETIC FILM FOR MAGNETIC RECORDING MEDIUM
JP6156734B2 (en) Fe-Co alloy sputtering target material and method for producing the same
JP2013143156A (en) Co-Fe ALLOY SOFT MAGNETIC BASE LAYER
TW201337005A (en) Alloy for soft-magnetic thin-film layer of perpendicular magnetic recording medium, sputtering target material, and perpendicular magnetic recording medium having soft-magnetic thin-film layer
JP2018085156A (en) Sputtering target for forming soft magnetic film
JP5787273B2 (en) Soft magnetic underlayer film for magnetic recording medium, sputtering target material for forming soft magnetic underlayer film for magnetic recording medium, and method for producing soft magnetic underlayer film for magnetic recording medium