JP2011061210A - Distributed gap electrical choke - Google Patents

Distributed gap electrical choke Download PDF

Info

Publication number
JP2011061210A
JP2011061210A JP2010207490A JP2010207490A JP2011061210A JP 2011061210 A JP2011061210 A JP 2011061210A JP 2010207490 A JP2010207490 A JP 2010207490A JP 2010207490 A JP2010207490 A JP 2010207490A JP 2011061210 A JP2011061210 A JP 2011061210A
Authority
JP
Japan
Prior art keywords
core
permeability
annealing
amorphous
distributed gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010207490A
Other languages
Japanese (ja)
Other versions
JP4990389B2 (en
Inventor
Aliki Collins
コリンズ,アリキ
John Silgailis
シルガイリス,ジョン
Joseph Abou-Elias
アブー―エリアス,ジョゼフ
Ronald J Martis
マーティス,ロナルド・ジェイ
Ryusuke Hasegawa
ハセガワ,リュウスケ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metglas Inc
Original Assignee
Metglas Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metglas Inc filed Critical Metglas Inc
Publication of JP2011061210A publication Critical patent/JP2011061210A/en
Application granted granted Critical
Publication of JP4990389B2 publication Critical patent/JP4990389B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/25Magnetic cores made from strips or ribbons

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Cable Accessories (AREA)
  • Suspension Of Electric Lines Or Cables (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of annealing an amorphous core to form a distributed gap in the amorphous core. <P>SOLUTION: An electrical choke has a magnetic core with the distributed gap. The magnetic core is made from an iron based metal alloy which is solidified rapidly. The distributed gap configuration is produced by an annealing treatment which causes partial crystallization of the amorphous alloy. As a result of the annealing treatment, the magnetic core exhibits permeability, in a range of 100 to 400, low core loss (i.e. less than 70 W/kg at 100 kHz and 0.1T) and superior DC bias behavior (at least 40% of the initial permeability is maintained, at a DC bias field of 3980 A/m or 50 Oe). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、分布ギャップを有する電気チョーク用アモルファス金属磁気コアに関し、より詳細に言えばアモルファスコアを焼鈍して該アモルファスコアに分布ギャップを形成する方法に関する。   The present invention relates to an amorphous metal magnetic core for electric chokes having a distributed gap, and more particularly to a method for annealing a amorphous core to form a distributed gap in the amorphous core.

従来技術Conventional technology

電気チョークは、エネルギ蓄積インダクタである。トロイダル状のインダクタに関して、蓄積されたエネルギWは、W=1/2[(B)/(2μμ)]で表され、Bは磁束密度であり、Aはコアの有効磁気面積であり、lは平均磁束路長であり、μは自由空間の透磁率であり、μは材料の比透磁率である。 The electric choke is an energy storage inductor. For a toroidal inductor, the stored energy W is expressed as W = 1/2 [(B 2 A c l m ) / (2 μ 0 μ r )], B is the magnetic flux density, and A c is the core an effective magnetic area, l m is the mean magnetic flux path length, mu 0 is the permeability of the free space, the mu r is the relative permeability of the material.

