JP2011058389A - Wind power generator with generator-integrated thin fans combined by parallel multiplex - Google Patents

Wind power generator with generator-integrated thin fans combined by parallel multiplex Download PDF

Info

Publication number
JP2011058389A
JP2011058389A JP2009206993A JP2009206993A JP2011058389A JP 2011058389 A JP2011058389 A JP 2011058389A JP 2009206993 A JP2009206993 A JP 2009206993A JP 2009206993 A JP2009206993 A JP 2009206993A JP 2011058389 A JP2011058389 A JP 2011058389A
Authority
JP
Japan
Prior art keywords
generator
wind
integrated thin
power generation
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009206993A
Other languages
Japanese (ja)
Inventor
Masaki Chigira
正機 千木良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009206993A priority Critical patent/JP2011058389A/en
Publication of JP2011058389A publication Critical patent/JP2011058389A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem of a device for converting wind power into electric power (in particular, a lateral shaft wind turbine) of generating specific low frequency vibration resulting in difficulty in its installation in a city area and its poor practicality as an electric power supply source due to the low air flow rate (average wind speed) and the low energy density derived therefrom despite the need of a power generator with a small occupied area attached to or integrated with a building structure in an urban area. <P>SOLUTION: The wind power generator with generator-integrated thin fans combined by a parallel multiplex converts even air flow of a low flow rate with only a low energy density into electric energy in multiple stages by combining generator-integrated thin fans by a parallel multiplex. By installing solar power generation panels around the generator, electric power is supplied stably even in the case sufficient wind power is not obtained. Since the building itself is cooled down with the air flow, the living environment is improved directly in summer. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明はエネルギー密度の低い低風速の気流に対し、発電機一体型薄型ファンを並列ならびに重層することで、利用可能な気流エネルギーを拡大して発電する装置である。 The present invention is an apparatus for generating electric power by expanding the available airflow energy by stacking and thinly forming generator-integrated thin fans in parallel with a low wind speed airflow having a low energy density.

回転翼(プロペラ)を用いる風力発電装置は多数開発されているが、比較的エネルギー変換効率が高いと言われる横軸風車でも、低風速では十分なエネルギー密度が得られず、小型でエネルギー変換効率の高い風力発電装置は開発されていない。また横軸風車では気流方向と回転軸が一致していないと、回転力が生み出されない。このため回転翼を巨大化して風車の回転軸を風向に同調させることで、利用可能な気流エネルギーを拡大する試みがなされてきた。一部では横軸風車による商業発電も行なわれているが、市街地の近隣では騒音(低周波)障害などが発生するとして導入が進んでいない。一方、垂直軸風車は風向に回転軸を合致させる必要がないため小型軽量で可動部分が少なく、市街地での設置にも好適と考えられている。しかし垂直軸風車ではエネルギー変換効率の低さという基本的制約が拭い切れず、気流を整流板によって圧縮増速してエネルギー密度を高める工夫が行なわれている。このような場合は整流装置を巨大化しなければ十分に気流を圧縮することができず、整流装置の開口部断面積によって制約を受ける。なぜなら整流装置の性能を高めるには、奥行き(受風部から風車までの距離を拡大することが必要で、結果的に整流装置の大型化が避けられない。逆に風速が高まった場合には風車の回転数が至適領域を超えて変換効率が低下して行くため、安定した発電能力の維持は難しく整流装置の強度も問題となる。このように風力発電装置には幾つかの課題があり、現時点で市街地に設置可能な実用的装置は考案されていない。とくに装置全体(回転翼のみならず整流板も含めて)を大型化して発電量を増やそうとする限り、機械的強度の不足による破損や触雷あるいは騒音発生という課題が表面化して、市街地での設置要件を満たさなくる。また広大な敷地面積を必要とする装置では、都市部に用地を確保できないのは当然であろう。したがって実用化された風力発電装置は、高風速にも耐えられる横軸風車であり、海上や山間僻地に立地されてきた。ところが電力消費地である都市から離れた場所での発電には、送電ロスという別の問題が持ち上がってしまう。これら矛盾する要求を同時に満たす風力発電装置は、現在まで知られていない。 Many wind power generators using rotor blades (propellers) have been developed, but even horizontal axis wind turbines, which are said to have relatively high energy conversion efficiency, cannot obtain sufficient energy density at low wind speeds, and are small and energy conversion efficiency. No high wind power generator has been developed. Further, in a horizontal axis windmill, if the airflow direction and the rotation axis do not match, no rotational force is generated. For this reason, attempts have been made to expand the available airflow energy by enlarging the rotor blades and synchronizing the wind turbine rotation axis with the wind direction. In some areas, horizontal power wind turbines are also used for commercial power generation, but they have not been introduced due to noise (low frequency) disturbances in the vicinity of urban areas. On the other hand, a vertical axis windmill is considered to be suitable for installation in an urban area because it is not necessary to make the rotation axis coincide with the wind direction and is small and light and has few moving parts. However, in the vertical axis wind turbine, the basic restriction of low energy conversion efficiency cannot be wiped out, and a device is devised to increase the energy density by compressing and accelerating the airflow with a rectifying plate. In such a case, the airflow cannot be sufficiently compressed without enlarging the rectifier, and is restricted by the sectional area of the opening of the rectifier. Because, in order to improve the performance of the rectifier, it is necessary to increase the depth (distance from the wind receiving portion to the windmill, and as a result, enlargement of the rectifier is unavoidable. Since the wind turbine rotation speed exceeds the optimum range and the conversion efficiency decreases, it is difficult to maintain stable power generation capacity, and the strength of the rectifier is also a problem. There is no practical device that can be installed in urban areas at present, especially if the entire device (including not only the rotor blades but also the current plate) is increased in size to increase the amount of power generation. Problems such as damage from lightning, torpedoes, and noise generation will not meet the requirements for installation in urban areas, and it is natural that equipment that requires a large site area cannot secure land in urban areas. So real Wind turbine generators are horizontal axis wind turbines that can withstand high wind speeds, and have been located on the sea and in remote mountainous areas. Another problem is raised: no wind turbine generator that meets these conflicting requirements at the same time is known.

垂直軸風車による発電装置は多く考案されているが、もともと変換効率が低く、低風速すなわち気流エネルギー密度が低いという自然条件を克服することが難しい。そのため種々の整流板が工夫されているが、垂直軸風車は市街地の建物構造体に付加することが困難で、実用的な発電装置としては離島や山岳地帯などに適していると言わざるを得ない。このためエネルギー換効率の高い横軸風車が選好されるが、固有の欠点を克服する努力が必要である。 Many power generators using vertical axis wind turbines have been devised, but it is difficult to overcome the natural condition of low conversion efficiency and low wind speed, that is, low airflow energy density. For this reason, various rectifying plates have been devised, but it is difficult to add a vertical axis wind turbine to a building structure in an urban area, and it must be said that it is suitable for a remote island or a mountainous area as a practical power generator. Absent. For this reason, horizontal axis wind turbines with high energy conversion efficiency are preferred, but efforts to overcome the inherent drawbacks are required.

市街地での設置を前提とすれば、狭隘な都市空間においては建物構造体と一体化するか、あるいは道路などの公共空間を利用するしかない。建物構造体に付属した整流板を利用する場合、太陽光発電パネルと一体化しようとする試みは既に行なわれているが、外壁部分を整流板として気流を風車に導こうとすれば、風車までの距離が延長して気流抵抗が生じるのは避け難い。また整流板が建物外部に突出するという基本的な欠点が存在する。限られたスペースを利用してプロペラを設置しようとしても実用性に乏しい。道路などの公共空間を利用して都市部に横軸風車発電装置を設置しようとする場合、防風機能を主体と考えることも不可能ではない。このため小型プロペラを並列にならべ防風あるいは風力の減衰を主目的とした出願が見受けられるが、並列に置かれた回転翼で電気に転換できる気流エネルギーは限られており、風車を通過した気流のエネルギーは大きく減少しない。このため防風壁としての機能も限定されたものになる。仮に変換効率を10パーセントと仮定しても、90パーセントの風が通過することになる。さらに建物構造体に付属して設置することも困難(風の通過する地点でなければならない)で、市街地での実用性(発電および防風機能)は期待できない。 Assuming installation in urban areas, a narrow urban space can only be integrated with a building structure or a public space such as a road. When using the rectifying plate attached to the building structure, attempts have been made to integrate it with the photovoltaic power generation panel. However, if the outer wall is used as the rectifying plate and the air flow is guided to the wind turbine, It is unavoidable that the air flow resistance is generated by extending the distance. There is also a basic drawback that the current plate protrudes outside the building. Even if you try to install a propeller using limited space, it is not practical. When installing horizontal axis wind turbine generators in urban areas using public spaces such as roads, it is not impossible to consider windproof functions as the main component. For this reason, there are applications for the purpose of windproof or wind power attenuation by arranging small propellers in parallel, but the airflow energy that can be converted into electricity by rotating blades placed in parallel is limited, and the airflow that passed through the windmill is limited. Energy does not decrease significantly. For this reason, the function as a windbreak wall is also limited. Even if the conversion efficiency is assumed to be 10%, 90% of the wind passes. In addition, it is difficult to install in a building structure (must be a point where wind passes), and practicality (power generation and windbreak function) in urban areas cannot be expected.

特開2005ー147054JP 2005-147054 A 特許第4035537号Japanese Patent No. 4035537 特開平9ー184329JP-A-9-184329 特開2005ー54718JP2005-54718 特開2003ー262183JP 2003-262183 A

化石エネルギーの涸渇および廃棄物の増大によって再生可能な自然エネルギー利用の拡大が求められているが、エネルギー密度の低い自然気流を電力に変換するには一定以上の風速が必要であり、低風速でも安定した出力を確保しようとすれば風車の大型化が避けられない。しかしながら変換効率の高い大型の横軸風車を常に風上に向け続ける風向調節装置は現実的でなく、一定の風速風向時にのみ発電が行なわれるため安定した電力供給源とはならない。また回転翼が固有の低周波振動を発生し、機械強度にも多くの困難を抱えるなど、市街地での発電には不適とされてきた。しかし遠隔地で発電された電力の送電ロスも課題となり、日本の気象条件では期待通りの発電能力が発揮されていない。逆に市街地での風力発電を実用化しようとすれば、周囲の環境に影響を与えず低風速でも安定した出力を発揮する風力発電装置が、喫緊に求められる課題となる。とくに風車ならびに整流板を含めた発電装置全体が小型であり、建物構造体と一体化して占有面積が少なくなければならない。あるいは発電装置が建物構造の一部として許容できる範囲にあることが求められる。さらに低風速でも発電できる高効率の風車が望ましい。 There is a need to expand the use of renewable energy due to the fossil energy depletion and the increase in waste.However, to convert natural airflow with low energy density into electric power, wind speed above a certain level is required. Increasing the size of the windmill is inevitable if stable output is to be ensured. However, a wind direction adjusting device that always keeps a large horizontal axis wind turbine with high conversion efficiency facing upwind is not realistic, and power generation is performed only at a constant wind speed and wind direction, so that it does not become a stable power supply source. In addition, rotor blades generate inherent low-frequency vibrations and have many difficulties in mechanical strength, making them unsuitable for power generation in urban areas. However, transmission loss of power generated in remote areas is also an issue, and the power generation capacity as expected is not being demonstrated under the weather conditions in Japan. On the other hand, if wind power generation in an urban area is to be put into practical use, a wind power generation device that exhibits stable output even at low wind speed without affecting the surrounding environment becomes an urgent issue. In particular, the entire power generation device including the windmill and the current plate must be small and integrated with the building structure to occupy a small area. Or it is calculated | required that a generator is in the range which can accept | permit as a part of building structure. Furthermore, a highly efficient wind turbine that can generate power even at low wind speeds is desirable.

本発明は発電機一体型薄型ファンを並列(二次元)および多重(三次元)に並べ、開口部の上下左右に一定面積の整流板を設けた風力発電装置である。ただし整流板は設置条件によって割愛され、常に全ての面で必要とされる訳ではない。しかし上部の整流板は雨水ならびに直射日光から風力発電装置を守る役割を担うとともに、太陽光発電装置(パネル)を兼ねる構造となる。 The present invention is a wind power generator in which generator-integrated thin fans are arranged in parallel (two-dimensional) and multiple (three-dimensional), and rectifying plates having a certain area are provided on the top, bottom, left, and right of the opening. However, the current plate is omitted depending on the installation conditions, and is not always required in all aspects. However, the rectifying plate on the upper part plays a role of protecting the wind power generator from rainwater and direct sunlight and also serves as a solar power generator (panel).

発電機一体型薄型ファンを並列および重層化することで、低風速での発電能力を高めるとともに騒音の減弱および装置の小型軽量化が実現できる。また市街地では傾斜した屋根ならびに屋上平面への設置が可能となるため、送電ロスの少ない電力の地域供給が実現する。同時に市街地のビル風対策(ビル間の風速低減)にも寄与する。さらに多重化されたファンの上部に整流板を置くが、気流エネルギーの電気への転換効率を高めると同時に、整流板上の太陽光発電装置と組み合わせて電力供給の安定化が図れる。しかも単独の大風車(横軸風車)と異なり、小型軽量な発電機一体型薄型ファンを用いるため、特別な支持構造体を必要としない。たとえば太陽光発電パネルを設置する場合に、その下部構造として発電機一体型薄型ファンを並列重層化した風力発電機を設けることができる。また下部の整流板に屋根の傾斜構造を流用すれば、一般住宅などへの設置が容易となる。 By arranging the generator-integrated thin fans in parallel and in layers, it is possible to increase the power generation capability at low wind speeds, reduce noise, and reduce the size and weight of the device. In urban areas, it can be installed on a sloping roof or on a rooftop, so it is possible to supply a local area with less transmission loss. At the same time, it contributes to building wind countermeasures in the city area (reducing wind speed between buildings). Furthermore, a rectifying plate is placed on the upper part of the multiplexed fans. However, the efficiency of converting airflow energy into electricity can be increased, and at the same time, the power supply can be stabilized in combination with the solar power generation device on the rectifying plate. In addition, unlike a single large wind turbine (horizontal axis wind turbine), a small and lightweight generator-integrated thin fan is used, so no special support structure is required. For example, when installing a photovoltaic power generation panel, a wind power generator in which generator-integrated thin fans are stacked in parallel as a lower structure can be provided. In addition, if a roof slope structure is used for the lower rectifying plate, it can be easily installed in a general house.

最初に直立する正方形断面を想定した場合、単独の大風車と並列小型風車の占有(受風)面積は理論的に同一である。これは正方形に内接する円の面積比率が一定であることによるもので、一つの大きな正方形に内接する単独の円と、分割された小正方形の各々に内接する小円の面積合計は同一である。このため任意の正方形断面を想定すると、単独の横軸風車によって気流エネルギーを電力に転換するか、あるいは多数の小風車によって風力エネルギーを利用可能な電力に転換するかは、受風面積から考えると理論的に等価の課題となる。 Assuming a square section upright first, the occupied (wind receiving) area of a single large windmill and a parallel small windmill is theoretically the same. This is because the area ratio of the circle inscribed in the square is constant, and the total area of the single circle inscribed in one large square and the small circle inscribed in each of the divided small squares are the same. . Therefore, assuming an arbitrary square cross section, whether to convert airflow energy into electric power by a single horizontal axis wind turbine or to convert wind energy into electric power that can be used by many small wind turbines is considered from the wind receiving area. This is a theoretically equivalent task.

また大型の横軸風車は回転翼の重量を片持ち梁(回転軸)で支えなければならず、回転数が上昇するにつれて回転翼に加わる遠心力が増大する。強風時の破損に備えて回転翼の機械強度を高めれば、それだけ翼の重量(慣性重量)が増すため、低風速で十分な回転力を得ることが難しくなる。これに対して小風車の集合体を想定すれば、機械強度の制約が少なく回転翼の慣性重量が少なくて済むため、低風速でも十分な回転力を得ることができる。また強風下でも破損が発生し難く、容易に回転半径(受風面積)内に占める回転翼の面積を増やすことが可能になる。これは翼端速度によって決定される機械的条件によるもので、小型風車の方が風速と無関係に気流エネルギーを電気に変換できる。 In addition, a large horizontal axis wind turbine must support the weight of the rotor blade with a cantilever (rotary shaft), and the centrifugal force applied to the rotor blade increases as the rotational speed increases. If the mechanical strength of the rotor blade is increased in preparation for breakage during strong winds, the weight of the blade (inertia weight) increases accordingly, making it difficult to obtain a sufficient rotational force at a low wind speed. On the other hand, assuming an assembly of small windmills, there is no restriction on mechanical strength and the inertia weight of the rotor blades can be reduced. Therefore, sufficient rotational force can be obtained even at a low wind speed. Further, it is difficult for damage to occur even under strong winds, and it is possible to easily increase the area of the rotor blades in the rotation radius (wind receiving area). This is due to mechanical conditions determined by the tip speed, and the small windmill can convert the airflow energy into electricity independently of the wind speed.

ただし小型の横軸風車を二次元に並列した場合、風向の変化に対応して風車群の向きを変更することは事実上困難となる。また翼の回転力を電気エネルギーに転換する機構が複雑化し、装置全体の重量が増加するのではないかと懸念される。単純に小型風車を寄せ集めた場合、風車同士の接触を防ぐ隙間も必要となり、さらに発電装置部分が占有する空間も必要となる。これらの課題は小型風車そのものに小型の発電装置を組み込む薄型ファンによって解決されるが、風向の変化に応じて風車群を直立(回転翼を風上に向け)させる機構を付与することは容易ではない。このため現実的には必ずしも風向に合わせて回転軸の方向を変えるのではなく、整流板によって気流方向を修正する方法が用いられる。本発明では風上側に向って開いた整流板を設け、風向を追従する装置を付加していない。これは都市部での建物構造体と一体化した設置を念頭においたもので、広大な敷地に設置することを前提とすれば装置を常に気流方向へ向ける構造を組み込むことも不可能ではない。しかし市街地での自給的発電を目的とする限り、こうした機構が果す役割は限られている。 However, when small horizontal axis wind turbines are arranged in two dimensions, it is practically difficult to change the direction of the wind turbine group in response to the change in the wind direction. In addition, there is a concern that the mechanism for converting the rotational force of the blades into electrical energy will be complicated and the weight of the entire apparatus will increase. When small windmills are simply gathered together, a gap for preventing the windmills from contacting each other is required, and further, a space occupied by the power generation device portion is also required. These problems are solved by a thin fan that incorporates a small power generator into the small windmill itself, but it is not easy to provide a mechanism that allows the windmill group to stand upright (rotating blades to the windward) according to changes in the wind direction. Absent. For this reason, in reality, the direction of the rotation axis is not necessarily changed in accordance with the wind direction, but a method of correcting the air flow direction using a baffle plate is used. In this invention, the baffle plate opened toward the windward side is provided, and the apparatus which tracks a wind direction is not added. This is intended to be integrated with the building structure in urban areas, and it is not impossible to incorporate a structure that always points the device in the direction of the airflow if it is installed on a vast site. However, as long as it aims for self-sufficient power generation in urban areas, the role played by these mechanisms is limited.

重層した薄型風車は複数のブロックに分かれ、それぞれのブロックごとに異なる大きさの風車から構成されるが、これは気流の風力エネルギーが電気エネルギーに転換されるにつれて、風力(風速)が減衰することに対応するためである。もともと低風速でも一定の回転が得られる発電機一体型薄型ファンを用いるが、回転翼の直径を小さくすればするほど慣性重量が少なくなり、低風速でも回転し易い。しかしながら小口径の発電機一体型薄型ファンでは転換可能な気流エネルギーも小さくなり、装置全体の効率が下がる傾向にある。したがって異なる回転半径を持つ発電機一体型薄型ファンの集積が最も合理的である。 Multi-layered thin wind turbines are divided into multiple blocks, and each block is made up of different sizes of wind turbines. This is because the wind power (wind speed) is attenuated as the wind energy in the airflow is converted into electrical energy. This is to cope with. Originally, a generator-integrated thin fan that can achieve constant rotation even at low wind speeds is used. However, the smaller the diameter of the rotor blade, the less the inertia weight and the easier it is to rotate at low wind speeds. However, with a small-diameter generator-integrated thin fan, the convertible airflow energy also decreases, and the overall efficiency of the device tends to decrease. Therefore, integration of generator-integrated thin fans with different turning radii is the most reasonable.

ブロック内部の発電機一体型薄型ファンの回転翼は、段毎にひねり角度が逆方向に設定されており、気流に対して常に逆回転するように設定される。これは装置全体のトルクを打ち消す役割を果すとともに、回転翼に衝突した気流の方向が変化することを想定したものである。また一段ごとにひねり角度が大きくなっているが、これも気流エネルギーの減少に対応したものである。これらの工夫によって、小口径の発電機一体型薄型ファンといえども実用的な電力供給源となる。 The rotor blades of the generator-integrated thin fan in the block have a twist angle set in the opposite direction for each stage, and are set so as to always rotate in reverse with respect to the airflow. This assumes the role of canceling out the torque of the entire apparatus and assumes that the direction of the airflow that collides with the rotor blades changes. Further, the twist angle is increased for each step, which also corresponds to a decrease in airflow energy. With these ideas, even a small-sized generator-integrated thin fan becomes a practical power supply source.

小口径の発電機一体型薄型ファンは機械振動が少なく、気流による回転翼の歪みも事実上無視できる範囲にある。このため回転数が上下しても、大型風車のような低周波騒音を発生しない。したがって都市部に設置したとしても、騒音被害を考慮する必要がなくなる。また下部の整流板(たとえば傾斜屋根)に断熱材を用いれば、住宅の外断熱性能を向上させる。 The small-diameter generator-integrated thin fan has little mechanical vibration, and the distortion of the rotor blades due to the airflow is practically negligible. For this reason, even if the number of revolutions increases and decreases, low-frequency noise unlike a large wind turbine does not occur. Therefore, even if it is installed in an urban area, there is no need to consider noise damage. Moreover, if a heat insulating material is used for the lower current plate (for example, an inclined roof), the heat insulation performance of the house is improved.

図1は発電機一体型薄型ファンを並列多重に組み合わせた風力発電装置の正面図である。直立した平面に発電機一体型薄型ファンを並列することで、ほぼ大型の風車に等しい有効な風受け面積を確保することができる。大型風車の場合には回転翼の慣性モーメントが大きくなると機械強度を増加する必要が拡大するが、発電機一体型薄型ファンを多数配置する方式では、機械強度の増加は最小限に抑制される。また風受け面積はファンの数を増やすことで容易に拡大でき、さらに二次元の形状も比較的自由に決定できる。FIG. 1 is a front view of a wind turbine generator in which generator-integrated thin fans are combined in parallel. By arranging a generator-integrated thin fan in parallel on an upright plane, it is possible to secure an effective wind receiving area equivalent to a substantially large windmill. In the case of a large windmill, the need to increase the mechanical strength increases as the inertia moment of the rotor blades increases. However, in the method in which a large number of generator-integrated thin fans are arranged, the increase in mechanical strength is minimized. The wind receiving area can be easily increased by increasing the number of fans, and the two-dimensional shape can be determined relatively freely. 図2は発電機一体型薄型ファンを並列多重に組み合わせた風力発電装置の側面断面図である。上部および両側の整流板によって気流はファンに向い、風上側の発電機一体型薄型ファンを回転させた気流は次の発電機一体型薄型ファンの回転翼に衝突して回転力となる。風上側の発電機一体型薄型ファン群でエネルギーを失った気流は減速するが、至適回転数の異なる発電機一体型薄型ファンを回転させるだけのエネルギーを保持しており、第二段以後のファンを回転させる。複数個の発電機一体型薄型ファンによってエネルギーの低下した気流は、斜行する整流板によって圧縮および増速され、次の小型薄型ファン群に到達する。最初の薄型ファンより小型薄型ファンの慣性力は小さく、このため低速の気流によっても回転力が得られる。同様に小型ファン群を経た気流は次の超小型ファン群に到達して、気流エネルギーを放出しながら次第に風速を低下して行く。FIG. 2 is a cross-sectional side view of a wind power generator in which generator-integrated thin fans are combined in parallel. The airflow is directed to the fan by the rectifying plates on the upper and both sides, and the airflow obtained by rotating the wind turbine-integrated thin fan collides with the rotor blades of the next power generator-integrated thin fan to become a rotational force. The airflow that has lost energy in the wind turbine generator-integrated thin fan group decelerates, but it retains enough energy to rotate the generator-integrated thin fan with a different optimum rotation speed. Rotate the fan. The airflow whose energy has been reduced by the plurality of generator-integrated thin fans is compressed and accelerated by the slanting rectifying plate, and reaches the next group of small thin fans. The inertia force of the small and thin fan is smaller than that of the first thin fan, so that a rotational force can be obtained even by a low-speed air flow. Similarly, the airflow passing through the small fan group reaches the next microminiature fan group, and gradually reduces the wind speed while releasing airflow energy. 図3は整流板に太陽光発電パネルを併設する場合の側面断面図である。いわゆる太陽光発電装置の設置が推進されているが、建物構造によって発電パネルの下に死腔が発生し易い。とくに水平な屋上や地表に太陽光発電パネルを設置すると、主として北側に開いた死腔が生じる。ここに本発明の発電機一体型薄型ファンを並列多重に組み合わせた風力発電装置を設置するならば、太陽光発電パネルにかかる風圧を減弱し、また日射が少なくて風のある時期(たとえば夜間)に補完的な電力供給が行える。逆に発電機一体型薄型ファンが雨水や直射日光に曝されなくなるため、ファンの機械的寿命が延長する。FIG. 3 is a side cross-sectional view in the case where a photovoltaic power generation panel is provided on the current plate. Although the installation of so-called solar power generation devices is promoted, a dead space tends to be generated under the power generation panel due to the building structure. In particular, when a photovoltaic power generation panel is installed on a horizontal rooftop or on the ground surface, a dead space that is open mainly on the north side is generated. If a wind turbine generator in which the generator-integrated thin fans of the present invention are combined in parallel is installed here, the wind pressure applied to the photovoltaic power generation panel is attenuated, and there is little sunlight and wind (for example, at night) Complementary power supply. Conversely, the generator-integrated thin fan will not be exposed to rainwater or direct sunlight, extending the mechanical life of the fan. 図4は複数の発電機一体型薄型ファンを回転させる気流と回転翼の構造を示した断面の説明図である。奇数段と偶数段の回転翼のひねり角度が正反対に設定されており、回転翼によって生じる気流の偏向を最大限に受け止める構造となっている。FIG. 4 is an explanatory view of a cross section showing the structure of airflow and rotating blades for rotating a plurality of generator-integrated thin fans. The twist angles of the odd-numbered and even-numbered rotor blades are set opposite to each other, and the structure is configured to receive the maximum deflection of the airflow generated by the rotor blades. 図5は実施例1の側面断面図である。傾斜角を持つ屋根の上に整流板を張り出させ、本来の屋根との間に風力発電装置を設置する。これにより整流板上部の太陽光発電パネルが水平に近づき、太陽光を電気エネルギーに転換する効率が上昇する。また導風路を設けることで太陽光発電パネルの裏面(下面)を気流が吹き抜け、太陽光パネル本体が冷却される。導風路を通過する気流は外気温以上に上昇せず、建物本体に熱を伝達および蓄積しない。こうした場合、建物の外壁に当った気流は上昇して整流板の内部に流れ込むが、これは建物自体が整流板としての効果を発揮することを意味する。FIG. 5 is a side sectional view of the first embodiment. A rectifying plate is projected over a roof with an inclined angle, and a wind power generator is installed between the roof and the original roof. Thereby, the photovoltaic power generation panel on the upper part of the rectifying plate approaches to the horizontal, and the efficiency of converting sunlight into electric energy increases. Further, by providing the air guide path, the airflow blows through the back surface (lower surface) of the photovoltaic power generation panel, and the solar panel body is cooled. The airflow passing through the air duct does not rise above the ambient temperature and does not transfer or accumulate heat in the building body. In such a case, the airflow hitting the outer wall of the building rises and flows into the rectifying plate, which means that the building itself exhibits the effect as the rectifying plate. 図6は実施例2の側面断面図である。傾斜角を持つ片屋根そのものを整流板および太陽光発電パネルとする構造であり、いわゆる屋根裏に風力発電装置が設置されることになる。この場合、建物本体の上部構造が防水および防音断熱機能を有していなければならないが、整流板の上部に設置される太陽光発電パネルの面積が大きくなり、風力発装置の開口部も大きくなるため全体の発電量が増加する。また上記の導風路を太陽光発電パネルの裏面に設けることができる。FIG. 6 is a side sectional view of the second embodiment. It is a structure in which a single roof itself having an inclination angle is a rectifying plate and a photovoltaic power generation panel, and a wind power generator is installed in a so-called attic. In this case, the superstructure of the building body must have a waterproof and soundproof heat insulating function, but the area of the photovoltaic power generation panel installed on the upper part of the rectifying plate increases, and the opening of the wind power generator also increases. Therefore, the total power generation increases. Moreover, said wind guide path can be provided in the back surface of a photovoltaic power generation panel.

本発明は地上のみならず平坦な屋上あるいは傾斜した屋根にも取り付けることができる。また垂直壁にも設置可能であるが、この場合は建物構造体の外部に張り出すことになり、未利用の空間を有効に活用することに繋がらない。このため実施するための最良の形態は、都市部における一般住宅(とくに傾斜屋根をもつ建物)あるいは平坦な屋上を有する建物である。これらにおいては地表占有面積を増やすことなく、太陽光発電パネル3の補完的な役割を果す。また都市部におけるビル風の低減にも寄与する。 The present invention can be mounted not only on the ground but also on a flat rooftop or an inclined roof. It can also be installed on a vertical wall, but in this case, it will protrude outside the building structure and will not lead to effective use of unused space. For this reason, the best mode for carrying out is an ordinary house in an urban area (particularly a building having an inclined roof) or a building having a flat rooftop. In these, the solar power generation panel 3 plays a complementary role without increasing the surface area occupied. It also contributes to reducing building winds in urban areas.

図5は傾斜した屋根とくに北側に設置した場合の側面断面図である。本来の屋根は北側に向って下がっている構造のため、太陽光発電パネル3などを設置しても十分に日射を利用できない場合がある。このような場合でも発電機一体型薄型ファンを並列多重に組み合わせた風力発電装置2を設置すれば、自由に太陽光発電パネル3の傾斜角を決定できるため、風力による発電のみならず太陽光発電パネル3の受光面積を増すことが可能である。 FIG. 5 is a side cross-sectional view of the inclined roof, particularly when installed on the north side. Since the original roof has a structure that goes down toward the north side, solar radiation may not be sufficiently utilized even if a solar power generation panel 3 or the like is installed. Even in such a case, if the wind power generator 2 in which the generator-integrated thin fans are combined in parallel, the inclination angle of the solar power generation panel 3 can be freely determined. The light receiving area of the panel 3 can be increased.

図6は片屋根の屋根裏に発電機一体型薄型ファンを並列多重に組み合わせた風力発電装置
2を設置した場合の側面断面図である。整流板によって集められた気流は太陽光発電パネル3を冷却し、同時に建物の天井部分を吹き抜けるため、天井部分の温度上昇が気温と同程度に抑制される。このため外断熱工法を用いれば冷房の必要性が著しく低下する。
FIG. 6 is a side cross-sectional view in the case where the wind power generator 2 in which generator-integrated thin fans are combined in parallel and multiplexed on the attic of one roof. The airflow collected by the rectifying plate cools the photovoltaic power generation panel 3 and blows through the ceiling portion of the building at the same time, so that the temperature rise of the ceiling portion is suppressed to the same level as the air temperature. For this reason, if the outer heat insulation construction method is used, the necessity for cooling is significantly reduced.

本発明は広く都市部において、利用可能な気流エネルギーを多段階に電気エネルギーに転換する発電機一体型薄型ファンを並列多重に組み合わせた風力発電装置である。建物の屋根あるいは屋上部分に設置することで、周囲の環境に対する負荷を最小限に抑制しつつ、風力の有効利用を達成することができる。また太陽電池パネルを設置するスペースと本発明の設置条件が重なることから、本発明の占める面積あるいはスペースは、実質的に無視できる。しかも太陽光が利用できない夜間や雨天でも発電が可能なため、太陽光発電を補完するエネルギー源として貴重である。
The present invention is a wind power generator in which generator-integrated thin fans that convert available airflow energy into electrical energy in multiple stages are combined in parallel in a wide range in urban areas. By installing on the roof or roof part of the building, effective use of wind power can be achieved while minimizing the load on the surrounding environment. Further, since the space for installing the solar cell panel and the installation conditions of the present invention overlap, the area or space occupied by the present invention can be substantially ignored. Moreover, since it can generate power even at night or in the rain when sunlight is not available, it is valuable as an energy source to supplement solar power generation.

1 気流
2 発電機一体型薄型ファンを並列多重に組み合わせた風力発電装置
3 太陽光発電パネル
DESCRIPTION OF SYMBOLS 1 Air flow 2 Wind generator 3 which combined the generator-integrated thin fan in parallel multiplexing 3 Solar power generation panel

Claims (2)

発電機一体型薄型ファンを並列多重に組み合わせた風力発電装置。 A wind turbine generator that combines generator-integrated thin fans in parallel. 風力発電装置の上部および側面に設ける気流圧縮用の整流板と太陽光発電パネル。
A rectifying plate and a solar power generation panel for airflow compression provided on the upper and side surfaces of the wind turbine generator.
JP2009206993A 2009-09-08 2009-09-08 Wind power generator with generator-integrated thin fans combined by parallel multiplex Pending JP2011058389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009206993A JP2011058389A (en) 2009-09-08 2009-09-08 Wind power generator with generator-integrated thin fans combined by parallel multiplex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009206993A JP2011058389A (en) 2009-09-08 2009-09-08 Wind power generator with generator-integrated thin fans combined by parallel multiplex

Publications (1)

Publication Number Publication Date
JP2011058389A true JP2011058389A (en) 2011-03-24

Family

ID=43946310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009206993A Pending JP2011058389A (en) 2009-09-08 2009-09-08 Wind power generator with generator-integrated thin fans combined by parallel multiplex

Country Status (1)

Country Link
JP (1) JP2011058389A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110198855A1 (en) * 2010-02-18 2011-08-18 Alan Ashley Alexander White Wind and solar electric generator
CN102705165A (en) * 2012-05-31 2012-10-03 沁源县博翔新能源科技发展有限公司 Wind power generation device
JP2014159799A (en) * 2013-02-21 2014-09-04 Nihon Technica Co Ltd Wind power generator of wind power generation apparatus
CN111336062A (en) * 2020-03-05 2020-06-26 中国大唐集团科学技术研究院有限公司华中电力试验研究院 Wind generating set maximum wind energy capture method based on measured wind speed
JP7065245B1 (en) 2021-11-19 2022-05-11 渋谷 進 Wind / solar power generation equipment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110198855A1 (en) * 2010-02-18 2011-08-18 Alan Ashley Alexander White Wind and solar electric generator
US8269368B2 (en) * 2010-02-18 2012-09-18 Alan Ashley Alexander White Wind and solar electric generator
CN102705165A (en) * 2012-05-31 2012-10-03 沁源县博翔新能源科技发展有限公司 Wind power generation device
JP2014159799A (en) * 2013-02-21 2014-09-04 Nihon Technica Co Ltd Wind power generator of wind power generation apparatus
CN111336062A (en) * 2020-03-05 2020-06-26 中国大唐集团科学技术研究院有限公司华中电力试验研究院 Wind generating set maximum wind energy capture method based on measured wind speed
JP7065245B1 (en) 2021-11-19 2022-05-11 渋谷 進 Wind / solar power generation equipment
JP2023075783A (en) * 2021-11-19 2023-05-31 渋谷 進 Wind power and photovoltaic power generation apparatus

Similar Documents

Publication Publication Date Title
US8464990B2 (en) Pole mounted rotation platform and wind power generator
US6097104A (en) Hybrid energy recovery system
US8134252B2 (en) Converting wind energy to electrical energy
US7728455B2 (en) Parabolic bi-directional wind turbine assembly and omni-directional power array
US8810057B2 (en) Wind energy systems and methods of use
US20130106193A1 (en) Hybrid wind and solar energy device
WO2010098656A2 (en) Wind, solar and rain harvester
US20100171314A1 (en) Vertically Oriented Wind Tower Generator
JP2011058389A (en) Wind power generator with generator-integrated thin fans combined by parallel multiplex
KR20110009137A (en) Device for producing electric energy
US8729726B2 (en) Petroleum-alternative power plant
WO2006022590A1 (en) Multiple energy harvester to power standalone electrical appliances
US20140097082A1 (en) Wind Turbine for Installation in Buildings
US10221833B2 (en) Sail based wind energy system
GB2460389A (en) Drum shaped wind turbine with solar panels
US7786611B1 (en) System and method for generating wind power from a vertical structure
KR101882331B1 (en) Vertical wind power generator with multi blade
Ragheb Wind turbines in the urban environment
JP2003222071A (en) Invention of darries wind turbine power generation setting a plurality of power generators and wind collecting panel
WO2017160825A1 (en) Wind energy harvesting utilizing air shaft and centrifugal impellor wheels
KR101116123B1 (en) Alternative energy system using the building vents
JP2007056853A (en) Left and right rotation vertical shaft windmill with four corner control plate
US20230024478A1 (en) Wind Energy Apparatus
US12066005B2 (en) Wind turbine and wind power station based thereon
WO2009126533A2 (en) Building-based wind cylinder installation