JP2011058917A - Electrochemical co sensor - Google Patents

Electrochemical co sensor Download PDF

Info

Publication number
JP2011058917A
JP2011058917A JP2009207994A JP2009207994A JP2011058917A JP 2011058917 A JP2011058917 A JP 2011058917A JP 2009207994 A JP2009207994 A JP 2009207994A JP 2009207994 A JP2009207994 A JP 2009207994A JP 2011058917 A JP2011058917 A JP 2011058917A
Authority
JP
Japan
Prior art keywords
platinum
amount
anode electrode
electrode
cathode electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009207994A
Other languages
Japanese (ja)
Inventor
Kazu Mochizuki
計 望月
Hironori Horigome
宏規 堀米
Toshihiro Inoue
智弘 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Tokyo Gas Co Ltd
Yazaki Corp
Original Assignee
Figaro Engineering Inc
Tokyo Gas Co Ltd
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc, Tokyo Gas Co Ltd, Yazaki Corp filed Critical Figaro Engineering Inc
Priority to JP2009207994A priority Critical patent/JP2011058917A/en
Publication of JP2011058917A publication Critical patent/JP2011058917A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrochemical CO sensor which can prevent deterioration of sensitivity while reducing the amount of platinum used for an electrode. <P>SOLUTION: The electrochemical CO sensor 1 includes: an anode electrode 10; a cathode electrode 20; a solid electrolyte film 30; and a current measuring part 40. The current measuring part 40 measures the value of a current flowing between the anode electrode 10 and the cathode electrode 20 when the anode electrode 10 is exposed to a carbon monoxide atmosphere, and on the basis of the measured current value, a carbon monoxide concentration is determined. The anode electrode 10 and the cathode electrode 20 carry platinum, wherein the amount of platinum carried on the anode electrode 10 is less than that carried on the cathode electrode 20. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電気化学式COセンサに関する。   The present invention relates to an electrochemical CO sensor.

従来、電気化学式COセンサには、燃料電池作動型と定電位電解型とがある。燃料電池作動型は、Nafion(登録商標)膜で代表されるパーフルオロスルホン酸構造を持つ膜(PEM膜)にPt(白金)が担持された電極をホットプレス等で圧着し、これにより作製したMEA(膜電極複合体)がセンサとして利用されている。このセンサは、精度が高く、また湿度の影響も受けにくい特徴を有している(例えば特許文献1参照)。   Conventionally, the electrochemical CO sensor includes a fuel cell operation type and a constant potential electrolysis type. The fuel cell operation type was manufactured by pressing a Pt (platinum) -supported electrode on a membrane having a perfluorosulfonic acid structure represented by a Nafion (registered trademark) membrane (PEM membrane) with a hot press or the like. MEA (membrane electrode assembly) is used as a sensor. This sensor has a feature that it is highly accurate and hardly affected by humidity (see, for example, Patent Document 1).

一方、定電位電解型は、電解液に硫酸を使用している。このため、湿度が低い条件下では精度が高いが、高温高湿雰囲気中では湿度の影響によって誤差が大きくなる特性がある。よって、業務用厨房などの比較的高温高湿の環境下では、燃料電池作動型のCOセンサを用いた方がCOガス濃度をより精度良く検出することができる。   On the other hand, the constant potential electrolytic type uses sulfuric acid as the electrolytic solution. For this reason, the accuracy is high under the condition of low humidity, but there is a characteristic that the error becomes large due to the influence of humidity in a high temperature and high humidity atmosphere. Therefore, in a relatively high temperature and high humidity environment such as a commercial kitchen, the CO gas concentration can be detected with higher accuracy by using a fuel cell-operated CO sensor.

特開2005−276642号公報JP 2005-276642 A

しかし、燃料電池作動型のCOセンサのように、白金という希少金属を電極に使用することは、資源面、コスト面、CO2の環境面上問題である。そこで、単純に電極に使用する白金量を減らしたとしても、センサ感度に影響を及ぼしてしまい、感度上問題が発生してしまう。   However, the use of a rare metal such as platinum as an electrode, as in a fuel cell-operated CO sensor, is a problem in terms of resources, cost, and CO2. Therefore, even if the amount of platinum used for the electrode is simply reduced, it affects the sensor sensitivity and causes a problem in sensitivity.

本発明はこのような従来の課題を解決するためになされたものであり、その目的とするところは、電極に使用する白金量を低減しつつも、感度の悪化を防止することが可能な電気化学式COセンサを提供することにある。   The present invention has been made in order to solve such a conventional problem, and an object of the present invention is to provide an electric device capable of preventing deterioration of sensitivity while reducing the amount of platinum used for an electrode. The object is to provide a chemical CO sensor.

本発明の電気化学式COセンサは、一酸化炭素雰囲気に晒されるアノード電極と、前記アノード電極に対向して設けられたカソード電極と、前記アノード電極と前記カソード電極とに挟まれた固体電解質膜と、前記アノード電極が一酸化炭素雰囲気に晒されることにより前記アノード電極及び前記カソード電極間を流れる電流の値を計測する電流計測部と、前記電流計測部により計測された電流値に基づいて一酸化炭素濃度を判断する濃度判断部と、を備え、前記アノード電極と前記カソード電極とは白金を担持すると共に、前記アノード電極の白金担持量は前記カソード電極の担持量よりも少なくされていることを特徴とする。   The electrochemical CO sensor of the present invention includes an anode electrode exposed to a carbon monoxide atmosphere, a cathode electrode provided opposite to the anode electrode, and a solid electrolyte membrane sandwiched between the anode electrode and the cathode electrode. A current measuring unit that measures a value of a current flowing between the anode electrode and the cathode electrode when the anode electrode is exposed to a carbon monoxide atmosphere; and a monoxide based on the current value measured by the current measuring unit. A concentration determination unit for determining a carbon concentration, wherein the anode electrode and the cathode electrode support platinum, and the amount of platinum supported by the anode electrode is smaller than the amount supported by the cathode electrode. Features.

この電気化学式COセンサによれば、アノード電極の白金担持量はカソード電極の担持量よりも少なくされている。ここで、本件発明者らはカソード電極の白金担持量を変化させずにアノード電極の白金担持量を少なくしても、一酸化炭素の検出感度にはほぼ変化がないことを見出した。このため、アノード電極の白金担持量をカソード電極の担持量よりも少なくすることで、電極に使用する白金量を低減しつつも、感度の悪化を防止することができる。   According to this electrochemical CO sensor, the amount of platinum supported on the anode electrode is made smaller than the amount supported on the cathode electrode. Here, the present inventors have found that even if the amount of platinum supported on the anode electrode is reduced without changing the amount of platinum supported on the cathode electrode, the detection sensitivity of carbon monoxide is not substantially changed. For this reason, by making the platinum carrying amount of the anode electrode smaller than the carrying amount of the cathode electrode, it is possible to prevent the deterioration of sensitivity while reducing the platinum amount used for the electrode.

また、本発明の電気化学式COセンサは、前記アノード電極の白金担持量は0.015mg/cm以上0.3mg/cm未満であることが好ましい。 Further, electrochemical CO sensor of the present invention, the amount of platinum supported of the anode electrode is preferably less than 0.015 mg / cm 2 or more 0.3 mg / cm 2.

この電気化学式COセンサによれば、アノード電極の白金担持量は0.015mg/cm以上0.3mg/cm未満である。ここで、アノード電極の白金担持量は0.015mg/cm未満であると検出感度の低下を招き、0.3mg/cm以上であると白金担持量が多くなり、コスト面等で問題が発生する。よって、アノード電極の白金担持量を0.015mg/cm以上0.3mg/cm未満とすることで、電極に使用する白金量を低減しつつも、感度の悪化を適切に防止することができる。 According to this electrochemical CO sensor, platinum content of the anode electrode is less than 0.015 mg / cm 2 or more 0.3 mg / cm 2. Here, amount of platinum supported anode electrode causes deterioration of detection sensitivity is less than 0.015 mg / cm 2, becomes large the amount of platinum supported When it is 0.3 mg / cm 2 or more, a problem in terms of cost, etc. appear. Therefore, by making the amount of platinum supported on the anode electrode 0.015 mg / cm 2 or more and less than 0.3 mg / cm 2 , it is possible to appropriately prevent deterioration of sensitivity while reducing the amount of platinum used for the electrode. it can.

また、本発明の電気化学式COセンサは、前記カソード電極の白金担持量は0.3mg/cm以上であることが好ましい。 In the electrochemical CO sensor of the present invention, the amount of platinum supported on the cathode electrode is preferably 0.3 mg / cm 2 or more.

この電気化学式COセンサによれば、カソード電極の白金担持量は0.3mg/cm以上である。ここで、カソード電極の白金担持量は0.3mg/cm未満であると検出感度の低下を招いてしまう。よって、カソード電極の白金担持量は0.3mg/cm以上とすることで、感度の悪化を適切に防止することができる。 According to this electrochemical CO sensor, the amount of platinum supported on the cathode electrode is 0.3 mg / cm 2 or more. Here, when the amount of platinum supported on the cathode electrode is less than 0.3 mg / cm 2 , the detection sensitivity is lowered. Therefore, the deterioration of sensitivity can be appropriately prevented by setting the amount of platinum supported on the cathode electrode to 0.3 mg / cm 2 or more.

本発明によれば、電極に使用する白金量を低減しつつも、感度の悪化を防止することができる。   According to the present invention, it is possible to prevent deterioration of sensitivity while reducing the amount of platinum used for an electrode.

本発明の実施形態に係る電気化学式COセンサの原理図である。It is a principle figure of the electrochemical CO sensor which concerns on embodiment of this invention. 本発明の実施形態に係る電気化学式COセンサの構成図である。It is a block diagram of the electrochemical CO sensor which concerns on embodiment of this invention. 電流密度と一酸化炭素濃度との相関を示すグラフである。It is a graph which shows the correlation with a current density and a carbon monoxide density | concentration. アノード電極又はカソード電極の一方の白金担持量を一定とし、他方の白金担持量を変化させたときの感度を示すグラフである。It is a graph which shows the sensitivity when the platinum carrying amount of one of an anode electrode or a cathode electrode is made constant, and the other platinum carrying amount is changed. アノード電極及びカソード電極の双方の白金担持量を変化させたときの感度を示すグラフである。It is a graph which shows a sensitivity when the platinum carrying amount of both an anode electrode and a cathode electrode is changed.

以下、本発明の好適な実施形態を図面に基づいて説明する。図1は、本発明の実施形態に係る電気化学式COセンサの原理図である。電気化学式COセンサ1は、アノード電極10と、カソード電極20と、固体電解質膜30と、電流計測部40とを有している。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the drawings. FIG. 1 is a principle diagram of an electrochemical CO sensor according to an embodiment of the present invention. The electrochemical CO sensor 1 includes an anode electrode 10, a cathode electrode 20, a solid electrolyte membrane 30, and a current measuring unit 40.

アノード電極10は、一酸化炭素雰囲気に晒されており、カーボンにより構成されている。カソード電極20は、アノード電極10に対向して設けられており、アノード電極10と同様にカーボンにより構成されている。また、アノード電極10及びカソード電極20には白金が担持されている。固体電解質膜30は、イオン導電性を有する固体であって、具体的には膜が用いられている。この固体電解質膜30はアノード電極10とカソード電極20とに挟まれて配置されている。   The anode electrode 10 is exposed to a carbon monoxide atmosphere and is made of carbon. The cathode electrode 20 is provided to face the anode electrode 10 and is made of carbon in the same manner as the anode electrode 10. Further, platinum is supported on the anode electrode 10 and the cathode electrode 20. The solid electrolyte membrane 30 is a solid having ionic conductivity, and specifically, a membrane is used. The solid electrolyte membrane 30 is disposed between the anode electrode 10 and the cathode electrode 20.

電流計測部40は、アノード電極10が一酸化炭素に晒されることにより、アノード電極10及びカソード電極20間を流れる電流の値を計測するものである。具体的にアノード電極10とカソード電極20とには以下のような原理で電流が流れる。   The current measuring unit 40 measures the value of the current flowing between the anode electrode 10 and the cathode electrode 20 when the anode electrode 10 is exposed to carbon monoxide. Specifically, current flows through the anode electrode 10 and the cathode electrode 20 on the following principle.

まず、アノード電極10が一酸化炭素雰囲気に晒されると、アノード電極10に供給される水と共に以下の反応が起こる。
CO+HO→CO+2H+2e・・・・(1)
First, when the anode electrode 10 is exposed to a carbon monoxide atmosphere, the following reaction occurs with water supplied to the anode electrode 10.
CO + H 2 O → CO 2 + 2H + + 2e (1)

そして、発生した水素イオンは固体電解質膜30中を移動し、カソード電極20に到達する。また、発生した電子は固体電解質膜30を介することなく電流計測部40を介してカソード電極20に移動する。そして、カソード電極20において以下の反応が起こる。
1/2O+2H+2e→HO・・・・・(2)
The generated hydrogen ions move in the solid electrolyte membrane 30 and reach the cathode electrode 20. The generated electrons move to the cathode electrode 20 via the current measuring unit 40 without passing through the solid electrolyte membrane 30. Then, the following reaction occurs at the cathode electrode 20.
1 / 2O 2 + 2H + + 2e → H 2 O (2)

従って、トータルでは以下の反応が起こるといえる。
CO+1/2O→CO・・・・(3)
このように、電気化学式COセンサ1では一酸化炭素を二酸化炭素に変換することとなり、この過程において発生した電子の移動、すなわち電流の値を電流計測部40にて検出することとなる。さらに、電子の発生量はアノード電極10に晒される一酸化炭素の濃度に依存する。このため、電流計測部40の検出値に基づいて一酸化炭素の濃度を判断できることとなる。
Therefore, it can be said that the following reactions occur in total.
CO + 1 / 2O 2 → CO 2 (3)
Thus, the electrochemical CO sensor 1 converts carbon monoxide into carbon dioxide, and the current measurement unit 40 detects the movement of electrons generated in this process, that is, the current value. Furthermore, the amount of electrons generated depends on the concentration of carbon monoxide exposed to the anode electrode 10. For this reason, the concentration of carbon monoxide can be determined based on the detection value of the current measuring unit 40.

図2は、本発明の実施形態に係る電気化学式COセンサの構成図である。図2に示すように、本実施形態に係る電気化学式COセンサ1は、図1に示したアノード電極10、カソード電極20、固体電解質膜30及び電流計測部40に加えて、濃度判断部50と、ハウジング60と、拡散制御板70とを備えている。   FIG. 2 is a configuration diagram of an electrochemical CO sensor according to an embodiment of the present invention. As shown in FIG. 2, the electrochemical CO sensor 1 according to this embodiment includes a concentration determination unit 50 in addition to the anode electrode 10, the cathode electrode 20, the solid electrolyte membrane 30, and the current measurement unit 40 shown in FIG. 1. The housing 60 and the diffusion control plate 70 are provided.

濃度判断部50は、電流計測部40により計測された電流値に基づいて一酸化炭素の濃度を判断するものである。図3は、電流密度と一酸化炭素濃度との相関を示すグラフである。図3に示すように、一酸化炭素濃度は電流密度に対して比例する関係にある。このため、濃度判断部50は、電流計測部40により計測された電流値から電流密度を求め、この電流密度から一酸化炭素濃度を判断する。   The concentration determination unit 50 determines the concentration of carbon monoxide based on the current value measured by the current measurement unit 40. FIG. 3 is a graph showing the correlation between current density and carbon monoxide concentration. As shown in FIG. 3, the carbon monoxide concentration is proportional to the current density. Therefore, the concentration determination unit 50 obtains the current density from the current value measured by the current measurement unit 40, and determines the carbon monoxide concentration from this current density.

ハウジング60は、アノード電極10、カソード電極20及び固体電解質膜30等を覆う筐体であって、複数のガス導入孔60aが形成されている。このガス導入孔60aは、一酸化炭素を含む気体を導入してアノード電極10に導く役割を果たす。拡散制御板70は、ハウジング60のガス導入孔60a形成側とアノード電極10との間に介在され、導入した一酸化炭素を含む気体を拡散してアノード電極10に導くものである。   The housing 60 is a casing that covers the anode electrode 10, the cathode electrode 20, the solid electrolyte membrane 30, and the like, and has a plurality of gas introduction holes 60a. The gas introduction hole 60 a plays a role of introducing a gas containing carbon monoxide and guiding it to the anode electrode 10. The diffusion control plate 70 is interposed between the gas introduction hole 60 a formation side of the housing 60 and the anode electrode 10, and diffuses the introduced gas containing carbon monoxide and guides it to the anode electrode 10.

以上のような電気化学式COセンサ1では、アノード電極10の白金担持量がカソード電極20の白金担持量よりも少なくされている。これにより、本実施形態に係る電気化学式COセンサ1は感度を悪化させることなく、電極に使用する白金量が少なくなっている。以下、この点について説明する。   In the electrochemical CO sensor 1 as described above, the platinum carrying amount of the anode electrode 10 is made smaller than the platinum carrying amount of the cathode electrode 20. Thereby, the electrochemical CO sensor 1 according to the present embodiment reduces the amount of platinum used for the electrodes without deteriorating the sensitivity. Hereinafter, this point will be described.

まず、白金を担持した電極では水素の交換電流密度が酸素よりも6桁近く大きい。このため、アノード電極10では式(1)に示すように水素の交換電流密度が重要であることから、アノード電極10に担持される白金量を少なくすることができる。一方、カソード電極20では式(2)に示すように酸素の交換電流密度が重要であることから、カソード電極20に担持される白金量を少なくし過ぎると、反応できなくなる可能性があり、担持される白金量を少なくすると感度の悪化を招く可能性がある。従って、アノード電極10の白金担持量をカソード電極20の白金担持量よりも少なくすることにより、感度を悪化させることなく、電極に使用する白金量を少なくすることができる。   First, the platinum-supported electrode has a hydrogen exchange current density that is nearly six orders of magnitude higher than oxygen. For this reason, since the exchange current density of hydrogen is important in the anode electrode 10 as shown in the formula (1), the amount of platinum supported on the anode electrode 10 can be reduced. On the other hand, since the exchange current density of oxygen is important in the cathode electrode 20 as shown in the formula (2), if the amount of platinum supported on the cathode electrode 20 is too small, there is a possibility that the reaction cannot be performed. If the amount of platinum produced is reduced, the sensitivity may be deteriorated. Therefore, by making the amount of platinum supported on the anode electrode 10 smaller than the amount of platinum supported on the cathode electrode 20, the amount of platinum used for the electrode can be reduced without deteriorating the sensitivity.

ここで、実際の燃料電池では一酸化炭素の被毒によって触媒となる白金の量を少なくすることが困難なことがあるが、アノード電極10及びカソード電極20について酸素雰囲気下で使用する場合には白金量を低下させても感度に問題がなく、上記のようにアノード電極10の白金担持量を少なくすることで、コスト面等で有利な電気化学式COセンサ1を提供できることとなる。   Here, in an actual fuel cell, it may be difficult to reduce the amount of platinum as a catalyst due to poisoning of carbon monoxide, but when the anode electrode 10 and the cathode electrode 20 are used in an oxygen atmosphere, Even if the amount of platinum is reduced, there is no problem in sensitivity. By reducing the amount of platinum supported on the anode electrode 10 as described above, the electrochemical CO sensor 1 that is advantageous in terms of cost can be provided.

次に、グラフを参照しつつ、具体的な白金担持量と白金担持量に応じた感度とを説明するが、これに先立って、感度測定にあたり使用される電気化学式COセンサ1の具体的構成を説明する。   Next, while referring to the graph, the specific platinum loading and the sensitivity according to the platinum loading will be described. Prior to this, the specific configuration of the electrochemical CO sensor 1 used for sensitivity measurement will be described. explain.

固体電解質膜30は以下のようにして作製した。まず、プロトン導電膜として市販のNafion117を用意し、Nafion117の膜の有機物を除去するため、3wt%過酸化水素溶液で1hr煮沸した後、蒸留水で1hr煮沸を行った。その後、0.5MHSO水溶液中で1hr活性化処理を行い、蒸留水で1hr煮沸洗浄したものを固体電解質膜30とした。 The solid electrolyte membrane 30 was produced as follows. First, a commercially available Nafion 117 was prepared as a proton conductive film. In order to remove organic substances from the Nafion 117 film, it was boiled with a 3 wt% hydrogen peroxide solution for 1 hr and then boiled with distilled water for 1 hr. Thereafter, the solid electrolyte membrane 30 was obtained by performing an activation treatment for 1 hr in a 0.5 MH 2 SO 4 aqueous solution and boiled and washed with distilled water for 1 hr.

電極10,20は以下のようにして作製した。まず、カーボンクロス上に46.5wt%Pt/C触媒(田中貴金属製)を担持した。このとき、白金担持量が0.003mg/cmから1mg/cmとなるように、各電極10,20を作製した。 The electrodes 10 and 20 were produced as follows. First, a 46.5 wt% Pt / C catalyst (manufactured by Tanaka Kikinzoku) was supported on a carbon cloth. At this time, the amount of platinum supported is such that the 1 mg / cm 2 from 0.003 mg / cm 2, to prepare various electrodes 10, 20.

さらに、固体電解質膜30と電極10,20との接合は、125℃、10MPa、10minの条件でホットプレスすることにより行った。   Further, the solid electrolyte membrane 30 and the electrodes 10 and 20 were joined by hot pressing under conditions of 125 ° C., 10 MPa, and 10 minutes.

また、感度の測定にあたっては、上記のようにして作製された電極10,20と固体電解質膜30との結合体から、図2に示す構成の電気化学式COセンサ1を作製し、これをアクリルチャンバー内にセットして測定した。   In measuring sensitivity, the electrochemical CO sensor 1 having the configuration shown in FIG. 2 is manufactured from the combined body of the electrodes 10 and 20 and the solid electrolyte membrane 30 manufactured as described above, and this is used in the acrylic chamber. It was set inside and measured.

次に、グラフを参照しつつ、具体的な白金担持量と白金担持量に応じた感度とを説明する。図4は、アノード電極10又はカソード電極20の一方の白金担持量を一定とし、他方の白金担持量を変化させたときの感度を示すグラフである。   Next, a specific platinum carrying amount and sensitivity according to the platinum carrying amount will be described with reference to a graph. FIG. 4 is a graph showing the sensitivity when the platinum carrying amount of one of the anode electrode 10 and the cathode electrode 20 is constant and the other platinum carrying amount is changed.

図4に示すように、カソード電極20の白金担持量を0.3mg/cmに固定し、アノード電極10の白金担持量を変化させた場合以下のようになる。すなわち、白金担持量が0.32mg/cmのときの感度を「1」とした場合、感度は、白金担持量を0.21mg/cmのときに約「0.96」となり、白金担持量が0.11mg/cmのときに約「1」となり、白金担持量が0.03mg/cmのときに約「1.1」となり、白金担持量が0.015mg/cmのときに約「1」となる。また、感度は、白金担持量が0.003mg/cmのときに約「0.28」となる。 As shown in FIG. 4, when the platinum carrying amount of the cathode electrode 20 is fixed at 0.3 mg / cm 2 and the platinum carrying amount of the anode electrode 10 is changed, the following is obtained. That is, when the sensitivity when the platinum loading is 0.32 mg / cm 2 is “1”, the sensitivity is approximately “0.96” when the platinum loading is 0.21 mg / cm 2 , and the platinum loading about "1" when the amount is 0.11 mg / cm 2, about when platinum content of 0.03 mg / cm 2 "1.1", and when platinum content of 0.015 mg / cm 2 Is approximately "1". The sensitivity is about “0.28” when the platinum loading is 0.003 mg / cm 2 .

このように、アノード電極10の白金担持量が0.3mg/cmのときと、白金担持量が0.015mg/cm以上0.3mg/cm未満のときとでは、感度に殆ど差がない。このため、アノード電極10の白金担持量を0.015mg/cm以上0.3mg/cm未満とすることで、感度を悪化させることなく、使用する白金量を少なくすることができる。 Thus, in the case of platinum loading amount of anode electrode 10 is 0.3 mg / cm 2, in the case of platinum loading amount is less than 0.015 mg / cm 2 or more 0.3 mg / cm 2, is little difference in sensitivity Absent. For this reason, the amount of platinum to be used can be reduced without deteriorating the sensitivity by setting the amount of platinum supported on the anode electrode 10 to 0.015 mg / cm 2 or more and less than 0.3 mg / cm 2 .

一方、アノード電極10の白金担持量を0.3mg/cmに固定し、カソード電極20の白金担持量を変化させた場合以下のようになる。すなわち、白金担持量が0.32mg/cmのときの感度を「1」とした場合、感度は、白金担持量が0.21mg/cmのときに約「0.90」となり、白金担持量が0.12mg/cmのときに約「0.68」となり、白金担持量が0.03mg/cmのときに約「0.58」となり、白金担持量が0.015mg/cmのときに約「0.48」となる。さらに、感度は、白金担持量が0.008mg/cmのときに約「0.28」となり、白金担持量が0.003mg/cmのときに約「0.16」となる。 On the other hand, when the platinum carrying amount of the anode electrode 10 is fixed at 0.3 mg / cm 2 and the platinum carrying amount of the cathode electrode 20 is changed, the following is obtained. That is, when the sensitivity when the platinum loading is 0.32 mg / cm 2 is “1”, the sensitivity is approximately “0.90” when the platinum loading is 0.21 mg / cm 2 , When the amount is 0.12 mg / cm 2 , it is about “0.68”, and when the amount of platinum supported is 0.03 mg / cm 2 , it is about “0.58”, and the amount of platinum supported is 0.015 mg / cm 2. In this case, it becomes about “0.48”. Furthermore, the sensitivity is about "0.28" and when the amount of supported platinum is 0.008 mg / cm 2, amount of platinum supported is about "0.16" when the 0.003 mg / cm 2.

このように、カソード電極20については、白金担持量を少なくすると、感度の悪化を招いてしまう。従って、白金担持量は0.3mg/cm以上であることが必要である。なお、カソード電極20の白金担持量を多くし過ぎると、コスト面等で不利となってしまう。このため、カソード電極20の白金担持量は1.0mg/cm以下であることが望ましい。 As described above, when the amount of platinum supported on the cathode electrode 20 is reduced, the sensitivity is deteriorated. Therefore, the platinum loading amount needs to be 0.3 mg / cm 2 or more. In addition, if the amount of platinum supported on the cathode electrode 20 is excessively increased, it is disadvantageous in terms of cost. For this reason, it is desirable that the amount of platinum supported on the cathode electrode 20 is 1.0 mg / cm 2 or less.

図5は、アノード電極10及びカソード電極20の双方の白金担持量を変化させたときの感度を示すグラフである。図5に示すように、双方の白金担持量を変化させた場合、以下のようになる。   FIG. 5 is a graph showing the sensitivity when the amount of platinum supported on both the anode electrode 10 and the cathode electrode 20 is changed. As shown in FIG. 5, when the amount of platinum supported on both is changed, the result is as follows.

すなわち、アノード電極10及びカソード電極20の白金担持量が0.32mg/cmのときの感度を「1」とした場合、感度は、白金担持量が0.4mg/cmのときに約「0.92」となり、白金担持量が0.6mg/cmのときに約「0.85」となり、白金担持量が1.0mg/cmのときに約「0.92」となる。また、感度は、白金担持量が0.2mg/cmのときに約「0.9」となり、白金担持量が0.1mg/cmのときに約「0.6」となる。さらに、感度は、白金担持量が0.003mg/cmのときに約「0.18」となる。 That is, when the sensitivity when the platinum loading of the anode electrode 10 and the cathode electrode 20 is 0.32 mg / cm 2 is “1”, the sensitivity is approximately “when the platinum loading is 0.4 mg / cm 2 ”. 0.92 "and about" 0.85 "and when the amount of supported platinum is 0.6 mg / cm 2, amount of platinum supported is about" 0.92 "when the 1.0 mg / cm 2. Also, the sensitivity is approximately "0.9" and when the amount of supported platinum is 0.2 mg / cm 2, amount of platinum supported is about "0.6" when the 0.1 mg / cm 2. Furthermore, the sensitivity is about “0.18” when the platinum loading is 0.003 mg / cm 2 .

このように、単純にアノード電極10及びカソード電極20の双方の白金担持量を変化させたとしても、感度を悪化させることなく、使用する白金量を少なくすることが困難となる。すなわち、白金担持量0.3mg/cmを基準とし、白金担持量を0.3mg/cmよりも多くすると、白金担持量が多くなりコスト面等で不利となる。一方、白金担持量を0.3mg/cm未満とすると、特に0.2mg/cmを境として感度が悪化してしまう。 Thus, even if the amount of platinum supported on both the anode electrode 10 and the cathode electrode 20 is simply changed, it is difficult to reduce the amount of platinum used without deteriorating the sensitivity. That is, when the platinum carrying amount is 0.3 mg / cm 2 and the platinum carrying amount is more than 0.3 mg / cm 2 , the platinum carrying amount increases, which is disadvantageous in terms of cost. On the other hand, when the amount of supported platinum to less than 0.3 mg / cm 2, the sensitivity is deteriorated as a particular boundary 0.2 mg / cm 2.

よって、本実施形態のように、アノード電極10の白金担持量をカソード電極20の白金担持量よりも少なくすることが最適といえる。なお、図5に示すように両電極の白金担持量を少なくした場合に感度が低下する理由は、カソード電極20に依存するからである。すなわち、図4を参照して説明したように、カソード電極20のみの白金担持量を低下させた場合、特に0.2mg/cmを境として感度が悪化してしまう。これに対してアノード電極10のみの白金担持量を低下させた場合、0.015mg/cmまで感度は悪化しない。よって、両電極の白金担持量を少なくした場合、まず、両電極の白金担持量が0.2mg/cmになった段階で、カソード電極20に依存して感度が低下してしまう。 Therefore, it can be said that it is optimal to make the platinum carrying amount of the anode electrode 10 smaller than the platinum carrying amount of the cathode electrode 20 as in this embodiment. As shown in FIG. 5, the reason why the sensitivity is lowered when the amount of platinum supported on both electrodes is reduced is that it depends on the cathode electrode 20. That is, as described with reference to FIG. 4, when the amount of platinum supported only by the cathode electrode 20 is reduced, the sensitivity is deteriorated particularly at 0.2 mg / cm 2 as a boundary. On the other hand, when the platinum carrying amount of only the anode electrode 10 is reduced, the sensitivity does not deteriorate up to 0.015 mg / cm 2 . Therefore, when the amount of platinum supported by both electrodes is reduced, first, the sensitivity decreases depending on the cathode electrode 20 when the amount of platinum supported by both electrodes reaches 0.2 mg / cm 2 .

このようにして、本実施形態に係る電気化学式COセンサ1によれば、アノード電極10の白金担持量はカソード電極20の担持量よりも少なくされている。ここで、本件発明者らはカソード電極20の白金担持量を変化させずにアノード電極10の白金担持量を少なくしても、一酸化炭素の検出感度にはほぼ変化がないことを見出した。このため、アノード電極10の白金担持量をカソード電極20の担持量よりも少なくすることで、電極に使用する白金量を低減しつつも、感度の悪化を防止することができる。   In this way, according to the electrochemical CO sensor 1 according to the present embodiment, the amount of platinum supported on the anode electrode 10 is made smaller than the amount supported on the cathode electrode 20. Here, the present inventors have found that even if the amount of platinum supported on the anode electrode 10 is reduced without changing the amount of platinum supported on the cathode electrode 20, there is almost no change in the detection sensitivity of carbon monoxide. For this reason, by making the platinum carrying amount of the anode electrode 10 smaller than the carrying amount of the cathode electrode 20, it is possible to prevent deterioration of sensitivity while reducing the platinum amount used for the electrode.

また、アノード電極10の白金担持量は0.015mg/cm以上0.3mg/cm未満である。ここで、アノード電極10の白金担持量は0.015mg/cm未満であると検出感度の低下を招き、0.3mg/cm以上であると白金担持量が多くなり、コスト面等で問題が発生する。よって、アノード電極10の白金担持量を0.015mg/cm以上0.3mg/cm未満とすることで、電極に使用する白金量を低減しつつも、感度の悪化を適切に防止することができる。 The amount of supported platinum of the anode electrode 10 is less than 0.015 mg / cm 2 or more 0.3 mg / cm 2. Here, platinum content of the anode electrode 10 leads to reduction in the detection sensitivity is less than 0.015 mg / cm 2, becomes large the amount of platinum supported When it is 0.3 mg / cm 2 or more, a problem in terms of cost, etc. Occurs. Therefore, by making the platinum carrying amount of the anode electrode 10 0.015 mg / cm 2 or more and less than 0.3 mg / cm 2 , it is possible to appropriately prevent deterioration of sensitivity while reducing the amount of platinum used for the electrode. Can do.

この電気化学式COセンサによれば、カソード電極20の白金担持量は0.3mg/cm以上である。ここで、カソード電極20の白金担持量は0.3mg/cm未満であると検出感度の低下を招いてしまう。よって、カソード電極20の白金担持量は0.3mg/cm以上とすることで、感度の悪化を適切に防止することができる。 According to this electrochemical CO sensor, the amount of platinum supported on the cathode electrode 20 is 0.3 mg / cm 2 or more. Here, when the amount of platinum supported on the cathode electrode 20 is less than 0.3 mg / cm 2 , the detection sensitivity is lowered. Therefore, the deterioration of sensitivity can be appropriately prevented by setting the amount of platinum supported on the cathode electrode 20 to 0.3 mg / cm 2 or more.

以上、実施形態に基づき本発明を説明したが、本発明は上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で、変更を加えてもよい。例えば、本実施形態において電気化学式COセンサ1の構成を、材料を挙げて説明したが、材料は特に上記記載のものに限られるものではなく、適宜変更可能である。   As described above, the present invention has been described based on the embodiment, but the present invention is not limited to the above embodiment, and may be modified without departing from the gist of the present invention. For example, in the present embodiment, the configuration of the electrochemical CO sensor 1 has been described using materials. However, the materials are not particularly limited to those described above, and can be changed as appropriate.

また、本実施形態において電気化学式COセンサ1は図2に示した構成に限らず、図1に示す原理的構成を備える範囲で適宜変更可能である。   Further, in the present embodiment, the electrochemical CO sensor 1 is not limited to the configuration shown in FIG. 2, but can be changed as appropriate within a range having the principle configuration shown in FIG.

なお、図3に示した一酸化炭素濃度と電流密度との相関については上記のように作製された電気化学式COセンサ1をアクリルチャンバー内にセットし、一酸化炭素濃度が0%〜4%までのガスを注入して測定した結果である。   For the correlation between the carbon monoxide concentration and the current density shown in FIG. 3, the electrochemical CO sensor 1 manufactured as described above is set in the acrylic chamber, and the carbon monoxide concentration is 0% to 4%. It is the result of injecting and measuring the gas.

1…電気化学式COセンサ
10…アノード電極
20…カソード電極
30…固体電解質膜
40…電流計測部
50…濃度判断部
60…ハウジング
60a…ガス導入孔
70…拡散制御板
DESCRIPTION OF SYMBOLS 1 ... Electrochemical CO sensor 10 ... Anode electrode 20 ... Cathode electrode 30 ... Solid electrolyte membrane 40 ... Current measurement part 50 ... Concentration judgment part 60 ... Housing 60a ... Gas introduction hole 70 ... Diffusion control board

Claims (3)

一酸化炭素雰囲気に晒されるアノード電極と、
前記アノード電極に対向して設けられたカソード電極と、
前記アノード電極と前記カソード電極とに挟まれた固体電解質膜と、
前記アノード電極が一酸化炭素雰囲気に晒されることにより前記アノード電極及び前記カソード電極間を流れる電流の値を計測する電流計測部と、
前記電流計測部により計測された電流値に基づいて一酸化炭素濃度を判断する濃度判断部と、を備え、
前記アノード電極と前記カソード電極とは白金を担持すると共に、前記アノード電極の白金担持量は前記カソード電極の担持量よりも少なくされている
ことを特徴とする電気化学式COセンサ。
An anode electrode exposed to a carbon monoxide atmosphere;
A cathode electrode provided facing the anode electrode;
A solid electrolyte membrane sandwiched between the anode electrode and the cathode electrode;
A current measuring unit that measures a value of a current flowing between the anode electrode and the cathode electrode by exposing the anode electrode to a carbon monoxide atmosphere;
A concentration determination unit that determines a carbon monoxide concentration based on a current value measured by the current measurement unit;
The electrochemical CO sensor, wherein the anode electrode and the cathode electrode carry platinum, and the amount of platinum carried by the anode electrode is smaller than the amount carried by the cathode electrode.
前記アノード電極の白金担持量は0.015mg/cm以上0.3mg/cm未満である
ことを特徴とする請求項1に記載の電気化学式COセンサ。
2. The electrochemical CO sensor according to claim 1, wherein the platinum loading of the anode electrode is 0.015 mg / cm 2 or more and less than 0.3 mg / cm 2 .
前記カソード電極の白金担持量は0.3mg/cm以上である
ことを特徴とする請求項2に記載の電気化学式COセンサ。
The electrochemical CO sensor according to claim 2, wherein the amount of platinum supported on the cathode electrode is 0.3 mg / cm 2 or more.
JP2009207994A 2009-09-09 2009-09-09 Electrochemical co sensor Pending JP2011058917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009207994A JP2011058917A (en) 2009-09-09 2009-09-09 Electrochemical co sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009207994A JP2011058917A (en) 2009-09-09 2009-09-09 Electrochemical co sensor

Publications (1)

Publication Number Publication Date
JP2011058917A true JP2011058917A (en) 2011-03-24

Family

ID=43946728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009207994A Pending JP2011058917A (en) 2009-09-09 2009-09-09 Electrochemical co sensor

Country Status (1)

Country Link
JP (1) JP2011058917A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016164511A (en) * 2015-03-06 2016-09-08 新コスモス電機株式会社 Controlled-potential electrolysis gas sensor
WO2022181249A1 (en) * 2021-02-26 2022-09-01 パナソニックIpマネジメント株式会社 Electrochemical gas sensor and electrochemical gas sensor manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172256A (en) * 1986-01-27 1987-07-29 Figaro Eng Inc Apparatus for detecting proton conductor gas
JPH05507583A (en) * 1991-02-19 1993-10-28 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Membrane catalyst layer for fuel cells
JPH07169471A (en) * 1993-12-17 1995-07-04 Toshiba Corp Fuel cell
JP2001041926A (en) * 1999-07-29 2001-02-16 Equos Research Co Ltd Co gas sensor
JP2006512733A (en) * 2002-12-27 2006-04-13 ユーティーシー フューエル セルズ,エルエルシー Reversible fuel cell power plant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172256A (en) * 1986-01-27 1987-07-29 Figaro Eng Inc Apparatus for detecting proton conductor gas
JPH05507583A (en) * 1991-02-19 1993-10-28 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Membrane catalyst layer for fuel cells
JPH07169471A (en) * 1993-12-17 1995-07-04 Toshiba Corp Fuel cell
JP2001041926A (en) * 1999-07-29 2001-02-16 Equos Research Co Ltd Co gas sensor
JP2006512733A (en) * 2002-12-27 2006-04-13 ユーティーシー フューエル セルズ,エルエルシー Reversible fuel cell power plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016164511A (en) * 2015-03-06 2016-09-08 新コスモス電機株式会社 Controlled-potential electrolysis gas sensor
WO2022181249A1 (en) * 2021-02-26 2022-09-01 パナソニックIpマネジメント株式会社 Electrochemical gas sensor and electrochemical gas sensor manufacturing method

Similar Documents

Publication Publication Date Title
Wang et al. Real‐time mass spectrometric study of the methanol crossover in a direct methanol fuel cell
Jeong et al. Fuel crossover in direct formic acid fuel cells
Taniguchi et al. Analysis of electrocatalyst degradation in PEMFC caused by cell reversal during fuel starvation
Linse et al. The effect of platinum on carbon corrosion behavior in polymer electrolyte fuel cells
Du et al. Effect of methanol crossover on the cathode behavior of a DMFC: A half-cell investigation
Rejal et al. A parametric study of the direct formic acid fuel cell (DFAFC) performance and fuel crossover
Haan et al. The influence of solution pH on rates of an electrocatalytic reaction: Formic acid electrooxidation on platinum and palladium
Babic et al. Understanding the effects of material properties and operating conditions on component aging in polymer electrolyte water electrolyzers
Li et al. Investigation of Pt catalytic effects on carbon support corrosion of the cathode catalyst in PEM fuel cells using DEMS spectra
Vega et al. Effect of CO2, HCO3− and CO3− 2 on oxygen reduction in anion exchange membrane fuel cells
Paganin et al. Methanol crossover effect on the cathode potential of a direct PEM fuel cell
Gode et al. Membrane durability in a PEM fuel cell studied using PVDF based radiation grafted membranes
Tingelöf et al. The influence of CO2, CO and air bleed on the current distribution of a polymer electrolyte fuel cell
JP5098154B2 (en) Electrochemical energy generating apparatus and operation method thereof
Zeng et al. A novel reference electrode for application in alkaline polymer electrolyte membrane fuel cells
Lamy et al. Kinetics analysis of the electrocatalytic oxidation of methanol inside a DMFC working as a PEM electrolysis cell (PEMEC) to generate clean hydrogen
Inaba et al. Impacts of air bleeding on membrane degradation in polymer electrolyte fuel cells
Chaparro et al. Comparative analysis of the electroactive area of Pt/C PEMFC electrodes in liquid and solid polymer contact by underpotential hydrogen adsorption/desorption
JP2000258390A (en) Gas sensor
US20090246570A1 (en) Method and apparatus for measuring crossover loss of fuel cell
Taneda et al. Study of direct type ethanol fuel cells: analysis of anode products and effect of acetaldehyde
Dodwell et al. Open-circuit dissolution of platinum from the cathode in polymer electrolyte membrane water electrolysers
Li et al. Effect of Co2+ on oxygen reduction reaction catalyzed by Pt catalyst, and its implications for fuel cell contamination
JP2007317437A (en) Performance evaluation method and searching method of electrode catalyst for cell, electrode catalyst for cell, and fuel cell using its electrode catalyst
Potgieter et al. Evaluation of polycrystalline platinum and rhodium surfaces for the electro-oxidation of aqueous sulfur dioxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120201

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120926

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120927

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130730