小さなエアギャップをトロイドに導入すると、そのようなエアギャップの磁束は強磁性コア材料の磁束と同じ磁束のままである。しかしながら、空気の透磁率(μ〜1)は、代表的な強磁性体材料の透磁率(μ〜数千)よりも著しく小さいので、ギャップの磁界強度(H)は、コアの残りの部分の磁界強度よりも極めて大きくなる(H=B/μ)。磁界に蓄積される単位体積当たりのエネルギWは、W=1/2(B/H)で表され、そのようなエネルギは、主としてエアギャップに集中されることを表している。換言すれば、コアのエネルギ蓄積能力は、ギャップの導入により高められる。上記ギャップは、離散させる(discrete)かあるいは分布させる(distribute)ことができる。分布されたギャップすなわち分布ギャップは、非磁性結合剤で結合した強磁性体粉末を用いることによって、あるいは、アモルファス合金を部分的に結晶化させることによって、導入することができる。アモルファス合金を部分的に結晶化させることによってギャップを導入する場合には、強磁性結晶相が分離して、非磁性マトリックスに包まれる。この部分的な結晶化のメカニズムは、本発明のチョークに関して利用される。   When a small air gap is introduced into the toroid, the magnetic flux in such air gap remains the same as that of the ferromagnetic core material. However, since the permeability of air (μ-1) is significantly smaller than that of typical ferromagnetic materials (μ-thousands), the magnetic field strength (H) of the gap is It becomes extremely larger than the magnetic field strength (H = B / μ). The energy W per unit volume accumulated in the magnetic field is represented by W = 1/2 (B / H), which indicates that such energy is mainly concentrated in the air gap. In other words, the energy storage capacity of the core is enhanced by introducing a gap. The gap can be discrete or distributed. A distributed gap or distribution gap can be introduced by using a ferromagnetic powder bonded with a non-magnetic binder or by partially crystallizing an amorphous alloy. When the gap is introduced by partially crystallizing the amorphous alloy, the ferromagnetic crystal phase separates and is encased in a nonmagnetic matrix. This partial crystallization mechanism is utilized with the chalk of the present invention.

Fe基材のアモルファスコアを焼鈍する原理に基づく電気チョークは、英国特許第2,117,979号A及び、米国特許第4,812,181号に記載されている。上記米国特許第4,812,181号には、Fe基材のアモルファスコアに410℃よりも高い温度で長時問(10時間以上)の焼鈍を行うことによって、平坦な磁化巻線(Flat magnetization loop)を得るための方法が開示されている。上記米国特許に開示されているこの方法は、アモルファスリボンの表面を結晶化し、これにより、該リボンのアモルファスバルクに応力を与える工程を備えている。   Electrical chokes based on the principle of annealing an Fe-based amorphous core are described in British Patent 2,117,979A and US Pat. No. 4,812,181. In the above U.S. Pat. No. 4,812,181, a flat magnetized winding is obtained by annealing an amorphous core of Fe base material at a temperature higher than 410 ° C. for a long time (10 hours or more). A method for obtaining a loop) is disclosed. The method disclosed in the above U.S. patent comprises the step of crystallizing the surface of the amorphous ribbon, thereby stressing the amorphous bulk of the ribbon.

上記英国特許第2,117,979号においては、電気チョークは、Fe基材のアモルファスコアの熱処理作業に基づいて形成されている。最大透磁率は、その初期値の1/50乃至1/30まで減少し(40,000の最大透磁率に関して、上記処理によって、約800から1,300の範囲の値が生ずる)、アモルファスコアは、その体積の10%を超えない一定程度の結晶化を示す。   In the above-mentioned British Patent No. 2,117,979, the electric choke is formed on the basis of a heat treatment operation of the Fe-based amorphous core. The maximum permeability is reduced to 1/50 to 1/30 of its initial value (for a maximum permeability of 40,000, the above process results in a value in the range of about 800 to 1,300) Shows a certain degree of crystallization not exceeding 10% of its volume.

IEEE Transactions on Magnetics(MAG−20(1984) Sep.,No.5,Part2,NY,USA)は、その1415−1416ページにおいて、チョーク及びインダクタ用のFe−B基材のアモルファス合金の開発を議論している。この論文は、高い周波数損失特性を犠牲にする200の透磁率を注記している。   IEEE Transactions on Magnetics (MAG-20 (1984) Sep., No. 5, Part 2, NY, USA) discusses the development of an Fe-B based amorphous alloy for chokes and inductors on pages 1415-1416. is doing. This paper notes a permeability of 200 at the expense of high frequency loss characteristics.

欧州特許出願第513385号(EP−A−513−385)は、Fe−B結晶の生成を阻止するためにアルミニウムを必要とする、鉄基材の軟らかい磁気合金を開示している。   European Patent Application No. 513385 (EP-A-513-385) discloses an iron-based soft magnetic alloy that requires aluminum to prevent the formation of Fe-B crystals.

ノートブック型コンピュータ及び他の小型装置用の電源に応用する場合には、小さな透磁率(100−300)、非常に低い鉄損及び飽和磁化性を有すると共に、高いDCバイアス磁界に耐えることのできる、極めて小型の電気チョークが必要とされる。   When applied to power supplies for notebook computers and other small devices, it has low magnetic permeability (100-300), very low iron loss and saturation magnetizability, and can withstand high DC bias fields. A very small electric choke is required.

本発明は、100から400の範囲の透磁率及び低い鉄損(100kHz及び0.1Tで70W/kg未満)を有する、8mmから45mm(OD)の範囲の寸法の電気チョークを提供する。その磁気特性は、DCバイアスの下で維持される(初期透磁率の少なくとも40%が、3980A/m又は50OeのDCバイアス電界の下で維持される)ので効果的である。   The present invention provides an electric choke with dimensions in the range of 8 mm to 45 mm (OD), with permeability in the range of 100 to 400 and low iron loss (less than 70 W / kg at 100 kHz and 0.1 T). Its magnetic properties are effective because it is maintained under DC bias (at least 40% of the initial permeability is maintained under a DC bias field of 3980 A / m or 50 Oe).

また、Fe基材のアモルファス合金を制御した状態で熱処理してアモルファスリボン本体を部分的に結晶化させて、コアに微小ギャップを生じさせるための方法が、本発明によって提供される。分布ギャップが生ずる結果、上述の特性が得られる。   Also, the present invention provides a method for producing a micro gap in the core by heat-treating the Fe-based amorphous alloy in a controlled state to partially crystallize the amorphous ribbon body. As a result of the distribution gap, the characteristics described above are obtained.

より詳細に言えば、本発明によれば、結晶化の度合いと透磁率との間の独特な関係がもたらされる。100から400の範囲の透磁率を得るために、アモルファスコア本体の結晶化が必要とされ、コアの体積の10乃至25%程度を結晶化させるのが好ましい。   More specifically, the present invention provides a unique relationship between the degree of crystallization and the magnetic permeability. In order to obtain a permeability in the range of 100 to 400, crystallization of the amorphous core body is required, and it is preferable to crystallize about 10 to 25% of the core volume.

更に、本発明は、所望のチョーク特性を得るために、ある種の温度及び時間の焼き鈍し処理パラメータ、並びに、これらパラメータの制御度合いを必要とする。   Furthermore, the present invention requires certain temperature and time annealing process parameters and the degree of control of these parameters in order to obtain the desired choke characteristics.

好ましい実施例の説明DESCRIPTION OF PREFERRED EMBODIMENTS

図1は、焼き鈍し処理されたFe基材の磁気コアの透磁率を焼き鈍し処理温度の関数として示している。透磁率は、10kHzの周波数、8回転のジグ及び100mVのAC励磁電圧において、誘導ブリッジで測定した。焼き鈍し処理時間は、6時間で一定とした。総てのコアは、不活性ガス雰囲気中で焼き鈍し処理を受けた。種々の曲線は、化学組成が少し変動し従って結晶化温度が少し変化するFe基材合金を表している。結晶化温度は、示差走査熱量計(DSC)によって測定した。一定の焼き鈍し処理時間に関して焼き鈍し処理温度を増加させると、透磁率の減少が観察された。与えられた焼き鈍し処理温度に関して、結晶化温度に従う透磁率の目盛、すなわち、透磁率は、最も高い結晶化温度を有する合金について最も大きい。   FIG. 1 shows the magnetic permeability of the annealed Fe base magnetic core as a function of the annealing temperature. The permeability was measured with an inductive bridge at a frequency of 10 kHz, an 8 revolution jig and an AC excitation voltage of 100 mV. The annealing treatment time was fixed at 6 hours. All cores were annealed in an inert gas atmosphere. The various curves represent Fe-based alloys with a slight variation in chemical composition and thus a slight change in crystallization temperature. The crystallization temperature was measured by a differential scanning calorimeter (DSC). As the annealing temperature was increased for a certain annealing time, a decrease in permeability was observed. For a given annealing temperature, the permeability scale according to the crystallization temperature, ie the permeability, is the highest for the alloy with the highest crystallization temperature.

図2は、焼き鈍し処理を受けた同じ化学組成を有するコアの透磁率を焼き鈍し処理温度の関数として示している。種々の曲線は、異なる焼き鈍し処理時間を表している。そのプロットは、450℃よりも高い温度に関して、焼き鈍し処理温度の効果は、焼き鈍し処理時間の効果よりも支配的であることを示している。   FIG. 2 shows the permeability of a core having the same chemical composition that has been annealed as a function of the annealing temperature. Various curves represent different annealing treatment times. The plot shows that for temperatures higher than 450 ° C., the effect of annealing treatment temperature is more dominant than the effect of annealing treatment time.

適宜な焼き鈍し処理温度及び焼き鈍し処理時間の条件が、図1及び図2の情報に基づいて、Fe−B−Si基材のアモルファス合金について選択される。この選択は、その合金の結晶化温度(T)及び/又は化学組成が既知である場合に行うことができる。例えば、Fe8011Si(T=507℃)に関して100乃至400の範囲の透磁率を達成するためには、420乃至425℃の範囲の焼き鈍し処理温度で6時間の焼き鈍し処理を行うのが適当である。 Appropriate annealing treatment temperature and annealing treatment time conditions are selected for the Fe-B-Si based amorphous alloy based on the information in FIGS. This selection can be made when the crystallization temperature (T x ) and / or chemical composition of the alloy is known. For example, in order to achieve a magnetic permeability in the range of 100 to 400 with respect to Fe 80 B 11 Si 9 (T x = 507 ° C.), an annealing treatment is performed for 6 hours at an annealing temperature in the range of 420 to 425 ° C. Is appropriate.

図1を再度参照すると、1〜2℃未満の温度変動を維持した場合に、与えられた透磁率の値について再現性及び均一性が得られる。炉の中の温度の均一性及び再現性が確立されるように焼鈍プロセスを行うために、特殊な装填形態が開発された。箱型の不活性ガス炉に関して、ワイヤメッシュのAlプレート(アルミニウム板)2を図3に示すように積み重ね、この構造体を炉の中央に置く。上記Alプレートは、焼き鈍し処理の間にコア1を保持する基材である。   Referring again to FIG. 1, reproducibility and uniformity are obtained for a given permeability value when temperature fluctuations of less than 1-2 ° C. are maintained. Special loading configurations have been developed to perform the annealing process so that temperature uniformity and repeatability in the furnace are established. With respect to the box-type inert gas furnace, wire mesh Al plates (aluminum plates) 2 are stacked as shown in FIG. 3, and this structure is placed in the center of the furnace. The Al plate is a base material that holds the core 1 during the annealing process.

鉄損及びDCバイアスの如き、チョークに関する代表的な磁気特性データが、図4及び図5に示されている。鉄損のデータは、DCバイアス電界の関数としてプロットされており、種々の曲線は、異なる測定周波数を示している。図示のデータは、25mmのOD(外径)を有するコアに関するものである。チョークの性能に関する重要なパラメータは、コアをDCバイアス電界で駆動した時に残る初期透磁率のパーセントすなわち割合である。図5は、35mmのODを有するコアに関する代表的なDCバイアス曲線を示している。   Representative magnetic property data for the choke, such as iron loss and DC bias, is shown in FIGS. Iron loss data is plotted as a function of DC bias field, and various curves show different measurement frequencies. The data shown relates to a core having an OD (outer diameter) of 25 mm. An important parameter for choke performance is the percent or percentage of the initial permeability that remains when the core is driven with a DC bias field. FIG. 5 shows a typical DC bias curve for a core with an OD of 35 mm.

断面走査電子顕微鏡法(SEM)、及び、X線回折法(XRD)を行って、焼き鈍し処理を受けたコアの分布及び結晶化パーセントを測定した。図6は、代表的な断面走査電子顕微鏡写真を示しており、これら写真は、合金の本体及び表面が共に結晶化していることを示している。このことは、表面だけが結晶化される上述の米国特許第4,812,181号に記載されている方法とは容易に区別される。   Cross-sectional scanning electron microscopy (SEM) and X-ray diffraction (XRD) were performed to determine the distribution and percent crystallization of the annealed core. FIG. 6 shows representative cross-sectional scanning electron micrographs, which show that the body and surface of the alloy are both crystallized. This is easily distinguished from the method described in the above-mentioned US Pat. No. 4,812,181 where only the surface is crystallized.

結晶化の体積パーセントをSEM及びXRDの両方のデータから決定し、その結果を透磁率の関数として図7にプロットした。100乃至400の範囲の透磁率に関して、5乃至30%の範囲の本体の結晶化が必要とされる。   The volume percent of crystallization was determined from both SEM and XRD data and the results plotted in FIG. 7 as a function of permeability. For permeability in the range of 100 to 400, crystallization of the body in the range of 5 to 30% is required.

以上本発明をかなり詳細に説明したが、そのような細部に厳密にこだわる必要はなく、当業者には他の変形例及び変更例が自明であり、そのような変形例及び変更例は総て、請求の範囲に示す本発明の範囲に入るものであることを理解する必要がある。   Although the present invention has been described in considerable detail above, it is not necessary to strictly stick to such details, and other variations and modifications will be apparent to those skilled in the art, and all such variations and modifications are obvious. It should be understood that it is within the scope of the present invention as set forth in the appended claims.

図1は、コアの透磁率と焼き鈍し処理温度との間の関係を示すグラフであって、それぞれの曲線は、異なる結晶化温度を有する材料を示している。FIG. 1 is a graph showing the relationship between the permeability of the core and the annealing temperature, each curve showing a material having a different crystallization temperature. 図2は、種々の焼き鈍し処理時間に関するコアの透磁率と焼き鈍し処理温度との間の関係を示すグラフである。FIG. 2 is a graph showing the relationship between core permeability and annealing temperature for various annealing times. 図3は、数度以内の温度の均一性が得られるように焼き鈍し処理を行うためのコアの装填形態を示す図である。FIG. 3 is a diagram showing a core loading form for performing annealing treatment so as to obtain temperature uniformity within several degrees. 図4は、コアの鉄損W/kgをDCバイアス電界及び周波数の関数として示すグラフである。FIG. 4 is a graph showing core iron loss W / kg as a function of DC bias field and frequency. 図5は、種々のDCバイアス電界条件を受けた場合のコアの透磁率を示すグラフである。FIG. 5 is a graph showing the magnetic permeability of the core when subjected to various DC bias electric field conditions. 図6は、焼き鈍し処理を行った後の代表的な走査型電子顕微鏡(SEM)断面写真を示している。FIG. 6 shows a representative scanning electron microscope (SEM) cross-sectional photograph after the annealing treatment. 図7は、体積%の結晶化度の関数として透磁率を表すグラフである。FIG. 7 is a graph showing permeability as a function of volume% crystallinity.

Claims (2)

分布ギャップを有し本体内部と表面の両方の10−30容量%が部分的に結晶化されているFe8011Siの組成を有するFe基アモルファス金属合金から構成されており10kHzで100−400の透磁率を有する磁気コアを含む電気チョーク。 It is composed of an Fe-based amorphous metal alloy having a composition of Fe 80 B 11 Si 9 having a distribution gap and 10-30% by volume of both the inside and the surface of the main body being partially crystallized, and 100− at 10 kHz. An electric choke comprising a magnetic core having a permeability of 400. 3980A/m(50Oe)のDCバイアス磁界において維持される40%の初期透磁率と100kHzと0.1Tのバイアス磁界における70W/kg未満の鉄損と高い飽和磁束密度を有するコアを含む請求項1に記載の電気チョーク。 2. A core having an initial permeability of 40% maintained at a DC bias field of 3980 A / m (50 Oe), an iron loss of less than 70 W / kg at a bias field of 100 kHz and 0.1 T, and a high saturation flux density. Electric choke as described in
JP2010207490A 1996-01-11 2010-09-16 Distributed gap electric choke Expired - Fee Related JP4990389B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US58478796A 1996-01-11 1996-01-11
US08/584,787 1996-01-11

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP52533897A Division JP4629165B2 (en) 1996-01-11 1997-01-08 Distributed gap electric choke

Publications (2)

Publication Number Publication Date
JP2011061210A true JP2011061210A (en) 2011-03-24
JP4990389B2 JP4990389B2 (en) 2012-08-01

Family

ID=24338791

Family Applications (2)

Application Number Title Priority Date Filing Date
JP52533897A Expired - Fee Related JP4629165B2 (en) 1996-01-11 1997-01-08 Distributed gap electric choke
JP2010207490A Expired - Fee Related JP4990389B2 (en) 1996-01-11 2010-09-16 Distributed gap electric choke

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP52533897A Expired - Fee Related JP4629165B2 (en) 1996-01-11 1997-01-08 Distributed gap electric choke

Country Status (9)

Country Link
EP (1) EP0873567B1 (en)
JP (2) JP4629165B2 (en)
KR (1) KR100452535B1 (en)
CN (1) CN1114217C (en)
AT (1) ATE215727T1 (en)
DE (1) DE69711599T2 (en)
DK (1) DK0873567T3 (en)
TW (1) TW351816B (en)
WO (1) WO1997025727A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6144279A (en) * 1997-03-18 2000-11-07 Alliedsignal Inc. Electrical choke for power factor correction
AU746454B2 (en) 1998-03-02 2002-05-02 Massachusetts Institute Of Technology Poly zinc finger proteins with improved linkers
CA2326328A1 (en) * 1998-03-27 1999-09-30 D. Christian Pruess Dry-type transformer having a generally rectangular, resin encapsulated coil
US6534261B1 (en) 1999-01-12 2003-03-18 Sangamo Biosciences, Inc. Regulation of endogenous gene expression in cells using zinc finger proteins
AU776576B2 (en) 1999-12-06 2004-09-16 Sangamo Biosciences, Inc. Methods of using randomized libraries of zinc finger proteins for the identification of gene function
WO2002057294A2 (en) 2001-01-22 2002-07-25 Sangamo Biosciences, Inc. Zinc finger proteins for dna binding and gene regulation in plants
US7262054B2 (en) 2002-01-22 2007-08-28 Sangamo Biosciences, Inc. Zinc finger proteins for DNA binding and gene regulation in plants
US7541909B2 (en) * 2002-02-08 2009-06-02 Metglas, Inc. Filter circuit having an Fe-based core
DE102004024337A1 (en) 2004-05-17 2005-12-22 Vacuumschmelze Gmbh & Co. Kg Process for producing nanocrystalline current transformer cores, magnetic cores produced by this process, and current transformers with same
DE202017103569U1 (en) * 2017-06-14 2018-09-17 Sma Solar Technology Ag Coil and electrical or electronic device with such a coil

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324016A (en) * 1986-04-05 1988-02-01 バク−ムシユメルツエ、ゲゼルシヤフト、ミツト、ベシユレンクテル、ハフツング Achievement of flat magnetization curve in manetic core of amorphous material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4300950A (en) * 1978-04-20 1981-11-17 General Electric Company Amorphous metal alloys and ribbons thereof
GB2117979B (en) * 1982-04-01 1985-06-26 Telcon Metals Ltd Electrical chokes
JPS62186506A (en) * 1986-02-12 1987-08-14 Meidensha Electric Mfg Co Ltd Annealing method of amorphous iron core
JP2868121B2 (en) * 1987-07-28 1999-03-10 日立金属株式会社 Method for producing Fe-based magnetic alloy core
JP3322407B2 (en) * 1990-11-30 2002-09-09 三井化学株式会社 Fe-based soft magnetic alloy
KR950014314B1 (en) * 1990-11-30 1995-11-24 미쓰이세끼유 가가꾸고오교오 가부시끼가이샤 Iron-base soft magnetic alloy
JPH04341544A (en) * 1991-05-17 1992-11-27 Mitsui Petrochem Ind Ltd Fe base soft magnetic alloy
US5252144A (en) * 1991-11-04 1993-10-12 Allied Signal Inc. Heat treatment process and soft magnetic alloys produced thereby

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324016A (en) * 1986-04-05 1988-02-01 バク−ムシユメルツエ、ゲゼルシヤフト、ミツト、ベシユレンクテル、ハフツング Achievement of flat magnetization curve in manetic core of amorphous material

Also Published As

Publication number Publication date
CN1114217C (en) 2003-07-09
KR100452535B1 (en) 2004-12-17
TW351816B (en) 1999-02-01
KR19990076747A (en) 1999-10-15
CN1208497A (en) 1999-02-17
EP0873567A1 (en) 1998-10-28
JP4629165B2 (en) 2011-02-09
ATE215727T1 (en) 2002-04-15
WO1997025727A1 (en) 1997-07-17
DE69711599D1 (en) 2002-05-08
JP4990389B2 (en) 2012-08-01
JP2000503169A (en) 2000-03-14
DE69711599T2 (en) 2002-10-31
EP0873567B1 (en) 2002-04-03
DK0873567T3 (en) 2002-07-01

Similar Documents

Publication Publication Date Title
JP4990389B2 (en) Distributed gap electric choke
US4268325A (en) Magnetic glassy metal alloy sheets with improved soft magnetic properties
US4116728A (en) Treatment of amorphous magnetic alloys to produce a wide range of magnetic properties
JP4629807B1 (en) Alloy composition, Fe-based nanocrystalline alloy and method for producing the same, and magnetic component
JPH06505533A (en) Fe-Ni-based soft magnetic alloy with nanocrystalline structure
JP2013100603A (en) Magnetic glassy alloy for high frequency application
JP2011102438A (en) Iron-based amorphous alloy having linear bh loop
WO2022019335A1 (en) Fe-based nanocrystal soft magnetic alloy and magnetic component
US4558297A (en) Saturable core consisting of a thin strip of amorphous magnetic alloy and a method for manufacturing the same
JP2907271B2 (en) Vitreous alloy with perminbar properties
Fukunaga et al. Nanostructured soft magnetic material with low loss and low permeability
JPS59179756A (en) Amorphous alloy for electromagnetic device
JPH07320920A (en) Nano-crystal alloy magnetic core and heat-treatment method thereof
JP2000277357A (en) Saturatable magnetic core and power supply apparatus using the same
JP3055722B2 (en) Method for manufacturing wound core having high squareness ratio at high frequency and wound core
Hasegawa Design and synthesis of magnetic structures
JP3058675B2 (en) Ultra-microcrystalline magnetic alloy
JP2001052933A (en) Magnetic core and current sensor using the magnetic core
JPH01247556A (en) Fe-base magnetic alloy excellent in iso-permeability characteristic
JPH0257683B2 (en)
KR0153174B1 (en) Fe-al based feeble magnetic alloy having high magnetic permeability
JPS62167840A (en) Magnetic material and its manufacture
JP2021193205A (en) Fe-BASED NANOCRYSTALLINE SOFT MAGNETIC ALLOY
JPH03249151A (en) Superfine crystalline magnetic alloy and its manufacture
JPS59107062A (en) Low iron loss amorphous alloy

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110408

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110706

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110711

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110804

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120402

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees