JP2011062582A - Instrument for accelerating micronization and gas-liquid mixing nozzle device - Google Patents

Instrument for accelerating micronization and gas-liquid mixing nozzle device Download PDF

Info

Publication number
JP2011062582A
JP2011062582A JP2009212756A JP2009212756A JP2011062582A JP 2011062582 A JP2011062582 A JP 2011062582A JP 2009212756 A JP2009212756 A JP 2009212756A JP 2009212756 A JP2009212756 A JP 2009212756A JP 2011062582 A JP2011062582 A JP 2011062582A
Authority
JP
Japan
Prior art keywords
liquid
miniaturization
gas
chamber
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009212756A
Other languages
Japanese (ja)
Other versions
JP5562601B2 (en
Inventor
Hiroyoshi Asakawa
博良 麻川
Ryota Kuge
良太 久下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nozzle Network Co Ltd
Original Assignee
Nozzle Network Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nozzle Network Co Ltd filed Critical Nozzle Network Co Ltd
Priority to JP2009212756A priority Critical patent/JP5562601B2/en
Publication of JP2011062582A publication Critical patent/JP2011062582A/en
Application granted granted Critical
Publication of JP5562601B2 publication Critical patent/JP5562601B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/0012Apparatus for achieving spraying before discharge from the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/08Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point
    • B05B7/0807Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point to form intersecting jets
    • B05B7/0861Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point to form intersecting jets with one single jet constituted by a liquid or a mixture containing a liquid and several gas jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0425Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid without any source of compressed gas, e.g. the air being sucked by the pressurised liquid

Landscapes

  • Nozzles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an instrument for accelerating micronization which can micronize droplet particles sprayed from a gas-liquid mixing nozzle; and to provide a gas-liquid mixing nozzle device for accelerating the micronization. <P>SOLUTION: The instrument for accelerating the micronization of the droplet particles has a micronization chamber in which liquid fine particles are entered. The micronization chamber is composed of at least one or more spaces having a cross-sectional area larger than that of an inlet space part. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、液微粒子を微細化することができる微細化促進用器具、および、この微細化促進用器具と、気液混合(または2流体)ノズルを備えた、微細化促進用の気液混合ノズル装置に関する。   The present invention relates to a miniaturization promoting device capable of miniaturizing liquid fine particles, and a gas-liquid mixing for promoting miniaturization provided with the miniaturization promoting device and a gas-liquid mixing (or two fluid) nozzle. The present invention relates to a nozzle device.

医療機器(例えば、吸入機)、半導体(成膜技術)、スプレードライヤー(セラミック新素材)、燃焼用バーナー等の分野で液滴径がサブミクロン(1〜10μm)またはナノ(1μm未満)粒子のニーズが普及しつつある。現状の霧化技術は、気液混合式(2流体式)、超音波式、超高圧式(100〜300MPa)、蒸発式等があるが、いずれも装置コストが高く、小型化が困難である。さらに、6μm以下のサブミクロンサイズ、ナノサイズの液滴平均粒子径が得られる装置は少ない。   In the fields of medical equipment (for example, inhalers), semiconductors (film formation technology), spray dryers (new ceramic materials), combustion burners, etc., the droplet size is submicron (1-10 μm) or nano (less than 1 μm) particles. Needs are spreading. Current atomization techniques include gas-liquid mixing type (two-fluid type), ultrasonic type, ultra-high pressure type (100 to 300 MPa), evaporation type, etc., all of which are expensive and difficult to miniaturize. . Furthermore, there are few apparatuses that can obtain submicron-size and nano-size droplet average particle diameters of 6 μm or less.

また、微粒子ミストを生成するための噴霧ノズル装置が知られている(特許文献1)。この噴霧ノズル装置は、第1ノズル部と第2ノズル部を有し、第1ノズル部からの噴射液と第2ノズル部からの噴射液とを衝突させて、微粒子ミストを形成することができる。しかしながら、2流体ノズル部を2つ備えるため、コスト高であり、小型化にも適していない。また、2流体のそれぞれを高圧の空気圧(3kg/cm)と水道水(水圧、50cc/min)とした場合に、この噴霧ノズル装置で形成された微粒子の平均粒径は8.8μm程度であり(特許文献1、段落番号0024)、6μm以下のサブミクロンサイズの噴霧粒子を得ることができない。 Moreover, the spray nozzle apparatus for producing | generating fine particle mist is known (patent document 1). This spray nozzle device has a first nozzle part and a second nozzle part, and can form a fine particle mist by colliding the spray liquid from the first nozzle part with the spray liquid from the second nozzle part. . However, since two two-fluid nozzle portions are provided, the cost is high and it is not suitable for downsizing. In addition, when each of the two fluids is a high pressure air pressure (3 kg / cm 2 ) and tap water (water pressure, 50 cc / min), the average particle size of the fine particles formed by this spray nozzle device is about 8.8 μm. Yes (Patent Document 1, Paragraph 0024), and submicron-sized spray particles of 6 μm or less cannot be obtained.

また、他の2流体ノズルとして特許文献2が知られている。特許文献2の2流体ノズルは、中心軸線に沿って液体流路20Bを設け、外周に環状の外側気体流路21Bを設け、液体流路の途中に液体分岐流路23を介設し、液体分岐流路の再合流位置に旋回手段28を配置して液体を一次微粒化させ、かつ、液体分岐流路で囲まれた中央部位に中央気体流入部25を形成し、中央気体流入部に外側気体流路より気体を導入して、旋回して環状膜となった液体の中央に気体を衝突混合で導入して、二次微粒化させながら第1混合を行わせ、さらに、再合流されて気液混合流路30となる流路周面に、外側気体流路を連通する気体流入孔15dを設けて、気液混合流路の混合流体に対して外周面より気体を衝突混合で流入して三次微粒化しながら第2混合を行わせて、噴射口16gより気液混合ミストとして噴射させている。しかしながら、ノズル内部の構造が複雑であり、コスト高である。また、噴霧流量を230〜700L/時間とした条件下において気水比100とすると、得られた噴霧液の平均粒子径が50μm程度であり、サブミクロンサイズの噴霧粒子を得ることができない。   Patent Document 2 is known as another two-fluid nozzle. The two-fluid nozzle of Patent Document 2 is provided with a liquid flow path 20B along the central axis, an annular outer gas flow path 21B is provided on the outer periphery, and a liquid branch flow path 23 is provided in the middle of the liquid flow path. The swirling means 28 is disposed at the re-merging position of the branch flow path to primary atomize the liquid, and the central gas inflow portion 25 is formed in the central portion surrounded by the liquid branch flow path, and the outer side of the central gas inflow portion Gas is introduced from the gas flow path, swirled to introduce the gas into the center of the liquid that has become an annular film by collision mixing, the first mixing is performed while secondary atomization is performed, and further recombined A gas inflow hole 15d that communicates with the outer gas flow path is provided on the circumferential surface of the flow path that becomes the gas-liquid mixing flow path 30, and gas flows into the mixed fluid of the gas-liquid mixing flow path from the outer peripheral surface by collision mixing. The second mixing is performed while making the particles fine, and the gas-liquid mixing mist is obtained from the injection port 16g. It is made to injection. However, the structure inside the nozzle is complicated and the cost is high. Further, when the air / water ratio is 100 under the condition that the spray flow rate is 230 to 700 L / hour, the average particle size of the obtained spray liquid is about 50 μm, and submicron-size spray particles cannot be obtained.

特開2002−126587号公報Japanese Patent Laid-Open No. 2002-126587 特開2002−159889号公報JP 2002-159889 A

本発明は、上記問題に鑑みてなされたものであって、気液混合ノズルから噴射された液微粒子(霧化体)を微細化させることができる微細化促進用器具、および微細化促進用の気液混合ノズル装置を提供することを目的とする。   The present invention has been made in view of the above-described problem, and is an instrument for promoting miniaturization capable of miniaturizing liquid fine particles (atomized body) ejected from a gas-liquid mixing nozzle, and for promoting miniaturization. An object is to provide a gas-liquid mixing nozzle device.

上記課題を解決するための本発明は、
液微粒子の微細化促進用器具であって、液微粒子が入射される微細化室を有し、
微細化室は、その入口空間部の横断面積より大きい横断面積の空間部を少なくとも1以上有して構成される。
The present invention for solving the above problems is as follows.
A device for accelerating the refinement of liquid particles, having a refinement chamber into which liquid particles are incident,
The miniaturization chamber is configured to have at least one space portion having a cross-sectional area larger than the cross-sectional area of the entrance space portion.

この構成によれば、微細化室に入射された液微粒子が、微細化室の入口空間部の横断面積より大きい横断面積の空間部によって効果的に微細化される。例えば、微細化室を同一半径の円筒形状、台錐形状、ラッパ形状等に形成した場合よりも、液微粒子を効果的に微細化でき、さらに長さ方向の寸法を小さくでき、コンパクトな形状を実現できる。   According to this configuration, the liquid fine particles incident on the miniaturization chamber are effectively miniaturized by the space portion having a cross-sectional area larger than the cross-sectional area of the entrance space portion of the miniaturization chamber. For example, compared to the case where the miniaturization chamber is formed in a cylindrical shape, a trapezoidal shape, a trumpet shape, etc. with the same radius, the liquid fine particles can be effectively miniaturized, and the size in the length direction can be further reduced, resulting in a compact shape. realizable.

微細化室の形状は、例えば、円筒状、楕円筒状、断面多角形状が例示され、ハンドリング性、加工性の観点から円筒状、楕円筒状が好ましく、円筒状がより好ましい。   Examples of the shape of the miniaturization chamber include a cylindrical shape, an elliptical cylindrical shape, and a polygonal cross section. From the viewpoint of handling properties and workability, a cylindrical shape and an elliptical cylindrical shape are preferable, and a cylindrical shape is more preferable.

「微細化室の入口空間部の横断面積より大きい横断面積の空間部」は、例えば、微細化室が円筒状の場合、入口空間部の円状の横断面積よりも大きい、円状、楕円状、または多角形状等の横断面積の空間部が微細化室に設けられることが挙げられる。また、他の表現で言えば、微細化室の内部空間の形状は、横断面積の小さい円筒状、楕円筒状、または多角柱状(内部が空洞である。以下同様。)の空間の中間部分に、それよりも大きい横断面積の円筒状、楕円筒状、または多角柱状の空間が1つ以上組み込まれた形状である。例えば、横断面積の小さい円筒状、楕円筒状、または多角柱状の入口空間部(例えば液微粒子の入口空間部)と、それより大きい横断面積の円筒状、楕円筒状、または多角柱状の中間空間部との段差間は、所定角度の傾斜面で連結することができる。横断面積の小さい円筒状、楕円筒状、または多角柱状の入口空間部と、それより大きい横断面積の円筒状、楕円筒状、または多角柱状の中間空間部のそれぞれの中心軸が、一致または実質的に一致していることが好ましい。この中間空間部は、微細化室の長さ方向のサイズをコンパクトにするために、1つ以上形成されることが好ましい。複数の中間空間部が配置される場合に、各々の中間空間部の形状は、同一でもよく、異なる形状の組み合わせも可能である。   For example, when the miniaturization chamber is cylindrical, the “space portion having a cross-sectional area larger than the cross-sectional area of the entrance space portion of the miniaturization chamber” is larger than the circular cross-sectional area of the entrance space portion. Alternatively, a space portion having a cross-sectional area such as a polygonal shape may be provided in the miniaturization chamber. In other words, the shape of the internal space of the miniaturization chamber is an intermediate portion of a space having a small cross-sectional area, a cylindrical shape, an elliptical cylindrical shape, or a polygonal column shape (the inside is a hollow, the same applies hereinafter). A shape in which one or more cylindrical, elliptical, or polygonal column spaces having a larger cross-sectional area are incorporated. For example, a cylindrical, elliptical cylinder, or polygonal column-shaped inlet space (for example, an inlet space for liquid particles) having a small cross-sectional area and a larger cylindrical, elliptical, or polygonal intermediate space having a larger cross-sectional area The steps with the part can be connected by an inclined surface having a predetermined angle. The central axes of the cylindrical, elliptical cylinder, or polygonal column entrance space with a small cross-sectional area and the cylindrical, elliptical cylinder, or polygonal column intermediate space with a larger cross-sectional area coincide or substantially match Preferably match. One or more intermediate spaces are preferably formed in order to make the size of the miniaturization chamber in the length direction compact. When a plurality of intermediate space portions are arranged, the shape of each intermediate space portion may be the same or a combination of different shapes is possible.

また、「微細化室の入口空間部の横断面積より大きい横断面積の空間部」は、例えば、微細化室が瓢箪形状、ダルマ形状のように、入口空間部の横断面積より大きい横断面積の空間部を有する形状にできる。図14に微細化室の内部空間形状の例を示す。図14(a)〜(e)は、微細化室の全体形状の噴射軸縦断面の例であり、図14(f)は、中間空間部(32、33)の噴射軸横断面の例である。図14において、符号31は入口空間部、32、33は中間空間部、34は出口空間部である。   In addition, “a space part having a cross-sectional area larger than the cross-sectional area of the entrance space part of the miniaturization chamber” means a space having a cross-sectional area larger than the cross-sectional area of the entrance space part, for example, the micronization chamber has a bowl shape or a dharma shape. A shape having a part can be formed. FIG. 14 shows an example of the internal space shape of the miniaturization chamber. 14 (a) to 14 (e) are examples of the vertical cross section of the entire shape of the miniaturization chamber, and FIG. 14 (f) is an example of the horizontal cross section of the intermediate space (32, 33). is there. In FIG. 14, reference numeral 31 denotes an entrance space, 32 and 33 denote intermediate spaces, and 34 denotes an exit space.

微細化室を構成する材料としては、例えば、金属、プラスチック、紙、不織布、ゴム、ガラス、これらの複合材料等が挙げられ、加工性、ディスポーザブル性、洗浄性等の製品仕様を考慮して選択できる。   Examples of materials constituting the miniaturization chamber include metals, plastics, paper, non-woven fabrics, rubber, glass, and composite materials thereof, which are selected in consideration of product specifications such as processability, disposable properties, and cleanability. it can.

例えば、市販の多種の気液混合ノズルにおいて、空気圧力20〜500kPa、噴霧流量1〜1000mL/minの条件下で、気液混合ノズルから噴霧された液微粒子(第1霧化体)の平均粒子径が10〜200μmの広範囲であった。そして、気液混合ノズルから噴霧された液微粒子(第1霧化体)中の粒子径の大きい霧(例えば、湿った霧)は、気液混合ノズルからの噴霧方向に対し大きな角度で広がる傾向にある(図1、「飛沫」参照)。粒子径の小さい霧(例えば、乾いた霧、煙霧)は、気液混合ノズルからの噴霧方向軸上に噴出する傾向にある(図1、霧化体参照)。例えば、図1の気液混合ノズルのスプレー半角が15°の場合に飛沫の噴出半角は約55°であって、飛沫粒子の平均粒子径が50〜100μmであり、スプレー半角15°部分の粒子の平均粒子径が10〜20μmであった。   For example, in various commercially available gas-liquid mixing nozzles, average particles of liquid fine particles (first atomized body) sprayed from the gas-liquid mixing nozzle under the conditions of an air pressure of 20 to 500 kPa and a spray flow rate of 1 to 1000 mL / min. The diameter was a wide range of 10 to 200 μm. And the mist (for example, wet mist) with a large particle diameter in the liquid fine particles (first atomized body) sprayed from the gas-liquid mixing nozzle tends to spread at a large angle with respect to the spray direction from the gas-liquid mixing nozzle. (See FIG. 1, “Splashes”). A mist having a small particle diameter (for example, dry mist, haze) tends to be ejected on the spray direction axis from the gas-liquid mixing nozzle (see FIG. 1, atomized body). For example, when the spray half angle of the gas-liquid mixing nozzle of FIG. 1 is 15 °, the spray half angle is about 55 °, the average particle size of the spray particles is 50 to 100 μm, and the spray half angle is 15 °. The average particle size of was 10-20 μm.

そして、微細化室に流入された液微粒子中の粒子径の大きい霧(例えば、湿った霧)は、微細化室壁面(入口空間部、中間の空間部)に衝突(または接触)し、微細化室壁面に付着し、大きな液滴に成長すると推察される。また、微細化室に流入した粒子径の小さい霧(例えば、乾いた霧)は、微細化室流入の際に微細化すると推察される。また、微細化室に流入した粒子径のより小さい霧(例えば、乾いた霧、煙霧)は、微細化室壁面に接触または衝突しても付着することなく空気中に浮遊する傾向にある。したがって、微細化室の機能によって、液微粒子中の大きい粒子径の霧(例えば、湿った霧)は、液滴に成長し、また粒子径の小さい霧(例えば、乾いた霧、その中でも粒子径の大きい霧)は、微細化されるため、流入された液微粒子よりも平均粒子径が小さい液微粒子を好適に生成することができる。   Then, the mist having a large particle diameter (for example, wet mist) in the liquid fine particles flowing into the micronization chamber collides (or comes into contact) with the micronization chamber wall surface (inlet space part, intermediate space part) It is presumed that it adheres to the chamber wall and grows into large droplets. Moreover, it is guessed that the mist (for example, dry mist) with the small particle diameter which flowed into the refinement | miniaturization chamber refines | miniaturizes in the refinement | purification chamber inflow. Further, a mist having a smaller particle diameter (for example, dry mist or smoke) that has flowed into the miniaturization chamber tends to float in the air without adhering to or contacting the micronization chamber wall surface. Therefore, due to the function of the miniaturization chamber, a mist having a large particle size (for example, a wet mist) in a liquid fine particle grows into a droplet, and a mist having a small particle size (for example, a dry mist, among which a particle size) Since the mist having a large particle size is refined, liquid fine particles having an average particle diameter smaller than that of the flowed liquid fine particles can be suitably generated.

また、上記構成の一実施形態として、微細化室が、液微粒子の入射軸上の入口近位に設けられる構成がある。この構成によれば、液微粒子の入射軸上に微細化室が配置されているため、液微粒子を微細化室にストレートにスムーズに送りこめる。   As an embodiment of the above configuration, there is a configuration in which the miniaturization chamber is provided in the vicinity of the entrance on the incident axis of the liquid fine particles. According to this configuration, since the miniaturization chamber is disposed on the incident axis of the liquid fine particles, the liquid fine particles can be smoothly fed straight into the miniaturization chamber.

また、上記構成の一実施形態として、液微粒子の入射軸上と所定の角度で傾斜する方向に、第2の微細化室をさらに有する構成がある。   As an embodiment of the above configuration, there is a configuration further including a second miniaturization chamber in a direction inclined at a predetermined angle with respect to the incident axis of the liquid fine particles.

第2の微細化室は、第1の微細化室の出口空間部と連結され、液微粒子の入射軸上と所定の角度で傾斜する方向に延設するように形成される。例えば、第1微細化室に、その入口空間部の横断面積よりも小さい横断面積の出口空間部が形成され、この出口空間部と、第2の微細化室の前段空間部が連結される。連結機構は特に制限されず、嵌合、ネジ構造等の着脱可能な連結構造が可能であり、液漏れのないように連結されるのが好ましい。また、この連結部に弾性リングを介在させて連結することもできる。   The second miniaturization chamber is connected to the exit space of the first miniaturization chamber and is formed to extend in a direction inclined at a predetermined angle with respect to the incident axis of the liquid fine particles. For example, an outlet space portion having a cross-sectional area smaller than the cross-sectional area of the inlet space portion is formed in the first miniaturization chamber, and the outlet space portion and the front space portion of the second miniaturization chamber are connected. The connection mechanism is not particularly limited, and can be a detachable connection structure such as a fitting or screw structure, and is preferably connected so as not to leak. Moreover, it can also connect by connecting an elastic ring to this connection part.

「所定の角度」としては、例えば、1°以上90°以下が例示される。例えば、第2の微細化室は、上記の前段空間部と、この前段空間部の中心軸方向と直行する方向に後段空間部とを有して形成される。前段空間部への流入によって液微粒子の2段階目の微細化が促進される。後段空間部の横断面積は、前段空間部のそれと同程度が好ましい。前段空間部と後段空間部を90°L型エルボの形状に構成でき、このL型の角部を円弧状または直角に構成でき、直角に構成したほうが、微細化の点で好ましい。直角に構成した角部に、液微粒子が接触する際に、乱流が生じ、液微粒子の微細化や大径微粒子の液滴成長が促進されると推察される。後段微細化室の出口に開口部を設け、開口面積を変動可能に構成することができる。   Examples of the “predetermined angle” include 1 ° or more and 90 ° or less. For example, the second miniaturization chamber is formed to have the above-described front space portion and a rear space portion in a direction perpendicular to the central axis direction of the front space portion. The inflow into the front space promotes the second stage of liquid fine particles. The cross-sectional area of the rear space part is preferably about the same as that of the front space part. It is preferable in terms of miniaturization that the front space portion and the rear space portion can be formed into a 90 ° L-shaped elbow shape, and the L-shaped corner portions can be formed in an arc shape or a right angle, and are formed in a right angle. It is inferred that turbulent flow is generated when the liquid fine particles come into contact with the corners formed at right angles, thereby promoting the refinement of the liquid fine particles and the growth of the large diameter fine particles. An opening can be provided at the outlet of the subsequent miniaturization chamber so that the opening area can be varied.

また、「液微粒子の入射軸上と所定の角度(90°を除く)で傾斜する方向に第2の微細化室を形成する」場合として、例えば、第1の微細化室の入口空間部の横断面積よりも小さい横断面積の出口空間部が形成され、この出口空間部と、第2の微細化室の前段空間部が連結される。連結機構は特に制限されず、嵌合、ネジ構造等の着脱可能な連結構造が可能であり、液漏れのないように連結されるのが好ましい。また、この連結部に弾性リングを介在させて連結することができる。   Further, as a case where “the second miniaturization chamber is formed in a direction inclined at a predetermined angle (except 90 °) with respect to the incident axis of the liquid fine particles”, for example, the entrance space portion of the first miniaturization chamber An exit space portion having a cross-sectional area smaller than the cross-sectional area is formed, and the exit space portion is connected to the front space portion of the second miniaturization chamber. The connection mechanism is not particularly limited, and can be a detachable connection structure such as a fitting or screw structure, and is preferably connected so as not to leak. Further, the connecting portion can be connected via an elastic ring.

第2の微細化室は、上記の前段空間部は液微粒子の入射軸上と所定の角度で傾斜する方向に延設された形状である。ここで「所定の角度」は、入射軸上に対し0°および90°(直行する)方向を除いた角度であり、例えば、0°を超えて90°未満、90°を超えて180°未満である。また、第2の微細化室は、この前段空間部と連結される後段空間部を有して構成することができる。例えば、後段空間部の入口空間部は、前段空間部の出口の横断面積よりも小さい横断面積とし、この入口空間部に、この横断面積よりも大きい横断面積の出口空間部を後段空間部に形成することができる。   The second miniaturization chamber has a shape in which the preceding space portion extends in a direction inclined at a predetermined angle with respect to the incident axis of the liquid fine particles. Here, the “predetermined angle” is an angle excluding 0 ° and 90 ° (perpendicular) directions with respect to the incident axis, for example, more than 0 ° and less than 90 °, more than 90 ° and less than 180 ° It is. In addition, the second miniaturization chamber can be configured to include a rear space portion connected to the front space portion. For example, the entrance space portion of the rear space portion has a cross-sectional area smaller than the cross-sectional area of the exit of the front space portion, and an exit space portion having a cross-sectional area larger than the cross-sectional area is formed in the rear space portion in the entrance space portion. can do.

第2の微細化室の前段空間部と後段空間部を一体に形成することができ、前段空間部と後段空間部を別部材として連結構成することもでき、これらを別部材にした場合、例えば洗浄性、加工性の点で好ましい。   The front space portion and the rear space portion of the second miniaturization chamber can be integrally formed, and the front space portion and the rear space portion can be connected as separate members. When these are separate members, for example, It is preferable in terms of detergency and workability.

第2の微細化室の形状は、特に制限されず、例えば、筒状、錐状(円錐、円錐台、多角錘、錐台も含む概念であって以下同じ。)、ラッパ状、多角柱、球状、多面体、これらの組み合わせ形状等が挙げられ、第1の微細化室の形状に応じた形状が加工性、コンパクト性、デザイン性の観点で好ましく、第1の微細化室が筒状であれば、第2の微細化室の形状も筒状で構成できる。   The shape of the second miniaturization chamber is not particularly limited. For example, a cylindrical shape, a cone shape (concept including a cone, a truncated cone, a polygonal pyramid, and a truncated cone, and the same shall apply hereinafter), a trumpet shape, a polygonal column, Examples include spherical shapes, polyhedrons, combinations of these, and the like, and shapes according to the shape of the first miniaturization chamber are preferable from the viewpoint of workability, compactness, and design, and the first miniaturization chamber should be cylindrical. For example, the shape of the second miniaturization chamber can also be configured as a cylinder.

第2の微細化室を構成する材料としては、例えば、金属、プラスチック、紙、不織布、ゴム、ガラス、これらの複合材料等が挙げられ、加工性、ディスポーザブル性、洗浄性等の製品仕様を考慮して選択できる。   Examples of materials constituting the second miniaturization chamber include metals, plastics, paper, non-woven fabrics, rubber, glass, and composite materials thereof, taking into consideration product specifications such as processability, disposable properties, and cleanability. Can be selected.

また、上記構成の一実施形態として、第2の微細化室の前段空間部の横断面積が、第1の微細化室の出口空間部の横断面積よりも大きい構成がある。上述したように、前段空間部への流入によって液微粒子の2段階目の微細化が促進される。   As an embodiment of the above configuration, there is a configuration in which the cross-sectional area of the front space portion of the second miniaturization chamber is larger than the cross-sectional area of the exit space portion of the first miniaturization chamber. As described above, the second step of liquid fine particles is promoted by the inflow into the front space.

また、上記構成の実施形態として、第2の微細化室の後段空間部の延長方向に、第3の微細化室を設ける構成がある。   Further, as an embodiment of the above configuration, there is a configuration in which a third miniaturization chamber is provided in the extending direction of the rear space portion of the second miniaturization chamber.

第3の微細化室の形状は、特に制限されず、例えば、筒状、錐状(円錐、円錐台、多角錘、錐台も含む概念であって以下同じ。)、ラッパ状、多角柱、球状、多面体、これらの組み合わせ形状等が挙げられ、第2の微細化室の形状に応じた形状が加工性、コンパクト性、デザイン性の観点で好ましく、第2の微細化室が筒状であれば、第3の微細化室の形状も筒状で構成できる。第3の微細化室と第2の微細化室は、例えば、ネジ式、嵌合式等の連結部で連結することができる。   The shape of the third miniaturization chamber is not particularly limited, and may be, for example, a cylindrical shape, a cone shape (concept including a cone, a truncated cone, a polygonal pyramid, and a truncated cone, the same shall apply hereinafter), a trumpet shape, a polygonal column, Examples include spherical shapes, polyhedrons, combinations of these, and the like, and shapes according to the shape of the second miniaturization chamber are preferable from the viewpoints of workability, compactness, and design, and the second miniaturization chamber is cylindrical. For example, the shape of the third miniaturization chamber can also be configured as a cylinder. The third miniaturization chamber and the second miniaturization chamber can be connected by a connecting portion such as a screw type or a fitting type, for example.

第3の微細化室を構成する材料としては、例えば、金属、プラスチック、紙、不織布、ゴム、ガラス、これらの複合材料等が挙げられ、加工性、ディスポーザブル性、洗浄性等の製品仕様を考慮して選択できる。   Examples of materials constituting the third miniaturization chamber include metals, plastics, paper, non-woven fabrics, rubber, glass, and composite materials thereof, taking into consideration product specifications such as processability, disposable properties, and cleanability. Can be selected.

また、上記構成の実施形態として、第1の微細化室の入口空間部内に、またはこの入口空間部とノズル先端部との間に、噴射された液微粒子のスプレー半角が30°以内、より好ましくは20°以内、さらに好ましく10°以内の液微粒子を入射可能とする開口を有する絞り部を設ける構成がある。   Further, as an embodiment of the above configuration, the spray half angle of the injected liquid fine particles is preferably within 30 ° in the inlet space portion of the first miniaturization chamber or between the inlet space portion and the nozzle tip portion. Has a configuration in which an aperture portion having an opening that allows incidence of liquid fine particles within 20 °, more preferably within 10 °, is provided.

この構成によれば、スプレー半角が30°を超える液微粒子中の飛沫(粒子径の大きい液微粒子)を効果的に取り除くことができる。   According to this configuration, it is possible to effectively remove splashes (liquid fine particles having a large particle diameter) in liquid fine particles having a spray half angle exceeding 30 °.

また、本発明の微細化促進用の気液混合ノズル装置は、
上記の微細化促進用器具と、
この微細化促進用器具の第1の微細化室に液微粒子を噴射する気液混合ノズルとを備える構成である。
Moreover, the gas-liquid mixing nozzle device for promoting miniaturization of the present invention is as follows.
The above-mentioned instrument for promoting miniaturization,
It is the structure provided with the gas-liquid mixing nozzle which injects liquid particulates to the 1st miniaturization chamber of this instrument for promoting miniaturization.

気液混合ノズルとしては、公知の気液混合ノズル(2流体ノズル)を用いることができ、これに上記の微細化促進用器具を備えることで、微細化促進用の気液混合ノズル装置を好適に構成できるため、低コスト、かつ小型化が可能である。気液混合ノズルは、例えば、金属製、プラスチック製、ゴム製、それらが混在したもの等が挙げられる。気液混合ノズル装置に供給される「気体」は、特に制限されず、例えば、空気、清浄空気、高酸素濃度空気、不活性ガス等の気体が挙げられる。また、気液混合ノズル装置に供給される「液体」は、特に制限されないが、水、イオン化水、化粧水等の化粧薬液、医薬液、殺菌液、除菌液等の薬液、塗料、燃料油、コーティング剤、溶剤、樹脂等が挙げられる。   As the gas-liquid mixing nozzle, a known gas-liquid mixing nozzle (two-fluid nozzle) can be used, and the gas-liquid mixing nozzle device for promoting miniaturization is suitable by including the above-described instrument for promoting miniaturization. Therefore, the cost can be reduced and the size can be reduced. Examples of the gas-liquid mixing nozzle include metal, plastic, rubber, and a mixture thereof. The “gas” supplied to the gas-liquid mixing nozzle device is not particularly limited, and examples thereof include gases such as air, clean air, high oxygen concentration air, and inert gas. In addition, the “liquid” supplied to the gas-liquid mixing nozzle device is not particularly limited, but is a chemical solution such as water, ionized water and lotion, a chemical solution such as a pharmaceutical solution, a bactericidal solution and a sterilizing solution, a paint, and a fuel oil. , Coating agents, solvents, resins and the like.

微細化促進用器具の各部材のサイズは、小型の気液混合ノズルと同程度に設計することができ、よって気液混合ノズル装置を小型にできる。第1の微細化室と気液混合ノズルとの連結構造は、特に制限されず、例えば、第1の微細化室の入口空間部をノズル先端部に直接固定する構造、第1の微細化室とノズル先端部との間に連結部を介在させる構造等が挙げられる。連結部は、例えばフレキシブルチューブ、管、ノズル筐体等が挙げられる。   The size of each member of the instrument for promoting miniaturization can be designed to be the same as that of a small gas-liquid mixing nozzle, and thus the gas-liquid mixing nozzle device can be reduced in size. The connection structure between the first miniaturization chamber and the gas-liquid mixing nozzle is not particularly limited. For example, the structure in which the inlet space of the first miniaturization chamber is directly fixed to the nozzle tip, the first miniaturization chamber And a structure in which a connecting portion is interposed between the nozzle tip portion and the nozzle tip portion. As for a connection part, a flexible tube, a pipe | tube, a nozzle housing | casing etc. are mentioned, for example.

一般的に、気液混合ノズルで形成され噴出される液微粒子(第1霧化体)の平均粒子径は大きく(例えば、6μmより大きく)、粒度分布において粒子径が大きくなる方向に分布が広くなる傾向であるが、この構成によれば、微細化促進用器具で微細化された液微粒子(第2霧化体)の平均粒子径は小さく(例えば、6μm以下)、粒度分布の分布幅も小さく、粒子径が略そろった霧となる。   In general, the average particle diameter of the liquid fine particles (first atomized body) formed and ejected by the gas-liquid mixing nozzle is large (for example, larger than 6 μm), and the distribution is wide in the direction of increasing the particle diameter in the particle size distribution. However, according to this configuration, the average particle diameter of the liquid fine particles (second atomized body) refined by the miniaturization promoting device is small (for example, 6 μm or less), and the distribution width of the particle size distribution is also small. The mist is small and has a substantially uniform particle size.

上記構成の一実施形態として、気液混合ノズルは、気体供給圧が低圧であって、液体供給圧力がフリーである構成がある。   As an embodiment of the above configuration, the gas-liquid mixing nozzle has a configuration in which the gas supply pressure is low and the liquid supply pressure is free.

気液混合ノズル装置に供給される気体の供給圧力は、例えば、5kPa〜100kPa以下、好ましくは、5kPa〜80kPa以下、より好ましくは5kPa〜50kPa以下、さらに好ましくは5kPa〜40kPa以下の低圧条件である。液体の供給圧力は、フリー、例えば、液体の供給圧力等の外的作用がない状態である。この条件において、ノズルを上方に向けて、気体の噴射作用で液体を吸い上げて、気液混合し、液微粒子を発生させ、微細化促進用器具の微細化室に噴射させることができる。装置外部に放出された液微粒子の平均粒子径としては、1.0μm以上6.0μm以下に、より好ましくは1.0μm以上5.0μm以下に、さらに好ましくは1.0μm以上4.0μm以下に構成できる。そして、気体供給圧力を小さくできるため、気液混合ノズル装置の気体送給に必要な駆動源(例えば、エアポンプ、電源、圧縮空気ボンベ、手動の空気送給機構)を小型化できる。   The supply pressure of the gas supplied to the gas-liquid mixing nozzle device is, for example, a low pressure condition of 5 kPa to 100 kPa, preferably 5 kPa to 80 kPa, more preferably 5 kPa to 50 kPa, and even more preferably 5 kPa to 40 kPa. . The supply pressure of the liquid is free, for example, there is no external action such as the supply pressure of the liquid. Under this condition, the liquid can be sucked up by the gas jetting action with the nozzle facing upward, gas-liquid mixed, liquid fine particles can be generated, and jetted into the miniaturization chamber of the miniaturization promoting instrument. The average particle size of the liquid fine particles released to the outside of the apparatus is 1.0 μm or more and 6.0 μm or less, more preferably 1.0 μm or more and 5.0 μm or less, and further preferably 1.0 μm or more and 4.0 μm or less. Can be configured. And since a gas supply pressure can be made small, the drive source (For example, an air pump, a power supply, a compressed air cylinder, a manual air supply mechanism) required for the gas supply of a gas-liquid mixing nozzle apparatus can be reduced in size.

上記構成の一実施形態として、第1の微細化室の入口部と連結されるノズル筐体部を備え、
ノズル筐体部は、外気が吸引される外気口と、
液微粒子の成長液が流通される液流通部と、
液の供給用および液微粒子の成長液を貯留する液貯部と、を備える構成がある。
As one embodiment of the above configuration, it comprises a nozzle casing connected to the inlet of the first miniaturization chamber,
The nozzle housing part has an outside air port through which outside air is sucked, and
A liquid distribution part through which a growth liquid of liquid fine particles is distributed;
And a liquid storage unit for storing a liquid supply and a liquid fine particle growth liquid.

ノズル筐体部の外気口によって、第1の微細化室に外気を流入することができ、微細化室内部の気圧バランスを調節できるため、ノズルから噴射される液微粒子(第1霧化体)の噴射速度や噴射量を微調整できて微細化作用を調整し、第1または第2の微細化室から流出される液微粒子(第2霧化体)の流出速度を調整できるため好ましい。この外気口は、1以上の孔、または1以上のスリットで構成できる。外気口は、気液混合ノズル先端部の高さ位置と略同じ位置またはその近位に形成されるのが好ましい。また、外気口を開閉可能に構成したり、外気口の開口面積を調整することで、微細化室に流入される気体量を調節できる。ここでの「気体」は、特に制限されず、例えば、空気、清浄空気、高酸素濃度空気、不活性ガス等の気体が挙げられる。   Since the outside air can flow into the first miniaturization chamber and the atmospheric pressure balance in the miniaturization chamber can be adjusted by the outside air port of the nozzle housing, the liquid fine particles ejected from the nozzle (first atomized body) The injection speed and the injection amount can be finely adjusted to adjust the refining action, and the outflow speed of the liquid fine particles (second atomized body) flowing out from the first or second miniaturization chamber can be adjusted. This outside air port can be composed of one or more holes or one or more slits. The outside air port is preferably formed at substantially the same position as the height position of the gas-liquid mixing nozzle tip or at the vicinity thereof. In addition, the amount of gas flowing into the miniaturization chamber can be adjusted by configuring the outside air port to be openable and closable, or by adjusting the opening area of the outside air port. The “gas” here is not particularly limited, and examples thereof include gases such as air, clean air, high oxygen concentration air, and inert gas.

微細化室の壁面や液粒子同士の衝突等で液滴に成長した、成長液は、自重によって落下し、液流通部を流通して液貯部に溜まる。この液貯部は、供給用の液が予め供給されており、液供給源としても機能する。これによって、落下してきた成長液は、再利用可能となっている。また、液貯部に、液体を供給するための注入部をさらに設けて、液体を連続的または間欠的に注入可能に構成できる。また、液貯部をノズル筐体から着脱可能に構成し、液貯部をディスポーザブルに構成することもできる。   The growth liquid, which has grown into droplets due to collisions between the wall of the miniaturization chamber or liquid particles, etc., falls by its own weight, flows through the liquid distribution section, and accumulates in the liquid storage section. The liquid storage unit is supplied with a supply liquid in advance, and also functions as a liquid supply source. Thereby, the dropped growth liquid can be reused. Further, the liquid storage part can be further provided with an injection part for supplying the liquid so that the liquid can be injected continuously or intermittently. Further, the liquid storage part can be configured to be detachable from the nozzle housing, and the liquid storage part can be configured to be disposable.

また、上記の第1および/または第2の微細化室は、液微粒子(霧化体)の液体に応じて、微細化室内壁の濡れ性(固体面と液体との付着性)を考慮した材料設計をすることが好ましい。また、微細化室内面にコーティング剤をコーティング、あるいは、租面化し、微細化を促進させることができる。液微粒子(第1霧化体)中の大きい粒子径の霧(例えば、湿った霧、乾いた霧中の大きい粒子径の霧)を微細化室の壁面に付着させて液滴に成長させることで、液微粒子(第1霧化体)全体の微細化を行って、平均粒子径の小さい液微粒子(第2霧化体)を形成することができる。また、飛沫として噴出するような大きい粒子径の霧を微細化室壁面に接触または衝突するように微細化室(液微粒子の入射軸方向の壁面を凹凸にするような上記の中間の空間部)を構成して、大きい霧を液滴に成長させることが好ましい。   In addition, the first and / or second miniaturization chambers described above take into consideration the wettability (adhesion between the solid surface and the liquid) of the miniaturization chamber wall according to the liquid of the liquid fine particles (atomized body). It is preferable to design the material. In addition, the surface of the miniaturized chamber can be coated with or coated with a coating agent to promote miniaturization. By depositing a mist having a large particle size (for example, a wet mist or a mist having a large particle size in a dry mist) in a liquid fine particle (first atomized body) on the wall of the micronization chamber to grow into a droplet The liquid fine particles (first atomized body) as a whole can be refined to form liquid fine particles (second atomized body) having a small average particle diameter. In addition, the finer chamber (the intermediate space part that makes the wall surface in the direction of the incident axis of the liquid fine particles uneven) so that a mist with a large particle size that is ejected as a droplet contacts or collides with the wall of the finer chamber It is preferable to form a large mist into droplets.

気液混合ノズルから噴出された霧化体の一例の写真を示す図である。It is a figure which shows the photograph of an example of the atomized body ejected from the gas-liquid mixing nozzle. 実施形態1の微細化促進用の気液混合ノズル装置の例を示す断面模式図および外観模式図である。It is the cross-sectional schematic diagram and external appearance schematic diagram which show the example of the gas-liquid mixing nozzle apparatus for refinement | miniaturization of Embodiment 1. FIG. 実施形態2の微細化促進用の気液混合ノズル装置の例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the example of the gas-liquid mixing nozzle apparatus for refinement | miniaturization of Embodiment 2. FIG. 実施形態3の微細化促進用の気液混合ノズル装置の例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the example of the gas-liquid mixing nozzle apparatus for refinement | miniaturization of Embodiment 3. FIG. 実施形態4の微細化促進用の気液混合ノズル装置の例を示す模式図である。It is a schematic diagram which shows the example of the gas-liquid mixing nozzle apparatus for refinement | miniaturization of Embodiment 4. FIG. その他の気液混合ノズル装置の例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the example of another gas-liquid mixing nozzle apparatus. 気液混合ノズル先端部分の例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the example of a gas-liquid mixing nozzle front-end | tip part. 気液混合ノズル先端部分の例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the example of a gas-liquid mixing nozzle front-end | tip part. 気液混合ノズル先端部分の例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the example of a gas-liquid mixing nozzle front-end | tip part. 水オリフィス、空気オリフィスの断面を示す図である。It is a figure which shows the cross section of a water orifice and an air orifice. 液微粒子の粒度分布の一例を示す図である。It is a figure which shows an example of the particle size distribution of a liquid microparticle. 液微粒子の粒度分布の一例を示す図である。It is a figure which shows an example of the particle size distribution of a liquid microparticle. 液微粒子の粒度分布の一例を示す図である。It is a figure which shows an example of the particle size distribution of a liquid microparticle. 第1の微細化室の内部空間形状の例を示す図である。It is a figure which shows the example of the internal space shape of a 1st refinement | miniaturization chamber. 実施形態5の微細化促進用の気液混合ノズル装置の例を示す模式図である。FIG. 9 is a schematic diagram illustrating an example of a gas-liquid mixing nozzle device for promoting miniaturization according to a fifth embodiment. 実施形態5の微細化促進用の気液混合ノズル装置の例を示す模式図である。FIG. 9 is a schematic diagram illustrating an example of a gas-liquid mixing nozzle device for promoting miniaturization according to a fifth embodiment. 実施形態5の微細化促進用の気液混合ノズル装置の例を示す模式図である。FIG. 9 is a schematic diagram illustrating an example of a gas-liquid mixing nozzle device for promoting miniaturization according to a fifth embodiment.

(実施形態1)
以下に、実施形態1の微細化促進用の気液混合ノズル装置について図2を用いて説明する。図2(a)は断面模式図であり、(b)は外観模式図である。気液混合ノズル装置1は、気液混合ノズル10と、気液混合ノズルを収納するノズル筐体部20と、このノズル筐体部20と連結される第1の微細化室30と、この第1の微細化室30と連結され、液微粒子の噴射軸方向と直交する方向に延設される第2の微細化室40(前段空間部42,後段空間部43)とを有して構成される。ノズル筐体部20と第1の微細化室30の入口空間部31は、着脱自在に連結される。
(Embodiment 1)
The gas-liquid mixing nozzle device for promoting miniaturization according to the first embodiment will be described below with reference to FIG. 2A is a schematic cross-sectional view, and FIG. 2B is a schematic external view. The gas-liquid mixing nozzle device 1 includes a gas-liquid mixing nozzle 10, a nozzle housing part 20 that houses the gas-liquid mixing nozzle, a first miniaturization chamber 30 that is connected to the nozzle housing part 20, The second micronization chamber 40 (the front space part 42 and the rear space part 43) is connected to the first micronization chamber 30 and extends in a direction perpendicular to the liquid particle injection axis direction. The The nozzle housing 20 and the inlet space 31 of the first miniaturization chamber 30 are detachably connected.

ノズル筐体部20には、外気が吸引される外気口21と、液微粒子の成長液が自重落下して流通される液流通部22と、液の供給用および液微粒子の成長液を貯留する液貯部23とを有して構成される。   The nozzle housing part 20 stores an outside air port 21 through which outside air is sucked, a liquid circulation part 22 through which a growth liquid of liquid fine particles falls and circulates, and a liquid supply liquid supply liquid growth liquid. And a liquid storage unit 23.

気液混合ノズル10は、気体供給部11から気体を気体オリフィスに流通する気体流通部12と、液貯部23の液体を液体オリフィスに流通する液体流通部13が形成される。図7にノズル先端14の断面を示し、ノズル先端14は、気体オリフィス101内に、液体オリフィス102が配置される構成である。ここでの気液混合ノズル10は一般的な構造である。   In the gas-liquid mixing nozzle 10, a gas circulation part 12 that circulates gas from the gas supply part 11 to the gas orifice and a liquid circulation part 13 that circulates the liquid in the liquid storage part 23 to the liquid orifice are formed. FIG. 7 shows a cross section of the nozzle tip 14, and the nozzle tip 14 has a configuration in which the liquid orifice 102 is disposed in the gas orifice 101. The gas-liquid mixing nozzle 10 here has a general structure.

図8、9に示すノズル先端14では、気体オリフィス101先端よりも、液体オリフィス102先端が、内部方向にずれて配置される構成例である。噴射量を増加するための好ましい実施形態として、気体オリフィス101内に液体オリフィス102が配置される際に、気体オリフィス101のストレート部の始端部Cから、そのストレート長さの80%の距離までに液体オリフィス102の先端が配置されることが好ましく、始端部Cから、そのストレート長さの50%の距離までに液体オリフィス102の先端が配置される(図8参照)ことがより好ましく、始端部Cから、そのストレート長さの20%の距離までに液体オリフィス102の先端が配置されることがさらに好ましく、始端部Cの近傍に液体オリフィス102の先端が配置される(図9参照)ことが特に好ましい。始端部Cの近傍は、始端部Cから、気体オリフィス101のストレート長さの1%の距離から15%の距離である。あるいは、始端部Cからの液体オリフィス先端までの距離が、0.01mm以上0.1mm以下が好ましく、0.01mm以上0.08mm以下がより好ましく、0.02mm以上0.08mm以下がさらに好ましい。   The nozzle tip 14 shown in FIGS. 8 and 9 is a configuration example in which the tip of the liquid orifice 102 is shifted from the tip of the gas orifice 101 in the inner direction. As a preferred embodiment for increasing the injection amount, when the liquid orifice 102 is disposed in the gas orifice 101, the distance from the start end C of the straight portion of the gas orifice 101 to a distance of 80% of the straight length. It is preferable that the tip of the liquid orifice 102 is disposed, and it is more preferable that the tip of the liquid orifice 102 is disposed from the start end C to a distance of 50% of the straight length (see FIG. 8). More preferably, the tip of the liquid orifice 102 is disposed from C to a distance of 20% of the straight length, and the tip of the liquid orifice 102 is disposed in the vicinity of the starting end C (see FIG. 9). Particularly preferred. The vicinity of the start end C is a distance of 1% to 15% of the straight length of the gas orifice 101 from the start end C. Alternatively, the distance from the starting end C to the liquid orifice tip is preferably 0.01 mm or more and 0.1 mm or less, more preferably 0.01 mm or more and 0.08 mm or less, and further preferably 0.02 mm or more and 0.08 mm or less.

図2(a)の第1の微細化室30は、ノズル先端14からの液噴射軸方向にノズル筐体10と着脱自在に連結され、液微粒子(第1霧化体)を受け入れる。第1の微細化室30は、その外観が円筒状であり、その内部空間において、入口空間部31の円状の横断面積よりも大きい円状の横断面積の中間空間部32、33が2つ連接され、さらに出口空間部34が連接して形成される。各空間部間の段差は、所定角度の傾斜面で連接されている。また、入口空間部31、中間空間部32、33、出口空間部34のそれぞれの中心軸は一致または実質的に一致している。ここでは中間空間部32、33を2つ連接した構成としているが、1つでもよく2つ以上連接する構成もできる。なお、横断面は、液微粒子の噴射軸方向と直交する方向の断面である。   The first micronization chamber 30 in FIG. 2A is detachably connected to the nozzle housing 10 in the direction of the liquid ejection axis from the nozzle tip 14 and receives liquid fine particles (first atomized body). The first miniaturization chamber 30 is cylindrical in appearance, and has two intermediate space portions 32 and 33 having a circular cross-sectional area larger than the circular cross-sectional area of the entrance space portion 31 in the internal space. The outlet space 34 is connected and formed. The steps between the space portions are connected by inclined surfaces having a predetermined angle. In addition, the central axes of the inlet space portion 31, the intermediate space portions 32 and 33, and the outlet space portion 34 are matched or substantially matched. In this example, two intermediate space portions 32 and 33 are connected to each other. However, one or two or more intermediate space portions 32 and 33 may be connected. In addition, a cross section is a cross section of the direction orthogonal to the injection axis direction of a liquid particulate.

出口空間部34の円状横断面積は、入口空間部31の円状横断面積よりも小さく構成し、中間空間部32、33の円状横断面積が、入口空間部31の円状横断面積より大きく構成している。図2において、中間空間部32、33のそれぞれの円状横断面積は同一に構成されているが、異なるように構成することもできる。   The circular cross-sectional area of the outlet space portion 34 is configured to be smaller than the circular cross-sectional area of the inlet space portion 31, and the circular cross-sectional areas of the intermediate space portions 32 and 33 are larger than the circular cross-sectional area of the inlet space portion 31. It is composed. In FIG. 2, the circular cross-sectional areas of the intermediate space portions 32 and 33 are configured to be the same, but may be configured to be different.

出口空間部34の壁面と第2の微細化室の入口連結部41が着脱自在に連結(例えば、ネジ式、嵌合式等)される。第2の微細化室40は、前段空間部42と、この前段空間部42の中心軸方向と直行する方向に後段空間部43とを有し、前段空間部42と後段空間部43がL型エルボの形状である。このL型の内壁角部43aは直角に構成される。直角に構成したほうが、微細化の点で好ましい。内壁角部43aに、液微粒子が接触する際に、乱流が生じ、液微粒子の微細化や大径微粒子の液滴成長が促進される。後段微細化室43の出口に開口部44が設けられ、開口面積を変動可能に構成している。   The wall surface of the outlet space 34 and the inlet connecting portion 41 of the second miniaturization chamber are detachably connected (for example, screw type, fitting type, etc.). The second miniaturization chamber 40 has a front space portion 42 and a rear space portion 43 in a direction perpendicular to the central axis direction of the front space portion 42. The front space portion 42 and the rear space portion 43 are L-shaped. The shape of the elbow. The L-shaped inner wall corner 43a is formed at a right angle. A right angle configuration is preferable in terms of miniaturization. When liquid fine particles come into contact with the inner wall corner portion 43a, turbulent flow is generated, and liquid fine particles are refined and large-diameter fine particles are promoted to grow. An opening 44 is provided at the outlet of the latter-stage miniaturization chamber 43 so that the opening area can be varied.

上記のように、ノズル筐体20、第1の微細化室30、第2の微細化質40とを別体で構成し、着脱可能な構造(例えば、ネジ式、嵌合式等)で取り付けることで、それら部材の清掃、メンテナンスを容易に行なえ、さらにはそれら部材をそれぞれ使い捨てにすることもできる(以下の実施形態においても同様である)。また、別実施形態として、第1の微細化室30と、第2の微細化室40とを一体構造に構成することもできる。   As described above, the nozzle housing 20, the first miniaturization chamber 30, and the second miniaturization material 40 are configured separately and attached with a detachable structure (for example, screw type, fitting type, etc.). Thus, these members can be easily cleaned and maintained, and each of these members can be made disposable (the same applies to the following embodiments). As another embodiment, the first miniaturization chamber 30 and the second miniaturization chamber 40 can be configured as an integral structure.

また、ノズル筐体10に外気を流入するための外気口21を複数形成して、第1の微細化室30内の気圧を調節して、微細化作用を微調整し、微細化された液微粒子の放出速度を調節することができる。   In addition, a plurality of outside air ports 21 for allowing outside air to flow into the nozzle housing 10 are formed, and the air pressure in the first miniaturization chamber 30 is adjusted to finely adjust the miniaturization effect, thereby reducing the fine liquid. The release rate of the fine particles can be adjusted.

以上の実施形態1によれば、第1の微細化室30および第2の微細化室40で、液微粒子を効果的に微細化することができる。そして微細化されず、液滴に成長した液は、液流通部22を流通して液貯部23に貯まり、供給液として再利用可能に構成される。   According to the first embodiment described above, the liquid fine particles can be effectively miniaturized in the first miniaturization chamber 30 and the second miniaturization chamber 40. The liquid that has not been refined and has grown into droplets flows through the liquid circulation part 22 and is stored in the liquid storage part 23 so that it can be reused as a supply liquid.

(実施例1)
図2の気液混合ノズル装置を用いて、水オリフィス径(φdw[mm])、空気オリフィス外径(φda[mm])を変化させた場合における空気圧(Pa[kPa])、空気流量(Qa[NL/min]、水全噴射量(Qw[ml/min])、粒子径(目視確認)について測定した結果を表1に示す。気液混合ノズル装置を図2に示すように上方に向けて静置させ、液貯部での液面高さが水オリフィス先端から−25mmとなるように水を予め供給しておき、噴射開始から1分間測定した。装置の各部材の寸法は、以下の通りであり、円筒状のノズル筐体部の外径がφ40mm、円筒状の第1の微細化室の外径がφ50mm、第1の微細化室の入口空間部の内径がφ30mm、その出口空間部の内径がφ20mm、円筒状の第2の微細化室の内径が34mm、第2の微細化室の出口の開口部の内径が25mm、装置の横幅が73mm、装置全長が185mmである。空気オリフィス先端と水オリフィス先端の位置は、図7に示すように一致している。空気供給駆動源にコンプレッサーを用いた。空気オリフィス内径(φdb)は、0.5mmで一定とした(図10参照)。
Example 1
Air pressure (Pa [kPa]) and air flow rate (Qa) when the water orifice diameter (φdw [mm]) and the air orifice outer diameter (φda [mm]) are changed using the gas-liquid mixing nozzle device of FIG. The results measured for [NL / min], the total water injection amount (Qw [ml / min]), and the particle diameter (visual confirmation) are shown in Table 1. The gas-liquid mixing nozzle device is directed upward as shown in FIG. Then, water was supplied in advance so that the liquid level at the liquid reservoir was −25 mm from the tip of the water orifice, and the measurement was performed for 1 minute from the start of injection. The outer diameter of the cylindrical nozzle housing is 40 mm, the outer diameter of the cylindrical first miniaturization chamber is 50 mm, the inner diameter of the inlet space of the first miniaturization chamber is 30 mm, and its outlet The internal diameter of the space is φ20mm, and the cylindrical second miniaturization chamber The diameter is 34 mm, the inner diameter of the opening at the outlet of the second micronization chamber is 25 mm, the lateral width of the device is 73 mm, and the overall length of the device is 185 mm. A compressor was used as the air supply drive source, and the air orifice inner diameter (φdb) was constant at 0.5 mm (see FIG. 10).

次に、図8に示すように、空気オリフィス先端よりも水オリフィス先端を内部に0.25mm引っ込めて配置した構成と、図9に示すように、空気オリフィス先端よりも水オリフィス先端を内部に0.5mm引っ込めて配置した構成について実施した。いずれの場合も、図7の構成の場合よりも、低圧の空気圧下で全噴射量が高い傾向をしめした。図9の構成の結果を表2に示す。なお、空気オリフィスのストレート長さ寸法は、0.51mmである。   Next, as shown in FIG. 8, the water orifice tip is retracted 0.25 mm inside the air orifice tip, and the water orifice tip is set to 0 inside the air orifice tip as shown in FIG. It implemented about the structure arrange | positioned by retracting 5 mm. In either case, the total injection amount tended to be higher under low pressure air pressure than in the case of the configuration of FIG. The results of the configuration of FIG. The straight length of the air orifice is 0.51 mm.

表1と表2の結果から、気液混合ノズル装置は、液微粒子を好適に微細化していることが確認できた。また、水オリフィス先端位置を空気オリフィス先端位置よりも内部に配置したほうが、より低圧の空気圧条件で、水全噴射量(Qw)を大きくできる傾向にあることが分かった。また、より好ましくは空気オリフィスの始端部の近傍に水オリフィス先端を配置した方が、より低圧条件で、水全噴射量(Qw)を大きくできる傾向にあることが分かった。   From the results of Tables 1 and 2, it was confirmed that the gas-liquid mixing nozzle device suitably refined the liquid fine particles. Further, it has been found that the total water injection amount (Qw) tends to be increased under a lower pressure air pressure condition when the water orifice tip position is disposed inside than the air orifice tip position. Further, it has been found that the total water injection amount (Qw) tends to be increased under a lower pressure condition when the tip of the water orifice is more preferably arranged in the vicinity of the start end of the air orifice.

(実施例2)
図2の気液混合ノズル装置において、水オリフィス径(φdw)を0.38mm、空気オリフィス外径(φda)を0.66mm、空気オリフィス内径(φdb)を0.5mmとした。微粒化促進用器具は、実施例1と同様である。図7に示すように、空気オリフィス先端と水オリフィス先端の位置は一致させてある。この気液混合ノズル装置を図2に示すように上方に向けて静置させ、液貯部での液面高さが水オリフィス先端から−25mmとなるように水を予め供給しておき、噴射を開始した。この時の空気圧(Pa)32kPa、38kPa、63kPaのそれぞれにおける、空気流量(Qa[NL/min])、水全噴射量(Qw[ml/min])、算術平均粒子径(μm)の測定結果を表3に示し、それぞれの粒度分布(粒子径ヒストグラム(個数分布))を図11(32kPa)、図12(38kPa)、図13(63kPa)に示す。測定として、液微粒子の噴出位置(開口部)から距離7mmの位置でレーザー測定した結果である。レーザー測定の方法として、位相差ドップラー式レーザー粒子解析(PDI)方法を用いた。また、微細化促進用器具を取り付けていない状態の気液混合ノズルのみから噴射された液微粒子の算術平均粒子径は、空気圧32kPaで12.3μm、空気圧38kPaで12.1μm、空気圧63kPaで11.4μmであった。
(Example 2)
In the gas-liquid mixing nozzle device of FIG. 2, the water orifice diameter (φdw) was 0.38 mm, the air orifice outer diameter (φda) was 0.66 mm, and the air orifice inner diameter (φdb) was 0.5 mm. The device for promoting atomization is the same as in Example 1. As shown in FIG. 7, the positions of the air orifice tip and the water orifice tip are matched. As shown in FIG. 2, this gas-liquid mixing nozzle device is allowed to stand upward, and water is supplied in advance so that the liquid level in the liquid storage part is −25 mm from the tip of the water orifice, Started. Measurement results of air flow rate (Qa [NL / min]), total water injection amount (Qw [ml / min]), and arithmetic average particle diameter (μm) at air pressure (Pa) of 32 kPa, 38 kPa, and 63 kPa at this time Are shown in Table 3, and the particle size distribution (particle diameter histogram (number distribution)) is shown in FIG. 11 (32 kPa), FIG. 12 (38 kPa), and FIG. 13 (63 kPa). The measurement is a result of laser measurement at a distance of 7 mm from the liquid fine particle ejection position (opening). A phase difference Doppler laser particle analysis (PDI) method was used as a laser measurement method. In addition, the arithmetic average particle diameter of the liquid fine particles ejected only from the gas-liquid mixing nozzle without the miniaturization promoting device is 12.3 μm at an air pressure of 32 kPa, 12.1 μm at an air pressure of 38 kPa, and 11.3 at an air pressure of 63 kPa. It was 4 μm.

表3の結果から分かるように、微細化促進用器具を取り付けた気液混合ノズル装置は、ノズルから噴射された液微粒子を効果的に微細化(算術平均粒子径として約1/2に微細化)していることが確認できた。   As can be seen from the results in Table 3, the gas-liquid mixing nozzle device equipped with a device for promoting miniaturization effectively refines the liquid fine particles ejected from the nozzle (the arithmetic mean particle size is reduced to about 1/2). ) Was confirmed.

(実施形態2)
以下に、実施形態2の微細化促進用の気液混合ノズル装置について図3を用いて説明する。実施形態2の気液混合ノズル装置1において、実施形態1と同様の構成については説明を省略し、異なる構成について説明する。
(Embodiment 2)
The gas-liquid mixing nozzle device for promoting miniaturization according to the second embodiment will be described below with reference to FIG. In the gas-liquid mixing nozzle device 1 of the second embodiment, the description of the same configuration as that of the first embodiment will be omitted, and a different configuration will be described.

第2の微細化室240の入口連結部241は、第1の微細化室30の出口空間部壁面と着脱可能に連結される。第2の微細化室240の前段空間部242は、液微粒子の入射軸上と45度の角度で傾斜する方向に延設された形状である。前段空間部242の出口壁面と、後段空間部243の入口壁面が着脱自在に連結される。後段空間部243の入口空間部243aは、前段空間部242の出口の横断面積よりも小さい横断面積とし、この入口空間部243aに、この横断面積よりも大きい横断面積の出口空間部243bが連接されて、後段空間部243が形成されている。   The inlet connection portion 241 of the second miniaturization chamber 240 is detachably connected to the wall surface of the outlet space portion of the first miniaturization chamber 30. The front space 242 of the second miniaturization chamber 240 has a shape extending in a direction inclined at an angle of 45 degrees with respect to the incident axis of the liquid fine particles. The outlet wall surface of the front space part 242 and the inlet wall surface of the rear space part 243 are detachably connected. The entrance space portion 243a of the rear space portion 243 has a cross-sectional area smaller than the cross-sectional area of the exit of the front space portion 242, and the exit space portion 243b having a cross-sectional area larger than the cross-sectional area is connected to the entrance space portion 243a. Thus, a rear space portion 243 is formed.

以上の実施形態2によれば、第1の微細化室30および第2の微細化室240で、液微粒子を効果的に微細化することができる。そして微細化されず、液滴に成長した液は、液流通部22を流通して液貯部23に貯まり、供給液として再利用可能に構成される。   According to the second embodiment described above, the liquid fine particles can be effectively miniaturized in the first miniaturization chamber 30 and the second miniaturization chamber 240. The liquid that has not been refined and has grown into droplets flows through the liquid circulation part 22 and is stored in the liquid storage part 23 so that it can be reused as a supply liquid.

(実施例)
図3の気液混合ノズル装置を用いて、実施形態1の実施例と同様の測定を行った。結果として、気液混合ノズル装置は、液微粒子を好適に微細化していることを確認できた。
(Example)
Using the gas-liquid mixing nozzle device of FIG. 3, the same measurement as in the example of Embodiment 1 was performed. As a result, it was confirmed that the gas-liquid mixing nozzle device suitably refined the liquid fine particles.

(実施形態3)
以下に、実施形態3の微細化促進用の気液混合ノズル装置について図4を用いて説明する。実施形態3の気液混合ノズル装置1において、実施形態1と同様の構成については説明を省略し、異なる構成について説明する。
(Embodiment 3)
The gas-liquid mixing nozzle device for promoting miniaturization according to Embodiment 3 will be described below with reference to FIG. In the gas-liquid mixing nozzle device 1 of the third embodiment, the description of the same configuration as that of the first embodiment will be omitted, and a different configuration will be described.

第2の微細化室340の入口連結部341は、第1の微細化室30の出口空間部壁面と着脱可能に連結される。第2の微細化室340の前段空間部342は、液微粒子の噴射軸上にストレートに延設された形状である。   The inlet connection portion 341 of the second miniaturization chamber 340 is detachably connected to the wall surface of the outlet space portion of the first miniaturization chamber 30. The front space part 342 of the second miniaturization chamber 340 has a shape extending straight on the injection axis of the liquid fine particles.

以上の実施形態3によれば、第1の微細化室30および第2の微細化室340で、液微粒子を効果的に微細化することができる。そして微細化されず、液滴に成長した液は、液流通部22を流通して液貯部23に貯まり、供給液として再利用可能に構成される。   According to the third embodiment described above, the liquid fine particles can be effectively miniaturized in the first miniaturization chamber 30 and the second miniaturization chamber 340. The liquid that has not been refined and has grown into droplets flows through the liquid circulation part 22 and is stored in the liquid storage part 23 so that it can be reused as a supply liquid.

(実施例)
図4の気液混合ノズル装置を用いて、実施形態1の実施例と同様の測定を行った。結果として、気液混合ノズル装置は、液微粒子を好適に微細化していることを確認できた。
(Example)
Using the gas-liquid mixing nozzle device of FIG. 4, the same measurement as in the example of Embodiment 1 was performed. As a result, it was confirmed that the gas-liquid mixing nozzle device suitably refined the liquid fine particles.

(実施形態4)
以下に、実施形態4の微細化促進用の気液混合ノズル装置について図5を用いて説明する。実施形態1および2と異なる構成について説明し、その他の構成については説明を省略する。
(Embodiment 4)
The gas-liquid mixing nozzle device for promoting miniaturization according to Embodiment 4 will be described below with reference to FIG. A configuration different from the first and second embodiments will be described, and the description of the other configurations will be omitted.

第1の微細化室30の入口空間部31内に、噴射中心軸上に所定サイズの開口部35aが形成された遮蔽面35(絞り部に相当する)が形成される。液微粒子は、開口部35aを通じて後段の微細化室空間に流入する構成である。開口部35aを設けることで、噴射中心部の液微粒子のみを選択的に後段の微細化室空間に流入することができ、図1の大きい微粒子や飛沫を好適に遮蔽面に衝突させて、液貯部23に流通させることができる。また、ノズル先端部14の位置と略水平の位置で第1の微細化室30にスリットまたは孔36、および、その位置に応じたスリットまたは孔25をノズル筐体部20に形成することが好ましい。これによって気体を流入させて、噴射された液微粒子の微細化を調整することができる。   In the entrance space 31 of the first miniaturization chamber 30, a shielding surface 35 (corresponding to a throttle) having an opening 35a of a predetermined size is formed on the injection center axis. The liquid fine particles are configured to flow into the subsequent miniaturization chamber space through the opening 35a. By providing the opening 35a, only the liquid fine particles at the injection center can selectively flow into the subsequent miniaturization chamber space, and the large fine particles and droplets in FIG. It can be distributed to the storage unit 23. Further, it is preferable to form a slit or hole 36 in the first miniaturization chamber 30 and a slit or hole 25 corresponding to the position in the nozzle housing 20 at a position substantially horizontal to the position of the nozzle tip 14. . As a result, gas can be introduced to adjust the fineness of the ejected liquid fine particles.

以上の実施形態4によれば、遮蔽面35で飛沫等の粒子径の大きいものを効率よく除去でき、微細化されず、液滴に成長した液は、液流通部22を流通して液貯部23に貯まり、供給液として再利用可能に構成される。   According to the fourth embodiment described above, the liquid having a large particle diameter such as droplets on the shielding surface 35 can be efficiently removed, and the liquid that has not been miniaturized and has grown into droplets flows through the liquid circulation part 22 and is stored in the liquid. The unit 23 is configured to be reusable as a supply liquid.

(実施例)
図5の気液混合ノズル装置を用いて、実施形態1の実施例と同様の測定を行った。結果として、気液混合ノズル装置は、液微粒子を好適に微細化していることを確認できた。
(Example)
Using the gas-liquid mixing nozzle device of FIG. 5, the same measurement as in the example of Embodiment 1 was performed. As a result, it was confirmed that the gas-liquid mixing nozzle device suitably refined the liquid fine particles.

(実施形態5)
以下に、実施形態5の微細化促進用の気液混合ノズル装置について図15、16を用いて説明する。実施形態1と異なる構成について説明し、その他の構成については説明を省略する。
(Embodiment 5)
The gas-liquid mixing nozzle device for promoting miniaturization according to the fifth embodiment will be described below with reference to FIGS. A configuration different from that of the first embodiment will be described, and description of other configurations will be omitted.

第3の微細化室50は、第2の微細化室40の後段空間部30の延長方向に設けられる。第3の微細化室50は、長さ方向の断面が円錐台形状である。   The third miniaturization chamber 50 is provided in the extending direction of the rear space 30 of the second miniaturization chamber 40. The third miniaturization chamber 50 has a truncated cone shape in the longitudinal section.

図16に示すように、第3の微細化室50の入口側端部51は、第2の微細化室40の後段空間部43の内部に配置され、この入口側端部51が前段空間部42の内壁面(A)と一致する位置からこの前段空間部42の長手方向中心軸(B)の位置までに配置されることが好ましい。また、入口側端部51がAからBの位置を自在に移動可能に連結されることが好ましい。これによって、使用目的に応じて、第3の微細化室50の見かけの長さを変化させて、液微粒子の噴射量、平均粒子径を微調整することができる。この第3の微細化室50によって、さらに微細化が促進される。   As shown in FIG. 16, the inlet side end portion 51 of the third miniaturization chamber 50 is disposed inside the rear space portion 43 of the second miniaturization chamber 40, and this inlet side end portion 51 is the front space portion. It is preferable to be arranged from a position coinciding with the inner wall surface (A) of 42 to the position of the central axis (B) in the longitudinal direction of the preceding space portion 42. Moreover, it is preferable that the entrance side end part 51 is connected so that the position of A to B can move freely. Thereby, the apparent length of the third miniaturization chamber 50 can be changed in accordance with the purpose of use, and the injection amount of liquid fine particles and the average particle diameter can be finely adjusted. The third miniaturization chamber 50 further promotes miniaturization.

また、図17に示すように、第1の微細化室の入口空間部31とノズル先端部14との間に、噴射された液微粒子のスプレー半角(α)が30°以内、より好ましくは20°以内、さらに好ましく10°以内の液微粒子を入射可能とする開口61を有する絞り部60が設けられる。この絞り部60は、上記実施形態4の遮蔽面35と同様の機能を発揮する。   In addition, as shown in FIG. 17, the spray half angle (α) of the sprayed liquid fine particles between the inlet space 31 of the first miniaturization chamber and the nozzle tip 14 is within 30 °, more preferably 20 An aperture portion 60 having an opening 61 that allows liquid fine particles within 10 °, more preferably within 10 °, to be incident is provided. The diaphragm 60 exhibits the same function as the shielding surface 35 of the fourth embodiment.

(実施例3)
図15の気液混合ノズル装置を用いて、水オリフィス径0.35(φdw[mm])、空気オリフィス外径0.66(φda[mm])、空気オリフィス内径0.5(φdb[mm])における空気圧(Pa[kPa])、空気流量(Qa[NL/min]、水全噴射量(Qw[ml/min])、粒子径(目視)について測定した結果を表4に示す。気液混合ノズル装置を図2に示すように上方に向けて静置させ、液貯部での液面高さが水オリフィス先端から−25mmとなるように水を予め供給しておき、噴射開始から1分間測定した。装置の各部材の寸法は、以下の通りであり、円筒状のノズル筐体部の外径がφ40mm、円筒状の第1の微細化室の外径がφ50mm、第1の微細化室の入口空間部の内径がφ30mm、出口空間部の内径がφ20mm、円筒状の第2の微細化室の内径が34mm、円筒状の第3の微細化室の出口開口部の外径が40mm、装置の横幅が153mm、装置全長が203mmである。絞り部の開口直径は、φ15mm、この開口位置は、スプレー半角が30°に相当するように設置した。空気オリフィス先端と水オリフィス先端の位置は、図7に示すように一致している。空気供給駆動源にコンプレッサーを用いた。
(Example 3)
Using the gas-liquid mixing nozzle device of FIG. 15, the water orifice diameter 0.35 (φdw [mm]), the air orifice outer diameter 0.66 (φda [mm]), the air orifice inner diameter 0.5 (φdb [mm]) Table 4 shows the measurement results of air pressure (Pa [kPa]), air flow rate (Qa [NL / min], total water injection amount (Qw [ml / min]), and particle diameter (visually). As shown in FIG. 2, the mixing nozzle device is allowed to stand upward, and water is supplied in advance so that the liquid level at the liquid storage portion is −25 mm from the tip of the water orifice. The dimensions of each member of the apparatus are as follows: the outer diameter of the cylindrical nozzle housing is 40 mm, the outer diameter of the cylindrical first miniaturization chamber is 50 mm, and the first fineness The inner diameter of the inlet space of the chemical chamber is φ30mm, the inner diameter of the outlet space The inner diameter of the cylindrical second miniaturization chamber is φ20 mm, the outer diameter of the outlet opening of the cylindrical third miniaturization chamber is 40 mm, the lateral width of the device is 153 mm, and the overall length of the device is 203 mm. The opening diameter of this was set to 15 mm, and this opening position was set so that the spray half-angle corresponded to 30 ° The positions of the air orifice tip and the water orifice tip coincide as shown in Fig. 7. Air supply drive A compressor was used as the source.

(別実施形態)
図6に他の気液混合ノズル装置の一例を示す。第1および第2の微細化室540が一体形成されて、液微粒子の入射軸に対しストレートに配置され、後段部分において45度の傾斜で延設されている。この構成の場合には、液微粒子の微細化がなされるものの、長さ方向のサイズが、図2から5の実施形態よりも大きくなる。
(Another embodiment)
FIG. 6 shows an example of another gas-liquid mixing nozzle device. The first and second miniaturization chambers 540 are integrally formed, are arranged straight with respect to the incident axis of the liquid fine particles, and extend at an inclination of 45 degrees in the rear stage portion. In the case of this configuration, although the liquid fine particles are miniaturized, the size in the length direction is larger than that in the embodiment of FIGS.

1 微細化促進用の気液混合ノズル装置
10 気液混合ノズル
20 ノズル筐体
30 第1の微細化室
40 第2の微細化室
50 第3の微細化室
DESCRIPTION OF SYMBOLS 1 Gas-liquid mixing nozzle apparatus for refinement | miniaturization 10 Gas-liquid mixing nozzle 20 Nozzle housing | casing 30 1st miniaturization chamber 40 2nd miniaturization chamber 50 3rd miniaturization chamber

Claims (9)

液微粒子の微細化促進用の器具であって、
液微粒子が入射される微細化室を有し、
微細化室は、その入口空間部の横断面積より大きい横断面積の空間部を少なくとも1以上有して構成される、微細化促進用器具。
An instrument for promoting the refinement of liquid particles,
It has a miniaturization chamber where liquid particles are incident,
The miniaturization chamber is configured to have at least one space portion having a cross-sectional area larger than the cross-sectional area of the entrance space portion.
微細化室が、液微粒子の入射軸上の入口近位に設けられる請求項1に記載の微細化促進用器具。   The instrument for promoting miniaturization according to claim 1, wherein the miniaturization chamber is provided in the vicinity of the entrance on the incident axis of the liquid fine particles. 液微粒子の入射軸上と所定の角度で傾斜する方向に、第2の微細化室を、さらに有する請求項1または2に記載の微細化促進用器具。   The instrument for promoting miniaturization according to claim 1 or 2, further comprising a second miniaturization chamber in a direction inclined at a predetermined angle with respect to the incident axis of the liquid fine particles. 第2の微細化室の前段空間部の横断面積が、第1の微細化室の出口空間部の横断面積よりも大きい、請求項1から3のいずれか1項に記載の微細化促進用器具。   The instrument for promoting miniaturization according to any one of claims 1 to 3, wherein a cross-sectional area of the front space portion of the second miniaturization chamber is larger than a cross-sectional area of the outlet space portion of the first miniaturization chamber. . 第2の微細化室の後段空間部の延長方向に、第3の微細化室を設ける請求項2から4のいずれか1項に記載の微細化促進用器具。   The micronization promoting device according to any one of claims 2 to 4, wherein a third micronization chamber is provided in an extending direction of a rear space portion of the second micronization chamber. 第1の微細化室の入口空間部内に、またはこの入口空間部とノズル先端部との間に、噴射された液微粒子のスプレー半角が30°以内の液微粒子を入射可能とする開口を有する絞り部を設ける請求項2から5のいずれか1項に記載の微細化促進用器具。   A diaphragm having an opening that allows liquid fine particles having a spray half angle within 30 ° of the injected liquid fine particles to be incident in the inlet space of the first miniaturization chamber or between the inlet space and the nozzle tip. The instrument for promoting miniaturization according to any one of claims 2 to 5, wherein a portion is provided. 請求項1から6のいずれか1項に記載の微細化促進用器具と、
微細化促進用器具の第1の微細化室に液微粒子を噴射する気液混合ノズルと、を備える微細化促進用の気液混合ノズル装置。
An instrument for promoting miniaturization according to any one of claims 1 to 6,
A gas-liquid mixing nozzle device for promoting miniaturization, comprising: a gas-liquid mixing nozzle for injecting liquid fine particles into a first miniaturization chamber of an instrument for promoting miniaturization.
気液混合ノズルは、気体供給圧が低圧であって、液体供給圧力がフリーである、請求項7に記載の気液混合ノズル装置。   The gas-liquid mixing nozzle device according to claim 7, wherein the gas-liquid mixing nozzle has a low gas supply pressure and a free liquid supply pressure. 第1の微細化室の入口部と連結されるノズル筐体部を備え、
ノズル筐体部は、外気が吸引される外気口と、
液微粒子の成長液が流通される液流通部と、
液の供給用および液微粒子の成長液を貯留する液貯部と、を備える請求項7または8に記載の気液混合ノズル装置。

A nozzle housing connected to the inlet of the first miniaturization chamber;
The nozzle housing part has an outside air port through which outside air is sucked, and
A liquid distribution part through which a growth liquid of liquid fine particles is distributed;
The gas-liquid mixing nozzle device according to claim 7, further comprising: a liquid storage unit that supplies liquid and stores a growth liquid of liquid fine particles.

JP2009212756A 2009-09-15 2009-09-15 Miniaturization promoting device and gas-liquid mixing nozzle device for miniaturization promoting device Active JP5562601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009212756A JP5562601B2 (en) 2009-09-15 2009-09-15 Miniaturization promoting device and gas-liquid mixing nozzle device for miniaturization promoting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009212756A JP5562601B2 (en) 2009-09-15 2009-09-15 Miniaturization promoting device and gas-liquid mixing nozzle device for miniaturization promoting device

Publications (2)

Publication Number Publication Date
JP2011062582A true JP2011062582A (en) 2011-03-31
JP5562601B2 JP5562601B2 (en) 2014-07-30

Family

ID=43949431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009212756A Active JP5562601B2 (en) 2009-09-15 2009-09-15 Miniaturization promoting device and gas-liquid mixing nozzle device for miniaturization promoting device

Country Status (1)

Country Link
JP (1) JP5562601B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073336A1 (en) * 2011-11-14 2013-05-23 ノズルネットワーク株式会社 Liquid atomization device
WO2013125555A1 (en) * 2012-02-21 2013-08-29 ノズルネットワーク株式会社 Liquid atomization device
EP2799149A1 (en) * 2011-12-19 2014-11-05 Nozzle Network Co., Ltd Liquid atomization device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5552026U (en) * 1978-10-03 1980-04-07
JPH08215614A (en) * 1995-02-13 1996-08-27 Nippondenso Co Ltd Atomizer
JPH08299866A (en) * 1995-04-28 1996-11-19 Yoshino Kogyosho Co Ltd Hood of trigger type spray
JPH08309240A (en) * 1995-05-12 1996-11-26 Yoshino Kogyosho Co Ltd Hood for trigger type atomizer
JPH09253539A (en) * 1996-03-22 1997-09-30 Yoshino Kogyosho Co Ltd Trigger type jetting device with hood
JPH11507296A (en) * 1995-06-09 1999-06-29 ケイシー,アラン,パトリック Nozzle for discharging a mixture of liquid and gas
JPH11325394A (en) * 1998-05-08 1999-11-26 Toshiba Mach Co Ltd Oil mist separator
JP2001190990A (en) * 1999-12-22 2001-07-17 Visteon Global Technologies Inc Nozzle
JP2005502463A (en) * 2001-09-19 2005-01-27 シー.アディガ カイヤーニ Method and apparatus for generation, extraction and delivery of vapor with ultrafine droplets
JP2005238156A (en) * 2004-02-27 2005-09-08 Toto Ltd Apparatus for forming composite structure
JP2008023459A (en) * 2006-07-21 2008-02-07 Takuma Co Ltd Two-fluid spray nozzle
JP2008161831A (en) * 2006-12-28 2008-07-17 Daikin Ind Ltd Bubble generator
JP2010125427A (en) * 2008-11-28 2010-06-10 Shinwa:Kk Nozzle for generating microbubble

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5552026U (en) * 1978-10-03 1980-04-07
JPH08215614A (en) * 1995-02-13 1996-08-27 Nippondenso Co Ltd Atomizer
JPH08299866A (en) * 1995-04-28 1996-11-19 Yoshino Kogyosho Co Ltd Hood of trigger type spray
JPH08309240A (en) * 1995-05-12 1996-11-26 Yoshino Kogyosho Co Ltd Hood for trigger type atomizer
JPH11507296A (en) * 1995-06-09 1999-06-29 ケイシー,アラン,パトリック Nozzle for discharging a mixture of liquid and gas
JPH09253539A (en) * 1996-03-22 1997-09-30 Yoshino Kogyosho Co Ltd Trigger type jetting device with hood
JPH11325394A (en) * 1998-05-08 1999-11-26 Toshiba Mach Co Ltd Oil mist separator
JP2001190990A (en) * 1999-12-22 2001-07-17 Visteon Global Technologies Inc Nozzle
JP2005502463A (en) * 2001-09-19 2005-01-27 シー.アディガ カイヤーニ Method and apparatus for generation, extraction and delivery of vapor with ultrafine droplets
JP2005238156A (en) * 2004-02-27 2005-09-08 Toto Ltd Apparatus for forming composite structure
JP2008023459A (en) * 2006-07-21 2008-02-07 Takuma Co Ltd Two-fluid spray nozzle
JP2008161831A (en) * 2006-12-28 2008-07-17 Daikin Ind Ltd Bubble generator
JP2010125427A (en) * 2008-11-28 2010-06-10 Shinwa:Kk Nozzle for generating microbubble

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073336A1 (en) * 2011-11-14 2013-05-23 ノズルネットワーク株式会社 Liquid atomization device
EP2799149A1 (en) * 2011-12-19 2014-11-05 Nozzle Network Co., Ltd Liquid atomization device
EP2799149A4 (en) * 2011-12-19 2015-03-25 Nozzle Network Co Ltd Liquid atomization device
JPWO2013094522A1 (en) * 2011-12-19 2015-04-27 ノズルネットワーク株式会社 Liquid atomizer
WO2013125555A1 (en) * 2012-02-21 2013-08-29 ノズルネットワーク株式会社 Liquid atomization device

Also Published As

Publication number Publication date
JP5562601B2 (en) 2014-07-30

Similar Documents

Publication Publication Date Title
JP2010247106A (en) Gas-liquid mixing nozzle device for miniaturization acceleration
JP6174056B2 (en) Inhalation device and mixing channel for inhalation device
JP6487041B2 (en) Atomizer nozzle
KR101119211B1 (en) Apparatus Generating Minute Particles And Micro/Nano Bubbles And System Using The Same
JP3544350B2 (en) Spray nozzle device
JP2011212665A (en) Two-fluid nozzle and atomizing device provided with two-fluid nozzle
WO2009157803A1 (en) Aerosol device
JP5562601B2 (en) Miniaturization promoting device and gas-liquid mixing nozzle device for miniaturization promoting device
JP2005288390A (en) Two-fluid nozzle and spraying method
JP2011078923A (en) Atomizer and atomizing apparatus
JP2006346611A (en) Washing liquid spraying apparatus
EP0594704A1 (en) Nebuliser
JP5562612B2 (en) Miniaturization promoting device and gas-liquid mixing nozzle device for miniaturization promoting device
JP2004216320A (en) Spray nozzle
JP2011098284A (en) Nozzle for mixing gas and liquid
JP2005131486A (en) Spray nozzle and spraying method
JP5672613B2 (en) Liquid atomizer
JP2008161834A (en) Nozzle and gas-liquid atomizer
US20170144119A1 (en) Granular material and method of producing granular material
JP5938794B2 (en) Microbubble generator
JP2012030179A (en) Micronizer
JP2019117151A (en) Seeding device
WO2013073336A1 (en) Liquid atomization device
JP2011062583A (en) Gas-liquid mixing nozzle
JP2013180258A (en) Liquid atomizing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140611

R150 Certificate of patent or registration of utility model

Ref document number: 5562601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250