JP2011068983A - Mo COMPACT HAVING THREE-DIMENSIONAL SHAPE AND METHOD FOR MANUFACTURING THE SAME - Google Patents

Mo COMPACT HAVING THREE-DIMENSIONAL SHAPE AND METHOD FOR MANUFACTURING THE SAME Download PDF

Info

Publication number
JP2011068983A
JP2011068983A JP2010135669A JP2010135669A JP2011068983A JP 2011068983 A JP2011068983 A JP 2011068983A JP 2010135669 A JP2010135669 A JP 2010135669A JP 2010135669 A JP2010135669 A JP 2010135669A JP 2011068983 A JP2011068983 A JP 2011068983A
Authority
JP
Japan
Prior art keywords
powder
core
compact
molded body
hip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010135669A
Other languages
Japanese (ja)
Other versions
JP5689254B2 (en
Inventor
Akihiko Yanagiya
彰彦 柳谷
Toshiyuki Sawada
俊之 澤田
Atsushi Kishida
敦 岸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2010135669A priority Critical patent/JP5689254B2/en
Publication of JP2011068983A publication Critical patent/JP2011068983A/en
Application granted granted Critical
Publication of JP5689254B2 publication Critical patent/JP5689254B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Mo compact which can manufacture a powder compact having a three-dimensional shape that suppresses the coarsening of crystal grains, prevents the decrease of strength, also enhances durability and reliability compared to those of a conventional one and has strength at high temperature, inexpensively, efficiently and at a high yield, and to provide a method for manufacturing the same. <P>SOLUTION: The Mo compact 4 having the three-dimensional shape is formed by arranging a core 2 in a forming vessel 1, filling a space between the forming vessel 1 and the core 2 with an Mo powder 3, and treating the powder with a HIP process. The method for manufacturing the Mo compact having the three-dimensional shape includes filling the space with the Mo powder 3 or a mixture powder 3 in which one or more of the Mo powder, an Nb powder, a W powder and a ceramic powder having a high melting point are mixed, treating the powder with the HIP process, and then dividing the obtained Mo compact 4 into two pieces. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、サファイア単結晶の育成等、高融点金属酸化物等を溶融させる坩堝形状品のMo成形体およびその製造方法に関するものである。   The present invention relates to a crucible-shaped Mo molded body for melting a refractory metal oxide or the like, such as growth of a sapphire single crystal, and a method for producing the same.

従来、モリブデン坩堝は、図5(a)に示すように、モリブデン粉末を出発原料として、インゴットにし、このインゴットを鍛造、絞り加工した後、旋盤加工等の切削を行い製品を製造しているが、坩堝形状特有のコーナー部の強度が弱く、高温の使用環境において、加工時の残留応力に起因して割れなどが発生しやすい。このような欠陥を補うべく、図5(b)に示すように、粉末を出発原料として、CIP(静水圧プレス法)・焼結による方法が挙げられているが、CIP後の成形体は低密度であるため、焼結工程を得なければ実用上有用な密度と強度を持つ成形体に仕上がらない。また、HIP(熱間等方加圧法)を適用した場合は製品形状が非対称なため、製品歩留りを確保することが困難という問題がある。なお、図5は、従来の製造工程を示す図である。   Conventionally, as shown in FIG. 5 (a), a molybdenum crucible is manufactured by using molybdenum powder as an ingot, making it into an ingot, forging and drawing the ingot, and then performing a lathe process or the like to produce a product. The corner part peculiar to the crucible shape is weak, and cracks are likely to occur due to residual stress during processing in a high temperature use environment. In order to make up for such defects, as shown in FIG. 5 (b), a method using CIP (hydrostatic pressure press method) / sintering with powder as a starting material is mentioned, but the molded body after CIP is low. Because of the density, a molded body having practically useful density and strength cannot be finished unless a sintering process is obtained. Further, when HIP (Hot Isostatic Pressing) is applied, there is a problem that it is difficult to ensure the product yield because the product shape is asymmetric. FIG. 5 is a diagram showing a conventional manufacturing process.

そこで、例えば特開2001−323302号公報(特許文献1)に開示されているように、高融点金属酸化物等を溶融させる坩堝形状品において、純分が99.6%以上のモリブデンから成り、実質的に後に加工工程の無い焼結によってのみ形成されるモリブデン製坩堝とその製造方法が提案されている。また特開平6−25855号公報(特許文献2)に開示されているように、内周面及び外周面を有するモリブデン本体と、少なくとも外周面に形成されたタングステン膜とを有するルツボ及びその製造方法が提案されている。   Therefore, as disclosed in, for example, Japanese Patent Application Laid-Open No. 2001-323302 (Patent Document 1), in a crucible-shaped product for melting a refractory metal oxide or the like, the pure component is composed of 99.6% or more of molybdenum, Molybdenum crucibles that are formed only by sintering, which is substantially free of subsequent processing steps, and methods for manufacturing the same are proposed. Further, as disclosed in Japanese Patent Laid-Open No. 6-25855 (Patent Document 2), a crucible having a molybdenum body having an inner peripheral surface and an outer peripheral surface, and a tungsten film formed at least on the outer peripheral surface, and a method for manufacturing the crucible Has been proposed.

さらに、特開2004−149826号公報(特許文献3)に開示されているように、第1の金属粉末を製造しようとする焼結体形状を反転した形状で仮焼結した仮焼結体を金属製の缶の内部に入れ、当該缶の内部の残った空間に第2の金属粉末を充填し、当該充填された缶の内部を真空排気後封止して、当該封止した缶全体をHIP処理により加熱及び加圧して完全に緻密な焼結体を製作した後、機械加工及び化学的処理により当該焼結体の前記第1の金属粉末の部分を除去して前記第2の金属粉末の焼結体を得る金属粉末焼結体の製造方法、すなわち、HIPを用いた3次元自由形状の金属粉末焼結体の製造方法およ
びその製造方法によって得られる金属粉末焼結体が提案されている。
特開2001−323302号公報 特開平6−25855号公報 特開2004−149826号公報
Furthermore, as disclosed in Japanese Patent Application Laid-Open No. 2004-149826 (Patent Document 3), a temporary sintered body that has been pre-sintered with a shape obtained by reversing the shape of the sintered body to be manufactured for the first metal powder is obtained. Put inside the metal can, fill the remaining space inside the can with the second metal powder, evacuate the inside of the filled can and seal the whole sealed can After heating and pressurizing by HIP treatment to produce a completely dense sintered body, the first metal powder portion of the sintered body is removed by machining and chemical treatment to obtain the second metal powder. A method of manufacturing a metal powder sintered body for obtaining a sintered body of a metal powder, that is, a method of manufacturing a three-dimensional free-form metal powder sintered body using HIP and a metal powder sintered body obtained by the manufacturing method has been proposed. Yes.
JP 2001-323302 A JP-A-6-25855 JP 2004-149826 A

上述した特許文献1は、CIP処理して粉末成形体を得る工程と焼結工程からなるモリブデン製坩堝とその製造方法である。このCIP(静水圧プレス法)は、粉末間の接触抵抗だけで形を維持しており、粉末間が冶金的に結合していないために、取扱い時の冶具との接触や運搬時の振動などにより、焼結前の成形体は割れや欠けが発生しやすく、一般に密度が低い。そのため、焼結後の製品においても、使用中の耐久性、信頼性に課題がある。また、CIPでは、中子を抜くのが難しく、テーパーを付けたり割り型にしたりと高度な工夫を要する。   Patent Document 1 described above is a molybdenum crucible composed of a CIP process to obtain a powder compact and a sintering process, and a method for manufacturing the same. This CIP (hydrostatic press method) maintains the shape only by the contact resistance between the powders, and since the powders are not metallurgically bonded, contact with the jig during handling, vibration during transportation, etc. Therefore, the molded body before sintering is likely to be cracked or chipped and generally has a low density. Therefore, even in the sintered product, there are problems in durability and reliability during use. Further, in CIP, it is difficult to remove the core, and it requires a high degree of ingenuity such as adding a taper or split mold.

また、特許文献2は、ルツボ外壁の熱による亀裂等の損傷に対応するために、少なくとも外周面に形成されたタングステン膜とを有するルツボ及びその製造方法にある。さらに、特許文献3は、HIP工程と焼結処理工程によるもので、工程が多く煩雑であるという問題がある。   Patent Document 2 discloses a crucible having at least a tungsten film formed on the outer peripheral surface in order to cope with damage such as cracks caused by heat on the outer wall of the crucible, and a method for manufacturing the crucible. Furthermore, Patent Document 3 is based on the HIP process and the sintering process, and has a problem that the process is complicated.

上述したような問題を解消するため、発明者らは鋭意開発を進めた結果、Mo粉末をスタートとして、HIPのみの成形工程で、坩堝形状を作製し、またHIP容器内には、坩堝内部の空隙を作り出すために金属製中子を容器内に配置し、かつHIP後成形体が対置するようにHIP缶1缶より2個を作り出す1缶2個構造にてHIP処理を行うことにより粉末成形工数を増やすことなく、しかも、歩留良い製品を作製することが出来る高融点金属酸化物等を溶融させる坩堝形状品の粉末成形体およびその製造方法を提供するものである。   In order to solve the above-described problems, the inventors have intensively developed, and as a result, the Mo powder is used as a starting material to produce a crucible shape in a molding process using only HIP. Powder forming by placing a metal core in a container to create a void and performing HIP treatment in a structure with two cans that create two from one HIP can so that the molded body after HIP faces each other It is an object of the present invention to provide a crucible-shaped powder compact that melts a high-melting-point metal oxide that can produce a product with good yield without increasing the number of steps, and a method for producing the same.

