JP2011060922A - Thermoelectric power generator - Google Patents

Thermoelectric power generator Download PDF

Info

Publication number
JP2011060922A
JP2011060922A JP2009207583A JP2009207583A JP2011060922A JP 2011060922 A JP2011060922 A JP 2011060922A JP 2009207583 A JP2009207583 A JP 2009207583A JP 2009207583 A JP2009207583 A JP 2009207583A JP 2011060922 A JP2011060922 A JP 2011060922A
Authority
JP
Japan
Prior art keywords
side heat
temperature
temperature side
thermoelectric
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009207583A
Other languages
Japanese (ja)
Other versions
JP2011060922A5 (en
JP5515537B2 (en
Inventor
Takashi Kuroki
高志 黒木
Kazuhisa Kabeya
和久 壁矢
Hidekazu Tsuruta
秀和 鶴田
Teruo Fujibayashi
晃夫 藤林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009207583A priority Critical patent/JP5515537B2/en
Publication of JP2011060922A publication Critical patent/JP2011060922A/en
Publication of JP2011060922A5 publication Critical patent/JP2011060922A5/ja
Application granted granted Critical
Publication of JP5515537B2 publication Critical patent/JP5515537B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric power generator capable of obtaining a stable power generation output with a small variation amount irrespective of temperature change of a high temperature-side heat source and a low temperature-side heat dissipation part. <P>SOLUTION: The thermoelectric power generator provided with a thermoelectric element module between the high temperature-side heat source and low temperature-side heat dissipation part is provided with a temperature buffer member filled with a heating medium in contact with a heat receiving surface and/or a heat dissipation surface of the thermoelectric element module, it being preferred that a transformation point of the heating medium of the temperature buffer member satisfies Tm=Th±0.05Th, where Th is an average temperature (K) of the high temperature-side heat source and low temperature-side heat dissipation part. The temperature buffer member filled with the heating medium suitably buffers temperature change of the high temperature-side heat source and low temperature-side heat dissipation part, so that the stable power generation output is obtained. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、炉などの高温側熱源から放出される熱を、電気エネルギーに変換する熱電発電装置に関するものである。   The present invention relates to a thermoelectric generator that converts heat released from a high-temperature side heat source such as a furnace into electric energy.

製鉄所などの製造設備では、CO発生を抑制するための様々な対策が進められており、その一つとして、廃熱として処理されている熱エネルギーを熱電発電により電気エネルギーに変換し、回収する方法が検討されている。
従来、高温側熱源から放出される熱を、電気エネルギーに変換するために、高温側熱源と低温側放熱部との間に熱電素子モジュールを設けた熱電発電装置が知られている。この熱電発電装置は、複数のp型熱電素子とn型熱電素子を交互に配置し、隣接する熱電素子の一端部どうしと他端部どうしを交互に電極で連結して構成された熱電素子モジュールを備え、その電極を高温側熱源と低温側放熱部に接するように設け、高温側と低温側の温度差により生じた熱起電力を発電出力として取り出すようにしたものである。
In manufacturing facilities such as steelworks, various measures are being taken to suppress the generation of CO 2 , and one of them is the conversion of heat energy, which has been treated as waste heat, into electrical energy by thermoelectric power generation and recovery. How to do is being studied.
2. Description of the Related Art Conventionally, there has been known a thermoelectric power generation apparatus in which a thermoelectric element module is provided between a high temperature side heat source and a low temperature side heat radiating portion in order to convert heat released from the high temperature side heat source into electric energy. This thermoelectric generator is a thermoelectric element module in which a plurality of p-type thermoelectric elements and n-type thermoelectric elements are alternately arranged, and one end portion and the other end portion of adjacent thermoelectric elements are alternately connected by electrodes. The electrode is provided so as to be in contact with the high temperature side heat source and the low temperature side heat radiating portion, and the thermoelectromotive force generated by the temperature difference between the high temperature side and the low temperature side is taken out as a power generation output.

しかし、熱電発電装置が適用される高温側熱源(例えば、溶解炉などの炉壁)は、その温度が変動する場合があり、このような温度変動を生じると熱電素子の発電出力も変動するため、安定した発電出力が得られない問題がある。
このような問題に対して、特許文献1には、高温側熱源に接する電極に熱伝導度の大きいプレート(例えば、銅、アルミニウムなどの金属やベリリア、炭化珪素などからなるプレート)を接合し、このプレートに高温側熱源の温度変動を緩衝(吸収)させるようにした装置が提案されている。
However, the temperature of a high-temperature side heat source (for example, a furnace wall such as a melting furnace) to which a thermoelectric generator is applied may fluctuate. If such temperature fluctuation occurs, the power generation output of the thermoelectric element also fluctuates. There is a problem that a stable power output cannot be obtained.
For such a problem, in Patent Document 1, a plate having a high thermal conductivity (for example, a plate made of a metal such as copper or aluminum, a plate made of beryllia, silicon carbide, or the like) is joined to an electrode in contact with a high-temperature side heat source. An apparatus has been proposed in which the plate is made to buffer (absorb) temperature fluctuations of the high temperature side heat source.

特開昭60−34084号公報JP 60-34084 A

しかし、特許文献1のような高熱伝導性のプレートを設けただけでは、高温側熱源の温度が大きく変動した場合に、発電出力の変動を適切に抑えることができない。
したがって本発明の目的は、高温側熱源や低温側放熱部の温度変動に関わりなく、変動量が少ない安定した発電出力を得ることができる熱電発電装置を提供することにある。
However, simply providing a plate with high thermal conductivity as in Patent Document 1 cannot properly suppress fluctuations in the power generation output when the temperature of the high-temperature side heat source fluctuates greatly.
Accordingly, an object of the present invention is to provide a thermoelectric power generation apparatus that can obtain a stable power generation output with a small amount of fluctuation regardless of temperature fluctuations of the high temperature side heat source and the low temperature side heat radiation part.

本発明者らは、上記のような従来技術の課題を解決すべく検討を重ねた結果、熱電素子モジュールの受熱面や放熱面に接して、内部に熱媒体を充填した温度緩衝部材を設けることにより、高温側熱源や低温側放熱部の温度変動を適切に緩衝し、受熱量や放熱量の変動を抑制できること、また、温度緩衝部材内に充填する熱媒体として、高温側熱源や低温側放熱部の温度に比較的近い変態点(例えば、融点)を有するものを用いることにより、特に効果的な温度緩衝作用が得られることが判った。   As a result of repeated investigations to solve the problems of the prior art as described above, the present inventors provide a temperature buffer member that is in contact with the heat receiving surface and the heat radiating surface of the thermoelectric element module and is filled with a heat medium. Therefore, it is possible to appropriately buffer the temperature fluctuations of the high temperature side heat source and the low temperature side heat radiation part and suppress fluctuations in the amount of heat received and the heat radiation amount, and as a heat medium to be filled in the temperature buffer member, It has been found that a particularly effective temperature buffering action can be obtained by using a material having a transformation point (for example, a melting point) relatively close to the temperature of the part.

本発明はこのような知見に基づきなされたもので、以下を要旨とするものである。
[1]高温側熱源と低温側放熱部との間に熱電素子モジュールを設けた熱電発電装置において、熱電素子モジュールの受熱面および/または放熱面に接して、内部に熱媒体を充填した温度緩衝部材を設けたことを特徴とする熱電発電装置。
[2]上記[1]の熱電発電装置において、高温側熱源の平均温度をTh1(K)としたとき、温度緩衝部材の熱媒体の変態点Tm(K)がTm=Th1±0.05Th1であることを特徴とする熱電発電装置。
The present invention has been made on the basis of such findings and has the following gist.
[1] In a thermoelectric power generation apparatus in which a thermoelectric element module is provided between a high temperature side heat source and a low temperature side heat radiation part, a temperature buffer in which a heat medium is filled in contact with the heat receiving surface and / or heat radiation surface of the thermoelectric element module A thermoelectric generator having a member.
[2] In the thermoelectric generator of [1] above, when the average temperature of the high temperature side heat source is Th1 (K), the transformation point Tm (K) of the heat medium of the temperature buffer member is Tm = Th1 ± 0.05Th1. There is a thermoelectric power generator.

[3]上記[1]または[2]の熱電発電装置において、低温側放熱部の平均温度をTh2(K)としたとき、温度緩衝部材の熱媒体の変態点Tm(K)がTm=Th2±0.05Th2であることを特徴とする熱電発電装置。
[4]上記[1]〜[3]のいずれかの熱電発電装置において、炉体を冷却するための冷却用部材を備えた炉に設置され、前記冷却用部材を低温側放熱部とすることを特徴とする熱電発電装置。
[5]上記[4]の熱電発電装置において、高炉の炉体に設置されたステーブクーラーに組み込まれ、該ステーブクーラーを低温側放熱部とすることを特徴とする熱電発電装置。
[3] In the thermoelectric generator of [1] or [2] above, when the average temperature of the low-temperature side heat radiating portion is Th2 (K), the transformation point Tm (K) of the heat medium of the temperature buffer member is Tm = Th2 A thermoelectric generator characterized by ± 0.05 Th2.
[4] In the thermoelectric generator according to any one of [1] to [3], the thermoelectric generator is installed in a furnace having a cooling member for cooling the furnace body, and the cooling member is a low-temperature side heat radiating portion. A thermoelectric generator characterized by.
[5] The thermoelectric generator according to [4], wherein the thermoelectric generator is incorporated in a stave cooler installed in a furnace body of a blast furnace, and the stave cooler is a low-temperature side heat radiating portion.

本発明の熱電発電装置は、内部に熱媒体を充填した温度緩衝部材が高温側熱源や低温側放熱部の温度変動を適切に緩衝し、熱電素子モジュールの受熱量や放熱量の変動が抑えられるので、変動量の少ない安定した発電出力を得ることができる。   In the thermoelectric generator of the present invention, the temperature buffering member filled with the heat medium appropriately buffers the temperature fluctuation of the high temperature side heat source and the low temperature side heat radiation part, and the fluctuation of the heat receiving amount and the heat radiation amount of the thermoelectric element module can be suppressed. Therefore, it is possible to obtain a stable power output with a small fluctuation amount.

本発明の熱電発電装置の概念図Conceptual diagram of the thermoelectric generator of the present invention 本発明の熱電発電装置の一実施形態を模式的に示す説明図Explanatory drawing which shows typically one Embodiment of the thermoelectric generator of this invention

図1は、本発明の熱電発電装置の概念図であり、1は熱電素子モジュール、2は高温側熱源、3は低温側放熱部である。また、10は熱電素子モジュール1の受熱面、11は同じく放熱面である。
前記熱電素子モジュール1は、ゼーベック効果を利用し、高温側と低温側の温度差により生じた熱起電力を発電出力として取り出すようにしたものである。また、前記高温側熱源2と低温側放熱部3は、固体、気体、液体のいずれでもよい。例えば、高温側熱源2としては、溶解炉、精錬炉の炉壁や排ガスダクト、加熱炉の炉壁やスキッドなどのような設備が挙げられるが、スラグ、スラブ、鋼材、鋼板などのような材料類であってもよい。低温側放熱部3としては、溶解炉や精錬炉などの炉体の冷却用部材(例えば、ステーブクーラー、冷却ジャケットなど)などが挙げられる。また、低温側放熱部はフィンをつけて空冷してもよい。
FIG. 1 is a conceptual diagram of a thermoelectric power generation apparatus according to the present invention, in which 1 is a thermoelectric element module, 2 is a high temperature side heat source, and 3 is a low temperature side heat radiating section. Further, 10 is a heat receiving surface of the thermoelectric element module 1, and 11 is a heat radiating surface.
The thermoelectric element module 1 utilizes the Seebeck effect and takes out the thermoelectromotive force generated by the temperature difference between the high temperature side and the low temperature side as a power generation output. Further, the high temperature side heat source 2 and the low temperature side heat radiation part 3 may be solid, gas, or liquid. For example, the high temperature side heat source 2 includes equipment such as a melting furnace, a furnace wall of a refining furnace, an exhaust gas duct, a furnace wall of a heating furnace, a skid, etc., but a material such as slag, slab, steel material, steel plate, etc. It may be a kind. Examples of the low temperature side heat radiating section 3 include cooling members for furnace bodies such as melting furnaces and refining furnaces (for example, stave coolers, cooling jackets, etc.). Further, the low temperature side heat radiating portion may be air-cooled with fins.

前記熱電素子モジュール1の受熱面10と放熱面11に接して、内部に熱媒体h,hが充填された温度緩衝部材4,5(40,50は各部材の壁部)が設けられている。このうち温度緩衝部材4は、高温側熱源2の温度変動による受熱面10の受熱量(高温側熱源2から受ける熱量)の変動を緩衝し、受熱量を均一化する。また、温度緩衝部材5は、低温側放熱部3の温度変動による放熱面11の放熱量(低温側放熱部3に対する放熱量)の変動を緩衝し、放熱量を均一化する。熱電素子モジュール1の発電出力は、受熱面10と放熱面11の温度差により決まるので、それらの受熱量と放熱量の変動が抑えられることにより、発電出力の変動が抑えられる。
温度緩衝部材4,5はいずれか一方のみを設けることもできるが、発電出力の変動の要因は、一般には高温側熱源2の温度変動の影響の方が大きいので、少なくとも受熱面10に温度緩衝部材4を設けることが好ましい。温度緩衝部材4,5は熱媒体h,hが充填(封入)されるものであるが、熱媒体h,hの熱膨張を考慮して、その熱膨張分を吸収する機構を備えることが好ましい。また、温度緩衝部材4,5の材質は、金属、合金など、特に種類は問わないが、熱媒体と反応性が無い或いは小さいものが好ましい。
Temperature buffer members 4 and 5 (40 and 50 are wall portions of each member) are provided in contact with the heat receiving surface 10 and the heat radiating surface 11 of the thermoelectric element module 1 and filled with heat mediums h 1 and h 2 therein. ing. Among these, the temperature buffer member 4 buffers fluctuations in the amount of heat received by the heat receiving surface 10 (heat amount received from the high temperature side heat source 2) due to temperature fluctuations of the high temperature side heat source 2, and makes the amount of heat received uniform. Moreover, the temperature buffer member 5 buffers the variation in the heat radiation amount of the heat radiation surface 11 (the heat radiation amount with respect to the low temperature side heat radiation portion 3) due to the temperature variation of the low temperature side heat radiation portion 3, and equalizes the heat radiation amount. Since the power generation output of the thermoelectric element module 1 is determined by the temperature difference between the heat receiving surface 10 and the heat radiation surface 11, fluctuations in the power generation output can be suppressed by suppressing fluctuations in the heat reception amount and the heat radiation amount.
Although only one of the temperature buffer members 4 and 5 can be provided, the cause of the fluctuation in the power generation output is generally more influenced by the temperature fluctuation of the high temperature side heat source 2, so that at least the temperature receiving surface 10 is temperature buffered. It is preferable to provide the member 4. The temperature cushioning members 4 and 5 are those heat medium h 1, h 2 are filled (encapsulated), the thermal expansion of the heating medium h 1, h 2 in view, the mechanism for absorbing the thermal expansion amount It is preferable to provide. The material of the temperature buffer members 4 and 5 is not particularly limited, such as a metal or an alloy, but a material that is not reactive with the heat medium or small is preferable.

温度緩衝部材4,5内に充填する熱媒体h,hの種類に特別な制限はないが、高温側熱源2と低温側放熱部3の各平均温度に比較的近い変態点(例えば、融点、凝固点、固相変態の変態点など)を有するものを用いることにより、特に効果的な温度緩衝作用が得られる。このような熱媒体h,hとしては、水、溶液、化合物、金属、合金、塩類など、その種類を問わない。
具体的には、高温側熱源2の平均温度をTh1(K)としたとき、これに接する温度緩衝部材4の熱媒体として、変態点Tm(K)がTm=Th1±0.05Th1、より望ましくはTm=Th1±0.01Th1である物質を用いることが好ましい。また、低温側放熱部3の平均温度をTh2(K)としたとき、これに接する温度緩衝部材5の熱媒体として、変態点Tm(K)がTm=Th2±0.05Th2、より望ましくはTm=Th2±0.01Th2である物質を用いることが好ましい。ここで、高温側熱源2や低温側放熱部3の平均温度とは、操業中に変動する温度の時間平均値であり、温度変動の程度や変動サイクル、さらには発電出力の供給先の事情等に応じて、平均する時間を決めればよい。具体的には、操業中の1時間〜数日程度の時間平均、或いは短時間での温度変動が小さい設備では操業1サイクルにおける時間平均でもよい。例えば、24時間の時間平均値としてもよい。また、高温側熱源2や低温側放熱部3の温度は、例えば、温度緩衝部材4,5の外面位置で測定される温度でもよく、場所によって温度に差がある場合には、面内平均温度とすればよい。
Although there is no particular limitation on the kind of the heat medium h 1, h 2 to be filled into the temperature buffer member 4 and 5, relatively close transformation point each average temperature of the high temperature heat source 2 and the low temperature-side heat radiating section 3 (e.g., A particularly effective temperature buffering effect can be obtained by using a material having a melting point, a freezing point, a solid phase transformation point, and the like. Such heat media h 1 and h 2 may be of any kind, such as water, solution, compound, metal, alloy, and salt.
Specifically, when the average temperature of the high-temperature side heat source 2 is Th1 (K), the transformation point Tm (K) is more desirably Tm = Th1 ± 0.05Th1 as the heat medium of the temperature buffer member 4 in contact therewith. It is preferable to use a material with Tm = Th1 ± 0.01Th1. Further, when the average temperature of the low temperature side heat radiating portion 3 is Th2 (K), the transformation point Tm (K) is Tm = Th2 ± 0.05Th2, more preferably Tm as the heat medium of the temperature buffer member 5 in contact therewith. It is preferable to use a material with = Th2 ± 0.01Th2. Here, the average temperature of the high temperature side heat source 2 and the low temperature side heat radiating section 3 is the time average value of the temperature that varies during operation, the degree of temperature variation, the fluctuation cycle, the situation of the supply destination of power generation output, etc. The average time may be determined according to the above. Specifically, it may be a time average of about 1 hour to several days during operation, or a time average in one cycle of operation for equipment having a small temperature fluctuation in a short time. For example, it may be a 24-hour average value. Moreover, the temperature of the high temperature side heat source 2 or the low temperature side heat radiating part 3 may be, for example, a temperature measured at the outer surface position of the temperature buffer members 4, 5. And it is sufficient.

例えば、高温側熱源2の平均温度Th1が1073K(約800℃)の場合には、Th1±0.05Th1は1019〜1127K、Th1±0.01Th1は1062〜1084Kであるから、温度緩衝部材4内に充填する熱媒体は、変態点(例えば、融点)が1019〜1127Kのものが好ましく、特に1062〜1084Kのものが好ましい。好適な熱媒体としては、塩化ナトリウム(融点:約1074K)、Fe−10Co−5Cr合金(固相変態点:約1076K)、Ni−30Fe−20Co合金(融点:1093K)、LiF−20CaF2塩(融点:1040K)等が挙げられる。
また、高温側熱源2の平均温度Th1が853K(約580℃)の場合には、Th1±0.05Th1は810〜896K、Th1±0.01Th1は844〜862Kであるから、温度緩衝部材4内に充填する熱媒体は、変態点が810〜896Kのものが好ましく、特に844〜862Kのものが好ましい。好適な熱媒体としては、Al−13%Si合金(融点:約850K)、LiF−NaCl−NaF塩(融点:855K)等が挙げられる。
なお、温度安定化のためには、熱媒体は融解潜熱量が大きいものが好ましい。熱媒体の融解潜熱が大きいと、変態点から温度上昇/下降するのに必要な熱量がより多く必要となり、高温側熱源2や低温側放熱部3の温度変動をより効果的に緩衝できるからである。
For example, when the average temperature Th1 of the high temperature side heat source 2 is 1073K (about 800 ° C.), Th1 ± 0.05Th1 is 1019 to 1127K, and Th1 ± 0.01Th1 is 1062 to 1084K. The heat medium filled in is preferably one having a transformation point (for example, a melting point) of 1019 to 1127K, particularly preferably 1062 to 1084K. As a suitable heat medium, sodium chloride (melting point: about 1074K), Fe-10Co-5Cr alloy (solid phase transformation point: about 1076K), Ni-30Fe-20Co alloy (melting point: 1093K), LiF-20CaF2 salt (melting point) : 1040K).
When the average temperature Th1 of the high temperature side heat source 2 is 853K (about 580 ° C.), Th1 ± 0.05Th1 is 810 to 896K, and Th1 ± 0.01Th1 is 844 to 862K. The heat medium filled in is preferably one having a transformation point of 810 to 896K, particularly preferably 844 to 862K. Suitable examples of the heat medium include an Al-13% Si alloy (melting point: about 850K), LiF-NaCl-NaF salt (melting point: 855K), and the like.
In order to stabilize the temperature, the heat medium preferably has a large amount of latent heat of fusion. If the latent heat of fusion of the heat medium is large, a larger amount of heat is required to increase / decrease the temperature from the transformation point, and the temperature fluctuations of the high temperature side heat source 2 and the low temperature side heat radiation part 3 can be buffered more effectively. is there.

一方、低温側放熱部3の平均温度Th2が303K(約30℃)の場合には、Th2±0.05Th2は288〜318K、Th2±0.01Th2は300〜306Kであるから、温度緩衝部材5内に充填する熱媒体は、変態点(例えば、融点)が288〜318Kのものが好ましく、特に300〜306Kのものが好ましい。好適な熱媒体としては、塩化カルシウム6水和物(融点:約303K)等が挙げられる。
熱媒体h,hは、適用される高温側熱源2や低温側放熱部3の平均温度Th1,Th2に応じて、上記のような変態点Tmを有するものを適宜選択すればよい。
以上のように高温側熱源2や低温側放熱部3の平均温度Th1,Th2に応じて、変態点TmがTh1±0.05Th1、Th2±0.05Th2、好ましくはTh1±0.01Th1、Th2±0.01Th2のものを用いることにより、高温側熱源2や低温側放熱部3に温度変動が生じても、温度緩衝部材4,5内の熱媒体h,hの温度はその変態点近傍で推移し、結果として、高温側熱源2や低温側放熱部3の温度変動を適切に緩衝する作用をすることになる。
On the other hand, when the average temperature Th2 of the low temperature side heat radiating section 3 is 303K (about 30 ° C.), Th2 ± 0.05Th2 is 288 to 318K, and Th2 ± 0.01Th2 is 300 to 306K. The heat medium filled therein preferably has a transformation point (for example, melting point) of 288 to 318K, and particularly preferably 300 to 306K. Suitable examples of the heat medium include calcium chloride hexahydrate (melting point: about 303K).
As the heat mediums h 1 and h 2 , those having the above transformation points Tm may be appropriately selected according to the average temperatures Th 1 and Th 2 of the high temperature side heat source 2 and the low temperature side heat radiation part 3 to be applied.
As described above, the transformation points Tm are Th1 ± 0.05Th1, Th2 ± 0.05Th2, preferably Th1 ± 0.01Th1, Th2 ± according to the average temperatures Th1 and Th2 of the high temperature side heat source 2 and the low temperature side heat radiation part 3. By using 0.01 Th 2, the temperature of the heat mediums h 1 and h 2 in the temperature buffer members 4 and 5 is in the vicinity of the transformation point even if temperature fluctuation occurs in the high temperature side heat source 2 and the low temperature side heat radiation part 3. As a result, the temperature fluctuations of the high temperature side heat source 2 and the low temperature side heat radiating section 3 are appropriately buffered.

本発明の熱電発電装置は、長期間にわたって安全且つ安定的に高発電出力を得るために、さらに以下のような条件を満足することが好ましい。
(a)繰り返し熱サイクルの比較的少ない高温側熱源に適用する。
(b)耐熱性が高く、且つ毒性元素を含まない熱電素子を用いる。
上記(a)については、熱電発電装置を繰り返し熱サイクルが多い高温側熱源に適用すると、熱電素子に熱サイクルの温度差による大きな熱応力が加わることにより破壊に至ることがあり、また、高温部では熱サイクルにより電極と熱電素子との連結部にクリープや破壊が生じることがあるので、好ましくない。(a)の条件を満たすのに好適な高温側熱源としては、例えば、連続的に操業される溶解炉(高炉など)の炉壁、排ガスダクトなどが考えられる。
また、上記(b)については、特に、約900℃まで使用可能な酸化物系熱電素子(例えば、p型:CaCo、n型:LaNiO)、約600℃まで使用可能なスクッテルダイト系やシリサイド系熱電素子などが、比較的安価で且つ毒性元素を含まないので好ましい。このような熱電素子を用い、高温側と低温側の温度差を大きくとることによって、熱エネルギーを電力として効率的に回収することができる。
The thermoelectric generator of the present invention preferably further satisfies the following conditions in order to obtain a high power output safely and stably over a long period of time.
(A) Applicable to high-temperature heat sources with relatively few repeated heat cycles.
(B) A thermoelectric element having high heat resistance and containing no toxic elements is used.
As for the above (a), when the thermoelectric generator is applied to a high-temperature side heat source with many repeated heat cycles, the thermoelectric element may be destroyed due to a large thermal stress due to the temperature difference of the heat cycle. Then, creep or breakage may occur at the connecting portion between the electrode and the thermoelectric element due to the thermal cycle, which is not preferable. As a high-temperature side heat source suitable for satisfying the condition (a), for example, a furnace wall of a melting furnace (such as a blast furnace) that is continuously operated, an exhaust gas duct, or the like can be considered.
In addition, with respect to the above (b), an oxide-based thermoelectric element that can be used up to about 900 ° C. (for example, p-type: Ca 3 Co 4 O 9 , n-type: LaNiO 3 ) can be used up to about 600 ° C. A skutterudite-based or silicide-based thermoelectric element is preferable because it is relatively inexpensive and does not contain a toxic element. By using such a thermoelectric element and taking a large temperature difference between the high temperature side and the low temperature side, thermal energy can be efficiently recovered as electric power.

本発明の熱電発電装置の好ましい実施形態としては、例えば、炉体冷却するための冷却用部材(例えば、ステーブクーラー、冷却ジャケットなど)を備えた炉において、その炉壁に設置され、且つ前記冷却用部材を低温側放熱部とすることが好ましい。このような形態で設置することにより、(i)従来では冷却用部材の冷媒で持ち去られていた廃熱を直接電力として回収できる、(ii)一方において、冷却用部材による炉体の冷却作用の一部を熱電発電モジュールが代替するだけであるので、炉内温度の低下が問題となることがない、(iii)炉内温度が高いため高温側熱源の温度が高く、しかも冷却用部材を低温側放熱部として利用することにより、高温側と低温側の十分な温度差を得ることができる、(iv)特に高炉などの溶解炉では、炉内温度の変動が小さく、且つ大きな昇降温は休風時のみであり、繰り返し熱サイクルが少ない、などの利点がある。   As a preferred embodiment of the thermoelectric generator of the present invention, for example, in a furnace provided with a cooling member (for example, a stave cooler, a cooling jacket, etc.) for cooling the furnace body, it is installed on the furnace wall and the cooling The member for use is preferably a low temperature side heat radiating portion. By installing in such a form, (i) it is possible to directly recover the waste heat that was previously taken away by the refrigerant of the cooling member, (ii) on the other hand, the cooling action of the furnace body by the cooling member Since only a part of the thermoelectric generator module is replaced, a decrease in the furnace temperature does not become a problem. (Iii) The temperature in the high-temperature side heat source is high because the furnace temperature is high, and the cooling member is kept at a low temperature. A sufficient temperature difference between the high temperature side and the low temperature side can be obtained by using it as a side heat radiation part. (Iv) Especially in a melting furnace such as a blast furnace, the fluctuation of the temperature in the furnace is small and a large temperature rise and fall is not allowed. There are advantages such as only during wind and fewer repeated heat cycles.

以上の点からして、本発明の熱電発電装置の特に好ましい実施形態としては、高炉の炉壁(好ましくは炉内に溶融物が存在しないシャフト部領域)に設置し、低温側放熱部としてステーブクーラー(冷却用部材)を利用することが好ましいと言える。
図2は、本発明の熱電発電装置を高炉のシャフト部(炉内に溶融物が存在しないシャフト部領域)に適用した場合の一実施形態を模式的に示すものである。図において、6は炉内耐火物(=高温側熱源)、7はステーブクーラー(=低温側放熱部)、70はステーブクーラー7の冷却水流路、8は鉄皮(炉外殻)である。前記炉内耐火物6はステーブクーラー7の内側面(炉内側)に保持されている。この実施形態では、ステーブクーラー7の内側面(炉内側)の一部に本発明の熱電発電装置を組み込んだものであり、熱電素子モジュール1の受熱面10は、温度緩衝部材4を介して炉内耐火物6(=高温側熱源)と接し、放熱面11は、温度緩衝部材4を介してステーブクーラー(=低温側放熱部)6と接している。
In view of the above, a particularly preferred embodiment of the thermoelectric power generator of the present invention is installed on the furnace wall of the blast furnace (preferably the shaft region where no melt is present in the furnace), and is used as a low-temperature side heat radiation unit. It can be said that it is preferable to use a cooler (cooling member).
FIG. 2 schematically shows an embodiment in which the thermoelectric generator of the present invention is applied to a shaft portion of a blast furnace (a shaft portion region where no melt exists in the furnace). In the figure, 6 is a furnace refractory (= high temperature side heat source), 7 is a stave cooler (= low temperature side heat radiating portion), 70 is a cooling water flow path of the stave cooler 7, and 8 is an iron shell (furnace shell). The furnace refractory 6 is held on the inner surface (furnace inside) of the stave cooler 7. In this embodiment, the thermoelectric power generator of the present invention is incorporated into a part of the inner side surface (furnace inner side) of the stave cooler 7, and the heat receiving surface 10 of the thermoelectric element module 1 is connected to the furnace via the temperature buffer member 4. The inner refractory 6 (= high temperature side heat source) is in contact, and the heat radiating surface 11 is in contact with the stave cooler (= low temperature side heat radiating portion) 6 via the temperature buffer member 4.

1 熱電素子モジュール
2 高温側熱源
3 低温側放熱部
4,5 温度緩衝部材
6 炉内耐火物
7 ステーブクーラー
8 鉄皮
10 受熱面
11 放熱面
40,50 壁部
70 冷却水流路
,h 熱媒体
1 the thermoelectric element module 2 hot side heat source 3 cold side radiating portion 4,5 temperature buffer member 6 furnace refractories 7 staves cooler 8 steel shell 10 heat receiving surface 11 radiating surface 40 and 50 the wall portion 70 the cooling water channel h 1, h 2 Heat medium

Claims (5)

高温側熱源と低温側放熱部との間に熱電素子モジュールを設けた熱電発電装置において、
熱電素子モジュールの受熱面および/または放熱面に接して、内部に熱媒体を充填した温度緩衝部材を設けたことを特徴とする熱電発電装置。
In the thermoelectric power generation apparatus in which a thermoelectric element module is provided between the high temperature side heat source and the low temperature side heat radiation part,
A thermoelectric generator comprising a temperature buffer member in contact with a heat receiving surface and / or a heat radiating surface of a thermoelectric element module and filled with a heat medium.
高温側熱源の平均温度をTh1(K)としたとき、温度緩衝部材の熱媒体の変態点Tm(K)がTm=Th1±0.05Th1であることを特徴とする請求項1に記載の熱電発電装置。   2. The thermoelectric device according to claim 1, wherein when the average temperature of the high temperature side heat source is Th1 (K), the transformation point Tm (K) of the heat medium of the temperature buffer member is Tm = Th1 ± 0.05Th1. Power generation device. 低温側放熱部の平均温度をTh2(K)としたとき、温度緩衝部材の熱媒体の変態点Tm(K)がTm=Th2±0.05Th2であることを特徴とする請求項1または2に記載の熱電発電装置。   3. The transformation point Tm (K) of the heat medium of the temperature buffer member is Tm = Th2 ± 0.05Th2 when the average temperature of the low temperature side heat radiation part is Th2 (K). The thermoelectric generator as described. 炉体を冷却するための冷却用部材を備えた炉に設置され、前記冷却用部材を低温側放熱部とすることを特徴とする請求項1〜3のいずれかに記載の熱電発電装置。   The thermoelectric generator according to any one of claims 1 to 3, wherein the thermoelectric generator is installed in a furnace provided with a cooling member for cooling the furnace body, and the cooling member is a low-temperature side heat radiating portion. 高炉の炉体に設置されたステーブクーラーに組み込まれ、該ステーブクーラーを低温側放熱部とすることを特徴とする請求項4に記載の熱電発電装置。   The thermoelectric power generator according to claim 4, wherein the thermoelectric generator is incorporated in a stave cooler installed in a furnace body of a blast furnace, and the stave cooler is a low-temperature side heat dissipating part.
JP2009207583A 2009-09-09 2009-09-09 Thermoelectric generator Expired - Fee Related JP5515537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009207583A JP5515537B2 (en) 2009-09-09 2009-09-09 Thermoelectric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009207583A JP5515537B2 (en) 2009-09-09 2009-09-09 Thermoelectric generator

Publications (3)

Publication Number Publication Date
JP2011060922A true JP2011060922A (en) 2011-03-24
JP2011060922A5 JP2011060922A5 (en) 2012-09-13
JP5515537B2 JP5515537B2 (en) 2014-06-11

Family

ID=43948240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009207583A Expired - Fee Related JP5515537B2 (en) 2009-09-09 2009-09-09 Thermoelectric generator

Country Status (1)

Country Link
JP (1) JP5515537B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019008720A (en) * 2017-06-28 2019-01-17 ホーチキ株式会社 Heat sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05167104A (en) * 1991-12-18 1993-07-02 Toto Ltd Thermoelectric generator with heat accumulating material
JPH10190073A (en) * 1996-12-25 1998-07-21 Ngk Insulators Ltd Thermoelectric converter for furnace wall

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05167104A (en) * 1991-12-18 1993-07-02 Toto Ltd Thermoelectric generator with heat accumulating material
JPH10190073A (en) * 1996-12-25 1998-07-21 Ngk Insulators Ltd Thermoelectric converter for furnace wall

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019008720A (en) * 2017-06-28 2019-01-17 ホーチキ株式会社 Heat sensor

Also Published As

Publication number Publication date
JP5515537B2 (en) 2014-06-11

Similar Documents

Publication Publication Date Title
JP6202783B2 (en) System having heat storage device and use thereof
JP5114092B2 (en) Method for generating voltage and system for regulating the temperature of at least one thermoelectric module
US20100186399A1 (en) Thermoelectric facility comprising a thermoelectric generator and means for limiting the temperature on the generator
JP5637020B2 (en) Heat transfer device
RU2010107390A (en) APPLICATION OF COMPOSITES WITH ALIGNED NANOTUBES FOR HEAT TRANSFER IN WELLS
KR20140073703A (en) Device for generating electricity by using waste energy
KR20110077486A (en) Thermoelectric power generation using exhaustion heat recovery for vehicle
JP5515537B2 (en) Thermoelectric generator
JP5444787B2 (en) Thermoelectric generator
JP2011208507A (en) Energy recovery method from exhaust heat of equipment high temperature part
KR101753152B1 (en) A thermoelectric generator having heat exchanger using molten metal
JP4367362B2 (en) Waste heat recovery method and cooling bed
JP2014222128A (en) Intake air cooling device and cooling method in air compressor
JP2013211471A (en) Thermoelectric power generating device
JP2018524536A (en) Method for cooling a flow guide unit more slowly, and a flow induction unit
JP5923619B2 (en) Thermal storage system, power generation system
JP2011115036A (en) Power generation method using heat of heat generation source, and heat pipe apparatus
JP2017036841A (en) Accumulator
JPH0544961A (en) Air-conditioner
JP6246998B2 (en) Thermoelectric power generation apparatus and thermoelectric power generation method
JP2007197803A (en) Method for recovering waste heat from tuyere in blast furnace
JP2011174179A (en) Thermoelectric power generator
KR102218110B1 (en) Gasifier
JP2020522664A5 (en)
US20230140947A1 (en) Heat storage device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120801

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140317

R150 Certificate of patent or registration of utility model

Ref document number: 5515537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees