JP2011054869A - Organic photoelectric conversion element, and image sensor including the same - Google Patents

Organic photoelectric conversion element, and image sensor including the same Download PDF

Info

Publication number
JP2011054869A
JP2011054869A JP2009204486A JP2009204486A JP2011054869A JP 2011054869 A JP2011054869 A JP 2011054869A JP 2009204486 A JP2009204486 A JP 2009204486A JP 2009204486 A JP2009204486 A JP 2009204486A JP 2011054869 A JP2011054869 A JP 2011054869A
Authority
JP
Japan
Prior art keywords
electron
photoelectric conversion
organic
layer
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009204486A
Other languages
Japanese (ja)
Inventor
Satoshi Aihara
聡 相原
Hokuto Seo
北斗 瀬尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP2009204486A priority Critical patent/JP2011054869A/en
Publication of JP2011054869A publication Critical patent/JP2011054869A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic photoelectric conversion element that is manufactured with simple facilities and has high efficiency, and to provide an image sensor including the same. <P>SOLUTION: The organic photoelectric conversion element includes a cathode, an anode, and an organic semiconductor layer formed between the cathode and the anode. The organic semiconductor layer has four or more mixed layers in which a mixture ratio of an organic material having electron donative property to an organic material having electron acceptive property is set stepwise. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、有機半導体を用いた有機光電変換素子、及び、これを含むイメージセンサに関する。   The present invention relates to an organic photoelectric conversion element using an organic semiconductor and an image sensor including the same.

近年、有機半導体を用いた電子機器が急速に進展している。電子供与性の有機材料と電子受容性の有機材料で作製した積層構造によって光電変換効率が向上することが見出されて以来(例えば、非特許文献1参照)、有機半導体を光電変換層とする太陽電池や光センサ、撮像デバイスの検討が活発に行われている。積層構造での高効率化は、電子供与性材料と電子受容性材料の電子準位差を利用し、光照射によって励起された電子−正孔対が積層界面で分離(電荷分離)を起こすことによってもたらされる。   In recent years, electronic devices using organic semiconductors have been rapidly developed. Since it has been found that a photoelectric conversion efficiency is improved by a laminated structure made of an electron-donating organic material and an electron-accepting organic material (for example, see Non-Patent Document 1), an organic semiconductor is used as a photoelectric conversion layer. Studies on solar cells, optical sensors, and imaging devices are being actively conducted. High-efficiency in the stacked structure utilizes the electron level difference between the electron-donating material and the electron-accepting material, and the electron-hole pair excited by light irradiation causes separation (charge separation) at the stack interface. Brought about by.

しかしながら、従来の積層構造を用いる素子は、例えばシリコン系太陽電池に代表される無機光電変換素子に比べて未だ光電変換効率が低いという問題がある。これは、有機光電変換材料のキャリア移動度が小さいため、膜中で励起された電子−正孔対が、電荷分離サイトである積層界面に到達するまでに再結合等で消失してしまうことが主因である。   However, an element using a conventional laminated structure has a problem that the photoelectric conversion efficiency is still lower than that of an inorganic photoelectric conversion element typified by, for example, a silicon-based solar cell. This is because the organic photoelectric conversion material has a low carrier mobility, and thus electron-hole pairs excited in the film may disappear due to recombination or the like before reaching the stacked interface that is a charge separation site. It is the main cause.

この問題を解決するために、電荷分離サイトの数を増大させる技術が提案されており、代表例として、電子供与性材料と電子受容性材料を混合した層(i層)を、電子供与性材料製の層(p層)と電子受容性材料製の層(n層)に挟み込んだp−i−n型の有機半導体がある(例えば、非特許文献2参照)。   In order to solve this problem, a technique for increasing the number of charge separation sites has been proposed. As a representative example, a layer (i layer) in which an electron-donating material and an electron-accepting material are mixed is used as an electron-donating material. There is a pin type organic semiconductor sandwiched between a layer (p layer) made of a metal and a layer (n layer) made of an electron-accepting material (for example, see Non-Patent Document 2).

p−i−n型の有機半導体は、p層としてフタロシアニン系化合物、n層としてペリレン系化合物、i層としてフタロシアニン系化合物とペリレン系化合物の混合層を含む。i層で励起された電子−正孔対は、i層内に分子レベルで形成されているフタロシアニン/ペリレン界面で電荷分離を起こす。   The p-i-n type organic semiconductor includes a phthalocyanine compound as a p layer, a perylene compound as an n layer, and a mixed layer of a phthalocyanine compound and a perylene compound as an i layer. The electron-hole pairs excited in the i layer cause charge separation at the phthalocyanine / perylene interface formed at the molecular level in the i layer.

分離された電荷のうちの正孔はフタロシアニン分子へ移動し、電子はペリレン分子へ移動する。正孔はi層に一様に分散されたフタロシアニン分子間をホッピングにより伝導し、電子はi層に一様に分散されたペリレン分子間をホッピングにより伝導し、正孔はp層へ到達し、電子はn層へ到達する。   Holes in the separated charges move to the phthalocyanine molecule, and electrons move to the perylene molecule. Holes are conducted by hopping between phthalocyanine molecules uniformly dispersed in the i layer, electrons are conducted by hopping between perylene molecules uniformly dispersed in the i layer, and holes reach the p layer. The electrons reach the n layer.

p層及びn層は、キャリア輸送層として働き、それぞれのキャリアを電極へと輸送する。このような構造は、以前は蒸着法により作製されていたが、最近ではフラーレン系化合物(電子受容性材料)と導電性ポリマー(電子供与性材料)を混合した所謂バルクヘテロジャンクション構造を有する塗布型の有機光電変換膜を用いることが主流となっている(例えば、特許文献1、2、3参照)。   The p layer and the n layer function as a carrier transport layer and transport each carrier to the electrode. Such a structure was previously produced by a vapor deposition method, but recently, a coating type having a so-called bulk heterojunction structure in which a fullerene compound (electron-accepting material) and a conductive polymer (electron-donating material) are mixed. The use of organic photoelectric conversion films has become the mainstream (see, for example, Patent Documents 1, 2, and 3).

Applied Physics Letters, 第48巻, 1986年, p.183Applied Physics Letters, 48, 1986, p.183 Journal of Applied Physics, 第72巻, 1992年, p.3781Journal of Applied Physics, Vol.72, 1992, p.3781

特開2007−173636号公報JP 2007-173636 A 特開2005−203659号公報JP 2005-203659 A 米国特許第5454880号明細書US Pat. No. 5,454,880

ここで、上述のような従来の有機光電変換膜において、電子の輸送ルートであるペリレン系化合物やフラーレン系化合物、又は正孔の輸送ルートであるフタロシアニン系化合物や導電性ポリマーが、電荷分離領域からp層及びn層まで形成されているか否か、もしくは電荷分離領域から電極まで形成されているか否かは、有機光電変換膜内におけるドナー材料とアクセプター材料の混合具合に依存するため、電子の輸送ルート及び正孔の輸送ルートの安定的な確保は困難であった。   Here, in the conventional organic photoelectric conversion film as described above, a perylene compound or a fullerene compound that is an electron transport route, or a phthalocyanine compound or a conductive polymer that is a hole transport route is from the charge separation region. Whether or not the p-layer and n-layer are formed, or whether or not the charge separation region and the electrode are formed depends on the mixing condition of the donor material and the acceptor material in the organic photoelectric conversion film. It was difficult to secure a stable route and hole transport route.

また、例えば、特開2004−103939号公報に記載されているように、電子受容性材料と電子供与性材料を直立型超格子の構造にすることで電子及び正孔の輸送ルートを確保することが知られている。   Also, for example, as described in Japanese Patent Application Laid-Open No. 2004-103939, an electron and hole transport route can be secured by making an electron-accepting material and an electron-donating material into an upright superlattice structure. It has been known.

しかしながら、直立型超格子は、非常に微細な面積のものしか作製することができず、作製手法も複雑になるという課題がある。   However, the upright superlattice has a problem that only a very fine area can be manufactured and the manufacturing method becomes complicated.

また、特開2004−165474号公報には、導電性ポリマーとフラーレンの混合膜をスプレー法による混合噴霧を用いて成膜し、膜中において光照射側の導電性ポリマー含有率を高めることにより、光電変換素子の変換効率を向上させることが記載されている。   Japanese Patent Application Laid-Open No. 2004-165474 discloses that a mixed film of a conductive polymer and fullerene is formed using a mixed spray by a spray method, and by increasing the content of the conductive polymer on the light irradiation side in the film, It describes that the conversion efficiency of a photoelectric conversion element is improved.

しかしながら、スプレー法は、溶媒に溶解する材料、あるいは均一に分散する材料でなければ使用できず、さらにはノズル詰まりの対策、溶媒除去のための加熱機構の構築、蒸発した溶媒を捕獲するための冷却捕獲機構等の周辺機器の設置が必要になるという課題がある。   However, the spray method can only be used if it is a material that dissolves in the solvent or is a material that is evenly dispersed. Furthermore, measures against nozzle clogging, construction of a heating mechanism for removing the solvent, and trapping the evaporated solvent There is a problem that it is necessary to install peripheral devices such as a cooling capture mechanism.

そこで、本発明は、簡易な設備で作製可能で、高効率な有機光電変換素子、及び、これを含むイメージセンサを提供することを目的とする。   Therefore, an object of the present invention is to provide a highly efficient organic photoelectric conversion element that can be manufactured with simple equipment and an image sensor including the same.

本発明の一局面の有機光電変換素子は、陰極、陽極、及び前記陰極及び前記陽極の間に形成される有機半導体層を含む有機光電変換素子であって、前記有機半導体層は、電子供与性の有機材料と電子受容性の有機材料との混合比が段階的に設定される4層以上の混合層を有する。   The organic photoelectric conversion element of one aspect of the present invention is an organic photoelectric conversion element including a cathode, an anode, and an organic semiconductor layer formed between the cathode and the anode, wherein the organic semiconductor layer has an electron donating property. 4 or more mixed layers in which the mixing ratio of the organic material and the electron-accepting organic material is set stepwise.

また、前記有機半導体層の前記混合層における前記電子供与性の有機材料の混合比Cpと前記電子受容性の有機材料の混合比Cnは、前記混合層の層数をX(Xは4以上の整数)とすると、前記陰極からn番目(nは1からXの間の整数)の混合層について、Cp=100×(1−(n−1)/(X−1))、Cn=100×(n−1)/(X−1)で表されてもよい。   Further, the mixing ratio Cp of the electron-donating organic material and the mixing ratio Cn of the electron-accepting organic material in the mixed layer of the organic semiconductor layer are the number of the mixed layers X (X is 4 or more). Assuming that (n) is the nth (n is an integer between 1 and X) mixed layer from the cathode, Cp = 100 × (1− (n−1) / (X−1)), Cn = 100 × It may be represented by (n-1) / (X-1).

また、前記4層以上の混合層の各々の膜厚は、均等な膜厚に設定されてもよい。   Moreover, the film thickness of each of the four or more mixed layers may be set to an equal film thickness.

また、前記陰極と前記有機半導体層との間に形成される電子ブロッキング層、又は前記有機半導体層と前記陽極との間に形成される正孔ブロッキング層をさらに含んでもよい。   Further, an electron blocking layer formed between the cathode and the organic semiconductor layer, or a hole blocking layer formed between the organic semiconductor layer and the anode may be further included.

本発明の一局面のイメージセンサは、前記いずれかに記載の有機光電変換素子を含む。   An image sensor according to one aspect of the present invention includes any one of the organic photoelectric conversion elements described above.

本発明によれば、簡易な設備で作製可能で、高効率な有機光電変換素子、及び、これを含むイメージセンサを提供できるという特有の効果が得られる。   According to the present invention, it is possible to provide a specific effect that a highly efficient organic photoelectric conversion element that can be manufactured with simple equipment and an image sensor including the same can be provided.

本実施の形態の有機光電変換素子を示す断面図である。It is sectional drawing which shows the organic photoelectric conversion element of this Embodiment. 本実施の形態の有機光電変換素子10の有機半導体層3が5層の混合層を有する場合の各混合層の電子供与性材料の混合比Cp、電子受容性材料の混合比Cnの関係を示す図である。The relationship between the mixing ratio Cp of the electron donating material and the mixing ratio Cn of the electron accepting material of each mixed layer when the organic semiconductor layer 3 of the organic photoelectric conversion element 10 of the present embodiment has five mixed layers is shown. FIG. 本実施の形態の有機光電変換素子における電子準位を表す図である。It is a figure showing the electron level in the organic photoelectric conversion element of this Embodiment. 電子ブロッキング層及び正孔ブロッキング層を含む本実施の形態の有機光電変換素子の概略的な断面構造を示す図である。It is a figure which shows schematic sectional structure of the organic photoelectric conversion element of this Embodiment containing an electron blocking layer and a hole blocking layer. 本実施の形態の有機光電変換素子100における電子ブロッキング材料、電子受容性材料、電子供与性材料、正孔ブロッキング材料の最も望ましい電子準位の関係を示す図である。It is a figure which shows the relationship of the most desirable electron level of the electron blocking material in the organic photoelectric conversion element 100 of this Embodiment, an electron accepting material, an electron donating material, and a hole blocking material. 本実施の形態の有機光電変換素子における電子ブロッキング材料、電子受容性材料、電子供与性材料、正孔ブロッキング材料の電子準位の他の関係を示す図である。It is a figure which shows the other relationship of the electron level of the electron blocking material in the organic photoelectric conversion element of this Embodiment, an electron accepting material, an electron donating material, and a hole blocking material. 本実施の形態の有機光電変換素子10を含むイメージセンサの断面図を示す図である。It is a figure which shows sectional drawing of the image sensor containing the organic photoelectric conversion element 10 of this Embodiment. 実施例3及び比較例4で得られた有機光電変換素子における印加電圧と光電変換効率の関係を表す特性図である。It is a characteristic view showing the relationship between the applied voltage and photoelectric conversion efficiency in the organic photoelectric conversion element obtained in Example 3 and Comparative Example 4.

以下、本発明の有機光電変換素子、及び、これを含むイメージセンサを適用した実施の形態について説明する。   Hereinafter, an embodiment in which an organic photoelectric conversion element of the present invention and an image sensor including the organic photoelectric conversion element are applied will be described.

図1は、本実施の形態の有機光電変換素子を示す断面図である。   FIG. 1 is a cross-sectional view showing the organic photoelectric conversion element of the present embodiment.

本実施の形態の有機光電変換素子10は、陰極1、陽極2、及び有機半導体層3を含む。有機半導体層3は、電子供与性材料と電子受容性材料との混合比が異なる4層以上の複数の混合層を有する。   The organic photoelectric conversion element 10 of the present embodiment includes a cathode 1, an anode 2, and an organic semiconductor layer 3. The organic semiconductor layer 3 has a plurality of mixed layers of four or more layers having different mixing ratios of the electron donating material and the electron accepting material.

図1には、一例として、有機半導体層3が5層の混合層を有する形態を示すが、有機半導体層3の複数の混合層における電子供与性材料と電子受容性材料の混合比は以下のように規定される。なお、混合層とは、電子供与性材料と電子受容性材料が所定の割合で混合されている層をいい、どちらかの混合比が零である場合を含むものとする。   FIG. 1 shows an example in which the organic semiconductor layer 3 has a mixed layer of five layers, but the mixing ratio of the electron donating material and the electron accepting material in the plurality of mixed layers of the organic semiconductor layer 3 is as follows. It is prescribed as follows. Note that the mixed layer refers to a layer in which an electron-donating material and an electron-accepting material are mixed at a predetermined ratio, and includes a case where one of the mixing ratios is zero.

有機半導体層3の混合層の層数をX(Xは4以上の整数)とすると、陰極1からn番目(nは1からXの間の整数)の混合層の電子供与性材料の混合比Cp(%)は、式(1)で表され、同様に電子受容性材料の混合比Cn(%)は式(2)で表される。   When the number of mixed layers of the organic semiconductor layer 3 is X (X is an integer of 4 or more), the mixing ratio of the electron donating material in the nth mixed layer from the cathode 1 (n is an integer between 1 and X) Cp (%) is represented by Formula (1), and similarly, the mixing ratio Cn (%) of the electron-accepting material is represented by Formula (2).

Cp=100×(1−(n−1)/(X−1)) ・・・(1)
Cn=100×(n−1)/(X−1) ・・・(2)
例えば、図1に示すように有機半導体層3が5層(X=5)の混合層を有する場合の各混合層の混合比は次のようになる。陰極1から1層目の混合層のCp、Cnは(Cp,Cn)=(100,0)であり、同様に2層目は(75,25)、3層目は(50,50)、4層目は(25,75)、5層目は(0,100)である。
Cp = 100 × (1− (n−1) / (X−1)) (1)
Cn = 100 × (n−1) / (X−1) (2)
For example, as shown in FIG. 1, when the organic semiconductor layer 3 has five (X = 5) mixed layers, the mixing ratio of each mixed layer is as follows. Cp and Cn of the first mixed layer from the cathode 1 are (Cp, Cn) = (100, 0). Similarly, the second layer is (75, 25), the third layer is (50, 50), The fourth layer is (25,75) and the fifth layer is (0,100).

図2は、本実施の形態の有機光電変換素子10の有機半導体層3が5層の混合層を有する場合の各混合層の電子供与性材料の混合比Cp、電子受容性材料の混合比Cnの関係を示す図である。   FIG. 2 shows a mixture ratio Cp of electron donating materials and a mixture ratio Cn of electron accepting materials in each mixed layer when the organic semiconductor layer 3 of the organic photoelectric conversion element 10 of the present embodiment has five mixed layers. It is a figure which shows the relationship.

図2に示すように、各混合層における電子受容性材料の混合比Cnは、陰極1に近い層から陽極2に近い層にかけて、0(%)、25(%)、50(%)、75(%)、100(%)と段階的に増大することが分かる。また、電子供与性材料の混合比Cpは、陰極1に近い層から陽極2に近い層にかけて、100(%)、75(%)、50(%)、25(%)、0(%)と段階的に減少することが分かる。   As shown in FIG. 2, the mixing ratio Cn of the electron-accepting material in each mixed layer is 0 (%), 25 (%), 50 (%), 75 from the layer close to the cathode 1 to the layer close to the anode 2. It can be seen that (%) and 100 (%) increase in stages. The mixing ratio Cp of the electron donating material is 100 (%), 75 (%), 50 (%), 25 (%), 0 (%) from the layer close to the cathode 1 to the layer close to the anode 2. It turns out that it decreases in steps.

また、他の例として、有機半導体層3が11層(X=11)の混合層を有する場合における各混合層の混合比は次の通りである。陰極1から1層目のCp、Cnは(Cp,Cn)=(100,0)、同様に2層目は(90,10)、3層目は(80,20)、4層目は(70,30)、5層目は(60,40)、6層目は(50,50)、7層目は(40,60)、8層目は(30,70)、9層目は(20,80)、10層目は(10,90)、11層目は(0,100)である。   As another example, the mixing ratio of each mixed layer in the case where the organic semiconductor layer 3 has 11 mixed layers (X = 11) is as follows. Cp and Cn of the first layer from the cathode 1 are (Cp, Cn) = (100, 0). Similarly, the second layer is (90, 10), the third layer is (80, 20), and the fourth layer is ( 70, 30) 5th layer is (60, 40), 6th layer is (50, 50), 7th layer is (40, 60), 8th layer is (30, 70), 9th layer is ( 20, 80), the 10th layer is (10, 90), and the 11th layer is (0, 100).

上述の5層(X=5)と11層(X=11)の場合で説明したように、陰極1と有機半導体層3の界面に位置する有機半導体層3の1層目の混合層は電子供与性材料だけを含み、各混合層における混合比は、陽極2に近いほど、電子受容性材料の濃度が高くなる(電子受容材料の混合比が大きくなる)。これは、層数が5層、11層以外の場合でも同様である。   As described above in the case of the five layers (X = 5) and the eleventh layer (X = 11), the first mixed layer of the organic semiconductor layer 3 located at the interface between the cathode 1 and the organic semiconductor layer 3 is an electron. The concentration of the electron-accepting material increases (the mixing ratio of the electron-accepting material increases) as the mixing ratio in each mixed layer includes only the donor material and is closer to the anode 2. This is the same even when the number of layers is other than 5 layers and 11 layers.

また、上述の5層(X=5)と11層(X=11)の場合では、有機半導体層3の膜厚方向の中央の混合層では、電子供与性材料と電子受容性材料の比率は50:50となる。層数Xが5、11以外の場合における有機半導体層3の膜厚方向の中央付近の混合層の電子供与性材料と電子受容性材料の比率は、次の通りである。層数Xが奇数の場合は、有機半導体層3の膜厚方向の中央の混合層における電子供与性材料と電子受容性材料の比率は、50:50となる。また、層数Xが偶数の場合には、有機半導体層3の膜厚方向の中央付近の混合層における電子供与性材料と電子受容性材料の比率は、50:50に最も近くなる。   In the case of the above-described five layers (X = 5) and 11 layers (X = 11), the ratio of the electron donating material to the electron accepting material in the central mixed layer in the film thickness direction of the organic semiconductor layer 3 is 50:50. The ratio of the electron donating material and the electron accepting material in the mixed layer near the center in the film thickness direction of the organic semiconductor layer 3 when the number of layers X is other than 5 and 11 is as follows. When the number of layers X is an odd number, the ratio of the electron donating material to the electron accepting material in the central mixed layer in the film thickness direction of the organic semiconductor layer 3 is 50:50. When the number of layers X is an even number, the ratio of the electron donating material to the electron accepting material in the mixed layer near the center in the film thickness direction of the organic semiconductor layer 3 is closest to 50:50.

また、上述の5層(X=5)と11層(X=11)の場合で説明したように、陽極2に近いほど混合層内における電子受容性材料の混合比が大きくなり、陽極2と有機半導体層3の界面に位置する混合層は、電子受容性材料だけを含む。これは、層数が5層、11層以外の場合でも同様である。   Further, as described in the case of the five layers (X = 5) and the eleven layers (X = 11) described above, the closer to the anode 2, the larger the mixing ratio of the electron-accepting material in the mixed layer, The mixed layer located at the interface of the organic semiconductor layer 3 contains only the electron accepting material. This is the same even when the number of layers is other than 5 layers and 11 layers.

以上のように、本実施の形態の有機光電変換素子10は、式(1)、(2)により、有機半導体層3の層数X(X≧4)に応じて各混合層内における電子供与性材料と電子受容性材料の混合比を段間的に設定することができる。   As described above, the organic photoelectric conversion element 10 according to the present embodiment has the electron donation in each mixed layer according to the number of layers X (X ≧ 4) of the organic semiconductor layer 3 according to the formulas (1) and (2). The mixing ratio of the conductive material and the electron-accepting material can be set stepwise.

次に、本実施の形態の有機光電変換素子10の動作機構について説明する。   Next, the operation mechanism of the organic photoelectric conversion element 10 of the present embodiment will be described.

図1に示す有機光電変換素子10の陰極1に負電圧、陽極2に正電圧を印加した状態で、陰極1又は陽極2を介して有機光電変換素子10に光が照射されると、有機半導体層3内の電子供与性材料と電子受容性材料のどちらか一方、あるいは両方で電子−正孔対が励起される。ここで、有機半導体層3内の電子供与性材料が励起された場合、電子受容性材料が励起された場合、及び電子供与性材料と電子受容性材料の両方が励起された場合の動作原理は基本的に同一であるため、以下では、説明の便宜上、電子供与性材料が励起された場合について説明する。   When the organic photoelectric conversion element 10 is irradiated with light through the cathode 1 or the anode 2 in a state where a negative voltage is applied to the cathode 1 and a positive voltage is applied to the anode 2 of the organic photoelectric conversion element 10 shown in FIG. Electron-hole pairs are excited in either or both of the electron donating material and the electron accepting material in the layer 3. Here, when the electron donating material in the organic semiconductor layer 3 is excited, when the electron accepting material is excited, and when both the electron donating material and the electron accepting material are excited, the operation principle is as follows: Since they are basically the same, the case where the electron donating material is excited will be described below for convenience of explanation.

有機半導体層3内で励起された電子−正孔対のうち、電子は近傍の電子受容性材料に移動し、電荷分離が生じる。   Of the electron-hole pairs excited in the organic semiconductor layer 3, electrons move to nearby electron-accepting materials and charge separation occurs.

陰極1と陽極2の間には電界が印加されているため、分離した電荷のうちの電子は電子受容性材料間をホッピングしながら陽極2へ移動し、正孔は電子供与性材料をホッピングしながら陰極1へ移動する。このとき、電子は陽極2に近づくに従いホッピングサイトである電子受容性材料の濃度が高くなるため、陽極2に近づくほどホッピング中の再結合による消滅確率が低くなる。   Since an electric field is applied between the cathode 1 and the anode 2, electrons in the separated charges move to the anode 2 while hopping between the electron-accepting materials, and the holes hop the electron-donating material. While moving to the cathode 1. At this time, since the concentration of the electron-accepting material, which is a hopping site, increases as the electron approaches the anode 2, the probability of annihilation due to recombination during hopping decreases as it approaches the anode 2.

同様に、正孔は陰極1に近づくに従いホッピングサイトである電子供与性材料の濃度が高くなるため、陰極1に近づくほどホッピング中の再結合による消滅確率が低くなる。   Similarly, as the hole gets closer to the cathode 1, the concentration of the electron donating material that is a hopping site becomes higher, so that the closer to the cathode 1, the lower the probability of disappearance due to recombination during hopping.

以上のように、陰極1と陽極2との間に、安定的な電子の輸送ルート及び正孔の輸送ルートが確保されるため、電子、正孔のどちらも効率よく電極に到達させることが可能になり、光電変換効率を向上させることができる。   As described above, since a stable electron transport route and hole transport route are secured between the cathode 1 and the anode 2, both electrons and holes can efficiently reach the electrode. Thus, the photoelectric conversion efficiency can be improved.

ここで、電子と正孔のキャリア取り出しバランスをできるだけ等しくすることが素子の高効率化の点から望ましい。このためには、混合比の異なる各混合層の膜厚を等しくすること、すなわち、有機半導体層3の膜厚をX層で等分することが望ましく、また、混合比は上式(1)、(2)のように一定の割合で増加、もしくは減少させることが望ましい。複数の混合層の混合比を一定の割合で変化させることは、有機半導体層3の膜厚方向において連続的に混合比が変化する場合に近似した状態となる。   Here, it is desirable from the viewpoint of increasing the efficiency of the device that the electron and hole carrier extraction balance be as equal as possible. For this purpose, it is desirable to equalize the film thicknesses of the mixed layers having different mixing ratios, that is, to equally divide the film thickness of the organic semiconductor layer 3 by the X layer. It is desirable to increase or decrease at a constant rate as shown in (2). Changing the mixing ratio of the plurality of mixed layers at a constant rate approximates the case where the mixing ratio continuously changes in the film thickness direction of the organic semiconductor layer 3.

なお、本実施の形態の有機光電変換素子10の有機半導体層3は、電子供与性の有機材料と電子受容性の有機材料との混合比が段階的に設定される4層以上の混合層を有していればよく、必ずしも各混合層の膜厚は均等である必要はなく、また、必ずしも上式(1)、(2)に従って混合比を設定する必要はない。   In addition, the organic semiconductor layer 3 of the organic photoelectric conversion element 10 of the present embodiment is a mixed layer of four or more layers in which the mixing ratio of the electron donating organic material and the electron accepting organic material is set stepwise. It is sufficient that the thicknesses of the mixed layers are not necessarily equal, and it is not always necessary to set the mixing ratio according to the above formulas (1) and (2).

電子供与性材料としては、例えば、フタロシアニン系化合物、キナクリドン系化合物、ポルフィリン系化合物、クマリン系化合物、ローダミン系化合物、スクアリリウム系化合物、メロシアニン系化合物等が考えられる。また、電子受容性材料としては、例えば、ペリレン系化合物、アルミニウムキノリン系化合物、フッ化フタロシアニン系化合物、フラーレン系化合物等が考えられる。   Examples of the electron donating material include phthalocyanine compounds, quinacridone compounds, porphyrin compounds, coumarin compounds, rhodamine compounds, squarylium compounds, merocyanine compounds, and the like. Examples of the electron accepting material include perylene compounds, aluminum quinoline compounds, fluorinated phthalocyanine compounds, fullerene compounds, and the like.

しかしながら、電子供与性材料及び電子受容性材料は、上述のものに限られず、電子供与性材料のイオン化ポテンシャルをEvp、電子親和力をEcp、電子受容性材料のイオン化ポテンシャルをEvn、電子親和力をEcnとしたときに、以下の関係を満たす組み合わせであればどのような有機半導体材料でも用いることができる。   However, the electron-donating material and the electron-accepting material are not limited to those described above, and the ionization potential of the electron-donating material is Evp, the electron affinity is Ecp, the ionization potential of the electron-accepting material is Evn, and the electron affinity is Ecn. Any organic semiconductor material can be used as long as the combination satisfies the following relationship.

Ecn>Ecp ・・・(3)
Evn>Evp ・・・(4)
なお、イオン化ポテンシャル、電子親和力は、真空準位を基準としたときの大きさとする。
Ecn> Ecp (3)
Evn> Evp (4)
Note that the ionization potential and the electron affinity are determined based on the vacuum level.

図3は、本実施の形態の有機光電変換素子における電子準位を表す図である。   FIG. 3 is a diagram illustrating the electron levels in the organic photoelectric conversion element of the present embodiment.

本実施の形態において、有機半導体層3の作製方法は、乾式成膜法がよく、真空蒸着法が最も好適である。   In the present embodiment, the method for producing the organic semiconductor layer 3 is preferably a dry film forming method, and is most preferably a vacuum deposition method.

有機半導体層3は、電子供与性材料、電子受容性材料のそれぞれを別々の加熱蒸着源(加熱るつぼ、加熱ボート等)に充填し、10−3Pa程度もしくはより高い真空度の雰囲気において蒸着することによって作製される。有機半導体層3を作製するための装置(成膜機構)は、電子供与性材料、電子受容性材料それぞれの蒸着レートを制御できる機構を備えていることが望ましく、加熱蒸着源への通電量、すなわち加熱蒸着源の温度により蒸着レートを制御する方法や、加熱蒸着源の上部に機械式可変シャッターを設け、蒸着源の温度を一定に保ちつつシャッター開口面積により蒸着レートを制御する方法等を用いることができる。 The organic semiconductor layer 3 is filled with an electron-donating material and an electron-accepting material in separate heating evaporation sources (heating crucibles, heating boats, etc.) and deposited in an atmosphere of about 10 −3 Pa or higher. It is produced by. The apparatus (film formation mechanism) for producing the organic semiconductor layer 3 preferably includes a mechanism capable of controlling the deposition rate of each of the electron donating material and the electron accepting material, That is, a method of controlling the deposition rate by the temperature of the heating evaporation source or a method of controlling a deposition rate by the shutter opening area while maintaining a constant temperature of the deposition source by providing a mechanical variable shutter above the heating evaporation source is used. be able to.

有機半導体層3は、膜の光吸収率を50%以上、望ましくは90%(吸光度1)以上にするための膜厚を有することが望ましい。有機半導体層3の膜厚は、電子供与性材料、電子受容性材料として用いる材料の組み合わせにもよるが、例えば、20nm〜300nmの間がよく、各混合層の膜厚は、有機半導体層3の膜厚をX層に等分割した値に設定すればよい。   The organic semiconductor layer 3 desirably has a film thickness for making the light absorption rate of the film 50% or more, desirably 90% (absorbance 1) or more. The film thickness of the organic semiconductor layer 3 depends on the combination of materials used as the electron-donating material and the electron-accepting material, but is preferably between 20 nm and 300 nm, for example, and the film thickness of each mixed layer is the organic semiconductor layer 3. May be set to a value obtained by equally dividing the film thickness into X layers.

陰極1と陽極2は、少なくとも光照射側となるどちらか一方の電極が透明電極であればよく、他方の電極は透明でなくてもよい。   In the cathode 1 and the anode 2, at least one of the electrodes on the light irradiation side may be a transparent electrode, and the other electrode may not be transparent.

透明電極の材料としては、例えば、インジウムスズ酸化物、インジウム酸化物、酸化スズ、酸化亜鉛等が挙げられる。すなわち、陰極1と陽極2の両方を透明電極にする場合は、前述のいずれかの透明電極の材料で作製すればよい。   Examples of the material for the transparent electrode include indium tin oxide, indium oxide, tin oxide, and zinc oxide. That is, when both the cathode 1 and the anode 2 are made transparent electrodes, they may be made of any of the transparent electrode materials described above.

また、透明ではない電極の材料としては、アルミニウム、バナジウム、金、銀、白金、鉄、コバルト、炭素、ニッケル、タングステン、パラジウム、マグネシウム、カルシウム、スズ、鉛、チタン、イットリウム、リチウム、ルテニウム、マンガン等の金属及びそれらの合金を用いることができる。   Non-transparent electrode materials include aluminum, vanadium, gold, silver, platinum, iron, cobalt, carbon, nickel, tungsten, palladium, magnesium, calcium, tin, lead, titanium, yttrium, lithium, ruthenium, and manganese. Such metals and their alloys can be used.

これらの電極の膜厚は、例えば、50nm〜200nm程度がよいが、光の透過性を高くしたい場合には、例えば、膜厚を1nm〜50nm程度に薄くすることによって半透明にした電極を作製すればよい。   The film thickness of these electrodes is preferably about 50 nm to 200 nm, for example, but when it is desired to increase the light transmittance, for example, a semitransparent electrode is produced by reducing the film thickness to about 1 nm to 50 nm. do it.

また、本実施の形態の有機光電変換素子10をイメージセンサの光電変換部として利用する場合には、有機半導体層3に10V/cm程度の比較的高い電界を印加し、有機半導体層3内で発生した電子や正孔を速やかに取り出す必要がある。 Moreover, when using the organic photoelectric conversion element 10 of this Embodiment as a photoelectric conversion part of an image sensor, a relatively high electric field of about 10 5 V / cm is applied to the organic semiconductor layer 3, and the organic semiconductor layer 3 It is necessary to quickly take out the electrons and holes generated in the inside.

このとき、電圧を印加することにより陰極1から電子が有機半導体層3内に流れ込み、あるいは、陽極2から正孔が有機半導体層3内に流れ込むとノイズ(暗電流)が生じる場合がある。暗電流の流入を防止する必要がある場合には、陰極1と有機半導体層3の間に電子ブロッキング層を備えればよく、また、陽極2と有機半導体層3の間に正孔ブロッキング層を備えればよい。   At this time, when a voltage is applied, electrons flow from the cathode 1 into the organic semiconductor layer 3, or holes flow from the anode 2 into the organic semiconductor layer 3, noise (dark current) may occur. When it is necessary to prevent inflow of dark current, an electron blocking layer may be provided between the cathode 1 and the organic semiconductor layer 3, and a hole blocking layer may be provided between the anode 2 and the organic semiconductor layer 3. You should prepare.

図4は、電子ブロッキング層及び正孔ブロッキング層を含む本実施の形態の有機光電変換素子の概略的な断面構造を示す図である。   FIG. 4 is a diagram showing a schematic cross-sectional structure of the organic photoelectric conversion element of the present embodiment including an electron blocking layer and a hole blocking layer.

本実施の形態の有機光電変換素子100は、陰極1、陽極2、有機光電変換膜53を含む。有機光電変換膜53は、電子供与性材料と電子受容性材料を混合した有機半導体層54、電子ブロッキング材料製の電子ブロッキング層55、正孔ブロッキング材料製の正孔ブロッキング層56を有する。   The organic photoelectric conversion element 100 of this embodiment includes a cathode 1, an anode 2, and an organic photoelectric conversion film 53. The organic photoelectric conversion film 53 includes an organic semiconductor layer 54 in which an electron donating material and an electron accepting material are mixed, an electron blocking layer 55 made of an electron blocking material, and a hole blocking layer 56 made of a hole blocking material.

すなわち、本実施の形態の有機光電変換素子100は、有機光電変換膜53が有機半導体層54に加えて電子ブロッキング層55及び正孔ブロッキング層56を含む点が図1に示す本実施の形態の有機光電変換素子10と異なる。   That is, the organic photoelectric conversion element 100 of the present embodiment is different from the organic photoelectric conversion film 53 of the present embodiment shown in FIG. 1 in that the organic photoelectric conversion film 53 includes an electron blocking layer 55 and a hole blocking layer 56 in addition to the organic semiconductor layer 54. Different from the organic photoelectric conversion element 10.

有機光電変換素子100の有機光電変換膜53に含まれる有機半導体層54は、有機光電変換素子10の有機半導体層3と同一であり、有機半導体層54に含まれる混合層の層数をX(Xは4以上の整数)とすると、電子ブロッキング層55からn番目(nは1からXの間の整数)の混合層の電子供与性材料の混合比Cp(%)は、上述の式(1)で表され、同様に電子受容性材料の混合比Cn(%)は上述の式(2)で表される。なお、図4には、一例として、有機半導体層54が5層の混合層を有する形態を示す。   The organic semiconductor layer 54 included in the organic photoelectric conversion film 53 of the organic photoelectric conversion element 100 is the same as the organic semiconductor layer 3 of the organic photoelectric conversion element 10, and the number of mixed layers included in the organic semiconductor layer 54 is represented by X ( Assuming that X is an integer of 4 or more, the mixing ratio Cp (%) of the electron donating material in the n-th (n is an integer between 1 and X) mixed layer from the electron blocking layer 55 is expressed by the above formula (1 Similarly, the mixing ratio Cn (%) of the electron-accepting material is expressed by the above-described formula (2). FIG. 4 shows an example in which the organic semiconductor layer 54 has five mixed layers.

電子ブロッキング層55を作製するための電子ブロッキング材料として利用可能な化合物としては、例えば、トリフェニルアミン系化合物のような一般に有機デバイスで扱われている材料を挙げることができる。また、正孔ブロッキング層56を作製するための正孔ブロッキング材料として利用可能な化合物としては、例えば、フェナンスロリン系化合物、アルミニウムキノリン系化合物、オキサジアゾール系化合物、シロール系化合物等の一般に有機デバイスで扱われている材料を挙げることができる。   Examples of a compound that can be used as an electron blocking material for producing the electron blocking layer 55 include a material that is generally handled in an organic device, such as a triphenylamine-based compound. Examples of compounds that can be used as a hole blocking material for forming the hole blocking layer 56 include generally organic compounds such as phenanthroline compounds, aluminum quinoline compounds, oxadiazole compounds, and silole compounds. Mention may be made of the materials handled by the device.

これらの材料が十分なブロッキング機能を有するための望ましい電子準位としては、電子ブロッキング材料のイオン化ポテンシャルをEve、電子親和力をEce、正孔ブロッキング材料のイオン化ポテンシャルをEvh、電子親和力をEchとしたときに、それぞれ式(5)、式(6)で表される。なお、Evpは電子供与性材料のイオン化ポテンシャル、Ecpは電子親和力、Evnは電子受容性材料のイオン化ポテンシャル、Ecnは電子親和力である。   The desirable electron level for these materials to have a sufficient blocking function is that when the ionization potential of the electron blocking material is Eve, the electron affinity is Ece, the ionization potential of the hole blocking material is Evh, and the electron affinity is Ech. Are represented by formula (5) and formula (6), respectively. Evp is the ionization potential of the electron donating material, Ecp is the electron affinity, Evn is the ionization potential of the electron accepting material, and Ecn is the electron affinity.

Ecp>Ece ・・・(5)
Evh>Evn ・・・(6)
また、有機半導体層54で発生した電子及び正孔を効率よく陰極1及び陽極2へ取り出すためには、式(7)、式(8)が成り立つことが好適である。
Ecp> Ece (5)
Evh> Evn (6)
Further, in order to efficiently extract electrons and holes generated in the organic semiconductor layer 54 to the cathode 1 and the anode 2, it is preferable that the expressions (7) and (8) are satisfied.

Ech>Ecn ・・・(7)
Evp>Eve ・・・(8)
図5は、本実施の形態の有機光電変換素子100における電子ブロッキング材料、電子受容性材料、電子供与性材料、正孔ブロッキング材料の最も望ましい電子準位の関係を示す図である。図5に示す電子準位の関係は、式(5)〜(8)をすべて満たす関係である。このように、電子ブロッキング材料、電子受容性材料、電子供与性材料、正孔ブロッキング材料の電子準位が段階的に設定されることが好適である。
Ech> Ecn (7)
Evp> Eve (8)
FIG. 5 is a diagram showing the most desirable relationship between the electron levels of the electron blocking material, the electron accepting material, the electron donating material, and the hole blocking material in the organic photoelectric conversion element 100 of the present embodiment. The relationship between the electron levels shown in FIG. 5 is a relationship that satisfies all of the equations (5) to (8). Thus, it is preferable that the electron levels of the electron blocking material, the electron accepting material, the electron donating material, and the hole blocking material are set stepwise.

ここで、式(5)〜(8)をすべて満たす有機材料の組み合わせが得られない場合において、式(9)、又は式(10)のいずれか一方、もしくは両方が成立する組み合わせであっても、式(5)、(6)が成立していれば、有機光電変換膜53への印加電圧を高くすることにより、有機半導体層54で発生した電子及び正孔を効率よく電極へ取り出すことが可能である。   Here, in the case where a combination of organic materials satisfying all of the formulas (5) to (8) cannot be obtained, either the formula (9), the formula (10), or a combination in which both are satisfied If the equations (5) and (6) are established, the voltage applied to the organic photoelectric conversion film 53 can be increased to efficiently extract the electrons and holes generated in the organic semiconductor layer 54 to the electrode. Is possible.

Ech<Ecn ・・・(9)
Evp<Eve ・・・(10)
図6は、本実施の形態の有機光電変換素子における電子ブロッキング材料、電子受容性材料、電子供与性材料、正孔ブロッキング材料の電子準位の他の関係を示す図である。
Ech <Ecn (9)
Evp <Eve (10)
FIG. 6 is a diagram showing another relationship between the electron levels of the electron blocking material, the electron accepting material, the electron donating material, and the hole blocking material in the organic photoelectric conversion element of the present embodiment.

図6に示す電子準位の関係は、式(9)、式(10)が成立する関係である。すなわち、電子受容性材料と正孔ブロッキング材料との間で式(9)が成立し、かつ、電子ブロッキング材料と電子供与性材料との間で式(10)が成立する関係である。   The relationship between the electron levels shown in FIG. 6 is a relationship in which Expressions (9) and (10) are established. That is, there is a relationship in which Equation (9) is established between the electron-accepting material and the hole-blocking material, and Equation (10) is established between the electron-blocking material and the electron-donating material.

上述のように、電子ブロッキング材料、電子受容性材料、電子供与性材料、正孔ブロッキング材料については、式(5)〜(8)をすべて満たすことが望ましいが、式(9)、式(10)が成立する材料を用いる場合は、有機光電変換膜53への印加電圧を高くすることにより、有機半導体層54で発生した電子及び正孔を効率よく電極へ取り出すことが可能である。   As described above, regarding the electron blocking material, the electron accepting material, the electron donating material, and the hole blocking material, it is desirable to satisfy all of the formulas (5) to (8). ) Is used, it is possible to efficiently extract electrons and holes generated in the organic semiconductor layer 54 to the electrode by increasing the voltage applied to the organic photoelectric conversion film 53.

次に、本実施の形態の有機光電変換素子100の有機光電変換膜53の作製方法について簡単に説明する。   Next, a method for manufacturing the organic photoelectric conversion film 53 of the organic photoelectric conversion element 100 of the present embodiment will be briefly described.

有機光電変換膜53の作製方法としては、乾式成膜法がよく、真空蒸着法が最も好適である。電子ブロッキング材料、正孔ブロッキング材料、電子供与性材料、電子受容性材料のそれぞれを別々の加熱るつぼ、あるいは加熱ボートに充填し、10−3Pa程度もしくは、より高い真空度の雰囲気において蒸着することにより、有機光電変換膜53を作製することができる。 As a method for producing the organic photoelectric conversion film 53, a dry film forming method is preferable, and a vacuum vapor deposition method is most preferable. Fill each electron-blocking material, hole-blocking material, electron-donating material, and electron-accepting material into separate heated crucibles or heated boats, and deposit them in an atmosphere of about 10 −3 Pa or higher. Thus, the organic photoelectric conversion film 53 can be manufactured.

有機光電変換膜53に含まれる有機半導体層54を作製するための装置(成膜機構)は、上述のように、電子供与性材料及び電子受容性材料のそれぞれの蒸着レートを制御できる機構を備えていることが望ましい。有機半導体層54は、膜の光吸収率を50%以上、望ましくは90%(吸光度1)以上にするための膜厚を有することが望ましい。有機半導体層54の膜厚は、電子供与性材料、電子受容性材料として用いる材料の組み合わせにもよるが、例えば、20nm〜300nmの間がよく、各混合層の膜厚は、有機半導体層54の膜厚をX層に等分割した値に設定すればよい。   The apparatus (deposition mechanism) for producing the organic semiconductor layer 54 included in the organic photoelectric conversion film 53 includes a mechanism capable of controlling the deposition rates of the electron donating material and the electron accepting material as described above. It is desirable that The organic semiconductor layer 54 preferably has a film thickness so that the light absorption rate of the film is 50% or more, desirably 90% (absorbance 1) or more. Although the film thickness of the organic semiconductor layer 54 depends on the combination of materials used as the electron donating material and the electron accepting material, for example, it is preferably between 20 nm and 300 nm, and the film thickness of each mixed layer is the organic semiconductor layer 54. May be set to a value obtained by equally dividing the film thickness into X layers.

電子ブロッキング層55及び正孔ブロッキング層56は、電極からの電子あるいは正孔の注入を充分に抑制できる膜厚であることが望ましく、例えば、20nm〜100nmの間であればよい。   It is desirable that the electron blocking layer 55 and the hole blocking layer 56 have a film thickness that can sufficiently suppress injection of electrons or holes from the electrode, and may be, for example, between 20 nm and 100 nm.

また、電子ブロッキング材料、正孔ブロッキング材料に関しては、湿式の成膜法を用いることも可能である。具体的には、スピンコート法、バーコート法、キャスト法、ディップ法等を用い、溶媒としてはそれぞれの有機材料が可溶である有機溶媒であれば、いずれの溶媒も使用可能である。例えば、テトラヒドロフラン、トルエン、酢酸ブチル、モノクロロベンゼン、ジクロロメタン、クロロホルム、ヘキサン、シクロヘキサン、酢酸2−エトキシエチル、酢酸エチルカルビトール、酢酸プロピレングリコールモノメチルエーテル、N−メチル−2−ピロリドン、ジオキサン等を一例として挙げることができる。   In addition, with respect to the electron blocking material and the hole blocking material, a wet film forming method can be used. Specifically, any solvent can be used as long as a spin coating method, a bar coating method, a casting method, a dip method, and the like are used, and any organic solvent in which each organic material is soluble. For example, tetrahydrofuran, toluene, butyl acetate, monochlorobenzene, dichloromethane, chloroform, hexane, cyclohexane, 2-ethoxyethyl acetate, ethyl carbitol acetate, propylene glycol monomethyl ether acetate, N-methyl-2-pyrrolidone, dioxane, etc. Can be mentioned.

次に、図7を用いて、本実施の形態の有機光電変換素子10又は100を含むイメージセンサについて簡単に説明する。図7は、本実施の形態の有機光電変換素子10を含むイメージセンサの断面図を示す図である。   Next, an image sensor including the organic photoelectric conversion element 10 or 100 of the present embodiment will be briefly described with reference to FIG. FIG. 7 is a diagram showing a cross-sectional view of an image sensor including the organic photoelectric conversion element 10 of the present embodiment.

本実施の形態の有機光電変換素子10をイメージセンサの光電変換部として含む場合、光の三原色のうち青のみに光感度を有する光電変換部10A、緑のみに光感度を有する光電変換部10B、赤のみに光感度を有する光電変換部10Cをガラス基板11A〜11C及び光透過型のTFT読み出し回路12A〜12Cにそれぞれ積層した積層体を作製し、図7に示すように、各色用の積層体を積み重ねることで、光の利用効率が高く高感度の単板式の多層型イメージセンサを作製することができる。   When the organic photoelectric conversion element 10 of the present embodiment is included as a photoelectric conversion unit of an image sensor, a photoelectric conversion unit 10A having photosensitivity only for blue among the three primary colors of light, a photoelectric conversion unit 10B having photosensitivity only for green, A laminate in which the photoelectric conversion part 10C having photosensitivity only in red is laminated on the glass substrates 11A to 11C and the light transmission type TFT readout circuits 12A to 12C, respectively, and as shown in FIG. By stacking, a single-plate multilayer image sensor with high light utilization efficiency and high sensitivity can be manufactured.

ここで、TFT読み出し回路12A〜12Cとしては、光電変換部10A〜10Cの各画素に対応してマトリクス状にTFT(Thin Film Transistor)が配列され、光電変換部10A〜10Cの各画素に蓄積される電荷を読み出す回路を用いればよい。   Here, as the TFT readout circuits 12A to 12C, TFTs (Thin Film Transistors) are arranged in a matrix corresponding to the pixels of the photoelectric conversion units 10A to 10C, and accumulated in the pixels of the photoelectric conversion units 10A to 10C. A circuit that reads the electric charge to be used may be used.

光電変換部10A〜10Cとしての有機光電変換素子10は、図1に示したように、それぞれ、陰極1と陽極2を含んでおり、図7に示すイメージセンサでは、光電変換部10A〜10Cの各々に含まれる陽極2が画素電極としてTFT読み出し回路12A〜12Cのドレインに接続されている。   As shown in FIG. 1, the organic photoelectric conversion elements 10 as the photoelectric conversion units 10A to 10C include the cathode 1 and the anode 2, respectively. In the image sensor shown in FIG. The anode 2 included in each is connected to the drains of the TFT readout circuits 12A to 12C as pixel electrodes.

また、図7には、光電変換部10A〜10Cの陽極2が画素電極としてTFT読み出し回路12A〜12Cに接続される形態を示すが、陰極1が画素電極としてTFT読み出し回路12A〜12Cに接続されるように構成してもよい。   7 shows a mode in which the anode 2 of the photoelectric conversion units 10A to 10C is connected to the TFT readout circuits 12A to 12C as pixel electrodes, but the cathode 1 is connected to the TFT readout circuits 12A to 12C as pixel electrodes. You may comprise.

また、図7には、ガラス基板11A〜11C上に形成した光透過型のTFT読み出し回路12A〜12Cを光電変換部10A〜10C毎に挟み込んだ構造のイメージセンサを示すが、読出し用CCD(Charge Coupled Device)回路やCMOS(Complementary Metal Oxide Semiconductor)回路を最下層に集積し、各光電変換部10A〜10Cの画素電極をビアプラグで接続する構造等、既知の構造をいずれも使用することが可能である。   FIG. 7 shows an image sensor having a structure in which light transmission type TFT readout circuits 12A to 12C formed on glass substrates 11A to 11C are sandwiched between photoelectric conversion units 10A to 10C. Any known structure such as a structure in which a coupled device (CMOS) circuit or a complementary metal oxide semiconductor (CMOS) circuit is integrated in the lowermost layer and the pixel electrodes of the photoelectric conversion units 10A to 10C are connected by via plugs can be used. is there.

また、説明の便宜上、図7には、光電変換部10A〜10Cの各々の有機半導体層3を簡略化して示すが、上述のように、有機半導体層3は、電子供与性の有機材料と電子受容性の有機材料との混合比が段階的に設定される4層以上の混合層を有していればよい。   For convenience of explanation, FIG. 7 shows each organic semiconductor layer 3 of the photoelectric conversion units 10A to 10C in a simplified manner. As described above, the organic semiconductor layer 3 is composed of an electron-donating organic material and an electron. It is only necessary to have four or more mixed layers in which the mixing ratio with the receptive organic material is set stepwise.

なお、図7には、本実施の形態の有機光電変換素子10を光電変換部10A〜10Cに用いたイメージセンサを示すが、イメージセンサの光電変換部として本実施の形態の有機光電変換素子100を用いてもよい。   7 shows an image sensor using the organic photoelectric conversion element 10 of the present embodiment for the photoelectric conversion units 10A to 10C. The organic photoelectric conversion element 100 of the present embodiment is used as a photoelectric conversion unit of the image sensor. May be used.

本実施の形態の有機光電変換素子10又は100をイメージセンサに用いる場合に、有機半導体層3又は54を構成する有機材料に関しては、青のみに感度を有する有機材料の組み合わせとしてはクマリン系化合物(電子供与性材料)とシロール系化合物(電子受容性材料)、緑のみに感度を有する有機材料の組み合わせとしてはキナクリドン系化合物(電子供与性材料)とペリレン系化合物(電子受容性材料)、赤のみに感度を有する有機材料の組み合わせとしてはフタロシアニン系化合物(電子供与性材料)とフッ素置換フタロシアニン系化合物(電子受容性材料)等が一例として挙げられるが、その他、式(3)、式(4)を満たす組み合わせであれば使用することが可能である。   When the organic photoelectric conversion element 10 or 100 of the present embodiment is used for an image sensor, the organic material constituting the organic semiconductor layer 3 or 54 is a coumarin compound (as a combination of organic materials sensitive only to blue). Electron donating materials) and silole compounds (electron accepting materials), organic materials sensitive only to green are quinacridone compounds (electron donating materials), perylene compounds (electron accepting materials), red only Examples of the combination of organic materials having high sensitivity are phthalocyanine compounds (electron-donating materials), fluorine-substituted phthalocyanine compounds (electron-accepting materials), and the like. In addition, formulas (3) and (4) Any combination that satisfies the above can be used.

次に、本実施の形態の有機光電変換素子10又は100を適用した実施例について比較例と比較しながら説明する。   Next, an example to which the organic photoelectric conversion element 10 or 100 of the present embodiment is applied will be described in comparison with a comparative example.

まず、実施例1、2と比較例1、2、3の比較結果について説明する。実施例1、2では、電子ブロッキング層と正孔ブロッキング層を含まない本実施の形態の有機光電変換素子10を作製した。比較例1、2、3は、従来の有機半導体層を含む点が実施例1、2と異なる。   First, the comparison results of Examples 1 and 2 and Comparative Examples 1, 2, and 3 will be described. In Example 1, 2, the organic photoelectric conversion element 10 of this Embodiment which does not contain an electron blocking layer and a hole blocking layer was produced. Comparative Examples 1, 2, and 3 differ from Examples 1 and 2 in that they include a conventional organic semiconductor layer.

<実施例1>
有機光電変換素子10を保持する基板として、厚さ0.7mm、縦35mm、横25mmのガラス基板を用い、基板上にスパッタ法によりインジウムスズ酸化膜(ITO)製の厚さ30nmの透明電極を作製した。
<Example 1>
A glass substrate having a thickness of 0.7 mm, a length of 35 mm, and a width of 25 mm is used as a substrate for holding the organic photoelectric conversion element 10, and a transparent electrode made of indium tin oxide (ITO) with a thickness of 30 nm is formed on the substrate by sputtering. Produced.

電子供与性材料としてNN’-dimethylquinacridone(NN’−QA)、電子受容性材料としてN-methyl-3,4,9,10-perylenetetracarboxyl-diimide(Me−PTC)を選択し、有機半導体層3が5層の混合層を有する素子を作製した。すなわち、10−5Paに排気した真空蒸着装置内のるつぼにNN’−QAとMe−PTCを別々に充填し、まず、ITO電極付基板上に第1層目の混合層としてNN’−QAを20nm蒸着した。蒸着レートは1.0Å/sとした。 NN'-dimethylquinacridone (NN'-QA) is selected as the electron donating material, N-methyl-3,4,9,10-perylenetetracarboxyl-diimide (Me-PTC) is selected as the electron accepting material, and the organic semiconductor layer 3 is A device having five mixed layers was manufactured. That is, NN′-QA and Me-PTC are separately filled in a crucible in a vacuum deposition apparatus evacuated to 10 −5 Pa. First, NN′-QA is formed as a first mixed layer on the substrate with ITO electrodes. Was deposited by 20 nm. The deposition rate was 1.0 liter / s.

次に、NN’−QAの蒸着レートを0.75Å/s、Me−PTCの蒸着レートを0.25Å/sとなるように蒸着源の温度を制御し、第2層目の混合層を20nm蒸着した。次に、NN’−QAの蒸着レートを0.50Å/s、Me−PTCの蒸着レートを0.50Å/sとなるように蒸着源の温度を制御し、第3層目の混合層を20nm蒸着した。次に、NN’−QAの蒸着レートを0.25Å/s、Me−PTCの蒸着レートを0.75Å/sとなるように蒸着源の温度を制御し、第4層目の混合層を20nm蒸着した。次に、Me−PTCの蒸着レートを1.0Å/sとなるように蒸着源の温度を制御し、第5層目の混合層を20nm蒸着することにより、5層の混合層を有する有機半導体層3を作製した。最後に、厚さ80nmのアルミニウム電極を真空蒸着法により作製して実施例1の有機光電変換素子10が完成した。   Next, the temperature of the deposition source was controlled so that the deposition rate of NN′-QA was 0.75 Å / s and the deposition rate of Me-PTC was 0.25 Å / s, and the second mixed layer was 20 nm. Vapor deposited. Next, the temperature of the deposition source was controlled so that the deposition rate of NN′-QA was 0.50 Å / s and the deposition rate of Me-PTC was 0.50 Å / s, and the third mixed layer was 20 nm. Vapor deposited. Next, the temperature of the deposition source was controlled so that the deposition rate of NN′-QA was 0.25 Å / s and the deposition rate of Me-PTC was 0.75 Å / s, and the fourth mixed layer was 20 nm. Vapor deposited. Next, the temperature of the deposition source is controlled so that the deposition rate of Me-PTC is 1.0 Å / s, and the mixed layer of the fifth layer is deposited by 20 nm to thereby form an organic semiconductor having five mixed layers. Layer 3 was made. Finally, an aluminum electrode having a thickness of 80 nm was produced by a vacuum deposition method, whereby the organic photoelectric conversion element 10 of Example 1 was completed.

<実施例2>
有機光電変換素子10を保持する基板として、厚さ0.7mm、縦35mm、横25mmのガラス基板を用い、基板上にスパッタ法によりITO製の厚さ30nmの透明電極を作製した。
<Example 2>
As a substrate for holding the organic photoelectric conversion element 10, a glass substrate having a thickness of 0.7 mm, a length of 35 mm, and a width of 25 mm was used, and a transparent electrode made of ITO having a thickness of 30 nm was formed on the substrate by a sputtering method.

電子供与性材料としてNN’−QA、電子受容性材料としてMe−PTCを選択し、有機半導体層3が7層の混合層を有する素子を作製した。すなわち、10−5Paに排気した真空蒸着装置内のるつぼにNN’−QAとMe−PTCを別々に充填し、まず、ITO電極付基板上に第1層目の混合層としてNN’−QAを14.2nm蒸着した。蒸着レートは1.0Å/sとした。次に、NN’−QAの蒸着レートを0.83Å/s、Me−PTCの蒸着レートを0.17Å/sとなるように蒸着源の温度を制御し、第2層目の混合層を14.2nm蒸着した。次に、NN’−QAの蒸着レートを0.665Å/s、Me−PTCの蒸着レートを0.335Å/sとなるように蒸着源の温度を制御し、第3層目の混合層を14.2nm蒸着した。 NN′-QA was selected as the electron donating material, Me-PTC was selected as the electron accepting material, and an element in which the organic semiconductor layer 3 had a mixed layer of 7 layers was produced. That is, NN′-QA and Me-PTC are separately filled in a crucible in a vacuum deposition apparatus evacuated to 10 −5 Pa. First, NN′-QA is formed as a first mixed layer on the substrate with ITO electrodes. Was evaporated at 14.2 nm. The deposition rate was 1.0 liter / s. Next, the temperature of the deposition source was controlled so that the deposition rate of NN′-QA was 0.83 Å / s and the deposition rate of Me-PTC was 0.17 Å / s. .2 nm was deposited. Next, the temperature of the deposition source was controlled so that the deposition rate of NN′-QA was 0.665 Å / s and the deposition rate of Me-PTC was 0.335 Å / s. .2 nm was deposited.

次に、NN’−QAの蒸着レートを0.50Å/s、Me−PTCの蒸着レートを0.50Å/sとなるように蒸着源の温度を制御し、第4層目の混合層を14.2nm蒸着した。次に、NN’−QAの蒸着レートを0.335Å/s、Me−PTCの蒸着レートを0.665Å/Sとなるように蒸着源の温度を制御し、第5層目の混合層を14.2nm蒸着した。次に、NN’−QAの蒸着レートを0.17Å/s、Me−PTCの蒸着レートを0.83Å/sとなるように蒸着源の温度を制御し、第6層目の混合層を14.2nm蒸着した。次に、Me−PTCの蒸着レートを1.0Å/sとなるように蒸着源の温度を制御し、第7層目の混合層を14.2nm蒸着することにより、7層の混合層を有する有機半導体層3を作製した。最後に、厚さ80nmのアルミニウム電極を真空蒸着法により作製して実施例2の有機光電変換素子10が完成した。   Next, the temperature of the deposition source was controlled so that the deposition rate of NN′-QA was 0.50 Å / s and the deposition rate of Me-PTC was 0.50 Å / s. .2 nm was deposited. Next, the temperature of the deposition source was controlled so that the deposition rate of NN′-QA was 0.335 Å / s and the deposition rate of Me-PTC was 0.665 Å / S. .2 nm was deposited. Next, the temperature of the deposition source was controlled so that the deposition rate of NN′-QA was 0.17 Å / s and the deposition rate of Me-PTC was 0.83 Å / s. .2 nm was deposited. Next, the deposition source temperature is controlled so that the deposition rate of Me-PTC is 1.0 Å / s, and the seventh mixed layer is deposited by 14.2 nm to have seven mixed layers. An organic semiconductor layer 3 was produced. Finally, an aluminum electrode having a thickness of 80 nm was produced by a vacuum deposition method, whereby the organic photoelectric conversion element 10 of Example 2 was completed.

<比較例1>
有機光電変換素子を保持する基板として、厚さ0.7mm、縦35mm、横25mmのガラス基板を用い、基板上にスパッタ法によりITO製の厚さ30nmの透明電極を作製した。
<Comparative Example 1>
As a substrate for holding the organic photoelectric conversion element, a glass substrate having a thickness of 0.7 mm, a length of 35 mm, and a width of 25 mm was used, and a transparent electrode made of ITO having a thickness of 30 nm was formed on the substrate by a sputtering method.

電子供与性材料としてNN’−QA、電子受容性材料としてMe−PTCを選択し、2層の積層型の有機半導体層を作製した。すなわち、10−5Paに排気した真空蒸着装置内のるつぼにNN’−QAとMe−PTCを別々に充填し、まず、ITO電極付基板上に第1層目としてNN’−QAを50nm蒸着した。蒸着レートは1.0Å/sとした。次に、Me−PTCを50nm蒸着した。蒸着レートは1.0Å/sとした。最後に、厚さ80nmのアルミニウム電極を真空蒸着法により作製して比較例1の有機光電変換素子が完成した。 NN′-QA was selected as the electron-donating material and Me-PTC was selected as the electron-accepting material, and two stacked organic semiconductor layers were produced. That is, NN′-QA and Me-PTC are separately filled in a crucible in a vacuum deposition apparatus evacuated to 10 −5 Pa. First, NN′-QA is deposited as a first layer on an ITO electrode substrate with a thickness of 50 nm. did. The deposition rate was 1.0 liter / s. Next, Me-PTC was deposited by 50 nm. The deposition rate was 1.0 liter / s. Finally, an aluminum electrode having a thickness of 80 nm was produced by a vacuum vapor deposition method, and the organic photoelectric conversion element of Comparative Example 1 was completed.

<比較例2>
有機光電変換素子を保持する基板として、厚さ0.7mm、縦35mm、横25mmのガラス基板を用い、基板上にスパッタ法によりITO製の厚さ30nmの透明電極を作製した。
<Comparative Example 2>
As a substrate for holding the organic photoelectric conversion element, a glass substrate having a thickness of 0.7 mm, a length of 35 mm, and a width of 25 mm was used, and a transparent electrode made of ITO having a thickness of 30 nm was formed on the substrate by a sputtering method.

電子供与性材料としてNN’−QA、電子受容性材料としてMe−PTCを選択し、NN’−QAとMe−PTCを50:50で混合した有機半導体層を作製した。すなわち、10−5Paに排気した真空蒸着装置内のるつぼにNN’−QAとMe−PTCを別々に充項し、ITO電極付基板上にNN’−QAの蒸着レートを0.5Å/s、Me−PTCの蒸着レートを0.5Å/sとなるように蒸着源の温度を制御し、100nm蒸着した。最後に、厚さ80nmのアルミニウム電極を真空蒸着法により作製して比較例2の有機光電変換素子が完成した。 NN′-QA was selected as the electron-donating material, Me-PTC was selected as the electron-accepting material, and an organic semiconductor layer in which NN′-QA and Me-PTC were mixed at 50:50 was produced. That is, NN′-QA and Me-PTC are separately charged in a crucible in a vacuum deposition apparatus evacuated to 10 −5 Pa, and the deposition rate of NN′-QA is set to 0.5 Å / s on the substrate with the ITO electrode. The deposition source temperature was controlled so that the deposition rate of Me-PTC was 0.5 Å / s, and deposition was performed to 100 nm. Finally, an aluminum electrode having a thickness of 80 nm was produced by a vacuum vapor deposition method to complete the organic photoelectric conversion element of Comparative Example 2.

<比較例3>
有機光電変換素子を保持する基板として、厚さ0.7mm、縦35mm、横25mmのガラス基板を用い、基板上にスパッタ法によりITO製の厚さ30nmの透明電極を作製した。
<Comparative Example 3>
As a substrate for holding the organic photoelectric conversion element, a glass substrate having a thickness of 0.7 mm, a length of 35 mm, and a width of 25 mm was used, and a transparent electrode made of ITO having a thickness of 30 nm was formed on the substrate by a sputtering method.

電子供与性材料としてNN’−QA、電子受容性材料としてMe−PTCを選択し、NN’−QA製の層(p層)、NN’−QAとMe−PTCを50:50で混合した層(i層)、Me−PTC製の層(n層)を用いた。この構成は、p−i−n型の有機半導体層であり、式(1)、式(2)におけるX=3の場合に相当する。   NN'-QA is selected as the electron donating material, Me-PTC is selected as the electron accepting material, a layer made of NN'-QA (p layer), a layer in which NN'-QA and Me-PTC are mixed at a ratio of 50:50 (Layer i), a layer made of Me-PTC (layer n) was used. This configuration is a p-i-n type organic semiconductor layer, and corresponds to the case of X = 3 in the formulas (1) and (2).

まず、10−5Paに排気した真空蒸着装置内のるつぼにNN’−QAとMe−PTCを別々に充填し、ITO電極付基板上に第1層目としてNN’−QAを33nm蒸着した。蒸着レートは1.0Å/sとした。次に、NN’−QAの蒸着レートを0.5Å/s、Me−PTCの蒸着レートを0.5Å/sとなるように蒸着源の温度を制御し、第2層目を33nm蒸着した。 First, NN′-QA and Me-PTC were separately filled in a crucible in a vacuum deposition apparatus evacuated to 10 −5 Pa, and NN′-QA was deposited as a first layer on a substrate with an ITO electrode by 33 nm. The deposition rate was 1.0 liter / s. Next, the temperature of the deposition source was controlled so that the deposition rate of NN′-QA was 0.5 Å / s and the deposition rate of Me-PTC was 0.5 Å / s, and the second layer was deposited by 33 nm.

次に、第3層目としてMe−PTCを33nm蒸着した。蒸着レートは1.0Å/sとした。最後に、厚さ80nmのアルミニウム電極を真空蒸着法により作製して比較例3の有機光電変換素子が完成した。   Next, 33 nm of Me-PTC was deposited as a third layer. The deposition rate was 1.0 liter / s. Finally, an aluminum electrode having a thickness of 80 nm was produced by a vacuum deposition method, and the organic photoelectric conversion element of Comparative Example 3 was completed.

<実施例1、2、比較例1、2、3の比較>
以上のようにして作製した実施例1、実施例2、比較例1、比較例2、比較例3の有機光電変換素子について、ITO電極を陰極、アルミニウム電極を陽極として3Vの電圧を印加し、波長540nm、光パワー50μW/cmの単色光をガラス基板側から照射して測定した光電変換効率を表1に示す。この光電変換効率は、(光生成電子数/照射光子数)×100(%)で表される。
<Comparison of Examples 1 and 2 and Comparative Examples 1, 2, and 3>
About the organic photoelectric conversion element of Example 1, Example 2, Comparative Example 1, Comparative Example 2, and Comparative Example 3 produced as described above, a voltage of 3 V was applied using the ITO electrode as a cathode and the aluminum electrode as an anode, Table 1 shows photoelectric conversion efficiencies measured by irradiating monochromatic light with a wavelength of 540 nm and an optical power of 50 μW / cm 2 from the glass substrate side. This photoelectric conversion efficiency is represented by (number of photogenerated electrons / number of irradiated photons) × 100 (%).

Figure 2011054869
表1に示すように、実施例1、2では、既知の成膜手法によって作製した光電変換素子(比較例1〜3)と比較して良好な光電変換効率が得られた。従来の有機光電変換素子の光電変換効率は、一般的に約20%前後であり、本実施の形態の有機光電変換素子は従来の有機光電変換素子に比べて高い光電変換効率が得られることが分かった。これは、本実施の形態の有機光電変換素子10の有機半導体層3が、電子供与性の有機材料と電子受容性の有機材料との混合比が段階的に設定される4層以上の混合層を有することにより、陰極1と陽極2との間に、安定的な電子の輸送ルート及び正孔の輸送ルートが確保されたことによるものと考えられる。
Figure 2011054869
As shown in Table 1, in Examples 1 and 2, a favorable photoelectric conversion efficiency was obtained as compared with the photoelectric conversion elements (Comparative Examples 1 to 3) manufactured by a known film forming method. The photoelectric conversion efficiency of the conventional organic photoelectric conversion element is generally about 20%, and the organic photoelectric conversion element of the present embodiment can obtain higher photoelectric conversion efficiency than the conventional organic photoelectric conversion element. I understood. This is because the organic semiconductor layer 3 of the organic photoelectric conversion element 10 of the present embodiment is a mixed layer of four or more layers in which the mixing ratio of the electron donating organic material and the electron accepting organic material is set stepwise. This is considered to be because a stable electron transport route and hole transport route are secured between the cathode 1 and the anode 2.

次に、実施例3と比較例4の比較結果について説明する。実施例3では、電子ブロッキング層と正孔ブロッキング層を含む本実施の形態の有機光電変換素子100を作製した。比較例4は、従来の有機半導体層を含む点が実施例3と異なる。   Next, a comparison result between Example 3 and Comparative Example 4 will be described. In Example 3, the organic photoelectric conversion element 100 of this Embodiment containing an electron blocking layer and a hole blocking layer was produced. Comparative Example 4 is different from Example 3 in that it includes a conventional organic semiconductor layer.

<実施例3>
有機光電変換素子100を保持する基板として、厚さ0.7mm、縦35mm、横25mmのガラス基板を用い、基板上にスパッタ法によりITO製の厚さ30nmの透明電極を作製した。
<Example 3>
A glass substrate having a thickness of 0.7 mm, a length of 35 mm, and a width of 25 mm was used as a substrate for holding the organic photoelectric conversion element 100, and a transparent electrode made of ITO having a thickness of 30 nm was formed on the substrate by a sputtering method.

電子ブロッキング材料としてN,N’-Di-[(1-naphthalenyl)-N,N’-diphenyl]-1,1’ -biphenyl-4,4’-diamine(α−NPD)、正孔ブロッキング材料としてbathocuproine(BCP)、電子供与性材料としてNN’−QA、電子受容性材料としてMe−PTCを選択し、有機半導体層54が5層の混合層を有する有機光電変換素子を作製した。   N, N'-Di-[(1-naphthalenyl) -N, N'-diphenyl] -1,1'-biphenyl-4,4'-diamine (α-NPD) as electron blocking material, hole blocking material A bathocuproine (BCP), NN′-QA as an electron donating material, Me-PTC as an electron accepting material were selected, and an organic photoelectric conversion element having a mixed layer of five organic semiconductor layers 54 was manufactured.

10−5Paに排気した真空蒸着装置内のるつぼにα−NPD、BCP、NN’−QA、Me−PTCを別々に充填し、まず、ITO電極付基板上に電子ブロッキング層55としてα−NPDを30nm蒸着した。蒸着レートは0.5Å/sとした。 Α-NPD, BCP, NN′-QA, Me-PTC are separately filled in a crucible in a vacuum deposition apparatus evacuated to 10 −5 Pa. First, α-NPD is formed as an electron blocking layer 55 on a substrate with an ITO electrode. Was deposited by 30 nm. The deposition rate was 0.5 liter / s.

続いて、有機半導体層54の第1層目の混合層としてNN’−QAを20nm蒸着した。蒸着レートは1.0Å/sとした。次に、NN’−QAの蒸着レートを0.75Å/s、Me−PTCの蒸着レートを0.25Å/sとなるように蒸着源の温度を制御し、第2層目の混合層を20nm蒸着した。次に、NN’−QAの蒸着レートを0.50Å/s、Me−PTCの蒸着レートを0.50Å/sとなるように蒸着源の温度を制御し、第3層目の混合層を20nm蒸着した。次に、NN’−QAの蒸着レートを0.25Å/s、Me−PTCの蒸着レートを0.75Å/sとなるように蒸着源の温度を制御し、第4層目の混合層を20nm蒸着した。次に、Me−PTCの蒸着レートを1.0Å/sとなるように蒸着源の温度を制御し、第5層目の混合層を20nm蒸着することにより、有機半導体層54を作製した。   Subsequently, NN′-QA was deposited as a first mixed layer of the organic semiconductor layer 54 by 20 nm. The deposition rate was 1.0 liter / s. Next, the temperature of the deposition source was controlled so that the deposition rate of NN′-QA was 0.75 Å / s and the deposition rate of Me-PTC was 0.25 Å / s, and the second mixed layer was 20 nm. Vapor deposited. Next, the temperature of the deposition source was controlled so that the deposition rate of NN′-QA was 0.50 Å / s and the deposition rate of Me-PTC was 0.50 Å / s, and the third mixed layer was 20 nm. Vapor deposited. Next, the temperature of the deposition source was controlled so that the deposition rate of NN′-QA was 0.25 Å / s and the deposition rate of Me-PTC was 0.75 Å / s, and the fourth mixed layer was 20 nm. Vapor deposited. Next, the temperature of the deposition source was controlled so that the deposition rate of Me-PTC was 1.0 Å / s, and the mixed layer of the fifth layer was deposited by 20 nm, whereby the organic semiconductor layer 54 was produced.

さらに、正孔ブロッキング層56としてBCPを20nm蒸着した。蒸着レートは0.5Å/sとした。最後に、厚さ80nmのアルミニウム電極を真空蒸着法により作製して有機光電変換素子100が完成した。   Further, 20 nm of BCP was deposited as the hole blocking layer 56. The deposition rate was 0.5 liter / s. Finally, an aluminum electrode with a thickness of 80 nm was produced by a vacuum vapor deposition method, and the organic photoelectric conversion element 100 was completed.

<比較例4>
有機光電変換素子を保持する基板として、厚さ0.7mm、縦35mm、横25mmのガラス基板を用い、基板上にスパッタ法によりITO製の厚さ30nmの透明電極を作製した。
<Comparative example 4>
As a substrate for holding the organic photoelectric conversion element, a glass substrate having a thickness of 0.7 mm, a length of 35 mm, and a width of 25 mm was used, and a transparent electrode made of ITO having a thickness of 30 nm was formed on the substrate by a sputtering method.

電子ブロッキング材料としてα−NPD、正孔ブロッキング材料としてBCP、電子供与性材料としてNN’−QA、電子受容性材料としてMe−PTCを選択し、NN’−QAとMe−PTCが50:50で混合する有機半導体層を作製した。   Α-NPD as electron blocking material, BCP as hole blocking material, NN′-QA as electron donating material, Me-PTC as electron accepting material, NN′-QA and Me-PTC are 50:50 An organic semiconductor layer to be mixed was produced.

10−5Paに排気した真空蒸着装置内のるつぼにα−NPD、BCP、NN’−QA、Me−PTCを別々に充填し、まず、ITO電極付基板上に電子ブロッキング層55としてα−NPDを30nm蒸着した。蒸着レートは0.5Å/sとした。 Α-NPD, BCP, NN′-QA, Me-PTC are separately filled in a crucible in a vacuum deposition apparatus evacuated to 10 −5 Pa. First, α-NPD is formed as an electron blocking layer 55 on a substrate with an ITO electrode. Was deposited by 30 nm. The deposition rate was 0.5 liter / s.

続いてNN’−QAの蒸着レートを0.5Å/s、Me−PTCの蒸着レートを0.5Å/sとなるように蒸着源の温度を制御し、100nm蒸着した。すなわち、有機半導体層としてNN’−QAとMe−PTCを50:50で混合した層を1層だけ作製した。   Subsequently, the deposition source temperature was controlled so that the deposition rate of NN′-QA was 0.5 Å / s and the deposition rate of Me-PTC was 0.5 Å / s, and deposition was performed to 100 nm. That is, only one layer in which NN′-QA and Me-PTC were mixed at a ratio of 50:50 was manufactured as an organic semiconductor layer.

次に、正孔ブロッキング層56としてBCPを20nm蒸着した。蒸着レートは0.5Å/sとした。最後に、厚さ80nmのアルミニウム電極を真空蒸着法により作製して比較例4の有機光電変換素子が完成した。   Next, 20 nm of BCP was deposited as the hole blocking layer 56. The deposition rate was 0.5 liter / s. Finally, an aluminum electrode having a thickness of 80 nm was produced by a vacuum vapor deposition method, and the organic photoelectric conversion element of Comparative Example 4 was completed.

<実施例3と比較例4の比較>
図8は、実施例3及び比較例4で得られた有機光電変換素子における印加電圧と光電変換効率の関係を表す特性図である。
<Comparison between Example 3 and Comparative Example 4>
FIG. 8 is a characteristic diagram showing the relationship between the applied voltage and the photoelectric conversion efficiency in the organic photoelectric conversion elements obtained in Example 3 and Comparative Example 4.

光電変換効率の測定に際しては、波長540nm、出力50μW/cmの単色光をガラス基板側から照射した。ITO電極を陰極1、アルミニウム電極を陽極2とした。印加電圧が2V以下の領域においては、光電変換効率は同等あるいは比較例の方が微妙に高い程度であるが、5V以上の領域では実施例3の有機光電変換素子100の光電変換効率が高くなり、8Vの電圧印加時には光電変換効率は50%となった。一方、比較例では8Vにおける光電変換効率は33%程度にとどまった。 In measuring the photoelectric conversion efficiency, monochromatic light having a wavelength of 540 nm and an output of 50 μW / cm 2 was irradiated from the glass substrate side. The ITO electrode was the cathode 1 and the aluminum electrode was the anode 2. In the region where the applied voltage is 2 V or less, the photoelectric conversion efficiency is the same or slightly higher in the comparative example, but in the region of 5 V or more, the photoelectric conversion efficiency of the organic photoelectric conversion element 100 of Example 3 is high. When the voltage of 8 V was applied, the photoelectric conversion efficiency was 50%. On the other hand, in the comparative example, the photoelectric conversion efficiency at 8V was only about 33%.

実施例3の有機光電変換素子100と比較例4の有機光電変換素子は、電子受容性材料と正孔ブロッキング材料との間で式(9)が成立する素子である。特に、印加電圧が5(V)以上の高い領域で実施例3の有機光電変換素子100の方が光電変換効率が高いことから、実施例3の有機光電変換素子100の方が比較例4の有機光電変換素子よりも、有機光電変換膜中での光電変換効率が高いことが分かる。   The organic photoelectric conversion element 100 of Example 3 and the organic photoelectric conversion element of Comparative Example 4 are elements in which Expression (9) is established between the electron-accepting material and the hole-blocking material. In particular, since the organic photoelectric conversion element 100 of Example 3 has higher photoelectric conversion efficiency in a region where the applied voltage is higher than 5 (V), the organic photoelectric conversion element 100 of Example 3 is higher than that of Comparative Example 4. It can be seen that the photoelectric conversion efficiency in the organic photoelectric conversion film is higher than that of the organic photoelectric conversion element.

これは、本実施の形態の有機光電変換素子100の有機半導体層54が、電子供与性の有機材料と電子受容性の有機材料との混合比が段階的に設定される4層以上の混合層を有することにより、陰極1と陽極2との間に、安定的な電子の輸送ルート及び正孔の輸送ルートが確保されたことによるものと考えられる。以上により、本実施の形態の有機光電変換素子100の効果が実証された。   This is because the organic semiconductor layer 54 of the organic photoelectric conversion element 100 of the present embodiment is a mixed layer of four or more layers in which the mixing ratio of the electron donating organic material and the electron accepting organic material is set stepwise. This is considered to be because a stable electron transport route and hole transport route are secured between the cathode 1 and the anode 2. As described above, the effect of the organic photoelectric conversion element 100 of the present embodiment was proved.

以上、本実施の形態によれば、簡易な設備で作製可能で、光電変換効率が高い高効率な有機光電変換素子、及び、これを含むイメージセンサを提供することができる。   As described above, according to this embodiment, it is possible to provide a highly efficient organic photoelectric conversion element that can be manufactured with simple equipment and has high photoelectric conversion efficiency, and an image sensor including the same.

以上、本発明の例示的な実施の形態の有機光電変換素子、及び、これを含むイメージセンサについて説明したが、本発明は、具体的に開示された実施の形態に限定されるものではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。   As described above, the organic photoelectric conversion element of the exemplary embodiment of the present invention and the image sensor including the organic photoelectric conversion element have been described, but the present invention is not limited to the specifically disclosed embodiment, Various modifications and changes can be made without departing from the scope of the claims.

1 陰極
2 陽極
3 有機半導体層
10 有機光電変換素子
10A、10B、10C 光電変換部
11A、11B、11C ガラス基板
12A、12B、12C TFT読み出し回路
53 有機光電変換膜
54 有機半導体層
55 電子ブロッキング層
56 正孔ブロッキング層
100 有機光電変換素子
DESCRIPTION OF SYMBOLS 1 Cathode 2 Anode 3 Organic semiconductor layer 10 Organic photoelectric conversion element 10A, 10B, 10C Photoelectric conversion part 11A, 11B, 11C Glass substrate 12A, 12B, 12C TFT readout circuit 53 Organic photoelectric conversion film 54 Organic semiconductor layer 55 Electronic blocking layer 56 Hole blocking layer 100 Organic photoelectric conversion element

Claims (5)

陰極、陽極、及び前記陰極及び前記陽極の間に形成される有機半導体層を含む有機光電変換素子であって、
前記有機半導体層は、電子供与性の有機材料と電子受容性の有機材料との混合比が段階的に設定される4層以上の混合層を有する、有機光電変換素子。
An organic photoelectric conversion element comprising a cathode, an anode, and an organic semiconductor layer formed between the cathode and the anode,
The organic semiconductor layer includes an organic photoelectric conversion element having four or more mixed layers in which a mixing ratio of an electron-donating organic material and an electron-accepting organic material is set stepwise.
前記有機半導体層の前記混合層における前記電子供与性の有機材料の混合比Cpと前記電子受容性の有機材料の混合比Cnは、前記混合層の層数をX(Xは4以上の整数)とすると、前記陰極からn番目(nは1からXの間の整数)の混合層について、Cp=100×(1−(n−1)/(X−1))、Cn=100×(n−1)/(X−1)で表される、請求項1に記載の有機光電変換素子。   The mixing ratio Cp of the electron-donating organic material and the mixing ratio Cn of the electron-accepting organic material in the mixed layer of the organic semiconductor layer are X (X is an integer of 4 or more). Then, for the nth (n is an integer between 1 and X) mixed layer from the cathode, Cp = 100 × (1− (n−1) / (X−1)), Cn = 100 × (n The organic photoelectric conversion element of Claim 1 represented by -1) / (X-1). 前記4層以上の混合層の各々の膜厚は、均等な膜厚に設定される、請求項1又は2に記載の有機光電変換素子。   The organic photoelectric conversion element according to claim 1 or 2, wherein a film thickness of each of the four or more mixed layers is set to an equal film thickness. 前記陰極と前記有機半導体層との間に形成される電子ブロッキング層、又は前記有機半導体層と前記陽極との間に形成される正孔ブロッキング層をさらに含む、請求項1乃至3のいずれか一項に記載の有機光電変換素子。   The electron blocking layer formed between the cathode and the organic semiconductor layer or the hole blocking layer formed between the organic semiconductor layer and the anode is further included. The organic photoelectric conversion element according to item. 請求項1乃至4のいずれか一項に記載の有機光電変換素子を含むイメージセンサ。   The image sensor containing the organic photoelectric conversion element as described in any one of Claims 1 thru | or 4.
JP2009204486A 2009-09-04 2009-09-04 Organic photoelectric conversion element, and image sensor including the same Pending JP2011054869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009204486A JP2011054869A (en) 2009-09-04 2009-09-04 Organic photoelectric conversion element, and image sensor including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009204486A JP2011054869A (en) 2009-09-04 2009-09-04 Organic photoelectric conversion element, and image sensor including the same

Publications (1)

Publication Number Publication Date
JP2011054869A true JP2011054869A (en) 2011-03-17

Family

ID=43943561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009204486A Pending JP2011054869A (en) 2009-09-04 2009-09-04 Organic photoelectric conversion element, and image sensor including the same

Country Status (1)

Country Link
JP (1) JP2011054869A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130028488A (en) * 2011-09-09 2013-03-19 삼성전자주식회사 Photodiode
JP2014022525A (en) * 2012-07-17 2014-02-03 Nippon Hoso Kyokai <Nhk> Organic photoelectric conversion element and light-receiving element including the same
KR20140046596A (en) * 2012-10-08 2014-04-21 삼성전자주식회사 Organic photoelectronic device and image sensor
JP2016025342A (en) * 2014-07-16 2016-02-08 三星電子株式会社Samsung Electronics Co.,Ltd. Organic photoelectric element, image sensor, and electronic device
JP2017017325A (en) * 2015-07-03 2017-01-19 三星電子株式会社Samsung Electronics Co.,Ltd. Organic photoelectronic element, image sensor, and electronic device
WO2020027081A1 (en) * 2018-07-30 2020-02-06 ソニー株式会社 Imaging element and imaging device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073856A (en) * 2004-09-03 2006-03-16 Konica Minolta Medical & Graphic Inc Photoelectric conversion element and radiation image detector
JP2009094465A (en) * 2007-09-21 2009-04-30 Fujifilm Corp Radiation imaging element
WO2010095517A1 (en) * 2009-02-18 2010-08-26 コニカミノルタホールディングス株式会社 Organic photoelectric conversion element, solar cell and optical sensor array

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073856A (en) * 2004-09-03 2006-03-16 Konica Minolta Medical & Graphic Inc Photoelectric conversion element and radiation image detector
JP2009094465A (en) * 2007-09-21 2009-04-30 Fujifilm Corp Radiation imaging element
WO2010095517A1 (en) * 2009-02-18 2010-08-26 コニカミノルタホールディングス株式会社 Organic photoelectric conversion element, solar cell and optical sensor array

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101942423B1 (en) * 2011-09-09 2019-04-12 삼성전자주식회사 Photodiode
KR20130028488A (en) * 2011-09-09 2013-03-19 삼성전자주식회사 Photodiode
US10043992B2 (en) 2011-09-09 2018-08-07 Samsung Electronics Co., Ltd. Photodiode
US11114634B2 (en) 2011-09-09 2021-09-07 Samsung Electronics Co., Ltd. Photodiode
JP2013062503A (en) * 2011-09-09 2013-04-04 Samsung Electronics Co Ltd Photodiode
JP2017195413A (en) * 2011-09-09 2017-10-26 三星電子株式会社Samsung Electronics Co.,Ltd. Photodiode
JP2014022525A (en) * 2012-07-17 2014-02-03 Nippon Hoso Kyokai <Nhk> Organic photoelectric conversion element and light-receiving element including the same
KR20140046596A (en) * 2012-10-08 2014-04-21 삼성전자주식회사 Organic photoelectronic device and image sensor
KR101960468B1 (en) * 2012-10-08 2019-03-21 삼성전자주식회사 Organic photoelectronic device and image sensor
JP2016025342A (en) * 2014-07-16 2016-02-08 三星電子株式会社Samsung Electronics Co.,Ltd. Organic photoelectric element, image sensor, and electronic device
US11024675B2 (en) 2015-07-03 2021-06-01 Samsung Electronics Co., Ltd. Organic photoelectronic device and image sensor
JP2017017325A (en) * 2015-07-03 2017-01-19 三星電子株式会社Samsung Electronics Co.,Ltd. Organic photoelectronic element, image sensor, and electronic device
US11641752B2 (en) 2015-07-03 2023-05-02 Samsung Electronics Co., Ltd. Organic photoelectronic device and image sensor
WO2020027081A1 (en) * 2018-07-30 2020-02-06 ソニー株式会社 Imaging element and imaging device
US11825666B2 (en) 2018-07-30 2023-11-21 Sony Corporation Imaging element and imaging apparatus

Similar Documents

Publication Publication Date Title
JP6219172B2 (en) Photodetector with gain and up-conversion device (EC)
JP6194249B2 (en) IR photodetector with high detection capability at low drive voltage
JP5969843B2 (en) Organic photoelectric conversion element and light receiving element including the same
JP2018082194A (en) Method and apparatus for integrating infrared (ir) photovoltaic cell on thin film photovoltaic cell
JP2018085427A (en) Imaging element, laminated type imaging element, imaging apparatus, and electronic device
Yu et al. Sub-band gap turn-on near-infrared-to-visible up-conversion device enabled by an organic–inorganic hybrid perovskite photovoltaic absorber
JP2020184638A (en) Image pickup element, laminate type image pickup element, and image pickup device
JP2011054869A (en) Organic photoelectric conversion element, and image sensor including the same
CN110301052B (en) Photoelectric conversion element, and optical area sensor, image pickup element, and image pickup apparatus using the same
WO2014073278A1 (en) Photoelectric conversion element, solid-state imaging device and electronic device
WO2017115646A1 (en) Photoelectric conversion element and imaging device
Zafar et al. A MEHPPV/VOPcPhO composite based diode as a photodetector
WO2017061361A1 (en) Perovskite photoelectric conversion element
JP5673343B2 (en) Organic photoelectric conversion element and manufacturing method thereof
JP5118296B2 (en) Stacked organic solar cell
JP5207251B2 (en) Organic photoelectric conversion film and electronic device including the same
JP2019212763A (en) Photoelectric conversion element
JP2010135496A (en) Photoelectric conversion film and imaging element using same
JP5715796B2 (en) Manufacturing method of organic photoelectric conversion element
JP6027641B2 (en) Photoelectric conversion element and solar cell
JP2015099810A (en) Method of manufacturing organic photoelectric conversion element
JP6032284B2 (en) Manufacturing method of organic photoelectric conversion element
JP2021093534A (en) Imaging element, laminated type imaging element, imaging apparatus, and electronic apparatus
Jiang et al. Nanocomposite solar cells based on conjugated polymers and PbSe quantum dots
JP2017073426A (en) Imaging element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131105