JP2011063500A - Heat ray shielding laminated film - Google Patents

Heat ray shielding laminated film Download PDF

Info

Publication number
JP2011063500A
JP2011063500A JP2009274191A JP2009274191A JP2011063500A JP 2011063500 A JP2011063500 A JP 2011063500A JP 2009274191 A JP2009274191 A JP 2009274191A JP 2009274191 A JP2009274191 A JP 2009274191A JP 2011063500 A JP2011063500 A JP 2011063500A
Authority
JP
Japan
Prior art keywords
film
layer
heat ray
ray shielding
shielding laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009274191A
Other languages
Japanese (ja)
Inventor
Tetsuji Hattori
哲治 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2009274191A priority Critical patent/JP2011063500A/en
Publication of JP2011063500A publication Critical patent/JP2011063500A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat ray shielding laminated film in which, in depositing a metallic film such as a ZnO film, the problem in the deposition of nodules and waste caused in a target is improved. <P>SOLUTION: The heat ray shielding laminated film is formed on a substrate through a vapor deposition process. The heat ray shielding laminated film is obtained, on a substrate, by successively depositing at least a transparent oxide film layer, a precious metal film layer and a precious metal protective film layer. The transparent oxide film layer includes a Zn<SB>x</SB>Sn<SB>y</SB>O<SB>z</SB>film (x, y and z are positive rational numbers). In the Zn<SB>x</SB>Sn<SB>y</SB>O<SB>z</SB>film, the value expressed by Sn/(Zn+Sn) in a relation between Sn and Zn included in the film is 5 to 20 wt.%, and the precious metal film layer is made of an Ag film or a film essentially composed of Ag. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は主に複層ガラスや合わせガラスに用いられる熱線遮蔽積層膜に関する。   The present invention relates to a heat ray shielding laminated film mainly used for multilayer glass and laminated glass.

熱線遮蔽積層膜(以下、Low‐E膜と記載することもある)は、熱線を反射する機能を有する積層膜であり、車両用や建築用等の窓ガラスに用いられることで、窓ガラスを通じて車内や室内に照射される太陽光の特定の波長部分を遮蔽し、車内や室内の温度上昇を抑制して、冷房機器の負荷を低減させる。上記のLow−E膜が形成されたガラスはLow−Eガラスと呼ばれており、通常使用されているフロートガラスの窓ガラスと比べ、紫外線透過率が低くなり、室内の家具の日焼け等の低減に効果がある。   A heat ray shielding laminated film (hereinafter sometimes referred to as a Low-E film) is a laminated film having a function of reflecting heat rays, and is used for window glass for vehicles, buildings, etc. A specific wavelength portion of sunlight irradiated inside the vehicle or the room is shielded to suppress a temperature rise in the vehicle or the room, thereby reducing the load on the cooling device. The glass on which the Low-E film is formed is called Low-E glass, and has a lower ultraviolet transmittance than a commonly used float glass window glass, and reduces sunburn of indoor furniture. Is effective.

一般的に、Low−E膜は、基体上に、誘電体膜、金属膜、誘電体膜を順次積層した構成の薄膜積層体が広く用いられている。優れた熱線遮蔽膜の金属膜として、Ag膜を使用したものよく知られており、例えば、基体上に、ZnO膜、Ag膜、と順次積層した薄膜積層体が広く用いられている。   In general, as the Low-E film, a thin film laminate having a structure in which a dielectric film, a metal film, and a dielectric film are sequentially laminated on a substrate is widely used. As an excellent metal film of a heat ray shielding film, one using an Ag film is well known. For example, a thin film laminate in which a ZnO film and an Ag film are sequentially laminated on a substrate is widely used.

基材上にLow−E膜を形成する方法として、生産性の観点からスパッタリング法が広く採用されており、ZnO膜等の金属酸化物膜の生産性を向上させるために、様々な検討がなされている。例えば、特許文献1では、ターゲットに間接的な電力を周期的に供給することで、ターゲット表面上でのノジュールの発生や異常放電を制御して生産性を向上させる方法が挙げられている。また、特許文献2では、成膜速度を向上させるために、相対密度が80%以上であるZnOターゲットを用い、かつ該ターゲットに3価以上の陽性元素を添加して得た薄膜が開示されている。また、本出願人においても、特許文献3によって、膜形成時の真空チャンバー内を混合ガス雰囲気として、成膜速度を向上させたZnO膜を開示している。   As a method for forming a Low-E film on a substrate, a sputtering method is widely adopted from the viewpoint of productivity, and various studies have been made to improve the productivity of a metal oxide film such as a ZnO film. ing. For example, Patent Document 1 discloses a method for improving productivity by controlling generation of nodules and abnormal discharge on the target surface by periodically supplying indirect power to the target. Patent Document 2 discloses a thin film obtained by using a ZnO target having a relative density of 80% or more and adding a trivalent or higher positive element to the target in order to improve the film formation rate. Yes. Also in the present applicant, Patent Document 3 discloses a ZnO film in which the deposition rate is improved by using a mixed gas atmosphere in the vacuum chamber during film formation.

特開平8−53761号公報Japanese Patent Laid-Open No. 8-53761 特開2009−62618号公報JP 2009-62618 A 特表2004−323941号公報JP-T-2004-323941

ZnO膜等の金属膜の成膜を行う場合、ターゲット表面に黒色や茶褐色の微小突起物(以下ノジュールと記載することもある)が発生して安定放電が出来なくなる、あるいは、ターゲットの非エロージョン部やターゲット隣接部に粒子状や薄片状の屑が堆積される、という問題が生じることがあり、上記の問題が生じると、製品欠陥を引き起こし、結果的に生産性を低下させる原因となる。   When forming a metal film such as a ZnO film, black or brown microprojections (hereinafter sometimes referred to as nodules) are generated on the target surface, and stable discharge cannot be performed, or the non-erosion portion of the target In addition, there may be a problem that particles or flakes are deposited on the target adjacent portion. When the above problem occurs, a product defect is caused, resulting in a decrease in productivity.

また、ZnO膜に特定の異種金属を添加すると、急激に紫外線透過率が高くなることがあった。   Further, when a specific dissimilar metal is added to the ZnO film, the ultraviolet transmittance may be rapidly increased.

そこで本発明は、上記の問題を改善し、なおかつ、紫外線透過率が低い熱線遮蔽積層膜を提供することを目的とする。   Therefore, an object of the present invention is to provide a heat ray shielding laminated film that improves the above-described problems and has a low ultraviolet transmittance.

本出願人は、上記課題を解決するために鋭意検討を行った結果、透明酸化物膜として異種金属を添加したZnO膜を用いることで、前述したノジュールや堆積屑等の欠陥が改善されることを見出した。また、さらに検討を重ねた結果、ZnO膜にAlを添加すると、急激に紫外線透過率が高くなることが示され、添加する異種金属をSnとすることで上記課題を解決し、かつ、紫外線透過率を損なわず、金属層のAg層の耐湿性においても優れた熱線遮蔽積層膜を得られることが明らかとなった。   As a result of intensive studies to solve the above-mentioned problems, the present applicant uses the ZnO film to which a different metal is added as the transparent oxide film, thereby improving the aforementioned defects such as nodules and deposited debris. I found. Further, as a result of further studies, it has been shown that when Al is added to the ZnO film, the ultraviolet transmittance is rapidly increased. By using Sn as the dissimilar metal to be added, the above-mentioned problems can be solved, and ultraviolet transmission can be achieved. It was revealed that a heat ray shielding laminated film excellent in the moisture resistance of the Ag layer of the metal layer can be obtained without impairing the rate.

すなわち、本発明は、基体上に真空成膜プロセスを経て形成される熱線遮蔽積層膜であり、該熱線遮蔽積層膜は、基体上に、少なくとも透明酸化物膜層、貴金属膜層、貴金属保護膜層、が順次積層されて成り、上記透明酸化物膜層はZnSn膜(x、y、zは正の有理数)を有し、該ZnSn膜は該膜に含まれるSnとZnとのSn/(Zn+Sn)で表される値が5〜20wt%であり、上記貴金属膜層はAg膜もしくはAgを主成分とする膜から成ることを特徴とする熱線遮蔽積層膜である。 That is, the present invention is a heat ray shielding laminated film formed on a substrate through a vacuum film forming process, and the heat ray shielding laminated film comprises at least a transparent oxide film layer, a noble metal film layer, and a noble metal protective film on the substrate. The transparent oxide film layer has a Zn x Sn y O z film (x, y, z are positive rational numbers), and the Zn x Sn y O z film is formed on the film. The value represented by Sn / (Zn + Sn) of Sn and Zn contained is 5 to 20 wt%, and the noble metal film layer is composed of an Ag film or a film containing Ag as a main component. It is a membrane.

本発明において、上記のZnSn膜は、該膜に含まれるSnとZnとのSn/(Zn+Sn)で表される値が5〜20wt%であり、5wt%未満であると、ノジュールや堆積屑等の欠陥を改善することが出来ず、20wt%を超えると、紫外線透過率が高くなる。なお、より好ましくは10〜18wt%としても良い。 In the present invention, the above Zn x Sn y O z film has a value represented by Sn / (Zn + Sn) of Sn and Zn contained in the film of 5 to 20 wt%, and less than 5 wt%. Defects such as nodules and deposited debris cannot be improved, and if it exceeds 20 wt%, the ultraviolet transmittance increases. In addition, it is good also as 10-18 wt% more preferably.

また、本発明の熱線遮蔽積層膜において、前記貴金属保護膜層は、Alが添加されたZn膜を有するものであり、耐湿性向上の観点から、該膜に含まれるAlとZnとのAl/(Zn+Al)で表される値が1〜10wt%であることを特徴とするものである。   Further, in the heat ray shielding laminated film of the present invention, the noble metal protective film layer has a Zn film to which Al is added, and from the viewpoint of improving moisture resistance, Al / Zn of Al and Zn contained in the film is included. The value represented by (Zn + Al) is 1 to 10 wt%.

また、本発明の熱線遮蔽積層膜において、基体から見て最も遠い貴金属保護膜層の基体と反対側に、SnO膜を有することを特徴とするものである。 In the heat ray shielding laminated film of the present invention, the SnO x film is provided on the opposite side of the noble metal protective film layer farthest from the substrate to the substrate.

また、本発明の熱線遮蔽積層膜を製造する際、ZnとSnとを含むZn−Sn合金ターゲットを用いてZnSn膜を形成する工程、を製造工程含むことを特徴とする。 Further, when manufacturing the heat ray shielding laminated film of the present invention, characterized in that it comprises step manufacturing process, the forming a Zn x Sn y O z layer with Zn-Sn alloy target containing Zn and Sn.

前記Zn−Sn合金スパッタリングターゲットは、該ターゲットに含まれるSnとZnとのSn/(Zn+Sn)で表される値が5〜20wt%であり、好ましくは10〜18wt%としてもよい。上記の値が5wt%未満であると、ノジュールや堆積屑等の欠陥を改善することが出来ず、20wt%を超えると、形成された熱線遮蔽積層膜の紫外線透過率が高くなる。   In the Zn—Sn alloy sputtering target, the value represented by Sn / (Zn + Sn) of Sn and Zn contained in the target is 5 to 20 wt%, preferably 10 to 18 wt%. If the above value is less than 5 wt%, defects such as nodules and deposited debris cannot be improved, and if it exceeds 20 wt%, the ultraviolet ray transmittance of the formed heat ray shielding laminated film becomes high.

本発明は、透明酸化物膜層としてZnSn膜を採用する事で、成膜時のノジュールや堆積屑等の欠陥の発生を改善せしめることが可能となった。また、本発明の熱線遮蔽積層膜は、高い可視光透過率と低い紫外線透過率を両立するものであり、Low−E膜等として使用する際、優れた遮熱性を発揮する。さらに、本発明の熱線遮蔽積層膜は、Ag層の耐湿性に優れた膜であることが明らかとなった。 In the present invention, by using a Zn x Sn y O z film as a transparent oxide film layer, it has become possible to improve generation of defects such as nodules and deposited debris during film formation. Moreover, the heat ray shielding laminated film of the present invention achieves both high visible light transmittance and low ultraviolet transmittance, and exhibits excellent heat shielding properties when used as a Low-E film or the like. Furthermore, it has been clarified that the heat ray shielding laminated film of the present invention is a film excellent in moisture resistance of the Ag layer.

スパッタリング装置の概略を示した平面図である。It is the top view which showed the outline of the sputtering device. 熱線遮蔽積層膜の概略を示す断面図である。It is sectional drawing which shows the outline of a heat ray shielding laminated film.

基体としては、ソーダライムガラス、アルミノシリケートガラスなどの各種板ガラス(例えばフロート板ガラス)、ブロンズ、グレー、ブルー、グリーン等の着色ガラス(例えばフロート着色ガラス)、またはポリメチルメタアクリレート、ポリカーボネイトのような透明樹脂基板より選ばれ、また、曲げガラスや強化ガラスや強度アップガラス、あるいは下地膜層等膜付きガラス、または網入りガラス等市販の各種ガラスを採用でき、さらに場合によっては半透明状のガラスも採用しうる。   As the substrate, various plate glasses such as soda lime glass and aluminosilicate glass (for example, float plate glass), colored glass such as bronze, gray, blue and green (for example, float colored glass), or transparent such as polymethyl methacrylate and polycarbonate It can be selected from resin substrates, and it can be used for various types of glass such as bent glass, tempered glass, strength-enhanced glass, glass with a film such as a base film layer, or netted glass. Can be adopted.

また、本発明は、図2に示すように、基体上に、少なくとも透明酸化物膜層、貴金属膜層、貴金属保護膜層、が順次積層されて成る熱線遮蔽積層膜である。また、基体上に、透明酸化物膜層、貴金属膜層、貴金属保護膜層、透明酸化物膜層、貴金属膜層、貴金属保護膜層、というように、貴金属膜層を2層以上積層してもよい。上記のように積層された熱線遮蔽積層膜の、透明酸化物膜層と貴金属膜層との間に貴金属保護膜層が介在してもよく、また、上記のように積層された熱線遮蔽積層膜の基体と反対側の最外層には透明酸化物膜層を積層することが好ましい。なお、「基体上」は、基体の上であればよく、基体と透明酸化物膜層との間に、本発明の熱線遮蔽積層膜の特性を損なわない程度であれば、他の膜が介在するものであっても差し支えない。   Further, as shown in FIG. 2, the present invention is a heat ray shielding laminated film in which at least a transparent oxide film layer, a noble metal film layer, and a noble metal protective film layer are sequentially laminated on a substrate. Further, two or more noble metal film layers such as a transparent oxide film layer, a noble metal film layer, a noble metal protective film layer, a transparent oxide film layer, a noble metal film layer, and a noble metal protective film layer are laminated on the substrate. Also good. In the heat ray shielding laminated film laminated as described above, a noble metal protective film layer may be interposed between the transparent oxide film layer and the noble metal film layer, and the heat ray shielding laminated film laminated as described above A transparent oxide film layer is preferably laminated on the outermost layer on the side opposite to the substrate. The “on the substrate” may be on the substrate, and another film is interposed between the substrate and the transparent oxide film layer as long as the characteristics of the heat ray shielding laminated film of the present invention are not impaired. It does not matter even if it does.

上記透明酸化物膜層は、ZnSn膜のみ、もしくは、ZnSn膜と他の金属膜とを2層以上積層して成る層である。上記金属膜は、例えば、ZnOx、SnOx、TiOx、ZnAl、ZnTi等の透明酸化物膜、SiNx等の窒化物膜、及びこれらを主成分とする膜が挙げられ、好ましくはZnOx膜、SnOx 膜、ZnAl膜、TiOx膜、SiNx膜としてもよい。 The transparent oxide film layer is a layer formed by laminating two or more layers of a Zn x Sn y O z film alone or a Zn x Sn y O z film and another metal film. The metal film includes, for example, a transparent oxide film such as ZnO x , SnO x , TiO x , Zn x Al y O z , Zn x Ti y O z , a nitride film such as SiN x, and the like as a main component. Preferably, a ZnO x film, a SnO x film, a Zn x Al y O z film, a TiO x film, or a SiN x film may be used.

また、該透明酸化物膜層の膜厚は、約1200Å以下、好ましくは約150Å以上、1000Å以下としてもよい。さらに、本発明の熱線遮蔽積層膜において、基体から見て最も遠い貴金属保護膜層の基体と反対側に、SnO膜を有し、該SnO膜の膜厚は、10Å以上であることが好ましい。 The film thickness of the transparent oxide film layer may be about 1200 mm or less, preferably about 150 mm or more and 1000 mm or less. Furthermore, in the heat ray shielding laminated film of the present invention, a SnO x film is provided on the opposite side of the noble metal protective film layer farthest from the substrate, and the SnO x film has a thickness of 10 mm or more. preferable.

上記貴金属膜層は、Ag膜、もしくはAgを主成分とする貴金属膜から成るものであり、該貴金属膜は、例えば、Agを主成分として、Au、Cu、Pt、Ir等の異種金属を含むものであってもよい。   The noble metal film layer is composed of an Ag film or a noble metal film containing Ag as a main component, and the noble metal film includes, for example, a different metal such as Au, Cu, Pt, or Ir containing Ag as a main component. It may be a thing.

また、該貴金属膜層の膜厚は、約200Å程度以下、好ましくは約50Å以上、150Å 以下としてもよい。   The thickness of the noble metal film layer may be about 200 mm or less, preferably about 50 mm or more and 150 mm or less.

上記貴金属保護膜層は、Zn、Ti、Ni-Cr、Zn-Al、Ni-Cr-O、Ti、Zr、Cr、Al、SUS 、Taから選ばれる少なくとも1つを主成分とする膜であり、特に、Zn-Al膜を用いるのが好ましい。Zn−Al膜は、ZnとAlとを有する膜であり、膜内のZnとAlとのAl/(Zn+Al)で表される値が1〜10wt%とするものである。また、好ましくは4〜10wt%としてもよい。   The noble metal protective film layer is a film containing at least one selected from Zn, Ti, Ni—Cr, Zn—Al, Ni—Cr—O, Ti, Zr, Cr, Al, SUS, and Ta as a main component. In particular, it is preferable to use a Zn—Al film. The Zn—Al film is a film having Zn and Al, and the value represented by Al / (Zn + Al) of Zn and Al in the film is 1 to 10 wt%. Moreover, it is good also as 4-10 wt% preferably.

また、該貴金属層保護膜層の膜厚は、10Å以上が好ましく、貴金属膜層を保護するバリア層としての機能と生産性とを考慮すると、好ましくは13Å以上100Å以下としてもよい。貴金属保護膜層の膜厚が厚くなると、可視光線透過率を下げることから、貴金属層保護膜層の膜厚は、より好ましくは15Å以上30Å以下としてもよい。   Further, the film thickness of the noble metal layer protective film layer is preferably 10 mm or more, and preferably 13 mm or more and 100 mm or less in consideration of the function and productivity as a barrier layer for protecting the noble metal film layer. When the thickness of the noble metal protective film layer is increased, the visible light transmittance is lowered. Therefore, the thickness of the noble metal protective film layer is more preferably 15 to 30 mm.

成膜装置としては、図1に示すようなマグネトロンスパッタ装置が好適に用いられる。ガラス3を基体ホルダー2に保持させた後、真空チャンバー8内を真空ポンプ5によって排気し、成膜中、真空ポンプ5は連続して稼働させ、真空チャンバー内の雰囲気ガスは、ガス導入管7より導入し、ガスの流量をマスフローコントローラー(図示せず)により制御して調整する。なお、基体ホルダー2はターゲット1に対して正面に設置されるものとする。成膜中の真空チャンバ−内の圧力は、真空チャンバーと真空ポンプの間に設置されたバルブ6の開度を制御することと、ガスの流量を変更することで調節する。裏側にマグネット4が配置されたターゲット1を用い、ターゲットへ電源コード9を通じで電源10より投入する。   As the film forming apparatus, a magnetron sputtering apparatus as shown in FIG. 1 is preferably used. After holding the glass 3 on the substrate holder 2, the inside of the vacuum chamber 8 is evacuated by the vacuum pump 5, and the vacuum pump 5 is continuously operated during the film formation, and the atmosphere gas in the vacuum chamber is the gas introduction pipe 7. The gas flow rate is controlled and adjusted by a mass flow controller (not shown). Note that the base holder 2 is installed in front of the target 1. The pressure in the vacuum chamber during film formation is adjusted by controlling the opening degree of the valve 6 installed between the vacuum chamber and the vacuum pump and changing the gas flow rate. Using the target 1 with the magnet 4 arranged on the back side, the power is supplied to the target through the power cord 9.

ZnSn膜を形成する際は、ZnとSnとを有するZn-Sn合金ターゲットを用いる。この時真空チャンバー内に導入されるガスは、O、CO、CO、N等の反応性のガスであることが好ましく、また、上記のガスには放電を安定させるために、Ar、Xe、Ne、Krなどのガスを加えて混合ガスとしてもよい。 When forming the Zn x Sn y O z film, a Zn—Sn alloy target having Zn and Sn is used. At this time, the gas introduced into the vacuum chamber is preferably a reactive gas such as O 2 , CO 2 , CO, N 2 , and the above gas contains Ar, A gas such as Xe, Ne, or Kr may be added to form a mixed gas.

また、上記熱線遮蔽積層膜を構成する貴金属膜層が1層である時、該熱戦遮蔽積層膜の紫外線透過率が40%以下であることが好ましく、また、上記貴金属膜層が2層である時、該熱戦遮蔽積層膜の紫外線透過率が25%以下であることが好ましい。   Further, when the noble metal film layer constituting the heat ray shielding laminated film is one layer, it is preferable that the ultraviolet transmittance of the thermal battle shielding laminated film is 40% or less, and the noble metal film layer is two layers. At this time, it is preferable that the thermal transmittance shielding laminated film has an ultraviolet transmittance of 25% or less.

本発明の熱線遮蔽積層膜、特に、基体にガラスを使用したものは、Low−E膜を成膜したLow−Eガラスとして、複層ガラスにおける使用が最も好ましく、建築用複層窓ガラスとして有用であるが、自動車用複層窓ガラスや自動車用合せガラスとしても使用することが可能であり、さらには船舶や航空機等の複層窓ガラスとしても使用できる。複層ガラスの外に合せガラス、曲げガラス等、場合によっては単板での使用も可能である。上記の低放射複層ガラスとは、主に2枚のガラスをスペーサーを介して合わせ、ガラス間には乾燥空気層を、乾燥空気層に接するガラス面にはLow−E膜を形成した窓ガラスである。該低放射複層ガラスは、窓ガラスを通して、夏季は室外から室内へと流入する日射熱、冬季は室内から室外へと流出する暖房熱を反射することで冷暖房費を抑え、省エネルギーに役立つ窓ガラスとして好適に用いられる。   The heat ray-shielding laminated film of the present invention, particularly those using glass as the substrate, is most preferably used as a multi-layer glass as a low-E glass having a low-E film formed thereon, and is useful as a multi-layer window glass for construction. However, it can also be used as a double-glazed window glass for automobiles and laminated glass for automobiles, and can also be used as a double-glazed window glass for ships and aircrafts. In addition to double-layer glass, laminated glass, bent glass, etc. may be used as a single plate in some cases. The above-mentioned low radiation multi-layer glass is a window glass in which mainly two glasses are combined through a spacer, a dry air layer is formed between the glasses, and a Low-E film is formed on the glass surface in contact with the dry air layer. It is. The low-radiation double-glazed glass is a window glass that helps to save energy by reflecting solar heat flowing from the outdoor to the indoor in the summer through the window glass, and heating and cooling heat flowing from the indoor to the outdoor in the winter. Is preferably used.

一般的に、上記の複層ガラスや合わせガラス、単板ガラス等で熱線遮蔽積層膜を使用する際、単板ガラスに熱線遮蔽積層膜が成膜された後、保管、運搬、洗浄等の過程を経た後、各製品に組み込まれる。一方で、熱線遮蔽積層膜の金属膜として広く用いられているAg膜は、水分などに起因する欠陥の発生や膜の剥離等が生じやすく、耐湿性に劣る膜とされており、上記の過程を経る中で膜の欠陥や剥離が生じることがある。本発明の熱線反射積層膜は、透明酸化物膜層としてZnSnを用いており、耐湿性に優れた膜であることから、製造工程における欠陥の発生を抑制することが可能であり、Low−Eガラスとして好適に使用される。 Generally, when a heat ray shielding laminated film is used with the above-mentioned multilayer glass, laminated glass, single plate glass, etc., after the heat ray shielding laminated film was formed on the single plate glass, it passed through processes such as storage, transportation, and washing. Later, it is incorporated into each product. On the other hand, the Ag film widely used as the metal film of the heat ray shielding laminated film is likely to cause defects due to moisture, peeling of the film, etc., and is inferior in moisture resistance. During the process, film defects and peeling may occur. The heat ray reflective laminated film of the present invention uses Zn x Sn y O z as a transparent oxide film layer, and is a film excellent in moisture resistance, so it is possible to suppress the occurrence of defects in the manufacturing process. Yes, it is suitably used as Low-E glass.

以下、実施例により本発明を具体的に説明する。ただし本発明は係る実施例に限定されるものではない。
1.透明酸化物膜形成時の欠陥に関する評価
実施例1
真空チャンバー内に、Zn-Snターゲット(Sn/(Zn+Sn)=12wt%)を設置し、DCマグネトロンスパッタリング装置の真空チャンバー内を真空ポンプで約5×10-4Paまでに脱気した後、混合ガスの体積がAr:O=2:8となるようにガスを導入し、チャンバー内の圧力を0.3Paに調整した。上記装置内にクリアーなソーダライムガラス基板(厚さ:3mm)を設置し、該ガラス基板上に、ZnSn膜を成膜した。
Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to the embodiment.
1. Example 1 for evaluation of defects during formation of transparent oxide film
After setting a Zn—Sn target (Sn / (Zn + Sn) = 12 wt%) in the vacuum chamber and degassing the vacuum chamber of the DC magnetron sputtering apparatus to about 5 × 10 −4 Pa with a vacuum pump The gas was introduced so that the volume of the mixed gas was Ar: O 2 = 2: 8, and the pressure in the chamber was adjusted to 0.3 Pa. A clear soda lime glass substrate (thickness: 3 mm) was placed in the apparatus, and a Zn x Sn y O z film was formed on the glass substrate.

比較例1〜7
真空チャンバー内に設置するターゲットを、Zn-Snターゲット(Sn/(Zn+Sn)=30wt%:比較例1、2wt%:比較例4)、Znターゲット(比較例2)、Snターゲット(比較例3)、Zn−Alターゲット(Al/(Zn+Al)=1wt%:比較例5、2wt%:比較例6、4wt%:比較例7)とした以外は、DCマグネトロンスパッタリング装置は実施例1と同様の条件で設定し、それぞれZnSn膜(比較例1、4)、ZnOx膜(比較例2)、SnOx膜(比較例3)、ZnAl膜(比較例5〜7)を成膜した。
Comparative Examples 1-7
The target to be installed in the vacuum chamber is a Zn—Sn target (Sn / (Zn + Sn) = 30 wt%: Comparative example 1, 2 wt%: Comparative example 4), Zn target (Comparative example 2), Sn target (Comparative example) 3), except that the Zn—Al target (Al / (Zn + Al) = 1 wt%: Comparative Example 5, 2 wt%: Comparative Example 6, 4 wt%: Comparative Example 7) was used. The Zn x Sn y O z film (Comparative Examples 1 and 4), the ZnO x film (Comparative Example 2), the SnO x film (Comparative Example 3), the Zn x Al y O z film ( Comparative examples 5 to 7) were formed.

[ノジュール、及び粒子屑の評価]
DC電源の出力電力を2.2kW/cmとし、約12時間通電させ、発生するノジュール、及び粒子屑を観測した。結果を表1に示し、ノジュール、又は粒子屑の発生が見られなかったものは○、見られたものを×とした。
[Evaluation of nodules and particle debris]
The output power of the DC power source was set to 2.2 kW / cm 2, and energized for about 12 hours, and generated nodules and particle dust were observed. The results are shown in Table 1, where no nodules or particle debris was observed, and ◯ was observed.

実施例1及び比較例1〜7より、ZnターゲットはSnターゲットと比較するとノジュールや粒子屑が生じ易く、また、ZnターゲットにSn又はAlを添加していくに従って、ノジュール及び粒子屑の発生が抑えられることがわかった。   From Example 1 and Comparative Examples 1 to 7, the Zn target is more likely to produce nodules and particle debris than the Sn target, and the generation of nodules and particle debris is suppressed as Sn or Al is added to the Zn target. I found out that

Figure 2011063500
Figure 2011063500

2.熱線遮蔽積層膜の作成
実施例2
DCマグネトロンスパッタリング装置の真空チャンバー内を真空ポンプで約5×10-4Paまでに脱気した後、混合ガスの体積がAr:O=2:8となるようにガスを導入し、チャンバー内の圧力を0.3Paに調整した。Zn-Snターゲット(Sn/(Zn+Sn)=12wt%)を用いて、クリアーなソーダライムガラス基板(厚さ:3mm)上に、170Åの厚さのZnSn膜を第1層として成膜した。次いで、真空チャンバー内のガスをArガスに変更し、チャンバー内の圧力を0.3Paに調整し、Agターゲットを用いて、108ÅのAg膜を第2層として成膜し、次いで、Zn−Alターゲット(Al/(Zn+Al)=4wt%)を用いて、20ÅのZnxAly層を第3層として成膜した。次いで、混合ガスの体積がAr:O=2:8となるようにチャンバー内のガスを変更し、チャンバー内の圧力を0.3Paに調整し、第1層と同じ条件で、450ÅのZnSn層を第4層として成膜した。次いで、Snターゲットを用いて、50Åの厚さのSnO層を第5層として成膜し、熱線遮蔽積層膜を得た。
2. Preparation of heat ray shielding laminated film Example 2
After degassing the vacuum chamber of the DC magnetron sputtering apparatus to about 5 × 10 −4 Pa with a vacuum pump, the gas is introduced so that the volume of the mixed gas becomes Ar: O 2 = 2: 8. Was adjusted to 0.3 Pa. Using a Zn—Sn target (Sn / (Zn + Sn) = 12 wt%), a first Zn x Sn y O z film having a thickness of 170 mm is formed on a clear soda-lime glass substrate (thickness: 3 mm). Deposited as a layer. Next, the gas in the vacuum chamber is changed to Ar gas, the pressure in the chamber is adjusted to 0.3 Pa, an Ag target is used to form a 108 Å Ag film as the second layer, and then Zn—Al Using a target (Al / (Zn + Al) = 4 wt%), a 20-inch Zn x Al y layer was formed as a third layer. Next, the gas in the chamber is changed so that the volume of the mixed gas becomes Ar: O 2 = 2: 8, the pressure in the chamber is adjusted to 0.3 Pa, and under the same conditions as in the first layer, 450 Zn Zn The x Sn y O z layer was formed as a fourth layer. Next, a SnO x layer having a thickness of 50 mm was formed as a fifth layer using a Sn target to obtain a heat ray shielding laminated film.

実施例3
クリアーなソーダライムガラス基板上に120Åの厚さのZnSn膜を成膜し、次いで、Zn−Alターゲット(Al/(Zn+Al)=4wt%)を用いた以外は、実施例2の第1層と同じ条件で、50ÅのZnAl膜を第2層として成膜し、次いで第3層、第4層、第5層、第6層を、それぞれ実施例2の第2層、第3層、第4層、第5層と同様の条件にて成膜し、熱線遮蔽積層膜を得た。
Example 3
Except that a Zn x Sn y Oz film having a thickness of 120 mm was formed on a clear soda-lime glass substrate and then a Zn-Al target (Al / (Zn + Al) = 4 wt%) was used. A 50-thick Zn x Al y O z film was formed as the second layer under the same conditions as the first layer in Example 2, and then the third layer, the fourth layer, the fifth layer, and the sixth layer were respectively formed in the examples. Films were formed under the same conditions as those for the second layer, the third layer, the fourth layer, and the fifth layer of No. 2 to obtain a heat ray shielding laminated film.

実施例4
クリアーなソーダライムガラス基板上に、第1層、第2層、第3層、第4層は、それぞれ実施例3の第1層、第2層、第3層、第4層と同じ条件にて、それぞれ同じ膜厚で成膜し、次いで第5層を、実施例3の第2層と同じ条件で、50Åとなるように成膜し、次いで、第6層、第7層を、それぞれ実施例2の第4層、第5層と同じ条件にて、それぞれ400Å、50Åとなるように成膜し、熱線遮蔽積層膜を得た。
Example 4
On the clear soda-lime glass substrate, the first layer, the second layer, the third layer, and the fourth layer are in the same conditions as the first layer, the second layer, the third layer, and the fourth layer of Example 3, respectively. Then, each film is formed with the same film thickness, and then the fifth layer is formed to be 50 mm under the same conditions as the second layer of Example 3, and then the sixth layer and the seventh layer are respectively formed. Under the same conditions as those of the fourth layer and the fifth layer in Example 2, films were formed so as to be 400 mm and 50 mm, respectively, and a heat ray shielding laminated film was obtained.

実施例5
クリアーなソーダライムガラス基板上に、実施例2の第1層、第2層、第3層、第4層のそれぞれと同じ条件にて、第1層として290Å、第2層として100Å、第3層として16Å、第4層として700Åの膜厚となるように成膜し、次いで第5層、第6層、第7層、第8層を、それぞれ実施例2の第2層、第3層、第4層、第5層と同じの条件にて、それぞれ115Å、16Å、270Å、50Åとなるように成膜し、熱線遮蔽積層膜を得た。
Example 5
On a clear soda-lime glass substrate, under the same conditions as the first layer, the second layer, the third layer, and the fourth layer of Example 2, the first layer is 290 mm, the second layer is 100 mm, the third layer The film was formed to a thickness of 16 mm as the fourth layer and 700 mm as the fourth layer, and then the fifth layer, the sixth layer, the seventh layer, and the eighth layer were respectively formed as the second layer and the third layer of Example 2. Under the same conditions as those of the fourth layer and the fifth layer, films were formed to have a thickness of 115 mm, 16 mm, 270 mm, and 50 mm, respectively, to obtain a heat ray shielding laminated film.

実施例6
クリアーなソーダライムガラス基板上に、実施例3の第1層、第2層、第3層、第4層、第5層のそれぞれと同じ条件にて、第1層として240Å、第2層として50Å、第3層として100Å、第4層として16Å、第5層として650Åの膜厚となるように成膜し、次いで第6層、第7層、第8層、第9層、第10層を、それぞれ、実施例3の第2層、第3層、第4層、第5層、第6層と同じの条件にて、それぞれ50Å、115Å、16Å、270Å、50Åとなるように成膜し、熱線遮蔽積層体を得た。
Example 6
On a clear soda-lime glass substrate, 240 Å as the first layer and as the second layer under the same conditions as the first layer, the second layer, the third layer, the fourth layer, and the fifth layer of Example 3 50 mm, 100 mm as the third layer, 16 mm as the fourth layer, 650 mm as the fifth layer, and then the sixth layer, the seventh layer, the eighth layer, the ninth layer, the tenth layer Are formed to be 50 mm, 115 mm, 16 mm, 270 mm, and 50 mm, respectively, under the same conditions as the second layer, third layer, fourth layer, fifth layer, and sixth layer of Example 3. As a result, a heat ray shielding laminate was obtained.

比較例8
クリアーなソーダライムガラス基板上に5層積層し、熱線遮蔽積層体を得た。第1層、第4層に、Zn- Alターゲット(Al/(Zn+Al)=4wt%)が備えられたカソードを用いて成膜を行った以外は、実施例2の第1層と同じ条件で、それぞれ170Å、450Åとなるように成膜した。第2層、第3層、第5層を、それぞれ実施例2の第2層、第3層、第5層と同様の条件にて、それぞれ成膜し、比較例8の熱線遮蔽積層体を得た。
Comparative Example 8
Five layers were laminated on a clear soda lime glass substrate to obtain a heat ray shielding laminate. Under the same conditions as the first layer of Example 2, except that the first layer and the fourth layer were formed using a cathode provided with a Zn-Al target (Al / (Zn + Al) = 4 wt%). The films were formed to be 170 mm and 450 mm, respectively. The second layer, the third layer, and the fifth layer were respectively formed under the same conditions as the second layer, the third layer, and the fifth layer of Example 2, and the heat ray shielding laminate of Comparative Example 8 was formed. Obtained.

比較例9
クリアーなソーダライムガラス基板上に4層積層し、熱線遮蔽積層体を得た。第1層目、第4層目は、実施例2の第5層と同じ条件で、それぞれ170Å、500Åとなるように成膜した。第2層、第3層を、それぞれ実施例2の第2層、第3層と同様の条件にてそれぞれ成膜し、比較例9の熱線遮蔽積層体を得た。
Comparative Example 9
Four layers were laminated on a clear soda lime glass substrate to obtain a heat ray shielding laminate. The first layer and the fourth layer were formed to have a thickness of 170 mm and 500 mm, respectively, under the same conditions as the fifth layer of Example 2. The second layer and the third layer were formed under the same conditions as the second layer and the third layer of Example 2, respectively, and a heat ray shielding laminate of Comparative Example 9 was obtained.

比較例10
クリアーなソーダライムガラス基板上に5層積層し、熱線遮蔽積層体を得た。第1層目、第4層目は、Zn−Snターゲット(Sn/(Zn+Sn)=30wt%)が備えられたカソードを用いて成膜した以外は、実施例2の第1層と同様の条件で、それぞれ170Å、450Åとなるように成膜した。第2層、第3層、第5層を、それぞれ実施例2の第2層、第3層、第5層と同様の条件にて、それぞれ成膜し、比較例10の熱線遮蔽積層体を得た。
Comparative Example 10
Five layers were laminated on a clear soda lime glass substrate to obtain a heat ray shielding laminate. The first and fourth layers have the same conditions as those of the first layer of Example 2 except that the first layer and the fourth layer are formed using a cathode provided with a Zn—Sn target (Sn / (Zn + Sn) = 30 wt%). Thus, films were formed to be 170 mm and 450 mm, respectively. The second layer, the third layer, and the fifth layer were respectively formed under the same conditions as the second layer, the third layer, and the fifth layer of Example 2, and the heat ray shielding laminate of Comparative Example 10 was formed. Obtained.

比較例11
クリアーなソーダライムガラス基板上に8層積層し、熱線遮蔽積層体を得た。第1層、第4層、第7層は、Zn−Alターゲット(Al/(Zn+Al)=4wt%)が備えられたカソードを用いて成膜を行った以外は、実施例2の第1層と同じ条件で、それぞれ290Å、700Å、270Åとなるように成膜した。第2層、第3層、第5層、第6層、第8層を、それぞれ実施例5の第2層、第3層、第5層、第6層、第8層と同様の条件でそれぞれ成膜し、比較例11の熱線遮蔽積層体を得た。
Comparative Example 11
Eight layers were laminated | stacked on the clear soda-lime glass substrate, and the heat ray shielding laminated body was obtained. The first layer, the fourth layer, and the seventh layer are the first layer of Example 2 except that the first layer, the fourth layer, and the seventh layer are formed using a cathode provided with a Zn—Al target (Al / (Zn + Al) = 4 wt%). The film was formed to be 290 mm, 700 mm, and 270 mm respectively under the same conditions as those described above. The second layer, the third layer, the fifth layer, the sixth layer, and the eighth layer are respectively the same conditions as the second layer, the third layer, the fifth layer, the sixth layer, and the eighth layer of the fifth embodiment. Each was formed into a film to obtain a heat ray shielding laminate of Comparative Example 11.

比較例12
クリアーなソーダライムガラス基板上に8層積層し、熱線遮蔽積層体を得た。第1層、第4層、第7層は、Zn−Snターゲット(Sn/(Zn+Sn)=30wt%)が備えられたカソードを用いて成膜を行った以外は、実施例2の第1層と同じ条件で、それぞれ290Å、700Å、270Åとなるように成膜した。第2層、第3層、第5層、第6層、第8層を、それぞれ実施例5の第2層、第3層、第5層、第6層、第8層と同様の条件でそれぞれ成膜を行い、比較例12の熱線遮蔽積層体を得た。
Comparative Example 12
Eight layers were laminated | stacked on the clear soda-lime glass substrate, and the heat ray shielding laminated body was obtained. The first layer, the fourth layer, and the seventh layer are the first layer of Example 2 except that the first layer, the fourth layer, and the seventh layer were formed using a cathode provided with a Zn—Sn target (Sn / (Zn + Sn) = 30 wt%). The film was formed to be 290 mm, 700 mm, and 270 mm respectively under the same conditions as those described above. The second layer, the third layer, the fifth layer, the sixth layer, and the eighth layer are respectively the same conditions as the second layer, the third layer, the fifth layer, the sixth layer, and the eighth layer of the fifth embodiment. Each film was formed to obtain a heat ray shielding laminate of Comparative Example 12.

3.熱線遮蔽積層体の評価
実施例2〜6、比較例8〜12で得られた熱線遮蔽積層体について、以下の評価を実施し、その結果を表2に示す。
3. Evaluation of heat ray shielding laminate The following evaluation was performed on the heat ray shielding laminates obtained in Examples 2 to 6 and Comparative Examples 8 to 12, and Table 2 shows the results.

[光学性能]
分光光度計U−4100((株)日立ハイテクノージ社製)を用い、300〜2500nmの波長範囲の透過率について測定を行った。その結果を用い、可視光透過率は、JIS R 3106に基づき算出し、紫外線透過率はISO9050に基づき算出した。
[Optical performance]
Using a spectrophotometer U-4100 (manufactured by Hitachi High-Technology Corporation), the transmittance in the wavelength range of 300 to 2500 nm was measured. Using the result, the visible light transmittance was calculated based on JIS R 3106, and the ultraviolet transmittance was calculated based on ISO9050.

[耐湿試験]
ガラス上に形成した熱線遮蔽積層体を30℃、90%Rhの環境試験機内で、2週間保管し、点状欠陥等の劣化箇所(0.3mmφ以上)の個数を目視にてカウントした。その結果、発生した欠陥数が1m2当り10個以下である場合を○、11〜20個である場合を△、21個以上である場合を×として、評価を行った。
[Moisture resistance test]
The heat ray shielding laminate formed on the glass was stored in an environmental tester at 30 ° C. and 90% Rh for 2 weeks, and the number of points of deterioration such as point defects (0.3 mmφ or more) was visually counted. As a result, the case where the number of generated defects was 10 or less per 1 m 2 was evaluated as ◯, the case of 11 to 20 as Δ, and the case of 21 or more as x.

実施例2〜6及び比較例8〜12より、可視光透過率はいずれも優れた値を示し、さらに、透明酸化物膜層としてSn含量が20wt%以下のZnSnを用いた場合、紫外光透過率、耐湿性ともに優れたものとなった。一方で、ZnSnの代わりにZnAlを用いた場合、耐湿性は優れたものとなるが、紫外光透過率に劣化する。また、ZnSnの代わりにSnOxを用いた場合、紫外光透過率、耐湿性、共に劣化する。さらに、透明酸化物膜層のSn含量が30wt%のZnSnを用いると、紫外光透過率、耐湿性、共に劣化したものとなる。 From Examples 2 to 6 and Comparative Examples 8 to 12, all visible light transmittances were excellent, and Zn x Sn y O z having a Sn content of 20 wt% or less was used as the transparent oxide film layer. In this case, both ultraviolet light transmittance and moisture resistance were excellent. On the other hand, when Zn x Al y O z is used instead of Zn x Sn y O z , the moisture resistance is excellent, but the ultraviolet light transmittance is deteriorated. Further, when SnO x is used instead of Zn x Sn y O z , both the ultraviolet light transmittance and the moisture resistance deteriorate. Further, Sn content of the transparent oxide film layer is the use of 30 wt% of Zn x Sn y O z, ultraviolet light transmittance, moisture resistance, and that both deteriorated.

以上のことから、透明酸化物膜層として、Sn含量が5〜20wt%であるZnSnを用いることで、可視光透過率、紫外光透過率、耐湿性、に優れた熱線遮蔽積層体を得ることが可能となることが明らかとなった。 From the above, by using Zn x Sn y O z with a Sn content of 5 to 20 wt% as the transparent oxide film layer, heat ray shielding excellent in visible light transmittance, ultraviolet light transmittance, and moisture resistance is achieved. It became clear that it became possible to obtain a laminated body.

Figure 2011063500
Figure 2011063500

1 ターゲット
2 基材ホルダー
3 ガラス
4 カソードマグネット
5 真空ポンプ
6 開閉バルブ
7 ガス導入管
8 真空チャンバー
9 電源コード
10 DC電源
11 バッキングプレート
12 搬送ロール
13 透明酸化物膜層
14 貴金属膜層
15 貴金属保護膜層
DESCRIPTION OF SYMBOLS 1 Target 2 Base material holder 3 Glass 4 Cathode magnet 5 Vacuum pump 6 On-off valve 7 Gas introduction pipe 8 Vacuum chamber 9 Power supply cord 10 DC power supply 11 Backing plate 12 Transport roll 13 Transparent oxide film layer 14 Precious metal film layer 15 Precious metal protective film layer

Claims (7)

基体上に真空成膜プロセスを経て形成される熱線遮蔽積層膜であり、該熱線遮蔽積層膜は、基体上に、少なくとも透明酸化物膜層、貴金属膜層、貴金属保護膜層、が順次積層されて成り、上記透明酸化物膜層はZnSn膜(x、y、zは正の有理数)を有し、該ZnSn膜は該膜に含まれるSnとZnとのSn/(Zn+Sn)で表される値が5〜20wt%であり、上記貴金属膜層はAg膜もしくはAgを主成分とする膜から成ることを特徴とする熱線遮蔽積層膜。 A heat ray shielding laminated film formed through a vacuum film forming process on a substrate, and the heat ray shielding laminated film is obtained by sequentially laminating at least a transparent oxide film layer, a noble metal film layer, and a noble metal protective film layer on the substrate. The transparent oxide film layer has a Zn x Sn y O z film (x, y, z are positive rational numbers), and the Zn x Sn y O z film contains Sn and Zn contained in the film. The heat ray shielding laminated film is characterized in that the value represented by Sn / (Zn + Sn) is 5 to 20 wt%, and the noble metal film layer is composed of an Ag film or a film containing Ag as a main component. 前記貴金属保護膜層は、Alが添加されたZn膜を有するものであり、該膜に含まれるAlとZnとのAl/(Zn+Al)で表される値が1〜10wt%であることを特徴とする請求項1に記載の熱線遮蔽積層膜。 The noble metal protective film layer has a Zn film to which Al is added, and a value represented by Al / (Zn + Al) of Al and Zn contained in the film is 1 to 10 wt%. The heat ray shielding laminated film according to claim 1. 基体から見て最も遠い貴金属保護膜層の基体と反対側に、SnO膜を有することを特徴とする請求項1又は請求項2に記載の熱線遮蔽積層膜。 3. The heat ray shielding laminated film according to claim 1, further comprising a SnO x film on the opposite side of the noble metal protective film layer farthest from the substrate to the substrate. 4. 上記熱線遮蔽積層膜を構成する貴金属膜層が1層である時、該熱戦遮蔽積層膜の紫外線透過率が40%以下であること特徴とする請求項1乃至請求項3のいずれか1項に記載の熱線遮蔽積層膜。 The ultraviolet ray transmittance of the thermal warpage shielding laminated film is 40% or less when the precious metal film layer constituting the heat ray shielding laminated film is one layer, according to any one of claims 1 to 3. The heat ray shielding laminated film as described. 上記熱線遮蔽積層膜を構成する貴金属膜層が2層である時、該熱戦遮蔽積層膜の紫外線透過率が25%以下であること特徴とする請求項1乃至請求項4のいずれか1項に記載の熱線遮蔽積層膜。 5. The ultraviolet ray transmittance of the thermal battle shielding laminated film is 25% or less when the noble metal film layer constituting the heat ray shielding laminated film is two layers. The heat ray shielding laminated film as described. 請求項1乃至請求項5のいずれか1項に記載の熱線遮蔽積層膜の製造方法は、ZnとSnとを含むZn−Sn合金スパッタリングターゲットを用いてZnSn膜を形成する工程、を含むことを特徴とする熱線遮蔽積層膜の製造方法。 Method for manufacturing a heat ray shielding laminated film according to any one of claims 1 to 5, the step of forming a Zn x Sn y O z layer with Zn-Sn alloy sputtering target containing Zn and Sn The manufacturing method of the heat ray shielding laminated film characterized by including these. 前記Zn−Sn合金スパッタリングターゲットは、該ターゲットに含まれるSnとZnとのSn/(Zn+Sn)で表される値が5〜20wt%である事を特徴する請求項6に記載の熱線遮蔽積層膜の製造方法。 The heat-shielding laminated film according to claim 6, wherein the Zn-Sn alloy sputtering target has a value represented by Sn / (Zn + Sn) of Sn and Zn contained in the target of 5 to 20 wt%. Manufacturing method.
JP2009274191A 2009-08-17 2009-12-02 Heat ray shielding laminated film Pending JP2011063500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009274191A JP2011063500A (en) 2009-08-17 2009-12-02 Heat ray shielding laminated film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009188170 2009-08-17
JP2009274191A JP2011063500A (en) 2009-08-17 2009-12-02 Heat ray shielding laminated film

Publications (1)

Publication Number Publication Date
JP2011063500A true JP2011063500A (en) 2011-03-31

Family

ID=43950140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009274191A Pending JP2011063500A (en) 2009-08-17 2009-12-02 Heat ray shielding laminated film

Country Status (1)

Country Link
JP (1) JP2011063500A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104626679A (en) * 2015-02-15 2015-05-20 珠海拾比佰彩图板股份有限公司 Laminated aluminum plate and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11268931A (en) * 1997-12-11 1999-10-05 Saint Gobain Vitrage Transparent material with thin layer having characteristic for reflecting infrared
JP2000052476A (en) * 1991-12-26 2000-02-22 Asahi Glass Co Ltd Heat ray barrier film
JP2003511342A (en) * 1999-10-14 2003-03-25 グラヴルベル Window glass
JP2007197237A (en) * 2006-01-25 2007-08-09 Nippon Sheet Glass Co Ltd Low-radiation double glazing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000052476A (en) * 1991-12-26 2000-02-22 Asahi Glass Co Ltd Heat ray barrier film
JPH11268931A (en) * 1997-12-11 1999-10-05 Saint Gobain Vitrage Transparent material with thin layer having characteristic for reflecting infrared
JP2003511342A (en) * 1999-10-14 2003-03-25 グラヴルベル Window glass
JP2007197237A (en) * 2006-01-25 2007-08-09 Nippon Sheet Glass Co Ltd Low-radiation double glazing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104626679A (en) * 2015-02-15 2015-05-20 珠海拾比佰彩图板股份有限公司 Laminated aluminum plate and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5262110B2 (en) Base with antireflection film
US6451434B1 (en) Glass laminate, functional transparent article and method of its production
CN105152549A (en) Coated glass and preparation method thereof
JP2007501184A (en) Corrosion resistant low emissivity coating
JP2008037667A (en) Laminated glass for window
WO1991002102A1 (en) Film based on silicon dioxide and production thereof
JP2007191384A (en) Low emissivity glass
CN105130209A (en) High-transmittance low-cost color-adjustable low-radiation energy-saving glass and preparation method thereof
JP2007070146A (en) Low emissive multilayered glass
JP6024369B2 (en) Glass laminate for windows
US9296649B2 (en) Process for producing laminate, and laminate
JP6601419B2 (en) Glass plate with laminated film and multilayer glass
JP2012032551A (en) Reflective lamination film
JP2004263290A (en) Electromagnetic-shielding ag alloy film, electromagnetic-shielding ag alloy film formed body, and ag alloy sputtering target for depositing electromagnetic-shielding ag alloy film
JP2011173764A (en) Low radiation film
JP2006206424A (en) Ag FILM FORMING METHOD AND LOW-EMISSIVITY GLASS
JPH10182192A (en) Heat insulating glass
JPH07178866A (en) Heat ray-blocking film and production thereof
WO2007072877A1 (en) Low emissivity glass
JP2011063500A (en) Heat ray shielding laminated film
JP2000226235A (en) Low-emissivity glass and its production
WO2010098200A1 (en) Stack article
JP2008222507A (en) Multiple glass
JP2011131574A (en) High-durability low-radiation laminate
JP2017132666A (en) Gray color tone radiation glass, and method for producing the gray color tone radiation glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20120921

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131017

A131 Notification of reasons for refusal

Effective date: 20131029

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140304