その発明の要旨とするところは、
(1)成形容器内に中子を配置し、該成形容器と中子の間にMo粉末を充填してHIP処理することよりなる立体形状のMo成形体。
(2)前記(1)に記載のMo粉末にNb、Wの1種または2種を1〜45質量%添加してなる立体形状のMo成形体。
(3)前記(1)または(2)に記載のMo粉末に高融点のセラミックスを0.1〜15質量%添加してなる立体形状のMo成形体。
(4)成形容器内に中子を配置し、該成形容器と中子の間にMo粉末またはMo粉末とNb粉末、W粉末、高融点のセラミックス粉末の1種または2種以上を混合した粉末を充填してHIP処理した後のMo成形体を2分割することを特徴とする立体形状のMo成形体の製造方法にある。
The gist of the invention is that
(1) A three-dimensionally shaped Mo molded body in which a core is placed in a molded container, Mo powder is filled between the molded container and the core, and HIP treatment is performed.
(2) A three-dimensional Mo molded body obtained by adding 1 to 45 mass% of one or two of Nb and W to the Mo powder according to (1).
(3) A three-dimensional Mo molded body obtained by adding 0.1 to 15% by mass of a high melting point ceramic to the Mo powder according to (1) or (2).
(4) A powder in which a core is placed in a molding container, and Mo powder or Mo powder and Nb powder, W powder, or high melting point ceramic powder is mixed between the molding container and the core. The method for producing a three-dimensional Mo molded product is characterized in that the Mo molded product after the HIP treatment and filling is divided into two.

以上述べたように、結晶粒の粗大化を抑制し、強度の低下を防止し、かつ従来品以上の耐久性および信頼性を高め、高温にて強度がある立体形状の粉末成形体を、歩留良く安価に効率よく製造できる極めて優れた効果を奏するものである。   As described above, a three-dimensional powder molded body that suppresses coarsening of crystal grains, prevents a decrease in strength, improves durability and reliability over conventional products, and has strength at high temperatures. It is very effective in that it can be produced efficiently at low cost.

以下、本発明について図面に従って詳細に説明する。
図1は、本発明に係る製造工程を示す図である。この図に示すように、Mo粉末をHIP処理した後放電加工等により成形容器を切断し成形容器内の中子を抜き取った後旋盤加工等の切削を行い製品を製造している。図2は、本発明に係るHIP処理のための構造を示す概略図である。この図に示すように、成形容器1内に中子2を 配置し、該成形容器1と中子2間にMo粉末3を充填してHIP処理することよりなる立体形状のMo成形体4が製造される。製造された立体形状のMo成形体4を放電加工、ワイヤーカット等により中子2を含めて上下対称に2分割される。なお、上方の矢印は径方向、左矢印は上下方向を示す。
The present invention will be described in detail below with reference to the drawings.
FIG. 1 is a diagram showing a manufacturing process according to the present invention. As shown in this figure, after the Mo powder is subjected to HIP treatment, the molded container is cut by electric discharge machining or the like, and the core in the molded container is extracted, and then cutting such as lathe machining is performed to manufacture a product. FIG. 2 is a schematic diagram illustrating a structure for HIP processing according to the present invention. As shown in this figure, a three-dimensional Mo molded body 4 is formed by placing a core 2 in a molding container 1, filling Mo powder 3 between the molding container 1 and the core 2, and performing HIP processing. Manufactured. The manufactured three-dimensional Mo molded body 4 is divided into two vertically symmetrically including the core 2 by electric discharge machining, wire cutting or the like. The upper arrow indicates the radial direction, and the left arrow indicates the vertical direction.

特に、本発明においてHIPによる粉末成形を可能とした理由は、HIPは、一般に緻密な成形体を得ることが出来る特徴があるものの、形状に関しては、粉末が出発原料である場合は、単純な形状の製造に限られていた。しかし、本発明による中子を使ったHIP成形により、開口部を持った立体的な形状の製造も可能にしたことにある。   In particular, the reason why powder molding by HIP is possible in the present invention is that HIP generally has a feature that a dense molded body can be obtained, but the shape is simple when the powder is a starting material. The production was limited. However, the HIP molding using the core according to the present invention enables the production of a three-dimensional shape having an opening.

すなわち、CIP処理では、中子を抜くのが難しく、特許文献1のように、テーパーを付けたり割り型にしたりと高度な工夫が要る。しかし、本発明のように中子を使ってHIPで成形を行うことによって、冷却時の熱膨張率の差によって、中子のFe(鉄)と、製品のMoとの界面が、自然と剥がれるため、上記CIPのような工夫が要らない。また、HIPによる成形は、高温高圧の雰囲気により粉末間の結合が冶金的になされるので、高密度・高強度な最終形状を持つ成形体が製造でき、不良の低減が図れる。さらに、本発明の方法では、中子は自然に製品から剥がれるため中子形状にテーパーが不要となり、内壁面がテーパーではない鉛直な形状を持つ立体形状においても、歩留良く製造することを可能とした。   That is, in the CIP process, it is difficult to remove the core, and as in Patent Document 1, a high degree of contrivance is required, such as adding a taper or splitting. However, by molding with HIP using the core as in the present invention, the interface between the core Fe (iron) and the product Mo naturally peels due to the difference in thermal expansion coefficient during cooling. Therefore, a device like the above CIP is not required. Further, in the molding by HIP, since the bonding between the powders is made metallurgically in an atmosphere of high temperature and high pressure, a molded body having a final shape with high density and high strength can be manufactured, and defects can be reduced. Furthermore, in the method of the present invention, since the core is naturally peeled off from the product, no taper is required in the core shape, and even in a three-dimensional shape having a vertical shape whose inner wall surface is not tapered, it is possible to manufacture with high yield. It was.

また、中子の材質として好ましいのは、Fe合金である。Fe合金はMoよりも熱膨張率が大きいため、上記のように自然に剥がれる。また、高温で使用される立体形状をもつ粉末成形体は、使用中に一部溶解するなどして寿命となるため、用途によっては厚肉化が有効である。しかも、板に鍛造して絞り加工して製造する従来工法では、厚肉化は困難である。これに対し、本工程は厚肉化が非常に容易である。   Further, an Fe alloy is preferable as the core material. Since the Fe alloy has a higher coefficient of thermal expansion than Mo, it naturally peels off as described above. In addition, a powder molded body having a three-dimensional shape that is used at a high temperature has a lifetime due to partial dissolution during use, so that thickening is effective depending on the application. Moreover, it is difficult to increase the wall thickness by the conventional method of forging a plate and producing it by drawing. In contrast, this process is very easy to thicken.

図3は、上下対称に2分割された際の製品形状を示す図である。この図に示すように、成形容器内に中子を配置し、該成形容器と中子間にMo粉末を充填してHIP処理した後のMo成形体を2分割することで2個の立体形状のMo成形体を製造することが出来る。また、図4は、1缶1個の製造による製品形状を示す図である。この図4(a)に示すような1缶1個の構造では、図4(b)に示すように、非対称の固化成形に伴う変形により著しく歩留が悪くなるし、また、中子2(鉄)と上蓋5(鉄)が接触しているため、HIPにより固着してしまうために、中子の除去のため切削が必要である、この2点から、非常に生産性が悪い。しかし、本発明のように、HIP缶内部で中子が対峙するような構造(二個一構造)であれば、中子の材質にMoと熱膨張率の大きく異なる、鉄などを選ぶことにより、鉄(中子)とMoの焼結が不十分に抑えられるため、放電加工によるスライスの後に、中子が自然と抜けるため切削することなく、除去することが出来る。   FIG. 3 is a diagram showing a product shape when it is divided into two symmetrically in the vertical direction. As shown in this figure, by placing a core in a molding container, filling Mo powder between the molding container and the core and performing HIP treatment, the Mo molded body is divided into two to form two three-dimensional shapes. Mo molded body can be manufactured. Moreover, FIG. 4 is a figure which shows the product shape by manufacture of one can. In the structure of one can as shown in FIG. 4 (a), as shown in FIG. 4 (b), the yield is remarkably deteriorated due to deformation accompanying asymmetric solidification molding, and the core 2 ( Since the iron) and the upper lid 5 (iron) are in contact with each other, they are fixed by HIP, so that cutting is necessary for removing the core. From these two points, productivity is very poor. However, as in the present invention, if the structure is such that the cores face each other inside the HIP can (one by one structure), by selecting iron or the like that is significantly different in thermal expansion coefficient from Mo for the core material. Since sintering of iron (core) and Mo is insufficiently suppressed, the core is naturally removed after slicing by electric discharge machining, so that it can be removed without cutting.

以上については、特にMo粉末について説明してきたが、しかし、純Moに限定するものでなく、穴や溝と言った、粉末成形体の本体そのものへの加工が必要な形状のものの場合には、切削性の向上のために、Mo元素にNb、W添加をする。Nb、Wの添加量としては、1種または2種合計で1〜45%とする。しかし、1%未満では切削性の向上効果が得られない。また、45%を超えるとその効果が飽和し、コストアップとなるため、その範囲を1〜45%とした。好ましくは5〜30%とする。   For the above, especially Mo powder has been described, but it is not limited to pure Mo, but in the case of a shape that requires processing of the powder molded body itself, such as holes and grooves, In order to improve machinability, Nb and W are added to the Mo element. As addition amount of Nb and W, it is 1 to 45% by 1 type or 2 types total. However, if it is less than 1%, the effect of improving machinability cannot be obtained. Further, if it exceeds 45%, the effect is saturated and the cost is increased, so the range is made 1 to 45%. Preferably it is 5 to 30%.

また、粉末成形体の使用温度は、用途により1500℃〜2000℃の場合もある。Moの結晶粒粗大化による強度低下を抑制するため、ピン止めによる結晶粒の成長抑制を図る第二相粒子を添加する。具体的には、TiC、TiN、ZrC、ZrO2 、ZrNなどの高融点のセラミックスを添加する。これらは、高融点であること、Moと反応しないことより、Moの結晶粒成長の抑制に効果的である。その含有量としては、0.1〜15%とする。0.1%未満ではピン止めによる耐久性改善効果が得られず、しかし、15%を超えると効果が飽和する。したがって、その範囲を0.1〜15%とした。 Moreover, the use temperature of a powder compact may be 1500 to 2000 degreeC depending on a use. In order to suppress a decrease in strength due to coarsening of Mo crystal grains, second phase particles are added to suppress crystal grain growth by pinning. Specifically, high melting point ceramics such as TiC, TiN, ZrC, ZrO 2 and ZrN are added. Since these have a high melting point and do not react with Mo, they are effective in suppressing growth of Mo crystal grains. The content is 0.1 to 15%. If it is less than 0.1%, the durability improving effect by pinning cannot be obtained, but if it exceeds 15%, the effect is saturated. Therefore, the range was made 0.1 to 15%.

以下、本発明について実施例により具体的に説明する。
(実施例1)
図3に示す製品形状、外径350mm、内径310mm、総高さ300mm、内高さ280mm、外面のコーナー部の面取り(C)20mm、内面のコーナー部の面取り(C)10mmの成形品を各条件で20個ずつ作製し、20個のうち、10個は被削性評価に使用し、残り10個は耐久性と信頼性、コーナー割れの評価に使用した。その作製条件として、本発明例はHIPのみで外径380mm、高さ630mmの内寸を持つ容器に、外径310mm、高さ560mmの円柱状中子をセットし、Mo粉末等を充填し、真空脱気の後、1350℃、147MPa、5時間の条件でHIP成形した。その結果を表1に示す。なお、No.14の従来例は、鍛造とスピニング成形した後焼結インゴットを得、厚さ20mmのモリブデン板を熱間圧延加工により作製した後、熱間スピニングと呼ばれる熱間絞り成形をした。また、No.15の従来例は、CIP処理後焼結したものである。
Hereinafter, the present invention will be specifically described with reference to examples.
Example 1
Each of the molded products shown in FIG. 3 having an outer diameter of 350 mm, an inner diameter of 310 mm, a total height of 300 mm, an inner height of 280 mm, a corner portion of the outer surface (C) 20 mm, and a corner portion of the inner surface (C) 10 mm. 20 pieces were prepared under the conditions, 10 of which were used for machinability evaluation, and the remaining 10 pieces were used for evaluation of durability and reliability, and corner cracking. As the production conditions, the present invention example is a HIP only, and a cylindrical core with an outer diameter of 310 mm and a height of 560 mm is set in a container having an outer diameter of 380 mm and a height of 630 mm, filled with Mo powder, etc. After vacuum degassing, HIP molding was performed under the conditions of 1350 ° C., 147 MPa, and 5 hours. The results are shown in Table 1. In addition, No. In the 14 conventional example, a sintered ingot was obtained after forging and spinning, a molybdenum plate having a thickness of 20 mm was produced by hot rolling, and then hot drawing called hot spinning was performed. No. The conventional example of 15 is sintered after the CIP treatment.

なお、使用した原料粉末は市販のもので、Mo粉末は平均粒径が約5μm、Nb粉末は約20μm、W粉末は約10μm、セラミックス粉末は1〜2μmのものを使用した。中子および容器は炭素鋼を用いた。実施例における、粉末および中子の充填手順は以下の通りである。先ず、容器の底に粉末を35mm敷き詰め、その上に中子を中央となるように配置、中子と容器の間の隙間に粉末を充填、その後、容器の目一杯まで粉末を充填した。充填後、上蓋を溶接し、脱気、封入した。この充填ビレットをHIPし、得られた成形体は、容器を切削にて除去した後、中央高さの位置でワイヤーカットにより2個に切断した。この時、実施例ではいずれも中子がMoから自然と抜け落ちた。この成形体を用いて坩堝形状に仕上げた。   The raw material powder used was commercially available, the Mo powder having an average particle size of about 5 μm, the Nb powder was about 20 μm, the W powder was about 10 μm, and the ceramic powder was 1-2 μm. Carbon steel was used for the core and the container. The procedure for filling the powder and core in the examples is as follows. First, 35 mm of powder was spread on the bottom of the container, and the core was placed on the bottom so that the gap was filled between the core and the container, and then the powder was filled to the full capacity of the container. After filling, the upper lid was welded, degassed and sealed. The filled billet was HIPed, and the resulting molded body was cut into two pieces by wire cutting at the position of the center height after removing the container by cutting. At this time, in all of the examples, the core was naturally removed from Mo. Using this molded body, a crucible shape was finished.

比較例の1缶1個構造における、粉末および中子の充填手順は以下の通りです。先ず、容器の底に粉末を35mm敷き詰め、その上に中子を中央となるように配置、中子と容器の間の隙間に粉末を充填し、上蓋を溶接し、脱気、封入した。この充填ビレットをHIPし、得られた成形体は、容器を切削にて除去した後、中子を総切削した。これの成形体を用いて坩堝形状に仕上げた。   The procedure for filling powder and core in the one-can structure of the comparative example is as follows. First, 35 mm of powder was spread on the bottom of the container, and the core was placed on the center of the container, the powder was filled in the gap between the core and the container, the upper lid was welded, degassed and sealed. The filled billet was HIPed, and the molded body obtained was subjected to total cutting of the core after removing the container by cutting. Using this molded body, a crucible shape was finished.

Figure 2011068983
表1に示すNo.1〜10は本発明例であり、No.11〜15は比較例である。
Figure 2011068983
No. shown in Table 1. 1 to 10 are examples of the present invention. 11 to 15 are comparative examples.

表1に示す、被削性評価としては、工具摩耗量(エンドミル刃先摩耗量)にて評価した。その方法は作製した立体形状の粉末成形体の壁面部の高さ100〜200mmの位置にて、径3.2mmのドリルで仮穴を10穴穿孔し、次いで本穴を径8mmのエンドミル(超硬、TiAlNコーティング)にて切削速度30m/min、送り量0.1mm/revで仮穴の上から穿孔した。径3.2mmのドリル、径8mmのエンドミルはいずれも供試材毎に新品を用い、10穴穿孔した後の径8mmのエンドミル刃先の端部から1.5mm内側部分の摩耗幅にて評価を行なった。
△:エンドミル刃先摩耗量>0.09mm
○:エンドミル刃先摩耗量≦0.09mm
As the machinability evaluation shown in Table 1, the tool wear amount (end mill edge wear amount) was evaluated. The method is to drill 10 temporary holes with a 3.2 mm diameter drill at a wall surface height of 100 to 200 mm of the produced three-dimensionally shaped powder molded body, and then drill the main hole into an 8 mm diameter end mill (super Hard, TiAlN coating) was drilled from above the temporary hole at a cutting speed of 30 m / min and a feed rate of 0.1 mm / rev. Use a new 3.2 mm diameter drill and 8 mm diameter end mill for each specimen, and evaluate the wear width of the inner part 1.5 mm from the end of the 8 mm diameter end mill edge after drilling 10 holes. I did it.
Δ: End mill cutting edge wear amount> 0.09 mm
○: End mill edge wear amount ≤ 0.09 mm

また、耐久性については、実際に、アルミナを溶解し、破損するまでの時間の平均時間で評価した。n数=10
△:使用平均時間<400時間
○:400時間≦使用平均時間≦900時間
◎:使用平均時間>900時間
Further, the durability was evaluated by the average time of the time until the alumina was actually dissolved and broken. n number = 10
Δ: Average use time <400 hours ○: 400 hours ≦ Use average time ≦ 900 hours A: Use average time> 900 hours

また、信頼性については、上記、耐久性と同じく、n数=10で実際にアルミナを溶解し、破損するまでの最短使用時間で評価した。
×:最短時間≦100時間
△:100時間<最短使用時間≦800時間
○:800時間<最短使用時間
In addition, as with the above-described durability, reliability was evaluated by the shortest use time until alumina was actually melted with n = 10 and broken.
×: Minimum time ≦ 100 hours Δ: 100 hours <minimum use time ≦ 800 hours ○: 800 hours <minimum use time

また、コーナー割れについては、上記、耐久性および信頼性と同じく、n数=10で実際にアルミナを溶解し、破損した部位がコーナー部にあるかどうかを評価した。
×:5個以上
○:5個未満
As for the corner crack, as in the above-described durability and reliability, alumina was actually melted with n = 10, and it was evaluated whether or not the damaged portion was in the corner.
×: 5 or more ○: Less than 5

また、歩留評価については、製品重量と成形体重量で比較し、製品重量/成形体重量の値で評価した。なお、No.14は圧延板からの加工であるため、評価外である。
◎:60%以上
○:40〜60%未満
×:40%未満
In addition, the yield evaluation was made by comparing the product weight and the molded body weight and evaluating the product weight / molded body weight. In addition, No. Since 14 is a process from a rolled sheet, it is out of evaluation.
◎: 60% or more ○: 40 to less than 60% ×: less than 40%

さらに、構造については、1缶1個の構造では、非対称な変形により、成形体部分の変形が大きくなり著しく製品の歩留が悪くなる。また、中子と蓋が溶着してしまうために、中子の除去のため総切削が必要である、この2点から、非常に生産性が悪い。
以上の結果を総合評価として、×:0点、△:1点、○:3点、◎:4点、として総合点で評価した。
Furthermore, with respect to the structure, in the structure of one can, the deformation of the molded body is increased due to asymmetric deformation, and the yield of the product is remarkably deteriorated. Further, since the core and the lid are welded, total cutting is necessary for removing the core. From these two points, productivity is very poor.
As a comprehensive evaluation, the above results were evaluated as an overall score of x: 0 point, Δ: 1 point, ○: 3 point, and ◎: 4 point.

表1に示すように、比較例No.11は成分が100%Moで1缶1個の構造のものであり、比較例No.12は成分がMoに対して0.5%のNbを添加したものでNb添加量が少ないためにNbの効果は認められず、しかも、1缶1個の構造のもの、比較例No.13は成分がMoに対して0.05%のTiCを添加したものであるが、TiC添加量が少ないために、TiCの効果は認められず、しかも、1缶1個の構造のもので、いずれも歩留りが悪い。   As shown in Table 1, Comparative Example No. No. 11 has a structure of 100% Mo and one can. No. 12 is a component containing 0.5% Nb with respect to Mo. Since the amount of Nb added is small, the effect of Nb is not recognized, and the structure of one can is one, Comparative Example No. 13 is a component in which 0.05% TiC is added to Mo, but since the amount of TiC added is small, the effect of TiC is not recognized, and it has a structure of one can. Both yields are poor.

また、従来例No.14は前述のように、圧延板からの加工であるため、耐久性、信頼性に劣る。また、従来例No.15はCIP処理後焼結したもので、被削性、信頼性と歩留りが悪い。これに対し、本発明例であるNo.1〜10は、いずれも本発明の条件を満たしていることから、各特性について優れていることが分かる。   Conventional example No. Since 14 is processing from a rolled plate as described above, it is inferior in durability and reliability. Conventional example No. No. 15 is sintered after the CIP process, and has poor machinability, reliability and yield. On the other hand, No. which is an example of the invention. Since 1-10 satisfy | fills the conditions of this invention, it turns out that it is excellent about each characteristic.

(実施例2)
表2に示す成分はMo元素にNb、Wの1種または2種を加えたもので、その評価としての被削性、耐久性、信頼性、コーナー割れ、歩留りについては、実施例1と全く同じ評価法に基づいて行った。
(Example 2)
The components shown in Table 2 are obtained by adding one or two of Nb and W to the Mo element, and the machinability, durability, reliability, corner cracking, and yield as evaluations thereof are completely the same as in Example 1. Based on the same evaluation method.

Figure 2011068983
表2に示す、No.16〜21は本発明例であり、No.22〜23は比較例である。
Figure 2011068983
No. 2 shown in Table 2. 16 to 21 are examples of the present invention. 22-23 are comparative examples.

表2に示すように、比較例No.22はWの含有量が低く、1缶1個の構造のものであり、Wの効果が認められず、被削性が劣る。比較例No.23はNbとWの合計含有量が低く、1缶1個の構造のものであり、W、Nbの効果が認められず、被削性が劣る。これに対し、本発明例であるNo.16〜21は、いずれも本発明の条件を満たしていることから、各特性について優れていることが分かる。   As shown in Table 2, Comparative Example No. No. 22 has a low content of W and has a structure of one can, and the effect of W is not recognized and the machinability is inferior. Comparative Example No. No. 23 has a low total content of Nb and W and has a structure of one can, and the effects of W and Nb are not recognized and the machinability is inferior. On the other hand, No. which is an example of the invention. Since 16-21 satisfy | fills the conditions of this invention, it turns out that it is excellent about each characteristic.

以上のように、HIP容器内には、坩堝内部の空隙を作り出すために金属製中子を容器内に配置し、かつHIP後成形体が対称的に位置するようにHIP缶1缶より2個を作り出す1缶2個構造にてHIP処理を行うことにより、非対称な膨張を抑制し、結晶粒の粗大化を抑制し、強度の低下を防止し、かつ従来品以上の耐久性および信頼性を高め、高温にて強度がある立体形状の粉末成形体を、歩留良く安価に効率よく製造できる。   As described above, in the HIP container, two metal cores are arranged in the container in order to create a void inside the crucible, and two HIP cans so that the molded body after HIP is positioned symmetrically. By carrying out HIP treatment with a single can structure that creates a product, it suppresses asymmetric expansion, suppresses coarsening of crystal grains, prevents strength deterioration, and has durability and reliability higher than conventional products. A three-dimensional powder compact that is high and strong at high temperatures can be produced efficiently with good yield and low cost.

本発明に係る製造工程を示す図である。It is a figure which shows the manufacturing process which concerns on this invention. 本発明に係るHIP処理のための構造を示す概略図である。1 is a schematic diagram illustrating a structure for HIP processing according to the present invention. FIG. 上下対称に2分割された際の製品形状を示す図である。It is a figure which shows the product shape at the time of being divided into 2 symmetrically vertically. 1缶1個の製造による製品形状を示す図である。It is a figure which shows the product shape by manufacture of one can. 従来の製造工程を示す図である。It is a figure which shows the conventional manufacturing process.

1 成形容器
2 中子
3 Mo粉末
4 Mo成形体
5 上蓋


特許出願人 山陽特殊製鋼株式会社
代理人 弁理士 椎 名 彊
DESCRIPTION OF SYMBOLS 1 Molding container 2 Core 3 Mo powder 4 Mo molded object 5 Top cover


Patent Applicant Sanyo Special Steel Co., Ltd.
Attorney: Attorney Shiina

Claims (4)

成形容器内に中子を配置し、該成形容器と中子の間にMo粉末を充填してHIP処理することよりなる立体形状のMo成形体。 A three-dimensionally shaped Mo molded body in which a core is disposed in a molding container, Mo powder is filled between the molding container and the core, and HIP treatment is performed. 請求項1に記載のMo粉末にNb、Wの1種または2種を1〜45質量%添加してなる立体形状のMo成形体。 A three-dimensional Mo molded body obtained by adding 1 to 45 mass% of one or two of Nb and W to the Mo powder according to claim 1. 請求項1または2に記載のMo粉末に高融点のセラミックスを0.1〜15質量%添加してなる立体形状のMo成形体。 A three-dimensional Mo molded body obtained by adding 0.1 to 15% by mass of a ceramic having a high melting point to the Mo powder according to claim 1 or 2. 成形容器内に中子を配置し、該成形容器と中子の間にMo粉末またはMo粉末とNb粉末、W粉末、高融点のセラミックス粉末の1種または2種以上を混合した粉末を充填してHIP処理した後のMo成形体を2分割することを特徴とする立体形状のMo成形体の製造方法。 A core is placed in a molding container, and a powder obtained by mixing one or more of Mo powder, Mo powder and Nb powder, W powder, and high melting point ceramic powder is filled between the molding container and the core. A method for producing a three-dimensionally shaped Mo molded body, wherein the Mo molded body after the HIP treatment is divided into two.
JP2010135669A 2009-08-31 2010-06-15 Three-dimensional Mo molded body and manufacturing method thereof Expired - Fee Related JP5689254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010135669A JP5689254B2 (en) 2009-08-31 2010-06-15 Three-dimensional Mo molded body and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009200485 2009-08-31
JP2009200485 2009-08-31
JP2010135669A JP5689254B2 (en) 2009-08-31 2010-06-15 Three-dimensional Mo molded body and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011068983A true JP2011068983A (en) 2011-04-07
JP5689254B2 JP5689254B2 (en) 2015-03-25

Family

ID=44014514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010135669A Expired - Fee Related JP5689254B2 (en) 2009-08-31 2010-06-15 Three-dimensional Mo molded body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5689254B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103056605A (en) * 2012-11-28 2013-04-24 厦门虹鹭钨钼工业有限公司 Production method of high-density molybdenum crucible
US9457405B2 (en) 2012-05-29 2016-10-04 H.C. Starck, Inc. Metallic crucibles and methods of forming the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04337010A (en) * 1991-05-15 1992-11-25 Kobe Steel Ltd Production of grooved composite cylinder
JPH0681007A (en) * 1992-09-01 1994-03-22 Kobe Steel Ltd Method and device for diffusion-joining lining layer to inner face of body to be treated by hip

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04337010A (en) * 1991-05-15 1992-11-25 Kobe Steel Ltd Production of grooved composite cylinder
JPH0681007A (en) * 1992-09-01 1994-03-22 Kobe Steel Ltd Method and device for diffusion-joining lining layer to inner face of body to be treated by hip

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9457405B2 (en) 2012-05-29 2016-10-04 H.C. Starck, Inc. Metallic crucibles and methods of forming the same
US10100438B2 (en) 2012-05-29 2018-10-16 H.C. Starck Inc. Metallic crucibles and methods of forming the same
CN103056605A (en) * 2012-11-28 2013-04-24 厦门虹鹭钨钼工业有限公司 Production method of high-density molybdenum crucible
CN103056605B (en) * 2012-11-28 2015-12-23 厦门虹鹭钨钼工业有限公司 A kind of preparation method of high-density molybdenum crucible

Also Published As

Publication number Publication date
JP5689254B2 (en) 2015-03-25

Similar Documents

Publication Publication Date Title
JP6220051B2 (en) Crucible and method for producing single crystal sapphire using the same
JP5679315B2 (en) Manufacturing method of cylindrical Mo alloy target
JP2005238334A (en) Manufacturing method for part or semi-finished good containing intermetallic titanium aluminide alloy, and part capable of being manufactured by this method
JP2006316321A (en) Aluminum powder alloy composite material for neutron absorption, method for producing the same, and basket produced thereby
CN110814338A (en) Preparation method of large hard alloy wear-resistant block with complex shape
JP5689254B2 (en) Three-dimensional Mo molded body and manufacturing method thereof
US20230024291A1 (en) Method for producing molybdenum alloy targets
CN106794498B (en) Titanium-encapsulated structure and titanium material
JP2003342720A (en) Method of producing molybdenum target for sputtering and molybdenum target
US20100178525A1 (en) Method for making composite sputtering targets and the tartets made in accordance with the method
WO2020165489A1 (en) Method for the manufacture multimaterial roll and the multimaterial roll
JP6827461B2 (en) Molybdenum crucible
CN113677461B (en) Method for manufacturing sintered gear
JP5771323B1 (en) Crucible and method for producing single crystal sapphire using the same
CN110125399B (en) Laser additive manufacturing method for multi-metal part added with transition layer
EP2268434A1 (en) A method for making composite sputtering targets and the targets made in accordance with the method
JP6888294B2 (en) Manufacturing method of Cu-Ga alloy sputtering target and Cu-Ga alloy sputtering target
JP5073452B2 (en) Machining method of powder solidified compact
JPH11300461A (en) Sleeve for die casting machine
JP2712460B2 (en) Extruded billet with metal powder clad tube and insulated steel tube
JP6801768B2 (en) Sputtering target
CN114570926B (en) Integrated sheathing method for powder metallurgy plate
JP6258040B2 (en) Crucible for growing sapphire single crystal, method for growing sapphire single crystal, and method for producing crucible for growing sapphire single crystal
CN109036829A (en) A kind of magnetic links rapid shaping stage process process
JP2001323302A (en) Crucible made of molybdenum and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150128

R150 Certificate of patent or registration of utility model

Ref document number: 5689254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees