JP2011061917A - Dc high-voltage generating circuit - Google Patents

Dc high-voltage generating circuit Download PDF

Info

Publication number
JP2011061917A
JP2011061917A JP2009206655A JP2009206655A JP2011061917A JP 2011061917 A JP2011061917 A JP 2011061917A JP 2009206655 A JP2009206655 A JP 2009206655A JP 2009206655 A JP2009206655 A JP 2009206655A JP 2011061917 A JP2011061917 A JP 2011061917A
Authority
JP
Japan
Prior art keywords
voltage
circuit
parallel
full
resonant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009206655A
Other languages
Japanese (ja)
Inventor
Yoshio Kawasaki
善夫 川崎
Daisuke Samukawa
大輔 寒川
Takafumi Konishi
啓文 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tabuchi Electric Co Ltd
Original Assignee
Tabuchi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tabuchi Electric Co Ltd filed Critical Tabuchi Electric Co Ltd
Priority to JP2009206655A priority Critical patent/JP2011061917A/en
Publication of JP2011061917A publication Critical patent/JP2011061917A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superior DC high-voltage generating circuit, which can generate a high voltage efficiently, being small and thin. <P>SOLUTION: The circuit includes a plurality of high-voltage resonance transformers 21, 22, 23, and 24, and a plurality of full wave rectifying circuits 31, 32, 33, and 34. Each high-voltage resonance transformer severally includes a resonance circuit, which boosts a voltage by resonant action, both on the primary side and the secondary side. For each full wave rectifying circuit, respective full wave rectified input sides are connected individually to the secondary side of each high-voltage resonance transformer, and the respective full wave rectified output sides are connected in series, and the input voltages to each high-voltage resonance transformer are boosted by each high-voltage resonance transformer, full-wave-transformed individually with each full wave rectifying circuit, and then superposed on each full wave rectified output side so as to output a specified DC high voltage. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、直流高電圧を発生する直流高電圧発生回路にかかり、より詳しくは、入力した電圧をトランスにより昇圧すると共にその昇圧した電圧を整流して直流高電圧として出力するようにした直流高電圧発生回路に関するものである。   The present invention relates to a DC high voltage generation circuit that generates a DC high voltage. More specifically, the present invention relates to a DC high voltage that boosts an input voltage with a transformer and rectifies the boosted voltage to output it as a DC high voltage. The present invention relates to a voltage generation circuit.

図2を参照して、従来の直流高電圧発生回路においては、フライバックトランス50と、高圧整流回路51とを備える。スイッチング素子Q1のスイッチング出力が、フライバックトランス50の一次巻線L51に対して伝達される。フライバックトランス50においては、一次側には一次巻線L51が巻装される。二次側には、二次巻線として、5組の昇圧巻線L52−L55が巻装されている。昇圧巻線L52−L55は、高圧整流ダイオードD51−D55の各々と直列接続されることで、計5組の半波整流回路を形成し、これら5組の半波整流回路がさらに直列に多段接続されている。これら5組の半波整流回路から成る多段型整流回路に対して平滑コンデンサC51が並列に接続されることで、二次側整流平滑回路を形成することになる(特許文献1参照)。   Referring to FIG. 2, the conventional DC high voltage generation circuit includes a flyback transformer 50 and a high voltage rectifier circuit 51. The switching output of the switching element Q1 is transmitted to the primary winding L51 of the flyback transformer 50. In the flyback transformer 50, a primary winding L51 is wound on the primary side. On the secondary side, five sets of booster windings L52 to L55 are wound as secondary windings. The step-up windings L52-L55 are connected in series with each of the high-voltage rectifier diodes D51-D55 to form a total of five sets of half-wave rectifier circuits, and these five sets of half-wave rectifier circuits are further connected in multiple stages in series. Has been. A smoothing capacitor C51 is connected in parallel to the multistage rectifier circuit composed of these five sets of half-wave rectifier circuits, thereby forming a secondary side rectifier smoother circuit (see Patent Document 1).

特開2002−204574号公報JP 2002-204574 A

上記従来の直流高電圧発生回路においては、上記フライバックトランスが高電圧発生のために一次側コイルと二次側コイルとの巻数比が大きく、大型重量化しており、小型軽量で薄型の面発光ディスプレイ等の電子機器用の直流高電圧発生回路としては採用し難い。また、フライバックトランスの漏洩磁束による漏れインダクタンスは、有効電力を減少させて力率が悪化する。   In the above conventional DC high voltage generation circuit, the flyback transformer has a large turn ratio between the primary side coil and the secondary side coil to generate a high voltage, and has a large weight, a small, light and thin surface light emission. It is difficult to adopt as a DC high voltage generating circuit for electronic devices such as displays. In addition, the leakage inductance due to the leakage magnetic flux of the flyback transformer decreases the power factor by reducing the effective power.

本発明は、小型薄型で効率的に直流高電圧を発生できる優れた直流高電圧発生回路を提供することを解決すべき課題としている。   An object of the present invention is to provide an excellent DC high voltage generating circuit that can generate a DC high voltage efficiently with a small size and a thin shape.

本発明による直流高電圧発生回路は、複数の高圧共振トランスと、複数の全波整流回路とを含み、各高圧共振トランスは、一次側と二次側に共に共振動作により電圧を昇圧する共振回路を含み、各全波整流回路は、それぞれの全波整流入力側が個別に各高圧共振トランス二次側にそれぞれ接続され、それぞれの全波整流出力側が直列接続されてなり、各高圧共振トランスへの入力電圧は、当該各高圧共振トランスにより昇圧されて各全波整流回路で個別に全波整流された後、各全波整流出力側で重畳されて所定の直流高電圧が出力されるようになっている、ことを特徴とするものである。   A DC high voltage generating circuit according to the present invention includes a plurality of high-voltage resonant transformers and a plurality of full-wave rectifier circuits, and each high-voltage resonant transformer boosts a voltage by a resonance operation on both the primary side and the secondary side. Each full-wave rectifier circuit is configured such that each full-wave rectification input side is individually connected to each high-voltage resonant transformer secondary side, and each full-wave rectification output side is connected in series to each high-voltage resonant transformer. The input voltage is boosted by each high-voltage resonant transformer and individually full-wave rectified by each full-wave rectifier circuit, and then superimposed on each full-wave rectified output side to output a predetermined DC high voltage. It is characterized by that.

本発明において、好ましい態様は、高圧共振トランス複数ずつそれぞれの一次側コイルを並列に接続して複数の並列回路を構成し、これら各並列回路を直列に接続する、ことである。単純に複数のトランスを直列に接続した場合では、漏れインダクタンスも複数倍になり、共振コンデンサの容量が複数倍分の1となり、Q値が極めて小さくなり、ゲインがとれないという問題がある。上記態様では、高圧共振トランスが並列/直列接続されることで、トランスとしての結合率をトランス1個使いと同じ漏れインダクタンスにすることができ、トランスを薄型小型化にできる。   In the present invention, a preferred aspect is to form a plurality of parallel circuits by connecting a plurality of primary side coils in parallel to each other in a plurality of high-voltage resonant transformers, and to connect these parallel circuits in series. When a plurality of transformers are simply connected in series, there is a problem that the leakage inductance is also increased several times, the capacitance of the resonance capacitor is reduced to a multiple of the multiple, the Q value is extremely small, and gain cannot be obtained. In the above aspect, since the high-voltage resonant transformer is connected in parallel / series, the coupling ratio as the transformer can be set to the same leakage inductance as that of using one transformer, and the transformer can be reduced in thickness and size.

本発明において、別の好ましい態様は、各高圧共振トランスそれぞれの二次側は、二次側コイルと共振コンデンサとの並列接続による共振回路を備える、ことである。   In the present invention, another preferred aspect is that the secondary side of each high-voltage resonant transformer includes a resonant circuit formed by parallel connection of a secondary coil and a resonant capacitor.

本発明において、さらに別の好ましい態様は、高圧共振トランス複数ずつそれぞれの一次側コイルを並列に接続して複数の並列回路を構成し、これら各並列回路を直列に接続すると共に、任意1つの並列回路を構成する一次側コイル一端側と、任意別の並列回路を構成する一次側コイル他端側との間を電圧入力側とする、ことである。   In the present invention, still another preferred embodiment is that a plurality of high-voltage resonant transformers are connected in parallel to each of primary coils to form a plurality of parallel circuits, and these parallel circuits are connected in series and any one parallel The voltage input side is between one end side of the primary coil constituting the circuit and the other end side of the primary coil constituting any other parallel circuit.

本発明において、さらに別の好ましい態様は、直流電圧を電圧極性が交互に正負に変化する矩形波電圧に変換して出力する直流チョッパ回路を含み、上記高圧共振トランスを複数個含み、高圧共振トランス複数個ずつそれぞれの一次側コイルを並列に接続して複数の並列回路を構成し、これら各並列回路を直列に接続すると共に、任意の並列回路を構成する一次側コイル一端側と、任意別の並列回路を構成する一次側コイル他端側との間を電圧入力側として、当該電圧入力側に上記直流チョッパ回路の出力電圧を印加する構成とすることである。   In the present invention, still another preferred embodiment includes a DC chopper circuit that converts a DC voltage into a rectangular wave voltage whose voltage polarity alternately changes positive and negative and outputs the square wave voltage, and includes a plurality of the high-voltage resonant transformers, A plurality of primary coils are connected in parallel to form a plurality of parallel circuits, and the parallel circuits are connected in series, and one end side of the primary coil that constitutes an arbitrary parallel circuit, The voltage input side is between the other end side of the primary side coil constituting the parallel circuit, and the output voltage of the DC chopper circuit is applied to the voltage input side.

好ましくは、上記直流チョッパ回路が、ハーフブリッジ回路2個またはフルブリッジ回路で構成されていることである。   Preferably, the DC chopper circuit is composed of two half bridge circuits or a full bridge circuit.

本発明によれば、小型薄型で効率的に高電圧を発生できる優れた直流高電圧発生回路を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the outstanding direct current | flow high voltage generation circuit which can generate | occur | produce a high voltage efficiently is small and thin.

図1は本発明の実施の形態にかかる直流高電圧発生回路の回路図である。FIG. 1 is a circuit diagram of a DC high voltage generating circuit according to an embodiment of the present invention. 図2は従来の直流高電圧発生回路の回路図である。FIG. 2 is a circuit diagram of a conventional DC high voltage generating circuit.

以下、添付した図面を参照して、本発明の実施の形態に係る直流高電圧発生回路を説明する。実施の形態の直流高電圧発生回路は、フルブリッジ回路部10と、高圧共振トランス部20と、全波整流回路部30と、平滑コンデンサ回路部40とを含む。   A DC high voltage generating circuit according to an embodiment of the present invention will be described below with reference to the accompanying drawings. The DC high voltage generation circuit according to the embodiment includes a full bridge circuit unit 10, a high-voltage resonant transformer unit 20, a full-wave rectifier circuit unit 30, and a smoothing capacitor circuit unit 40.

フルブリッジ回路部10は、直流電圧を電圧極性が交互に正負に変化する矩形波電圧列に変換して出力する直流チョッパ(直流変換)回路の一例であり、実施の形態では、スイッチング素子として4個のFETQ1−Q4のスイッチング動作により直流電圧を矩形波(パルス)電圧に変換して出力し、その出力電圧を高圧共振トランス部20に入力電圧として印加する。実施の形態では、フルブリッジ回路部10であったが、2個のハーフブリッジ回路を含むハーフブリッジ回路部でもよい。   The full bridge circuit unit 10 is an example of a direct current chopper (direct current conversion) circuit that converts a direct current voltage into a rectangular wave voltage string whose voltage polarity alternately changes positive and negative, and outputs 4 as a switching element in the embodiment. The DC voltage is converted into a rectangular wave (pulse) voltage by the switching operation of the FETs Q1-Q4 and output, and the output voltage is applied as an input voltage to the high-voltage resonant transformer unit 20. In the embodiment, the full bridge circuit unit 10 is used, but a half bridge circuit unit including two half bridge circuits may be used.

高圧共振トランス部20は、複数の高圧共振トランス21,22,23,24を含み、各高圧共振トランス21,22,23,24それぞれの一次側に入力した電圧を二次側に昇圧して出力すると共にこの昇圧に際しては磁束漏洩を抑制しつつ回路共振動作と一次と二次側コイルの巻数比により昇圧することができるようになっている。   The high-voltage resonant transformer unit 20 includes a plurality of high-voltage resonant transformers 21, 22, 23, and 24, and boosts and outputs the voltage input to the primary side of each of the high-voltage resonant transformers 21, 22, 23, and 24 to the secondary side. At the same time, the voltage can be boosted by the circuit resonance operation and the turn ratio of the primary and secondary coils while suppressing magnetic flux leakage.

全波整流回路部30は、複数の全波整流回路31,32,33,34を含み、それぞれ各高圧共振トランス21,22,23,24それぞれの二次側出力電圧を個別に全波整流することができるようになっている。   The full-wave rectifier circuit unit 30 includes a plurality of full-wave rectifier circuits 31, 32, 33, and 34, and individually performs full-wave rectification on the secondary output voltages of the high-voltage resonant transformers 21, 22, 23, and 24, respectively. Be able to.

平滑コンデンサ回路部40は、直列接続された複数の個別平滑コンデンサC25,C26,C27,C28と、これら個別平滑コンデンサC25,C26,C27,C28に並列接続された共通平滑コンデンサC29と、を含み、各全波整流回路31,32,33,34それぞれの全波整流出力を個別平滑化し、これら全ての全波整流出力を重畳した出力を平滑化して直流高電圧とすることができるようになっている。   The smoothing capacitor circuit unit 40 includes a plurality of individual smoothing capacitors C25, C26, C27, C28 connected in series, and a common smoothing capacitor C29 connected in parallel to these individual smoothing capacitors C25, C26, C27, C28. The full-wave rectified outputs of the full-wave rectifier circuits 31, 32, 33, and 34 are individually smoothed, and an output obtained by superimposing all the full-wave rectified outputs can be smoothed to obtain a DC high voltage. Yes.

以下にさらに説明する。   This will be further described below.

高圧共振トランス部20において、各高圧共振トランス21,22,23,24は、それぞれ一次側に、一次側コイルL11,L12,L13,L14を有し、二次側に二次側コイルL21,L22,L23,L24を有する。各高圧共振トランス21,22,23,24それぞれにおいて、高圧共振トランス21,22それぞれの一次側コイルL11,L12の2つは並列接続されてコイル並列回路25aを構成し、また、高圧共振トランス23,24それぞれの一次側コイルL13,L14の2つは並列接続されてコイル並列回路25bを構成する。   In the high-voltage resonant transformer section 20, each of the high-voltage resonant transformers 21, 22, 23, 24 has primary side coils L11, L12, L13, L14 on the primary side, and secondary side coils L21, L22 on the secondary side. , L23, L24. In each of the high-voltage resonant transformers 21, 22, 23, 24, two primary coils L11, L12 of the high-voltage resonant transformers 21, 22 are connected in parallel to form a coil parallel circuit 25a. 24, two primary side coils L13 and L14 are connected in parallel to form a coil parallel circuit 25b.

コイル並列回路25aにおいて、一次側コイルL11,L12は、それぞれ同じ極性である一端側同士点L1A(黒丸同士)と、それぞれ同じ極性である他端側同士点L1B(非黒丸同士)とが接続されている。一端側同士点L1Aの極性と他端側同士点L1Bの極性は相異なる。   In the coil parallel circuit 25a, the primary side coils L11 and L12 are connected to one end L1A (black circles) having the same polarity and the other end L1B (non-black circles) having the same polarity. ing. The polarity of the point L1A between the one end sides and the polarity of the point L1B between the other end sides are different.

コイル並列回路25bにおいて、一次側コイルL13,L14は、それぞれの同じ極性である一端側同士点L2A(黒丸同士)と、それぞれ同じ極性である他端側同士点L2B(非黒丸同士)とが接続されている。一端側同士点L2Aの極性と他端側同士点L2Bの極性は相異なる。そして、この他端側同士点L1Bは一端側同士点L1Aに抵抗R1を介して接続され、他端側同士点L2Bは一端側同士点L2Aに抵抗R2を介して接続されて、直列共振出力をダンピングされるようになっている。   In the coil parallel circuit 25b, the primary side coils L13 and L14 are connected to one end L2A (black circles) having the same polarity and the other end L2B (non-black circles) having the same polarity. Has been. The polarity of the point L2A between the one end sides and the polarity of the point L2B between the other end sides are different. The other end side point L1B is connected to one end side point L1A via a resistor R1, and the other end side point L2B is connected to one end side point L2A via a resistor R2. Damped.

コイル並列回路25aと25bはコンデンサC11を介して直列接続されている。コンデンサC11の一方極は、コイル並列回路25aの一次側コイルL11,L12の他端側同士点L1Bに、他方極は、コイル並列回路25bの一次側コイルL13,L14の一端側同士点L2Aに、接続されている。   The coil parallel circuits 25a and 25b are connected in series via a capacitor C11. One end of the capacitor C11 is at the point L1B between the other ends of the primary coils L11 and L12 of the coil parallel circuit 25a, and the other end is at the point L2A between the ends of the primary coils L13 and L14 of the coil parallel circuit 25b. It is connected.

このコイル並列回路25a内の一次側コイルL11,L12の一端側同士点L1Aと、コイル並列回路25b内の一次側コイルL13,L14の他端側同士点L2Bとの間は、フルブリッジ回路部10の出力電圧が印加される電圧入力側となっている。   The full-bridge circuit unit 10 has a point L1A between the ends of the primary coils L11 and L12 in the coil parallel circuit 25a and a point L2B between the other ends of the primary coils L13 and L14 in the coil parallel circuit 25b. The output voltage is applied to the voltage input side.

なお、実施の形態では、一次側コイルはL11,L12,L13,L14の4つにおいて、2つを並列にし、その並列した組同士をコンデンサで直列接続したが、並列数は2以上であればよく、また、直列接続組数は2以上でもよい。   In the embodiment, in the four primary side coils L11, L12, L13, and L14, two are connected in parallel, and the parallel sets are connected in series with a capacitor. The number of series connection sets may be two or more.

フルブリッジ回路部10内においてFETQ1のソースとFETQ2のドレインとの接続点にコイル並列回路25a内の一次側コイルL11,L12の一端側接続点L1Aが接続され、FETQ3のソースとFETQ4のドレインとの接続点にコイル並列回路25b内の一次側コイルL13,L14の他端側接続点L2Bが接続されている。フルブリッジ回路部10内においてFETQ1,Q2,Q3,Q4は図示略の制御回路により上記共振周波数に対応する周波数でON/OFFをスイッチング制御される。これにより、コイル並列回路25a内の一次側コイルL11,L12の一端側接続点L1Aと一次側コイルL13,L14の他端側接続点L2Bとの間に交互に電圧極性が正負に変化する矩形波電圧が印加される。これは通常のフルブリッジDC/DCコンバータと同様で周知であるから、詳細を略する。   In the full bridge circuit unit 10, one end side connection point L1A of the primary side coils L11 and L12 in the coil parallel circuit 25a is connected to a connection point between the source of the FET Q1 and the drain of the FET Q2, and the source of the FET Q3 and the drain of the FET Q4 are connected. The other end side connection point L2B of the primary side coils L13 and L14 in the coil parallel circuit 25b is connected to the connection point. In the full bridge circuit section 10, the FETs Q1, Q2, Q3, and Q4 are ON / OFF switched at a frequency corresponding to the resonance frequency by a control circuit (not shown). Thereby, the rectangular wave whose voltage polarity alternately changes between positive and negative between the one end side connection point L1A of the primary side coils L11 and L12 and the other end side connection point L2B of the primary side coils L13 and L14 in the coil parallel circuit 25a. A voltage is applied. Since this is the same as a normal full bridge DC / DC converter and is well known, the details are omitted.

以上により高圧共振トランス部20においては、それを構成する各高圧共振トランス21,22,23,24それぞれの一次側は、一次側コイルL11,L12,L13,L14がそれぞれ並列/直列接続されることで一次側での漏洩磁束が減り有効電力の減少を抑制し力率を向上させることができる。   As described above, in the high voltage resonant transformer section 20, the primary side coils L11, L12, L13, and L14 are respectively connected in parallel / series to the primary side of each of the high voltage resonant transformers 21, 22, 23, and 24 constituting the high voltage resonant transformer unit 20. Thus, the leakage magnetic flux on the primary side is reduced, and the reduction of the active power can be suppressed and the power factor can be improved.

そしてコイル並列回路25aと25bと、コンデンサC11とにより直列共振回路が構成されることでフルブリッジ回路部10からの電圧極性が交互に正負に変化する矩形波電圧である一次側入力電圧を高電圧に昇圧することができる。   The coil parallel circuits 25a and 25b and the capacitor C11 constitute a series resonance circuit, so that the primary side input voltage which is a rectangular wave voltage in which the voltage polarity from the full bridge circuit unit 10 alternately changes positive and negative is a high voltage. The pressure can be increased to

高圧共振トランス部20において、各高圧共振トランス21,22,23,24は、それぞれの二次側コイルL21,L22,L23,L24には、一次側コイルL11,L12,L13,L14との巻数比に対応した電圧に変換される。そして、高圧共振トランス21,22,23,24の二次側コイルL21,L22,L23,L24には、それぞれ、コンデンサC21,C22,C23,C24が並列接続されて、並列共振回路26a,26b,26c,26dが構成されている。したがって、この高圧共振トランス部20においては、各高圧共振トランス21,22,23,24それぞれの二次側コイルL21,L22,L23,L24に誘起した電圧を、並列共振回路26a,26b,26c,26dの共振動作により高電圧とすることができる。   In the high-voltage resonant transformer unit 20, the high-voltage resonant transformers 21, 22, 23, and 24 have their respective secondary side coils L21, L22, L23, and L24 turned to the primary side coils L11, L12, L13, and L14. Is converted to a voltage corresponding to. Capacitors C21, C22, C23, and C24 are connected in parallel to the secondary side coils L21, L22, L23, and L24 of the high-voltage resonant transformers 21, 22, 23, and 24, and parallel resonant circuits 26a, 26b, 26c and 26d are configured. Accordingly, in the high-voltage resonant transformer section 20, the voltages induced in the secondary side coils L21, L22, L23, and L24 of the high-voltage resonant transformers 21, 22, 23, and 24 are converted into parallel resonant circuits 26a, 26b, 26c, A high voltage can be obtained by the resonance operation of 26d.

これにより、高圧共振トランス部20において、各高圧共振トランス21,22,23,24それぞれが、その一次側電圧を二次側に高電圧に変換する場合において、一次側コイルL11,L12,L13,L14と二次側コイルL21,L22,L23,L24それぞれを少ない巻数比構成とすることができる。このことから高圧共振トランス部20は、各高圧共振トランス21,22,23,24それぞれを小型薄型構成のトランスにすることができる。   Thus, in the high-voltage resonant transformer unit 20, when each of the high-voltage resonant transformers 21, 22, 23, 24 converts the primary side voltage to a high voltage on the secondary side, the primary side coils L11, L12, L13, Each of L14 and the secondary side coils L21, L22, L23, and L24 can have a small turn ratio configuration. From this, the high-voltage resonant transformer unit 20 can make each of the high-voltage resonant transformers 21, 22, 23, and 24 into a transformer having a small and thin configuration.

全波整流回路部30において、各全波整流回路31,32,33,34は、整流ダイオードD21−D36を含む。すなわち、全波整流回路31は、整流ダイオードD21−D24を含み、全波整流回路32は、整流ダイオードD25−D28を含み、全波整流回路33は、整流ダイオードD29−D32を含み、全波整流回路34は、整流ダイオードD33−D36を含む。各全波整流回路31,32,33,34は、それぞれ、対応する各高圧共振トランス21,22,23,24それぞれの二次側コイルL21,L22,L23,L24それぞれに誘起した電圧を個別に全波整流する。   In the full-wave rectifier circuit unit 30, each full-wave rectifier circuit 31, 32, 33, 34 includes rectifier diodes D21-D36. That is, the full-wave rectifier circuit 31 includes rectifier diodes D21-D24, the full-wave rectifier circuit 32 includes rectifier diodes D25-D28, and the full-wave rectifier circuit 33 includes rectifier diodes D29-D32. The circuit 34 includes rectifier diodes D33 to D36. Each of the full-wave rectifier circuits 31, 32, 33, and 34 individually generates voltages induced in the secondary side coils L21, L22, L23, and L24 of the corresponding high-voltage resonant transformers 21, 22, 23, and 24, respectively. Full-wave rectification.

平滑コンデンサ回路部40において、各個別平滑コンデンサC25,C26,C27,C28は、各全波整流回路31,32,33,34それぞれの全波整流出力を個別に平滑化する。この個別平滑コンデンサC25,C26,C27,C28は直列接続されているので、各全波整流回路31,32,33,34それぞれの全波整流出力は平滑化により直流化されたうえで重畳される。そして、平滑コンデンサ回路部40においては、共通平滑コンデンサC29により、重畳されて直流化された全波整流出力が、さらに平滑されて所望する直流高電圧となって出力される。   In the smoothing capacitor circuit unit 40, the individual smoothing capacitors C25, C26, C27, and C28 individually smooth the full-wave rectification outputs of the full-wave rectification circuits 31, 32, 33, and 34, respectively. Since the individual smoothing capacitors C25, C26, C27, and C28 are connected in series, the full-wave rectified outputs of the full-wave rectifier circuits 31, 32, 33, and 34 are converted to direct current by smoothing and superimposed. . In the smoothing capacitor circuit section 40, the full-wave rectified output superimposed and converted into direct current by the common smoothing capacitor C29 is further smoothed and output as a desired high DC voltage.

以上説明した実施の形態の直流高電圧発生回路では、高圧共振トランス部20を構成する各高圧共振トランス21,22,23,24が小型薄型軽量化できるうえ、漏洩磁束も抑制された回路構成であるので、例えば小型軽量で薄型の面発光ディスプレイ等の電子機器用として、例えば直流100Vを直流10kV程度に昇圧変換して出力することができる直流高電圧発生回路として好適に組み込んで使用することができるようになった。   In the DC high voltage generating circuit of the embodiment described above, the high voltage resonant transformers 21, 22, 23, and 24 constituting the high voltage resonant transformer unit 20 can be reduced in size, thickness and weight, and the circuit configuration in which leakage magnetic flux is also suppressed. Therefore, for example, for electronic devices such as small, light and thin surface emitting displays, for example, a DC high voltage generating circuit capable of boosting and converting DC 100V to about 10 kV and outputting can be suitably used. I can do it now.

10 フルブリッジ回路部
20 高圧共振トランス部
21,22,23,24 高圧共振トランス
30 全波整流回路部
31,32,33,34 全波整流回路
40 平滑コンデンサ回路部
C25,C26,C27,C28 個別平滑コンデンサ
C29 共通平滑コンデンサ
DESCRIPTION OF SYMBOLS 10 Full bridge circuit part 20 High voltage resonance transformer part 21, 22, 23, 24 High voltage resonance transformer 30 Full wave rectification circuit part 31, 32, 33, 34 Full wave rectification circuit 40 Smoothing capacitor circuit part C25, C26, C27, C28 Individual Smoothing capacitor C29 Common smoothing capacitor

Claims (5)

複数の高圧共振トランスと、複数の全波整流回路とを含み、
上記各高圧共振トランスは、それぞれ、一次側と二次側に共に共振動作により電圧を昇圧する共振回路を含み、
上記各全波整流回路は、それぞれの全波整流入力側が個別に各高圧共振トランス二次側にそれぞれ接続され、それぞれの全波整流出力側が直列接続されてなり、
上記各高圧共振トランスへの入力電圧は、当該各高圧共振トランスにより一次側と二次側とにおける共振動作とコイル巻数比とにより昇圧されて各全波整流回路で個別に全波整流された後、各全波整流出力側で重畳されて所定の直流高電圧が出力されるようになっている、ことを特徴とする直流高電圧発生回路。
Including a plurality of high-voltage resonant transformers and a plurality of full-wave rectifier circuits,
Each of the high-voltage resonant transformers includes a resonant circuit that boosts the voltage by resonant operation on both the primary side and the secondary side,
Each full-wave rectifier circuit is configured such that each full-wave rectification input side is individually connected to each high-voltage resonant transformer secondary side, and each full-wave rectification output side is connected in series,
The input voltage to each of the high-voltage resonant transformers is boosted by the resonant operation and the coil turns ratio on the primary side and the secondary side by the high-voltage resonant transformers, and individually full-wave rectified by each full-wave rectifier circuit. A DC high voltage generation circuit characterized in that a predetermined DC high voltage is output by being superimposed on each full-wave rectified output side.
高圧共振トランス複数ずつそれぞれの一次側コイルを並列に接続して複数の並列回路を構成し、これら各並列回路を直列に接続した、ことを特徴とする請求項1に記載の回路。   2. The circuit according to claim 1, wherein a plurality of high-voltage resonant transformers are connected in parallel to form a plurality of parallel circuits, and the parallel circuits are connected in series. 各高圧共振トランスそれぞれの二次側は、二次側コイルと共振コンデンサとの並列接続による共振回路を備えた、ことを特徴とする請求項1または2に記載の回路。   3. The circuit according to claim 1, wherein the secondary side of each high-voltage resonant transformer includes a resonant circuit by a parallel connection of a secondary coil and a resonant capacitor. 高圧共振トランス複数ずつそれぞれの一次側コイルを並列に接続して複数の並列回路を構成し、これら各並列回路を直列に接続すると共に、任意1つの並列回路を構成する一次側コイル一端側と、任意別の並列回路を構成する一次側コイル他端側との間を電圧入力側とした、ことを特徴とする請求項1に記載の回路。   A plurality of high-voltage resonant transformers are connected in parallel to each of the primary side coils to form a plurality of parallel circuits, and each parallel circuit is connected in series, and one end side of the primary side coil constituting one arbitrary parallel circuit; 2. The circuit according to claim 1, wherein a voltage input side is provided between the other end side of the primary side coil constituting any other parallel circuit. 直流電圧を電圧極性が交互に正負に変化する矩形波電圧に変換して出力する直流チョッパ回路を含み、上記高圧共振トランスを複数個含み、高圧共振トランス複数個ずつそれぞれの一次側コイルを並列に接続して複数の並列回路を構成し、これら各並列回路を直列に接続すると共に、任意の並列回路を構成する一次側コイル一端側と、別の任意の並列回路を構成する一次側コイル他端側との間を電圧入力側として、当該電圧入力側に上記直流チョッパ回路の出力電圧を印加する構成とした、ことを特徴とする請求項1に記載の回路。   A DC chopper circuit that converts a DC voltage into a rectangular wave voltage whose voltage polarity alternately changes in positive and negative and outputs the same, includes a plurality of the high-voltage resonant transformers, and a plurality of the high-voltage resonant transformers each in parallel with the primary coil Connected to form a plurality of parallel circuits, and these parallel circuits are connected in series, and one end of the primary side coil constituting an arbitrary parallel circuit and the other end of the primary side coil constituting another arbitrary parallel circuit 2. The circuit according to claim 1, wherein a voltage input side is defined as a voltage input side, and an output voltage of the DC chopper circuit is applied to the voltage input side.
JP2009206655A 2009-09-08 2009-09-08 Dc high-voltage generating circuit Pending JP2011061917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009206655A JP2011061917A (en) 2009-09-08 2009-09-08 Dc high-voltage generating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009206655A JP2011061917A (en) 2009-09-08 2009-09-08 Dc high-voltage generating circuit

Publications (1)

Publication Number Publication Date
JP2011061917A true JP2011061917A (en) 2011-03-24

Family

ID=43948894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009206655A Pending JP2011061917A (en) 2009-09-08 2009-09-08 Dc high-voltage generating circuit

Country Status (1)

Country Link
JP (1) JP2011061917A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012239288A (en) * 2011-05-11 2012-12-06 Tohoku Ricoh Co Ltd High voltage inverter device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61251473A (en) * 1985-04-26 1986-11-08 Hitachi Ltd Switching power source circuit
JP2001224170A (en) * 2000-02-09 2001-08-17 Sony Corp Switching power circuit
JP2008199808A (en) * 2007-02-14 2008-08-28 Matsushita Electric Ind Co Ltd System-interconnected inverter arrangement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61251473A (en) * 1985-04-26 1986-11-08 Hitachi Ltd Switching power source circuit
JP2001224170A (en) * 2000-02-09 2001-08-17 Sony Corp Switching power circuit
JP2008199808A (en) * 2007-02-14 2008-08-28 Matsushita Electric Ind Co Ltd System-interconnected inverter arrangement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012239288A (en) * 2011-05-11 2012-12-06 Tohoku Ricoh Co Ltd High voltage inverter device

Similar Documents

Publication Publication Date Title
JP4671019B2 (en) Multi-output DC-DC converter
JP4935499B2 (en) DC converter
JP4482765B2 (en) Switching power supply
JP5633778B2 (en) Switching power supply
TWI278875B (en) DC transformer with output inductor integrated on the magnetic core thereof and a DC/DC converter employing the same
US20060221655A1 (en) Filter circuit and power supply unit
TW507414B (en) Switching power circuit with secondary side parallel and series resonance
US9312778B2 (en) Power supply device
JP2001275351A (en) Switching power circuit
WO2000079674A1 (en) Switching power supply
JP2009177875A (en) Switching power supply
JP4852910B2 (en) Multi-output switching power supply
US20130077356A1 (en) Dc-dc converters
JP2013005547A (en) Switching power supply device
US20120049993A1 (en) Transformer integrated with inductor
JP2009060747A (en) Dc-dc converter
US20140133190A1 (en) Isolated switch-mode dc/dc converter with sine wave transformer voltages
JP2016046973A (en) Resonance type dc-dc converter
TW480805B (en) Switching power supply circuit
JP2004289945A (en) Switching power supply
JP3796647B2 (en) DC / DC converter
JP2011061917A (en) Dc high-voltage generating circuit
JP2004040923A (en) Switching power circuit and switching regulator equipped therewith
JP2008054378A (en) Dc-dc converter
JP2007336770A (en) Switching power-supply circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20120907

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130204

RD04 Notification of resignation of power of attorney

Effective date: 20130219

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A977 Report on retrieval

Effective date: 20131009

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A02 Decision of refusal

Effective date: 20140225

Free format text: JAPANESE INTERMEDIATE CODE: A02