JP2011049369A - Optical characteristic measuring device and calibration method of the same, and exposure method and exposure device - Google Patents

Optical characteristic measuring device and calibration method of the same, and exposure method and exposure device Download PDF

Info

Publication number
JP2011049369A
JP2011049369A JP2009196740A JP2009196740A JP2011049369A JP 2011049369 A JP2011049369 A JP 2011049369A JP 2009196740 A JP2009196740 A JP 2009196740A JP 2009196740 A JP2009196740 A JP 2009196740A JP 2011049369 A JP2011049369 A JP 2011049369A
Authority
JP
Japan
Prior art keywords
measurement
optical system
illumination light
projection optical
aperture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009196740A
Other languages
Japanese (ja)
Inventor
Toru Fujii
藤井  透
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2009196740A priority Critical patent/JP2011049369A/en
Publication of JP2011049369A publication Critical patent/JP2011049369A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To high accurately perform a calibration of an optical characteristic measuring device by arranging a measurement system of the optical characteristic measuring device on an object surface side of an optical projection system. <P>SOLUTION: This invention relates to a wave front aberration measuring device 20 of the optical projection system PL, and is equipped with: a test reticle R1 having an opening 19 for measurement; a measurement system 21 which measures a wave front of the optical projection system PL by passing through the opening 19 for measurement and the optical projection system PL and by receiving illumination light returned from an image plane through the optical projection system PL; a reflective diffusion spherical surface 24 illuminating a region containing the opening 19 for measurement, which can be attachably and detachably arranged in an optical path of an illumination light IL and reflects the illumination light passing through the opening 19 for measurement; and a measuring section 17 seeking for a wave front of the measurement system 21 by receiving a measuring light passing through the opening 19 for measurement, with the measurement system 21. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、被検光学系の波面収差等の光学特性を計測する光学特性計測技術、その光学特性を計測する装置の校正技術、及びその光学特性計測技術を用いる露光技術に関する。   The present invention relates to an optical characteristic measurement technique for measuring optical characteristics such as wavefront aberration of a test optical system, a calibration technique for an apparatus for measuring the optical characteristic, and an exposure technique using the optical characteristic measurement technique.

例えば半導体デバイス等のマイクロデバイス(電子デバイス)を製造するためのリソグラフィ工程中で、レチクル(又はフォトマスク等)のパターンを投影光学系を介してウエハ(又はガラスプレート等)の各ショット領域に転写露光するために一括露光型又は走査露光型等の露光装置が使用されている。これらの露光装置においては、投影光学系の波面収差等の光学特性を所定の状態に維持するために、従来より様々な計測装置が使用されている。   For example, during a lithography process for manufacturing microdevices (electronic devices) such as semiconductor devices, the pattern of a reticle (or photomask) is transferred to each shot area on a wafer (or glass plate, etc.) via a projection optical system. For exposure, an exposure apparatus such as a batch exposure type or a scanning exposure type is used. In these exposure apparatuses, various measuring apparatuses have been conventionally used in order to maintain optical characteristics such as wavefront aberration of the projection optical system in a predetermined state.

例えば投影光学系の波面収差を計測するために、投影光学系を介して計測用開口の一次像を像面側に投影し、その一次像からの光束を複数に波面分割し、このように波面分割された複数の光束から形成された二次像の横シフト量等を求めるシャック・ハルトマン(Shack-Hartmann)方式の計測装置が知られている。この計測装置では、計測用開口の形成面(物体面)に計測用開口よりも大きい校正用開口を設けておき、例えば定期的に、その校正用開口の投影光学系による一次像を所定のピンホールを介して検出し、この検出結果より計測用の光学系(計測系)自体の波面収差の計測し、計測装置の校正を行っていた(例えば、特許文献1参照)。   For example, in order to measure the wavefront aberration of the projection optical system, the primary image of the measurement aperture is projected onto the image plane side via the projection optical system, and the light beam from the primary image is divided into a plurality of wavefronts, and thus the wavefront There is known a Shack-Hartmann type measuring device that obtains a lateral shift amount or the like of a secondary image formed from a plurality of divided light beams. In this measurement apparatus, a calibration aperture larger than the measurement aperture is provided on the measurement aperture forming surface (object surface), and, for example, a primary image by the projection optical system of the calibration aperture is periodically captured by a predetermined pin. Detection was made through a hole, and the wavefront aberration of the measurement optical system (measurement system) itself was measured from the detection result, and the measurement apparatus was calibrated (for example, see Patent Document 1).

特開2002−71514号公報JP 2002-71514 A

最近では、露光装置のウエハステージ側の構成を簡素化するために、投影光学系の光学特性の計測系を物体面側に配置することが検討されている。このように計測系を物体面側に配置する場合、単に投影光学系の物体面に計測用開口を設置し、像面に反射ミラーを設置し、反射ミラーからの反射光を投影光学系及び計測用開口を介して計測系で受光すると、原理的に反射ミラーからの反射光の像は計測用開口以上には広がらないため、投影光学系の光学特性の影響を抑制して、計測装置の校正を高精度に行うことが困難であった。   Recently, in order to simplify the configuration of the exposure apparatus on the wafer stage side, it has been studied to arrange an optical characteristic measurement system of the projection optical system on the object plane side. When the measurement system is arranged on the object plane side in this way, a measurement aperture is simply installed on the object plane of the projection optical system, a reflection mirror is installed on the image plane, and the reflected light from the reflection mirror is measured by the projection optical system and measurement. When the measurement system receives light through the aperture for measurement, the reflected light image from the reflecting mirror does not spread beyond the aperture for measurement in principle. Therefore, the influence of the optical characteristics of the projection optical system is suppressed, and the measurement device is calibrated. It was difficult to carry out with high accuracy.

また、その反射ミラーを像面からデフォーカスさせることで、その計測用開口を含む領域に照明光を照射することが可能である。しかしながら、この場合には、その計測用開口に戻される反射光の開口数が小さくなり、必要な計測精度を得られない恐れがあった。
本発明は、このような課題に鑑み、投影光学系の物体面側に光学特性計測装置の計測系を配置する場合に、その光学特性計測装置の校正を高精度に行うことを目的とする。
In addition, by defocusing the reflecting mirror from the image plane, it is possible to irradiate illumination light to a region including the measurement aperture. However, in this case, the numerical aperture of the reflected light returned to the measurement aperture becomes small, and there is a possibility that the required measurement accuracy cannot be obtained.
The present invention has been made in view of the above problems, and an object of the present invention is to calibrate an optical characteristic measuring device with high accuracy when the measuring system of the optical characteristic measuring device is arranged on the object plane side of the projection optical system.

本発明の第1の態様によれば、第1面のパターンの像を第2面に形成する投影光学系の光学特性を計測する装置において、その第1面側に配置され、計測用開口が形成された開口部材と、その第1面側に配置されたその開口部材を照明光で照明する照明系と、その計測用開口及びその投影光学系を通過し、その第2面から戻されたその照明光の少なくとも一部をその投影光学系及びその計測用開口を介して受光して、その投影光学系の光学特性を計測する計測系と、その照明光の光路中に挿入又は離脱可能に配置され、その計測用開口を通過したその照明光の少なくとも一部を反射し、該反射した光束でその計測用開口を含む領域を照明する第1反射光学系と、その計測用開口を通過した計測光をその計測系で受光して、その計測系の光学特性を計測する計測装置と、を備える光学特性計測装置が提供される。   According to the first aspect of the present invention, in the apparatus for measuring the optical characteristics of the projection optical system that forms the pattern image of the first surface on the second surface, the measurement aperture is disposed on the first surface side. The formed aperture member, the illumination system that illuminates the aperture member arranged on the first surface side with illumination light, the measurement aperture and the projection optical system, and returned from the second surface At least a part of the illumination light is received through the projection optical system and the measurement aperture, and a measurement system that measures the optical characteristics of the projection optical system, and can be inserted into or removed from the optical path of the illumination light A first reflective optical system that is disposed and reflects at least a part of the illumination light that has passed through the measurement aperture and illuminates a region including the measurement aperture with the reflected light beam, and has passed through the measurement aperture The measurement light is received by the measurement system, and the optical characteristics of the measurement system are received. Optical characteristic measuring apparatus and a measuring device for measuring a is provided.

また、本発明の第2の態様によれば、第1面のパターンの像を第2面に形成する投影光学系の光学特性を計測する装置の校正方法において、その第1面またはその近傍に計測用開口が形成された開口部材を配置する工程と、照明光でその計測用開口を照明する工程と、その照明光の光路中に、その計測用開口を通過したその照明光の少なくとも一部を反射する第1反射部材を挿入する工程と、その第1反射部材で反射したその照明光でその計測用開口を含む領域を照明する工程と、その反射した照明光のうちその計測用開口を通過した計測光を計測系で受光し、その計測系の光学特性を求める工程と、を含む光学特性計測装置の校正方法が提供される。   According to the second aspect of the present invention, in the calibration method of the apparatus for measuring the optical characteristics of the projection optical system for forming the pattern image of the first surface on the second surface, the first surface or the vicinity thereof is provided. A step of disposing an aperture member in which a measurement aperture is formed; a step of illuminating the measurement aperture with illumination light; and at least a part of the illumination light that has passed through the measurement aperture in the optical path of the illumination light A step of inserting a first reflecting member that reflects the light, a step of illuminating a region including the measurement aperture with the illumination light reflected by the first reflection member, and a measurement aperture of the reflected illumination light A method for calibrating an optical property measuring apparatus is provided, including the step of receiving the measurement light that has passed through the measurement system and obtaining the optical properties of the measurement system.

また、本発明の第3の態様によれば、照明光でパターンを照明し、その照明光でそのパターン及び投影光学系を介して物体を露光する露光装置において、その投影光学系の光学特性を計測するために本発明の第1の態様による光学特性計測装置を備える露光装置が提供される。
また、本発明の第4の態様によれば、照明光でパターンを照明し、その照明光でそのパターン及び投影光学系を介して物体を露光する露光方法において、本発明の第2の態様による光学特性計測装置の校正方法を用いて、その投影光学系の光学特性を計測する光学特性計測装置の校正を行う露光方法が提供される。
According to the third aspect of the present invention, in an exposure apparatus that illuminates a pattern with illumination light and exposes an object with the illumination light through the pattern and the projection optical system, the optical characteristics of the projection optical system are An exposure apparatus provided with the optical characteristic measurement apparatus according to the first aspect of the present invention for measurement is provided.
According to a fourth aspect of the present invention, in an exposure method of illuminating a pattern with illumination light and exposing an object with the illumination light through the pattern and the projection optical system, according to the second aspect of the present invention. An exposure method for calibrating an optical property measuring apparatus that measures the optical properties of the projection optical system using the optical property measuring device calibration method is provided.

本発明によれば、第1反射光学系からの反射光で計測用開口を含む領域を照明することができるため、投影光学系の光学特性の影響を抑制して、計測系の光学特性のみを高精度に計測できる。従って、投影光学系の物体面側に計測系を配置する場合に、その光学特性計測装置の校正を高精度に行うことができる。   According to the present invention, the area including the measurement aperture can be illuminated with the reflected light from the first reflective optical system, so that the influence of the optical characteristics of the projection optical system is suppressed, and only the optical characteristics of the measurement system are reduced. It can measure with high accuracy. Therefore, when the measurement system is arranged on the object plane side of the projection optical system, the optical property measurement apparatus can be calibrated with high accuracy.

(A)は第1の実施形態の露光装置の概略構成を示す図、(B)はテストレチクルのパターンの一例を示す平面図である。(A) is a figure which shows schematic structure of the exposure apparatus of 1st Embodiment, (B) is a top view which shows an example of the pattern of a test reticle. (A)は投影光学系PLの波面収差を計測中の光学系の要部を示す断面図、(B)は図2(A)中の計測用開口19を示す拡大平面図である。(A) is sectional drawing which shows the principal part of the optical system which is measuring the wavefront aberration of projection optical system PL, (B) is an enlarged plan view which shows the measurement opening 19 in FIG. 2 (A). (A)は波面収差計測装置20を校正しているときの光学系の要部を示す断面図、(B)は図3(A)中の計測用開口19を示す拡大平面図、(C)は図3(A)中の反射拡散球面24を示す拡大断面図である。(A) is sectional drawing which shows the principal part of an optical system when calibrating the wavefront aberration measuring apparatus 20, (B) is an enlarged plan view which shows the measurement opening 19 in FIG. 3 (A), (C). FIG. 4 is an enlarged cross-sectional view showing a reflective diffusion spherical surface 24 in FIG. (A)は波面収差計測装置20の校正動作の一例を示すフローチャート、(B)は波面収差計測装置20を用いた計測動作の一例を示すフローチャートである。(A) is a flowchart showing an example of a calibration operation of the wavefront aberration measuring apparatus 20, and (B) is a flowchart showing an example of a measuring operation using the wavefront aberration measuring apparatus 20. 反射拡散球面24の代わりに使用できる拡散反射光学系51を示す拡大図である。FIG. 3 is an enlarged view showing a diffuse reflection optical system 51 that can be used in place of the reflective diffuse spherical surface 24. 第2の実施形態の波面収差計測装置20Aを示す断面図である。It is sectional drawing which shows 20A of wavefront aberration measuring apparatuses of 2nd Embodiment.

[第1の実施形態]
以下、本発明の第1の実施形態につき図1〜図4を参照して説明する。
図1(A)は本実施形態の露光装置EXの概略構成を示す。図1(A)において、露光装置EXは、露光光源1と、露光光源1からの照明光IL(露光光)でレチクルR(マスク)のパターン面を照明する照明光学系ILSと、レチクルRを保持するレチクルステージRSTと、パターン面(物体面)のパターンの像をウエハWの表面(像面)に投影する投影光学系PLと、ウエハWを保持して移動するウエハステージWSTと、装置全体の動作を統括的に制御するコンピュータよりなる主制御系11と、その他の計測装置及び駆動装置等とを備えている。露光光源1としては、ArFエキシマレーザ光源(波長193nm)が使用されているが、その他にKrFエキシマレーザ光源(波長248nm)又は水銀ランプ等も使用できる。
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
FIG. 1A shows a schematic configuration of the exposure apparatus EX of the present embodiment. In FIG. 1A, an exposure apparatus EX includes an exposure light source 1, an illumination optical system ILS that illuminates a pattern surface of a reticle R (mask) with illumination light IL (exposure light) from the exposure light source 1, and a reticle R. Reticle stage RST to be held, projection optical system PL for projecting a pattern surface (object plane) pattern image onto the surface (image plane) of wafer W, wafer stage WST to hold and move wafer W, and the entire apparatus A main control system 11 composed of a computer for comprehensively controlling the operation of the apparatus, and other measuring devices and driving devices. As the exposure light source 1, an ArF excimer laser light source (wavelength 193 nm) is used, but a KrF excimer laser light source (wavelength 248 nm), a mercury lamp, or the like can also be used.

露光光源1から射出されるほぼ直線偏光の照明光ILは、周知のビーム送光系2を介して、照明光ILの偏光状態を異なる方向の直線偏光又は円偏光等に変換する偏光状態可変部3に入射する。偏光状態可変部3を通過した照明光ILは、光束の断面形状を変化させるためのビーム形状可変部4を介して、マイクロフライアイレンズ(又はフライアイレンズ)5に入射する。マイクロフライアイレンズ5の射出面(照明光学系ILSの瞳面)に多数の二次光源からなる面光源が形成される。なお、さらに照明光ILの光量分布を制御するための回折光学素子等を設けてもよい。また、マイクロフライアイレンズ5の代わりに、ロッドインテグレータ(内面反射型インテグレータ)等のオプティカルインテグレータを使用しても良い。また、照明光学系ILSの瞳面には、通常照明、輪帯照明、2極照明、変形照明等の種々の照明に切り替えるための可変開口絞り部(不図示)が設置されている。   A substantially linearly polarized illumination light IL emitted from the exposure light source 1 converts a polarization state of the illumination light IL into linearly polarized light or circularly polarized light in a different direction through a known beam transmission system 2. 3 is incident. The illumination light IL that has passed through the polarization state varying unit 3 is incident on a micro fly's eye lens (or fly eye lens) 5 through a beam shape varying unit 4 for changing the cross-sectional shape of the light beam. A surface light source including a large number of secondary light sources is formed on the exit surface of the micro fly's eye lens 5 (pupil surface of the illumination optical system ILS). Further, a diffractive optical element or the like for controlling the light amount distribution of the illumination light IL may be provided. Further, instead of the micro fly's eye lens 5, an optical integrator such as a rod integrator (an internal reflection type integrator) may be used. In addition, a variable aperture stop (not shown) for switching to various illuminations such as normal illumination, annular illumination, dipole illumination, and modified illumination is installed on the pupil plane of the illumination optical system ILS.

マイクロフライアイレンズ5から射出された照明光ILは、第1リレー光学系6、レチクルブラインド7、第2リレー光学系8A、コンデンサ光学系8B、及び光路折り曲げ用のミラー9を介して、レチクルRのパターン面(下面)の照明領域を均一な照度分布で照明する。ビーム送光系2からコンデンサ光学系8B及びミラー9までの部材を含んで照明光学系ILSが構成されている。露光光源1、偏光状態可変部3、及びビーム形状可変部4の動作は、主制御系11内の照明系制御部によって制御されている。   The illumination light IL emitted from the micro fly's eye lens 5 passes through the first relay optical system 6, the reticle blind 7, the second relay optical system 8A, the condenser optical system 8B, and the mirror 9 for bending the optical path, and the reticle R. The illumination area of the pattern surface (lower surface) is illuminated with a uniform illuminance distribution. The illumination optical system ILS includes members from the beam transmission system 2 to the condenser optical system 8B and the mirror 9. The operations of the exposure light source 1, the polarization state variable unit 3, and the beam shape variable unit 4 are controlled by an illumination system control unit in the main control system 11.

照明光ILのもとで、レチクルRの照明領域内のパターンは、投影光学系PLを介して投影倍率β(例えば1/4,1/5等の縮小倍率)で、ウエハWの一つのショット領域内の露光領域(照明領域と光学的に共役な領域)に転写露光される。ウエハWは、シリコン又はSOI(silicon on insulator)等からなる直径が200〜450mm程度の平板状の基材の上面にフォトレジスト(感光剤)を塗布したものである。投影光学系PLは、一例として屈折系であるが、その外に反射屈折系等も使用可能である。以下、投影光学系PLの光軸AXに平行にZ軸を取り、Z軸に垂直な平面内で図1(A)の紙面に平行な方向にX軸を、図1(A)の紙面に垂直な方向にY軸を取って説明する。   Under the illumination light IL, the pattern in the illumination area of the reticle R is one shot of the wafer W at the projection magnification β (for example, a reduction magnification of 1/4, 1/5, etc.) via the projection optical system PL. Transfer exposure is performed on an exposure area within the area (an area optically conjugate with the illumination area). The wafer W is obtained by applying a photoresist (photosensitive agent) to the upper surface of a flat substrate having a diameter of about 200 to 450 mm made of silicon or SOI (silicon on insulator). The projection optical system PL is a refractive system as an example, but a catadioptric system or the like can also be used. Hereinafter, the Z-axis is taken in parallel to the optical axis AX of the projection optical system PL, the X-axis is set in the direction parallel to the paper surface of FIG. 1A in a plane perpendicular to the Z-axis, and the paper surface of FIG. A description will be given taking the Y axis in the vertical direction.

図1(A)中に切り欠いて示すように、投影光学系PLを構成する所定の光学部材、例えばレンズエレメント14A,14Bは、不図示のレンズ枠及びZ方向に伸縮可能な3箇所の駆動素子13A,13Bを介して鏡筒に支持されている。主制御系11内の結像特性制御部が、駆動系12を介して駆動素子13A,13Bを駆動することによって、レンズエレメント14A,14BのZ方向の位置、並びにX軸及びY軸に平行な軸の回り(θx方向及びθy方向)の傾斜角を制御できる。これによって、投影光学系PLの所定の結像特性(例えば所定の波面収差等)を補正できる。なお、駆動可能なレンズエレメント14A,14Bの位置及び個数は、制御対象の結像特性に応じて任意に設定可能である。   As shown in FIG. 1A, a predetermined optical member constituting the projection optical system PL, for example, the lens elements 14A and 14B, includes a lens frame (not shown) and three places that can be expanded and contracted in the Z direction. It is supported by the lens barrel via elements 13A and 13B. The imaging characteristic control unit in the main control system 11 drives the drive elements 13A and 13B via the drive system 12, whereby the lens elements 14A and 14B are positioned in the Z direction and parallel to the X axis and the Y axis. The tilt angle around the axis (θx direction and θy direction) can be controlled. This makes it possible to correct a predetermined imaging characteristic (for example, a predetermined wavefront aberration) of the projection optical system PL. Note that the position and the number of the lens elements 14A and 14B that can be driven can be arbitrarily set according to the imaging characteristics to be controlled.

次に、レチクルRを吸着保持するレチクルステージRSTは、レーザ干渉計(不図示)の計測値に基づいて、レチクルベース(不図示)上の光軸AXに垂直な平面内でレチクルRの移動又は位置決めを行う。一方、ウエハWをウエハホルダ(不図示)を介して吸着保持するウエハステージWSTは、レーザ干渉計(不図示)の計測値に基づいて、ウエハベースWB上の光軸AXに垂直な平面内で連続移動及びステップ移動を行う。また、ウエハステージWSTには、不図示のオートフォーカスセンサの計測値に基づいて、ウエハWの表面を投影光学系PLの像面に合焦させるために、ウエハWのフォーカス位置(光軸AX方向の位置)、及びθx方向、θy方向の傾斜角を制御するZステージ機構も組み込まれている。   Next, the reticle stage RST that sucks and holds the reticle R moves or moves the reticle R in a plane perpendicular to the optical axis AX on the reticle base (not shown) based on the measurement value of the laser interferometer (not shown). Perform positioning. On the other hand, wafer stage WST for attracting and holding wafer W via a wafer holder (not shown) is continuous in a plane perpendicular to optical axis AX on wafer base WB based on the measurement value of a laser interferometer (not shown). Move and step move. Further, the wafer stage WST has a focus position (in the optical axis AX direction) of the wafer W in order to focus the surface of the wafer W on the image plane of the projection optical system PL based on a measurement value of an autofocus sensor (not shown). And a Z stage mechanism for controlling the inclination angle in the θx direction and the θy direction is also incorporated.

露光時には、主制御系11内の露光制御部の制御のもとで不図示のアライメント系によってレチクルRとウエハWとのアライメントが行われた後、偏光状態可変部3によって照明光ILの偏光状態が所定状態に設定される。その後、露光光源1の発光を開始して、レチクルRのパターンを一括露光方式又は走査露光方式で投影光学系PLを介してウエハW上の1つのショット領域に転写する動作と、露光光源1の発光を停止して、ウエハWをステップ移動する動作とが繰り返される。これによって、ウエハW上の全部のショット領域にレチクルRのパターン像が転写される。また、本実施形態の露光装置が米国特許出願公開第2005/259234号明細書に示すような液浸型である場合には、投影光学系PLとウエハWとの間に不図示の液体供給機構から純水等の液体が供給される。   At the time of exposure, the alignment of the reticle R and the wafer W is performed by an alignment system (not shown) under the control of the exposure control unit in the main control system 11, and then the polarization state of the illumination light IL by the polarization state variable unit 3 Is set to a predetermined state. Thereafter, the light emission of the exposure light source 1 is started, and the operation of transferring the pattern of the reticle R to one shot area on the wafer W via the projection optical system PL by the batch exposure method or the scanning exposure method, The operation of stopping the light emission and moving the wafer W stepwise is repeated. As a result, the pattern image of the reticle R is transferred to all shot areas on the wafer W. In addition, when the exposure apparatus of the present embodiment is an immersion type as shown in US Patent Application Publication No. 2005/259234, a liquid supply mechanism (not shown) is provided between the projection optical system PL and the wafer W. From which liquid such as pure water is supplied.

さて、このような露光に際しては、投影光学系PLの光学特性としての結像特性が所定の状態に調整されている必要がある。そのためには、その結像特性を高精度に計測する必要がある。本実施形態の露光装置EXは、投影光学系PLの結像特性としての波面収差を計測するための波面収差計測装置20を備えている。波面収差計測装置20は、レチクルステージRSTの上方、すなわち、本実施形態では、照明光学系ILSとレチクルステージRSTの間に移動可能に配置され、投影光学系PLの波面収差情報を含む検出信号を得る計測系21と、テストレチクルR1と、テストレチクルR1を照明光ILで照明する照明系と、ウエハステージWSTに設けられた反射部材22と、計測系21の検出信号を処理して投影光学系PLの波面収差を求める計測部(演算制御部)17とを備えている。   In such exposure, it is necessary that the imaging characteristics as the optical characteristics of the projection optical system PL are adjusted to a predetermined state. For this purpose, it is necessary to measure the imaging characteristics with high accuracy. The exposure apparatus EX of the present embodiment includes a wavefront aberration measuring apparatus 20 for measuring wavefront aberration as an imaging characteristic of the projection optical system PL. The wavefront aberration measuring device 20 is arranged so as to be movable above the reticle stage RST, that is, in this embodiment, between the illumination optical system ILS and the reticle stage RST, and receives a detection signal including wavefront aberration information of the projection optical system PL. A measurement system 21, a test reticle R1, an illumination system that illuminates the test reticle R1 with illumination light IL, a reflection member 22 provided on the wafer stage WST, and a detection signal of the measurement system 21 to process the projection optical system A measurement unit (calculation control unit) 17 for obtaining the wavefront aberration of PL is provided.

本実施形態では、その照明系として照明光学系ILSが兼用されているが、専用の照明系を設けてもよい。計測部17は、求めた波面収差の情報を主制御系11内の結像特性制御部に供給する。その結像特性制御部は、計測部17から供給される波面収差が目標範囲内に維持されるように、駆動系12を介してレンズエレメント14A,14B等を駆動する。なお、反射部材22は、ウエハステージWSTとは独立にウエハベースWB上を移動する計測ステージ等(不図示)に設けてもよい。   In this embodiment, the illumination optical system ILS is also used as the illumination system, but a dedicated illumination system may be provided. The measurement unit 17 supplies the obtained wavefront aberration information to the imaging characteristic control unit in the main control system 11. The imaging characteristic control unit drives the lens elements 14A, 14B and the like via the drive system 12 so that the wavefront aberration supplied from the measurement unit 17 is maintained within the target range. The reflecting member 22 may be provided on a measurement stage (not shown) that moves on the wafer base WB independently of the wafer stage WST.

投影光学系PLの波面収差計測時には、レチクルステージRSTにレチクルRの代わりにテストレチクルR1がロードされ、計測系21がレチクルステージRST上に移動し、投影光学系PLの露光領域にウエハステージWSTの反射部材22が移動する。図1(B)に示すように、テストレチクルR1のパターン領域の遮光膜中には、X方向、Y方向に所定間隔で複数の波面収差計測用の円形の計測用開口19が形成されている。計測用開口19の直径は例えば40μm程度である。なお、テストレチクルR1の代わりに、レチクルステージRSTのレチクルRの近傍に固定されるレチクルマーク板等(不図示)に、計測用開口19を形成してもよい。   When measuring the wavefront aberration of the projection optical system PL, the test reticle R1 is loaded on the reticle stage RST instead of the reticle R, the measurement system 21 is moved onto the reticle stage RST, and the wafer stage WST is exposed to the exposure area of the projection optical system PL. The reflection member 22 moves. As shown in FIG. 1B, a plurality of circular measurement openings 19 for measuring wavefront aberration are formed at predetermined intervals in the X and Y directions in the light shielding film in the pattern region of the test reticle R1. . The diameter of the measurement opening 19 is, for example, about 40 μm. Instead of the test reticle R1, the measurement opening 19 may be formed on a reticle mark plate or the like (not shown) fixed in the vicinity of the reticle R of the reticle stage RST.

反射部材22の上面はウエハWの表面と同じ高さに設定されている。反射部材22は例えば照明光ILを透過するガラス板より形成され、その裏面には照明光ILに対する反射率の低い吸収膜(又は遮光膜)が形成されている。そして、反射部材22の上面に照明光ILに対して高反射率の金属(例えばクロム等)の膜よりなる円形の微小ミラー23と、反射拡散球面24とが隣接して形成されている。微小ミラー23の投影光学系PLによる物体面側への像23R(図2(B)参照)の直径は、計測用開口19の直径よりも小さく、例えばその直径の1/2程度である。   The upper surface of the reflecting member 22 is set to the same height as the surface of the wafer W. The reflecting member 22 is formed of, for example, a glass plate that transmits the illumination light IL, and an absorption film (or a light shielding film) having a low reflectance with respect to the illumination light IL is formed on the back surface thereof. A circular micromirror 23 made of a film of a metal having a high reflectivity with respect to the illumination light IL (for example, chromium) and a reflection diffusing spherical surface 24 are formed adjacent to each other on the upper surface of the reflection member 22. The diameter of the image 23R on the object plane side by the projection optical system PL of the micromirror 23 (see FIG. 2B) is smaller than the diameter of the measurement aperture 19, and is, for example, about ½ of the diameter.

後述の図3(C)に示すように、反射拡散球面24は、凹の半球面の表面をすりガラス面のように粗く表面加工し、その表面に照明光ILに対して高反射率の金属膜を蒸着したものである。反射拡散球面24は、入射する照明光をそれぞれほぼ所定の拡散角φdf(rad)で拡散する。反射拡散球面24の半径をrdfとすると、反射拡散球面24の中心における反射拡散球面24からの拡散光(反射光)の像24Dの直径Ddfはほぼ2rdf・φdfとなる。その像24Dの直径Ddfは計測用開口19の像19Wの直径よりも大きく、例えば次のようにその直径の2倍程度である。反射拡散球面24の半径rdfは例えば数mm程度である。   As shown in FIG. 3C described later, the reflection diffusing spherical surface 24 has a concave hemispherical surface roughened like a ground glass surface, and a metal film having a high reflectance with respect to the illumination light IL on the surface. Are vapor-deposited. The reflection diffusing spherical surface 24 diffuses incident illumination light at a substantially predetermined diffusion angle φdf (rad). When the radius of the reflection diffusion spherical surface 24 is rdf, the diameter Ddf of the diffused light (reflected light) image 24D from the reflection diffusion spherical surface 24 at the center of the reflection diffusion spherical surface 24 is approximately 2rdf · φdf. The diameter Ddf of the image 24D is larger than the diameter of the image 19W of the measurement opening 19, and is, for example, about twice the diameter as follows. The radius rdf of the reflective diffusion spherical surface 24 is, for example, about several mm.

Ddf≒2×rdf×φdf≒像19Wの直径の2倍 …(1)
また、像24Dは、投影光学系PLの開口数で定まる開き角の照明光ILによって形成される像19Wからの光束をさらに拡散した光束の像(一種の面光源)である。従って、像24Dを形成する光束の開き角(開口数)は、投影光学系PLの開口数で定まる開き角よりも大きくなっているため、その光束を用いて後述のように計測系21の波面を高精度に計測できる。
Ddf≈2 × rdf × φdf≈twice the diameter of the image 19W (1)
The image 24D is a light beam image (a kind of surface light source) obtained by further diffusing a light beam from the image 19W formed by the illumination light IL having an opening angle determined by the numerical aperture of the projection optical system PL. Accordingly, the opening angle (numerical aperture) of the light beam forming the image 24D is larger than the opening angle determined by the numerical aperture of the projection optical system PL, so that the wavefront of the measurement system 21 is described below using the light beam. Can be measured with high accuracy.

図2(A)は、波面収差計測時の図1の投影光学系PLと波面収差計測装置20の各部材との位置関係の一例を示す。図2(A)において、投影光学系PLの上方に順次テストレチクルR1及び計測系21のビームスプリッタ32が配置され、図1の照明光学系ILSからの照明光ILで、ビームスプリッタ32を介してテストレチクルR1が照明される。一例としてテストレチクルR1の光軸AX上にある計測用開口19の投影光学系PLによる像が反射部材22上に投影される。そして、計測用開口19の像内にウエハステージWSTに設けた反射部材22の微小ミラー23が設置される。微小ミラー23からの反射光ILRは、投影光学系PLを介して、図2(B)に示すように、計測用開口19内に微小ミラー23の像23R(一次像)を形成する。   FIG. 2A shows an example of the positional relationship between the projection optical system PL of FIG. 1 and each member of the wavefront aberration measuring apparatus 20 at the time of wavefront aberration measurement. 2A, a test reticle R1 and a beam splitter 32 of the measurement system 21 are sequentially disposed above the projection optical system PL. The illumination light IL from the illumination optical system ILS of FIG. The test reticle R1 is illuminated. As an example, an image by the projection optical system PL of the measurement aperture 19 on the optical axis AX of the test reticle R1 is projected onto the reflecting member 22. Then, a minute mirror 23 of the reflecting member 22 provided on the wafer stage WST is installed in the image of the measurement opening 19. The reflected light ILR from the micromirror 23 forms an image 23R (primary image) of the micromirror 23 in the measurement aperture 19 as shown in FIG. 2B via the projection optical system PL.

図2(A)において、計測用開口19を通過した反射光ILRがビームスプリッタ32に向かう。計測系21は、ビームスプリッタ32と、投影光学系PLを介して計測用開口19を通過した反射光ILRのうち、ビームスプリッタ32で反射された光束(これも反射光ILRと呼ぶ)をほぼ平行光束に変換する対物レンズ33とを有する。さらに、計測系21は、対物レンズ33からの光束の波面を分割するように多数の微小レンズ34aがY方向及びZ方向(投影光学系PLの瞳面におけるX方向に対応する方向)に密着して配置されたマイクロレンズアレイ34と、多数の微小レンズ34aによって形成される多数のスポット光(微小ミラー23の二次像)を受光するCCD型又はCMOS型等の2次元の撮像素子35とを有する。さらに、計測系21は、ビームスプリッタ32、対物レンズ33、マイクロレンズアレイ34、及び撮像素子35を保持する移動可能な保持部材31を有する。対物レンズ33の前側焦点に計測用開口19の中心が配置され、撮像素子35の検出信号が計測部17に供給されている。   In FIG. 2A, the reflected light ILR that has passed through the measurement opening 19 is directed to the beam splitter 32. The measurement system 21 substantially parallels the light beam reflected by the beam splitter 32 (also referred to as reflected light ILR) among the reflected light ILR that has passed through the measurement aperture 19 via the beam splitter 32 and the projection optical system PL. And an objective lens 33 that converts light into a light beam. Further, in the measurement system 21, a large number of microlenses 34a are in close contact with each other in the Y direction and the Z direction (the direction corresponding to the X direction on the pupil plane of the projection optical system PL) so as to divide the wavefront of the light beam from the objective lens 33. And a two-dimensional imaging element 35 such as a CCD type or a CMOS type that receives a large number of spot lights (secondary images of the minute mirror 23) formed by a large number of minute lenses 34a. Have. Further, the measurement system 21 includes a movable holding member 31 that holds the beam splitter 32, the objective lens 33, the microlens array 34, and the imaging element 35. The center of the measurement aperture 19 is disposed at the front focal point of the objective lens 33, and the detection signal of the image sensor 35 is supplied to the measurement unit 17.

保持部材31のビームスプリッタ32の上下の面に対向する位置には、照明光ILを通過させる開口が形成されている。保持部材31は、駆動部36を介してガイド部材37に沿ってX方向に移動可能である。さらにガイド部材37は、全体として不図示のガイド部材に沿ってY方向に移動可能である。従って、計測系21(保持部材31)を駆動部36を介してX方向、Y方向に移動することによって、ビームスプリッタ32をテストレチクルR1の任意の計測対象の計測用開口19の上方に設置可能である。   An opening through which the illumination light IL passes is formed at a position facing the upper and lower surfaces of the beam splitter 32 of the holding member 31. The holding member 31 is movable in the X direction along the guide member 37 via the drive unit 36. Further, the guide member 37 is movable in the Y direction along a guide member (not shown) as a whole. Accordingly, by moving the measurement system 21 (holding member 31) in the X direction and the Y direction via the drive unit 36, the beam splitter 32 can be installed above the measurement opening 19 of an arbitrary measurement target of the test reticle R1. It is.

上述のように、計測系21において、対物レンズ33及びマイクロレンズアレイ34によって撮像素子35上に微小ミラー23の多数の二次像が形成される。その多数の二次像の位置は、投影光学系PLの瞳面における波面が点線で示す波面A1又は実線で示す波面A2等のいずれであるかに応じて変化する。従って、その多数の二次像の方向及び横ずれ量から反射光ILRの波面を求めることができる。このように波面収差を求める方法は、例えば特開2002−71514号公報にも開示されている。   As described above, in the measurement system 21, a large number of secondary images of the micromirror 23 are formed on the image sensor 35 by the objective lens 33 and the microlens array 34. The positions of the multiple secondary images vary depending on whether the wavefront on the pupil plane of the projection optical system PL is a wavefront A1 indicated by a dotted line, a wavefront A2 indicated by a solid line, or the like. Therefore, the wavefront of the reflected light ILR can be obtained from the directions and lateral shift amounts of the many secondary images. Such a method for obtaining wavefront aberration is also disclosed in, for example, Japanese Patent Application Laid-Open No. 2002-71514.

なお、計測系21自体の波面収差が無視できる場合には、計測系21を介して計測される波面(波面収差)がそのまま投影光学系PLの波面(波面収差)となる。しかしながら、実際には、計測系21のビームスプリッタ32、対物レンズ34、及びマイクロレンズアレイ34等にも僅かではあるが波面収差がある。従って、波面収差計測装置20を用いて投影光学系PLの波面収差を計測する場合には、予め計測系21のみの波面収差(又は計測系21のみに起因する反射光ILRの波面の状態)を計測しておく必要がある。このように計測系21のみの波面収差(又は波面)を計測することが、波面収差計測装置20の校正(キャリブレーション)である。   If the wavefront aberration of the measurement system 21 itself can be ignored, the wavefront (wavefront aberration) measured via the measurement system 21 becomes the wavefront (wavefront aberration) of the projection optical system PL as it is. However, actually, the beam splitter 32, the objective lens 34, the microlens array 34, and the like of the measurement system 21 have a slight wavefront aberration. Therefore, when the wavefront aberration of the projection optical system PL is measured using the wavefront aberration measuring apparatus 20, the wavefront aberration of only the measurement system 21 (or the state of the wavefront of the reflected light ILR caused by only the measurement system 21) is previously measured. It is necessary to measure. Measuring the wavefront aberration (or wavefront) of only the measurement system 21 in this way is calibration of the wavefront aberration measuring apparatus 20.

本実施形態では、波面収差計測装置20の校正時には、図3(A)に示すように、投影光学系PLの像面において、計測用開口19の中心と投影光学系PLに関して共役な位置に反射部材22の反射拡散球面24の中心が設置される。この状態で、計測系21によって反射光ILRの波面が計測される。
以下、波面収差計測装置20の校正時の動作の一例につき図4(A)のフローチャートを参照して説明する。この動作は主制御系11及び計測部17によって制御されるとともに、例えば露光工程中に定期的に実行される。
In the present embodiment, at the time of calibration of the wavefront aberration measuring apparatus 20, as shown in FIG. 3A, reflection is performed at a conjugate position with respect to the center of the measurement aperture 19 and the projection optical system PL on the image plane of the projection optical system PL. The center of the reflection diffusion spherical surface 24 of the member 22 is set. In this state, the wavefront of the reflected light ILR is measured by the measurement system 21.
Hereinafter, an example of the operation at the time of calibration of the wavefront aberration measuring apparatus 20 will be described with reference to the flowchart of FIG. This operation is controlled by the main control system 11 and the measurement unit 17 and is periodically executed, for example, during the exposure process.

まず、図4(A)のステップ101において、図1(A)のレチクルステージRST上にテストレチクルR1をロードし、図3(A)に示すように、投影光学系PLの物体面の照明領域内の例えば光軸AX上(光軸AX外でもよい)の計測用開口19を照明対象とする。次のステップ102において、駆動部36を介して、計測用開口19の上方に計測系21のビームスプリッタ32を配置し、照明光学系ILSからの照明光ILでビームスプリッタ32を介して計測用開口19を照明する。照明光学系ILSは通常の照明条件で、コヒーレンスファクタ(σ値)が例えば最大に設定される。これによって、計測用開口19の投影光学系PLによる像19Wが、投影光学系PLの像面の露光領域内に形成される。   First, in step 101 of FIG. 4A, the test reticle R1 is loaded on the reticle stage RST of FIG. 1A, and as shown in FIG. 3A, the illumination area of the object plane of the projection optical system PL is loaded. For example, the measurement opening 19 on the optical axis AX (may be outside the optical axis AX) is an illumination target. In the next step 102, the beam splitter 32 of the measurement system 21 is disposed above the measurement aperture 19 via the driving unit 36, and the measurement aperture is transmitted via the beam splitter 32 with the illumination light IL from the illumination optical system ILS. 19 is illuminated. The illumination optical system ILS is set to a maximum coherence factor (σ value), for example, under normal illumination conditions. Thereby, an image 19W of the measurement aperture 19 by the projection optical system PL is formed in the exposure area of the image plane of the projection optical system PL.

これとほぼ並行して、ステップ103において、ウエハステージWSTを駆動し、反射部材22の反射拡散球面24(反射拡散面)の中心を投影光学系PLの像面の像19Wの位置に設置する。このとき、図3(C)に拡大して示すように、その像19Wからの照明光ILは、反射拡散球面24で拡散され、像19Wを覆うように拡散光の像24Dを形成する。従って、反射拡散球面24からの反射光ILRは、投影光学系PLを介して、図3(B)に示すように、テストレチクルR1の計測用開口19を覆うように像24Rを形成する。像24Rを形成する光束は投影光学系PLの物体面側の開口数で定まる広い開き角をほぼ有している。また、像24Rの一部の領域(計測用開口19内の領域)は、実質的に投影光学系PLの波面収差情報を含まない面光源とみなすことができる。   In parallel with this, in step 103, wafer stage WST is driven, and the center of reflection diffusing spherical surface 24 (reflection diffusing surface) of reflecting member 22 is set at the position of image 19W on the image plane of projection optical system PL. At this time, as shown in an enlarged view in FIG. 3C, the illumination light IL from the image 19W is diffused by the reflection diffusion spherical surface 24 to form an image 24D of diffused light so as to cover the image 19W. Accordingly, the reflected light ILR from the reflection diffusing spherical surface 24 forms an image 24R through the projection optical system PL so as to cover the measurement opening 19 of the test reticle R1, as shown in FIG. 3B. The light beam forming the image 24R has a wide opening angle determined by the numerical aperture on the object plane side of the projection optical system PL. Further, a partial region of the image 24R (region in the measurement aperture 19) can be regarded as a surface light source that substantially does not include wavefront aberration information of the projection optical system PL.

そして、ステップ104において、図3(A)の反射拡散球面24で反射され、投影光学系PLを介して計測用開口19上に像24Rを形成する反射光ILRのうち、計測用開口19を通過した光束の一部を、計測系21のビームスプリッタ32、対物レンズ33、及びマイクロレンズアレイ34を介して撮像素子35で受光する。次のステップ105において、計測部17は、撮像素子35の検出信号を処理して投影光学系PLの波面収差に影響されない計測系21の波面収差のみに起因する波面WA1を求め、この波面(位相分布)WA1を内部の記憶部に記憶する。   In step 104, the reflected light ILR reflected by the reflection diffusing spherical surface 24 of FIG. 3A and forming the image 24R on the measurement aperture 19 through the projection optical system PL passes through the measurement aperture 19. A part of the luminous flux is received by the image sensor 35 through the beam splitter 32, the objective lens 33, and the microlens array 34 of the measurement system 21. In the next step 105, the measurement unit 17 processes the detection signal of the image sensor 35 to obtain the wavefront WA1 caused only by the wavefront aberration of the measurement system 21 that is not affected by the wavefront aberration of the projection optical system PL, and this wavefront (phase Distribution) WA1 is stored in the internal storage unit.

その後、ステップ106において、照明光ILの照射を停止させ、反射部材22(反射拡散球面24)を照明光ILの光路から退避させることで、波面収差計測装置20の校正が終了する。
その後、図1(A)の露光装置EXを用いた露光工程中で投影光学系PLの波面収差を計測する場合の動作の一例につき、図4(B)のフローチャートを参照して説明する。まず、ステップ111において、ステップ101と同様に、レチクルステージRST上にテストレチクルR1をロードし、図2(A)に示すように、投影光学系PLの物体面の計測用開口19を照明対象とする。次のステップ112において、ステップ102と同様に、照明光ILでビームスプリッタ32を介して計測用開口19を照明し、投影光学系PLの像面に計測用開口19の像を形成する。
Thereafter, in step 106, the irradiation of the illumination light IL is stopped, and the reflection member 22 (the reflection diffusing spherical surface 24) is retracted from the optical path of the illumination light IL, thereby completing the calibration of the wavefront aberration measuring apparatus 20.
Thereafter, an example of the operation when measuring the wavefront aberration of the projection optical system PL during the exposure process using the exposure apparatus EX of FIG. 1A will be described with reference to the flowchart of FIG. First, in step 111, as in step 101, the test reticle R1 is loaded on the reticle stage RST, and as shown in FIG. 2A, the measurement aperture 19 on the object plane of the projection optical system PL is set as an illumination target. To do. In the next step 112, as in step 102, the measurement aperture 19 is illuminated with the illumination light IL via the beam splitter 32, and an image of the measurement aperture 19 is formed on the image plane of the projection optical system PL.

これとほぼ並行して、ステップ113において、ウエハステージWSTを駆動し、反射部材22の微小ミラー23の中心を計測用開口19の像の中心に配置する。このとき、微小ミラー23は計測用開口19の像よりも小さいため、微小ミラー23の全面が照明光ILで照明される。そして、微小ミラー23からの反射光ILRは、投影光学系PLを介して、図2(B)に示すように、テストレチクルR1の計測用開口19内に像23Rを形成する。この像23Rを形成する光束は投影光学系PLの波面収差情報を含んでいる。   In parallel with this, in step 113, wafer stage WST is driven, and the center of micromirror 23 of reflecting member 22 is placed at the center of the image of measurement opening 19. At this time, since the micromirror 23 is smaller than the image of the measurement opening 19, the entire surface of the micromirror 23 is illuminated with the illumination light IL. Then, the reflected light ILR from the minute mirror 23 forms an image 23R in the measurement opening 19 of the test reticle R1, as shown in FIG. 2B, via the projection optical system PL. The light beam forming this image 23R includes the wavefront aberration information of the projection optical system PL.

そして、ステップ114において、図2(A)の微小ミラー23で反射され、投影光学系PLを介して計測用開口19中に像23Rを形成する反射光ILRは、計測用開口19を通過する。そして、計測用開口19を通過した光束の一部を、計測系21のビームスプリッタ32、対物レンズ33、及びマイクロレンズアレイ34を介して撮像素子35で受光する。次のステップ115において、計測部17は、撮像素子35の検出信号を処理して、投影光学系PL及び計測系21の波面収差を含む波面WA2を求める。この後、照明光ILの照射が停止され、計測系21及び反射部材22(微小ミラー23)を照明光ILの光路から退避させる。   Then, in step 114, the reflected light ILR reflected by the micro mirror 23 in FIG. 2A and forming the image 23R in the measurement aperture 19 through the projection optical system PL passes through the measurement aperture 19. Then, a part of the light beam that has passed through the measurement opening 19 is received by the imaging device 35 via the beam splitter 32, the objective lens 33, and the microlens array 34 of the measurement system 21. In the next step 115, the measurement unit 17 processes the detection signal of the image sensor 35 to obtain the wavefront WA <b> 2 including the wavefront aberration of the projection optical system PL and the measurement system 21. Thereafter, the irradiation of the illumination light IL is stopped, and the measurement system 21 and the reflection member 22 (micromirror 23) are retracted from the optical path of the illumination light IL.

次のステップ116において、計測部17は、ステップ115で求めた波面WA2からステップ105で記憶した計測系21の波面WA1を差し引いて、次のように投影光学系PLの波面収差のみに起因する波面WA3を求める。波面WA3は記憶部に記憶される。
WA3=WA2−WA1 …(2)
次のステップ117において、計測部17は、波面WA3から例えばゼルニケ多項式の係数の形で投影光学系PLの波面収差を求める。この波面収差の情報は主制御系11に供給される。次のステップ118において、主制御系11の結像特性制御部は、駆動系12を介して投影光学系PLの波面収差を補正する。その後、レチクルステージRSTにレチクルRがロードされ、ウエハステージWSTに順次ロードされる複数のウエハの各ショット領域にレチクルRのパターンの像が露光される。この際に、投影光学系PLの波面収差が補正されているため、常に高精度にレチクルRのパターンの像を投影光学系PLを介してウエハ上に露光できる。
In the next step 116, the measurement unit 17 subtracts the wavefront WA1 of the measurement system 21 stored in step 105 from the wavefront WA2 obtained in step 115, and the wavefront caused only by the wavefront aberration of the projection optical system PL as follows. Find WA3. The wavefront WA3 is stored in the storage unit.
WA3 = WA2-WA1 (2)
In the next step 117, the measurement unit 17 obtains the wavefront aberration of the projection optical system PL from the wavefront WA3, for example, in the form of a coefficient of the Zernike polynomial. Information on the wavefront aberration is supplied to the main control system 11. In the next step 118, the imaging characteristic control unit of the main control system 11 corrects the wavefront aberration of the projection optical system PL via the drive system 12. Thereafter, reticle R is loaded onto reticle stage RST, and an image of the pattern of reticle R is exposed on each shot area of a plurality of wafers sequentially loaded onto wafer stage WST. At this time, since the wavefront aberration of the projection optical system PL is corrected, the pattern image of the reticle R can always be exposed onto the wafer via the projection optical system PL with high accuracy.

本実施形態の効果等は次の通りである。
(1)本実施形態の投影光学系PLの波面収差(光学特性)を計測するための波面収差計測装置20は、投影光学系PLの物体面(第1面)に配置される計測用開口19が形成されたテストレチクルR1(開口部材)と、テストレチクルR1を照明光ILで照明する照明光学系ILSと、計測用開口19及び投影光学系PLを通過し、投影光学系PLの像面(第2面)から戻された照明光ILの少なくとも一部を投影光学系PL及び計測用開口19を介して受光して、投影光学系PLの波面収差情報を計測する計測系21とを備えている。さらに、波面収差計測装置20は、照明光ILの光路中に挿入又は離脱可能に配置され、かつ計測用開口19を通過した照明光ILの少なくとも一部を反射し、さらに該反射した光束で計測用開口19を含む領域(像24R)を照明する反射部材22に形成された反射拡散球面24(第1反射光学系)と、計測用開口19を通過した光束(計測光)を計測系21で受光し、計測系21の波面WA1を求める計測部17(計測装置)と、を備えている。
The effects and the like of this embodiment are as follows.
(1) The wavefront aberration measuring apparatus 20 for measuring the wavefront aberration (optical characteristics) of the projection optical system PL of the present embodiment is a measurement aperture 19 disposed on the object plane (first surface) of the projection optical system PL. Pass through the test reticle R1 (opening member), the illumination optical system ILS that illuminates the test reticle R1 with the illumination light IL, the measurement aperture 19 and the projection optical system PL, and the image plane of the projection optical system PL ( A measurement system 21 that receives at least a part of the illumination light IL returned from the second surface) via the projection optical system PL and the measurement aperture 19 and measures the wavefront aberration information of the projection optical system PL. Yes. Further, the wavefront aberration measuring device 20 is disposed so as to be inserted into or removed from the optical path of the illumination light IL, reflects at least a part of the illumination light IL that has passed through the measurement aperture 19, and further measures with the reflected light beam. The reflection system 22 (first reflection optical system) formed on the reflection member 22 that illuminates the region (image 24R) including the measurement aperture 19 and the light beam (measurement light) that has passed through the measurement aperture 19 are measured by the measurement system 21. A measuring unit 17 (measuring device) that receives the light and obtains the wavefront WA1 of the measuring system 21.

また、波面収差計測装置20の校正方法は、テストレチクルR1の計測用開口19を投影光学系PLの物体面に配置するステップ101と、照明光ILで計測用開口19を照明するステップ102と、照明光ILの光路中に計測用開口19を通過した照明光ILの大部分(一部でもよい)を反射する反射拡散球面24を挿入するステップ103と、反射拡散球面24からの反射光ILRで投影光学系PLを介して計測用開口19を含む領域を照明する工程(ステップ104の前半部)と、計測用開口19を通過した光束を計測系21で受光し、計測系21の波面WA1を求める工程(ステップ104の後半部及びステップ105)とを含んでいる。   The calibration method of the wavefront aberration measuring apparatus 20 includes a step 101 in which the measurement aperture 19 of the test reticle R1 is disposed on the object plane of the projection optical system PL, a step 102 in which the measurement aperture 19 is illuminated with the illumination light IL, Step 103 for inserting a reflection diffusion spherical surface 24 that reflects most (or part of) the illumination light IL that has passed through the measurement aperture 19 in the optical path of the illumination light IL, and reflected light ILR from the reflection diffusion spherical surface 24 A step of illuminating a region including the measurement aperture 19 via the projection optical system PL (the first half of the step 104), a light beam that has passed through the measurement aperture 19 is received by the measurement system 21, and a wavefront WA1 of the measurement system 21 is obtained. The process to obtain (the latter half part of step 104 and step 105) is included.

本実施形態によれば、反射拡散球面24からの反射光で計測用開口19を含む領域(像24R)を照明することができる。この場合、計測用開口19を通過する光束は投影光学系PLの波面収差情報を殆ど含まないため、その光束によって計測系21で求められる波面WA1は、ほぼ計測系21のみの波面収差情報を正確に含んでいる。従って、投影光学系PLの物体面側に計測系21を配置することと、波面収差計測装置20の校正を高精度に行うこととを両立できる。   According to the present embodiment, it is possible to illuminate the region (image 24R) including the measurement opening 19 with the reflected light from the reflection diffusing spherical surface 24. In this case, since the light beam passing through the measurement aperture 19 contains almost no wavefront aberration information of the projection optical system PL, the wavefront WA1 obtained by the measurement system 21 with the light beam is almost exactly the wavefront aberration information of only the measurement system 21. Is included. Therefore, it is possible to achieve both the arrangement of the measurement system 21 on the object plane side of the projection optical system PL and the calibration of the wavefront aberration measuring apparatus 20 with high accuracy.

なお、計測用開口19を投影光学系PLの物体面の近傍に配置することも可能である。この場合には、例えば計測用開口19の像の位置又はこの近傍に反射拡散球面24の中心を配置することで、計測系21内の光束の波面を高精度に計測できる。
(2)また、反射部材22には、投影光学系PLの像面に配置され、計測用開口19及び投影光学系PLを通過した照明光ILの少なくとも一部を反射し、該反射した照明光で投影光学系PLを介して計測用開口19の内側の領域(像23R)を照明する微小ミラー23(第2反射光学系)が形成されている。
It is also possible to arrange the measurement aperture 19 in the vicinity of the object plane of the projection optical system PL. In this case, for example, the wavefront of the light beam in the measurement system 21 can be measured with high accuracy by disposing the center of the reflection diffusing spherical surface 24 at or near the position of the image of the measurement aperture 19.
(2) The reflecting member 22 is disposed on the image plane of the projection optical system PL, reflects at least part of the illumination light IL that has passed through the measurement aperture 19 and the projection optical system PL, and reflects the reflected illumination light. Thus, a minute mirror 23 (second reflection optical system) that illuminates a region (image 23R) inside the measurement opening 19 through the projection optical system PL is formed.

そして、波面収差計測装置20を用いた計測方法(校正方法の一部とみなす)は、反射拡散球面24を照明光ILの光路から離脱するステップ106と、計測用開口19を通過した照明光ILを投影光学系PLに入射させるステップ112と、投影光学系PLを通過した照明光ILの一部を微小ミラー23で反射し、この反射光ILRで投影光学系PLを介して計測用開口19の内側の領域(像23R)を照明するステップ113と、計測用開口19の内側の領域を通過した光束(計測光)を計測系21で受光し、計測部17が計測系21の検出信号からその光束の波面WA2を求め、波面WA2から波面WA1を差し引いて投影光学系PLの波面WA3及び波面収差を求めるステップ115〜117とを含んでいる。   Then, the measurement method using the wavefront aberration measuring apparatus 20 (considered as a part of the calibration method) includes step 106 in which the reflection diffusion spherical surface 24 is separated from the optical path of the illumination light IL, and the illumination light IL that has passed through the measurement aperture 19. Is incident on the projection optical system PL, and a part of the illumination light IL that has passed through the projection optical system PL is reflected by the micromirror 23, and the reflected light ILR passes through the projection optical system PL and passes through the measurement aperture 19. The step 113 for illuminating the inner region (image 23R) and the light beam (measurement light) that has passed through the inner region of the measurement aperture 19 are received by the measurement system 21, and the measurement unit 17 detects the detection signal from the detection signal of the measurement system 21. And steps 115 to 117 for obtaining the wavefront WA2 of the light beam and subtracting the wavefront WA1 from the wavefront WA2 to obtain the wavefront WA3 and wavefront aberration of the projection optical system PL.

従って、波面収差計測装置20の校正結果(計測系21のみの波面WA1)を用いて計測結果(波面WA2)を補正することによって、投影光学系PLのみの波面収差を高精度に求めることができる。
(3)また、本実施形態の露光装置EXは、照明光ILでレチクルRのパターンを照明し、照明光ILでそのパターン及び投影光学系PLを介してウエハステージWSTで保持されたウエハW(物体)を露光する露光装置において、投影光学系PLの波面収差を計測するために波面収差計測装置20を備えている。この際に、波面収差計測装置20の校正を高精度に行うことができるため、この校正結果を用いて投影光学系PLの波面収差を高精度に計測でき、レチクルRのパターンの像を高精度にウエハW上に露光できる。
Therefore, by correcting the measurement result (wavefront WA2) using the calibration result of the wavefront aberration measuring apparatus 20 (the wavefront WA1 of only the measurement system 21), the wavefront aberration of only the projection optical system PL can be obtained with high accuracy. .
(3) In addition, the exposure apparatus EX of the present embodiment illuminates the pattern of the reticle R with the illumination light IL, and the wafer W (held on the wafer stage WST via the pattern and the projection optical system PL with the illumination light IL. An exposure apparatus that exposes an object) includes a wavefront aberration measuring device 20 for measuring the wavefront aberration of the projection optical system PL. At this time, since the wavefront aberration measuring apparatus 20 can be calibrated with high accuracy, the wavefront aberration of the projection optical system PL can be measured with high accuracy by using the calibration result, and the pattern image of the reticle R can be highly accurate. The wafer W can be exposed.

さらに、波面収差計測装置20のうちでウエハステージWST側にあるのは反射部材22のみであるため、ウエハステージWSTの構成を簡素できる。従って、ウエハステージWSTには例えば照明光ILの露光量モニタ、及びレチクルRのアライメントマークの計測系(空間像計測系)等を余裕を持って配置可能である。
また、露光装置EXによる露光方法は、本実施形態の波面収差計測装置20の校正方法を用いて、投影光学系PLの光学特性を計測する波面収差計測装置20の校正を行うものである。この場合にも、校正後の波面収差計測装置20を用いて、投影光学系PLの波面収差を高精度に計測できる。
Furthermore, since only the reflecting member 22 is on the wafer stage WST side in the wavefront aberration measuring apparatus 20, the configuration of the wafer stage WST can be simplified. Therefore, for example, an exposure amount monitor of the illumination light IL and an alignment mark measurement system (aerial image measurement system) of the reticle R can be disposed with sufficient margin on the wafer stage WST.
Moreover, the exposure method by the exposure apparatus EX calibrates the wavefront aberration measuring apparatus 20 that measures the optical characteristics of the projection optical system PL using the calibration method of the wavefront aberration measuring apparatus 20 of the present embodiment. Also in this case, the wavefront aberration of the projection optical system PL can be measured with high accuracy using the wavefront aberration measuring apparatus 20 after calibration.

なお、上記の実施形態では、次のような変形が可能である。
(1)上記の実施形態では、反射部材22はウエハステージWSTに設けられ、校正用の反射拡散球面24は投影光学系PLの像面又はこの近傍に配置される。しかしながら、図3(A)に2点鎖線で示すように、テストレチクルR1のパターン面の下方近傍に反射拡散球面240が形成された反射部材220を移動可能に設置してもよい。反射拡散球面240は、反射拡散球面24を投影光学系PLの投影倍率βの逆数倍で大きくしたものである。波面収差計測装置20の校正時には、計測用開口19の直下に反射拡散球面240を配置することで、ビームスプリッタ32を介して計測用開口19を通過した照明光ILは、反射拡散球面240で反射されて計測用開口19を含む領域(計測用開口19に対して直径がほぼ2倍の領域)を照明する。従って、反射拡散球面240で反射され、計測用開口19を通過した光束の波面を計測系21で計測することによって、上記の実施形態と同様に計測系21のみの波面を高精度に求めることができる。
In the above embodiment, the following modifications are possible.
(1) In the above embodiment, the reflecting member 22 is provided on the wafer stage WST, and the calibration reflection diffusing spherical surface 24 is disposed on the image plane of the projection optical system PL or in the vicinity thereof. However, as indicated by a two-dot chain line in FIG. 3A, a reflecting member 220 having a reflecting diffusion spherical surface 240 formed in the vicinity of the lower side of the pattern surface of the test reticle R1 may be movably installed. The reflection diffusing spherical surface 240 is obtained by increasing the reflection diffusing spherical surface 24 by a reciprocal number times the projection magnification β of the projection optical system PL. When the wavefront aberration measuring apparatus 20 is calibrated, the illumination light IL that has passed through the measurement aperture 19 via the beam splitter 32 is reflected by the reflection diffusion spherical surface 240 by disposing the reflection diffusion spherical surface 240 directly below the measurement aperture 19. Then, an area including the measurement opening 19 (an area having a diameter approximately twice that of the measurement opening 19) is illuminated. Therefore, by measuring the wavefront of the light beam reflected by the reflection diffusing spherical surface 240 and passing through the measurement opening 19 with the measurement system 21, the wavefront of only the measurement system 21 can be obtained with high accuracy as in the above embodiment. it can.

また、投影光学系PLの像面側の反射部材22には微小ミラー23のみを形成すればよいため、反射部材22を小型化でき、ウエハステージWSTをより簡素化できる。
(2)上記の実施形態では、波面収差計測装置20の校正時に計測用開口19の像の位置に反射拡散球面24を配置している。しかしながら、反射拡散球面24の代わりに、図5に示す反射系51を用いてもよい。反射系51は、図3(A)の投影光学系PLからの照明光ILを集光する集光レンズ52と、集光レンズ52で集光された照明光ILの少なくとも一部を拡散して反射光ILRとして集光レンズ52に戻す反射拡散板53とを有する。この場合、反射拡散板53における拡散角をφdf、集光レンズ52の焦点距離をrdfとすると、反射光ILRの集光レンズ52による像51Dの大きさは、図3(C)の反射拡散球面24からの反射光ILRの像24Dと同じ大きさに拡大される。
Further, since only the minute mirror 23 needs to be formed on the reflecting member 22 on the image plane side of the projection optical system PL, the reflecting member 22 can be reduced in size, and the wafer stage WST can be further simplified.
(2) In the above embodiment, the reflection diffusing spherical surface 24 is disposed at the position of the image of the measurement aperture 19 when the wavefront aberration measuring apparatus 20 is calibrated. However, instead of the reflective diffusing spherical surface 24, a reflective system 51 shown in FIG. The reflection system 51 diffuses at least a part of the condensing lens 52 that condenses the illumination light IL from the projection optical system PL in FIG. A reflection diffusing plate 53 that returns to the condenser lens 52 as reflected light ILR. In this case, if the diffusion angle in the reflection diffusion plate 53 is φdf and the focal length of the condensing lens 52 is rdf, the size of the image 51D of the reflected light ILR by the condensing lens 52 is the reflection diffusion spherical surface of FIG. 24 is enlarged to the same size as the image 24D of the reflected light ILR.

従って、反射拡散球面24の代わりに反射系51を用いても、波面収差計測装置20の校正を高精度に行うことができる。
[第2の実施形態]
次に、本実施形態の第2の実施形態につき図6を参照して説明する。本実施形態でも図1(A)の露光装置EXと同様の露光装置を使用するが、波面収差計測装置20のうちの計測系21及び計測部17の構成が異なっている。以下、図6において、図2(A)に対応する部分には同一符号を付してその詳細な説明を省略する。
Therefore, even if the reflection system 51 is used instead of the reflection diffusing spherical surface 24, the wavefront aberration measuring apparatus 20 can be calibrated with high accuracy.
[Second Embodiment]
Next, a second embodiment of the present embodiment will be described with reference to FIG. In this embodiment, an exposure apparatus similar to the exposure apparatus EX in FIG. 1A is used, but the configurations of the measurement system 21 and the measurement unit 17 in the wavefront aberration measurement apparatus 20 are different. Hereinafter, in FIG. 6, parts corresponding to those in FIG.

図6は、本実施形態において投影光学系PLの波面収差を計測する波面収差計測装置20Aの概略構成を示す。図6において、波面収差計測装置20Aは、投影光学系PLの物体面に配置されるテストレチクルR1と、テストレチクルR1を照明光ILで照明する照明光学系(不図示)と、テストレチクルR1の上方に配置される計測系21Aと、投影光学系PLの像面側でウエハステージWSTに設けられる反射部材22と、計測系21Aの検出信号を処理して投影光学系PLの波面収差を求める計測部17Aと、を備えている。   FIG. 6 shows a schematic configuration of a wavefront aberration measuring apparatus 20A that measures the wavefront aberration of the projection optical system PL in the present embodiment. In FIG. 6, the wavefront aberration measuring apparatus 20A includes a test reticle R1 disposed on the object plane of the projection optical system PL, an illumination optical system (not shown) that illuminates the test reticle R1 with illumination light IL, and the test reticle R1. Measurement system 21A disposed above, reflection member 22 provided on wafer stage WST on the image plane side of projection optical system PL, and measurement signal 21A for processing the detection signal of measurement system 21A to determine the wavefront aberration of projection optical system PL 17A.

また、計測系21Aは、照明光ILをテストレチクルR1の計測用開口19に照射し、投影光学系PLから計測用開口19を介して戻される反射光ILRの一部を反射するビームスプリッタ32と、ビームスプリッタ32で反射された反射光ILRの光路上に配置され、Z方向に周期Pgで形成された回折格子41と、回折格子41から発生する0次光42、+1次回折光42A、及び−1次回折光42B(波面分割された光束)の干渉縞(シアリング干渉縞)を受光する撮像素子35とを有する。   The measurement system 21A irradiates the measurement light 19 of the test reticle R1 with the illumination light IL, and reflects a part of the reflected light ILR returned from the projection optical system PL through the measurement opening 19. , A diffraction grating 41 arranged on the optical path of the reflected light ILR reflected by the beam splitter 32 and formed with a period Pg in the Z direction, a 0th-order light 42 generated from the diffraction grating 41, a + 1st-order diffracted light 42A, and − And an image sensor 35 that receives interference fringes (shearing interference fringes) of the first-order diffracted light 42B (light beams divided in wavefront).

回折格子41と計測用開口19の形成面との間隔(光路長)をLg、撮像素子35の受光面と計測用開口19の形成面との間隔(光路長)をLc、照明光ILの波長をλ、所定の整数又は半整数をnとすると、間隔Lg,Lc、周期Pg、及び波長λは次のいわゆるトールボット(Talbot)条件を満たす。
1/Lg+1/(Lc−Lg)=λ/(2・n・Pg2) …(3)
n(トールボット次数)=0,1/2,1,3/2,2,… …(4)
なお、トールボット条件の詳細は、「応用光学1(鶴田著)」(p. 178-181,培風館,1990年)に記載されている。トールボット条件は、撮像素子35の受光面に回折格子41によるシアリング干渉の干渉縞が高いコントラストで形成されるための条件である。言い換えると、計測系21Aはトールボット干渉計を構成している。計測部17Aは、撮像素子35の検出信号からその干渉縞の強度分布を求め、この強度分布からシアリング波面(位相分布)を求め、このシアリング波面から反射光ILRの波面(波面収差)を求める。
The distance (optical path length) between the diffraction grating 41 and the formation surface of the measurement opening 19 is Lg, the interval (optical path length) between the light receiving surface of the image sensor 35 and the formation surface of the measurement opening 19 is Lc, and the wavelength of the illumination light IL. Is λ, and a predetermined integer or half integer is n, the intervals Lg, Lc, the period Pg, and the wavelength λ satisfy the following so-called Talbot condition.
1 / Lg + 1 / (Lc−Lg) = λ / (2 · n · Pg 2 ) (3)
n (Talbot order) = 0, 1/2, 1, 3/2, 2,... (4)
The details of the Talbot conditions are described in “Applied Optics 1 (by Tsuruta)” (p. 178-181, Baifukan, 1990). The Talbot condition is a condition for forming interference fringes of shearing interference by the diffraction grating 41 on the light receiving surface of the image sensor 35 with high contrast. In other words, the measurement system 21A constitutes a Talbot interferometer. The measurement unit 17A obtains the intensity distribution of the interference fringes from the detection signal of the image sensor 35, obtains the shearing wavefront (phase distribution) from the intensity distribution, and obtains the wavefront (wavefront aberration) of the reflected light ILR from the shearing wavefront.

従って、計測系21Aのみの波面を求める場合には、計測用開口19の像の位置に反射拡散球面24を設置することで、第1の実施形態と同様に、波面収差計測装置20Aの校正を高精度に行うことができる。そして、投影光学系PLのみの波面を求める場合には、計測用開口19の像の位置に微小ミラー23を設置し、計測された波面から計測系21Aのみの波面を差し引けばよい。   Therefore, when obtaining the wavefront of only the measurement system 21A, the wavefront aberration measuring apparatus 20A is calibrated by installing the reflection diffusion spherical surface 24 at the position of the image of the measurement aperture 19 as in the first embodiment. It can be performed with high accuracy. Then, when obtaining the wavefront of only the projection optical system PL, a minute mirror 23 is installed at the position of the image of the measurement aperture 19, and the wavefront of only the measurement system 21A is subtracted from the measured wavefront.

なお、計測系21Aにおいて、回折格子41の代わりにY方向に周期的に形成された回折格子、又はY方向及びZ方向に周期的に形成された2次元の回折格子を使用してもよい。
なお、上記の各実施形態において、図1(A)の偏光状態可変部3によって照明光ILをX方向又はY方向の直線偏光に設定し、各偏光成分毎の投影光学系PLの波面収差である偏光特性を求めてもよい。
In the measurement system 21A, instead of the diffraction grating 41, a diffraction grating periodically formed in the Y direction or a two-dimensional diffraction grating periodically formed in the Y direction and the Z direction may be used.
In each of the above embodiments, the illumination light IL is set to X-direction or Y-direction linearly polarized light by the polarization state variable unit 3 in FIG. 1A, and the wavefront aberration of the projection optical system PL for each polarization component. A certain polarization characteristic may be obtained.

また、計測系21,21Aの代わりに、投影光学系PLの波面収差以外の光学特性を計測する計測系を配置してもよい。
また、本発明は、半導体デバイス製造用の露光装置への適用に限定されることなく、例えば、角型のガラスプレートに形成される液晶表示素子、若しくはプラズマディスプレイ等のディスプレイ装置用の露光装置や、撮像素子(CCD等)、マイクロマシーン、薄膜磁気ヘッド、及びDNAチップ等の各種デバイスやマスク自体を製造するための露光装置にも広く適用できる。
Further, instead of the measurement systems 21 and 21A, a measurement system that measures optical characteristics other than the wavefront aberration of the projection optical system PL may be arranged.
In addition, the present invention is not limited to application to an exposure apparatus for manufacturing a semiconductor device, for example, an exposure apparatus for a display device such as a liquid crystal display element formed on a square glass plate or a plasma display, The present invention can also be widely applied to various devices such as an image sensor (CCD or the like), a micromachine, a thin film magnetic head, and a DNA chip, and an exposure apparatus for manufacturing a mask itself.

また、本発明は、露光装置の投影光学系の光学特性の計測のみならず、各種の光学装置、例えば、天体望遠鏡、眼科的検査装置、又は携帯カメラ若しくは携帯電話に備えられる小型カメラの波面収差等の光学特性を計測する際にも同様に適用することができる。
このように本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の構成を取り得る。
Further, the present invention is not limited to the measurement of the optical characteristics of the projection optical system of the exposure apparatus, but also the wavefront aberration of various optical devices, for example, astronomical telescopes, ophthalmic inspection devices, or small cameras provided in portable cameras or mobile phones. The present invention can be similarly applied when measuring optical characteristics such as the above.
As described above, the present invention is not limited to the above-described embodiment, and various configurations can be taken without departing from the gist of the present invention.

EX…露光装置、ILS…照明光学系、PL…投影光学系、R…レチクル、W…ウエハ、17,17A…計測部、19…計測用開口、20,20A…波面収差計測装置、21,21A…計測系、22…反射部材、23…微小ミラー、24…反射拡散球面、34…マイクロレンズアレイ、35…撮像素子   EX ... exposure apparatus, ILS ... illumination optical system, PL ... projection optical system, R ... reticle, W ... wafer, 17, 17A ... measuring unit, 19 ... measuring aperture, 20,20A ... wavefront aberration measuring device, 21,21A ... Measuring system, 22 ... Reflecting member, 23 ... Micro mirror, 24 ... Reflective diffusing spherical surface, 34 ... Micro lens array, 35 ... Image sensor

Claims (14)

第1面のパターンの像を第2面に形成する投影光学系の光学特性を計測する装置において、
前記第1面側に配置され、計測用開口が形成された開口部材と、
前記第1面側に配置された前記開口部材を照明光で照明する照明系と、
前記計測用開口及び前記投影光学系を通過し、前記第2面から戻された前記照明光の少なくとも一部を前記投影光学系及び前記計測用開口を介して受光して、前記投影光学系の光学特性を計測する計測系と、
前記照明光の光路中に挿入又は離脱可能に配置され、前記計測用開口を通過した前記照明光の少なくとも一部を反射し、該反射した光束で前記計測用開口を含む領域を照明する第1反射光学系と、
前記計測用開口を通過した計測光を前記計測系で受光して、前記計測系の光学特性を計測する計測装置と、
を備えることを特徴とする光学特性計測装置。
In an apparatus for measuring optical characteristics of a projection optical system that forms an image of a pattern of a first surface on a second surface,
An opening member disposed on the first surface side and formed with an opening for measurement;
An illumination system that illuminates the opening member disposed on the first surface side with illumination light;
At least part of the illumination light that has passed through the measurement aperture and the projection optical system and returned from the second surface is received via the projection optical system and the measurement aperture, and the projection optical system A measurement system for measuring optical characteristics;
First arranged to be inserted into or removed from the optical path of the illumination light, reflecting at least a part of the illumination light that has passed through the measurement aperture, and illuminating a region including the measurement aperture with the reflected light beam A reflective optical system;
A measurement device that receives the measurement light that has passed through the measurement aperture by the measurement system and measures optical characteristics of the measurement system;
An optical property measuring device comprising:
前記第2面側に配置され、前記計測用開口及び前記投影光学系を通過した前記照明光の少なくとも一部を反射し、該反射した前記照明光で前記投影光学系を介して前記計測用開口の内側の領域を照明する第2反射光学系を備え、
前記計測装置は、前記投影光学系を介して前記計測用開口の内側の領域を通過した前記照明光を前記計測系で受光して、前記投影光学系の光学特性を計測することを特徴とする請求項1に記載の光学特性計測装置。
The measurement aperture is disposed on the second surface side, reflects at least part of the illumination light that has passed through the measurement aperture and the projection optical system, and is reflected by the reflected illumination light through the projection optical system. A second reflective optical system for illuminating the inner region of
The measuring apparatus receives the illumination light that has passed through the region inside the measurement aperture via the projection optical system, and measures the optical characteristics of the projection optical system. The optical characteristic measuring device according to claim 1.
前記第1反射光学系は、前記第2面側に配置されるとともに、前記計測用開口及び前記投影光学系を通過した前記照明光の少なくとも一部を前記投影光学系を介して前記計測用開口を含む領域に戻すことを特徴とする請求項1または請求項2に記載の光学特性計測装置。   The first reflective optical system is disposed on the second surface side, and at least a part of the illumination light that has passed through the measurement aperture and the projection optical system is passed through the projection optical system to the measurement aperture. The optical characteristic measuring device according to claim 1, wherein the optical characteristic measuring device is returned to a region including 前記第1反射光学系は、前記第1面側に配置されるとともに、前記計測用開口を通過した前記照明光の少なくとも一部を前記計測用開口を含む領域に戻すことを特徴とする請求項1または請求項2に記載の光学特性計測装置。   The first reflective optical system is disposed on the first surface side and returns at least a part of the illumination light that has passed through the measurement aperture to a region including the measurement aperture. The optical characteristic measuring device according to claim 1 or 2. 前記第1反射光学系は、前記照明光を拡散して反射する球面を有する反射球面部材を含むことを特徴とする請求項1から請求項4のいずれか一項に記載の光学特性計測装置。   5. The optical characteristic measuring apparatus according to claim 1, wherein the first reflective optical system includes a reflective spherical member having a spherical surface that diffuses and reflects the illumination light. 6. 前記第1反射光学系は、前記照明光を集光するレンズと、前記レンズで集光された前記照明光の少なくとも一部を拡散して前記レンズに戻す反射拡散板とを含むことを特徴とする請求項1から請求項4のいずれか一項に記載の光学特性計測装置。   The first reflective optical system includes a lens that collects the illumination light, and a reflection diffusion plate that diffuses at least a part of the illumination light collected by the lens and returns the diffused light to the lens. The optical characteristic measuring device according to any one of claims 1 to 4. 前記計測系は、前記計測光を波面分割するレンズアレイと、前記レンズアレイで波面分割された前記計測光を受光する撮像素子とを含むことを特徴とする請求項1から請求項6のいずれか一項に記載の光学特性計測装置。   7. The measurement system according to claim 1, further comprising: a lens array that divides the measurement light into a wavefront; and an image sensor that receives the measurement light that has been wavefront-divided by the lens array. The optical property measuring device according to one item. 前記計測系は、前記計測光を波面分割する回折格子と、前記回折格子で波面分割された前記計測光を受光する撮像素子とを含むことを特徴とする請求項1から請求項6のいずれか一項に記載の光学特性計測装置。   7. The measurement system according to claim 1, further comprising: a diffraction grating that divides the measurement light into a wavefront; and an image sensor that receives the measurement light that has been wavefront divided by the diffraction grating. The optical property measuring device according to one item. 第1面のパターンの像を第2面に形成する投影光学系の光学特性を計測する装置の校正方法において、
前記第1面またはその近傍に計測用開口が形成された開口部材を配置する工程と、
照明光で前記計測用開口を照明する工程と、
前記照明光の光路中に、前記計測用開口を通過した前記照明光の少なくとも一部を反射する第1反射部材を挿入する工程と、
前記第1反射部材で反射した前記照明光で前記計測用開口を含む領域を照明する工程と、
前記反射した照明光のうち前記計測用開口を通過した計測光を計測系で受光し、前記計測系の光学特性を求める工程と、
を含むことを特徴とする光学特性計測装置の校正方法。
In a calibration method of an apparatus for measuring optical characteristics of a projection optical system that forms an image of a pattern of a first surface on a second surface,
Placing an opening member having a measurement opening formed on or near the first surface; and
Illuminating the measurement aperture with illumination light;
Inserting a first reflecting member that reflects at least a part of the illumination light that has passed through the measurement opening into the optical path of the illumination light;
Illuminating a region including the measurement aperture with the illumination light reflected by the first reflecting member;
Receiving measurement light that has passed through the measurement aperture among the reflected illumination light by a measurement system, and obtaining optical characteristics of the measurement system;
A method for calibrating an optical property measuring apparatus, comprising:
前記第1反射部材を前記照明光の光路から離脱する工程と、
前記計測用開口を通過した前記照明光を前記投影光学系に入射させる工程と、
前記投影光学系を通過した前記照明光の少なくとも一部を反射し、該反射した照明光で前記投影光学系を介して前記計測用開口の内側の領域を照明する工程と、
前記計測用開口の内側の領域を通過した計測光を前記計測系で受光し、前記投影光学系の光学特性を求める工程と、を含むことを特徴とする請求項9に記載の光学特性計測装置の校正方法。
Detaching the first reflecting member from the optical path of the illumination light;
Allowing the illumination light that has passed through the measurement aperture to enter the projection optical system;
Reflecting at least a portion of the illumination light that has passed through the projection optical system, and illuminating a region inside the measurement aperture through the projection optical system with the reflected illumination light; and
The optical characteristic measuring apparatus according to claim 9, further comprising: a step of receiving measurement light that has passed through a region inside the measurement aperture by the measurement system and obtaining optical characteristics of the projection optical system. Calibration method.
前記計測用開口を含む領域を照明する工程は、前記計測用開口を通過した前記照明光の少なくとも一部を前記投影光学系を介して前記計測用開口に戻すことを特徴とする請求項9または請求項10に記載の光学特性計測装置の校正方法。   The step of illuminating the region including the measurement aperture returns at least a part of the illumination light that has passed through the measurement aperture to the measurement aperture via the projection optical system. The method for calibrating an optical property measuring apparatus according to claim 10. 前記計測用開口を含む領域を照明する工程は、前記計測用開口を通過した前記照明光の少なくとも一部を直接に前記計測用開口に戻すことを特徴とする請求項9または請求項10に記載の光学特性計測装置の校正方法。   11. The step of illuminating a region including the measurement opening directly returns at least a part of the illumination light that has passed through the measurement opening to the measurement opening. Calibration method for optical property measuring apparatus. 照明光でパターンを照明し、前記照明光で前記パターン及び投影光学系を介して物体を露光する露光装置において、
前記投影光学系の光学特性を計測するために請求項1から請求項8のいずれか一項に記載の光学特性計測装置を備えることを特徴とする露光装置。
In an exposure apparatus that illuminates a pattern with illumination light and exposes an object with the illumination light via the pattern and a projection optical system,
An exposure apparatus comprising the optical property measurement apparatus according to claim 1 to measure an optical property of the projection optical system.
照明光でパターンを照明し、前記照明光で前記パターン及び投影光学系を介して物体を露光する露光方法において、
請求項9から請求項12のいずれか一項に記載の光学特性計測装置の校正方法を用いて、前記投影光学系の光学特性を計測する前記光学特性計測装置の校正を行うことを特徴とする露光方法。
In an exposure method of illuminating a pattern with illumination light and exposing an object with the illumination light via the pattern and a projection optical system,
13. The optical property measuring device for measuring the optical property of the projection optical system is calibrated using the optical property measuring device calibration method according to claim 9. Exposure method.
JP2009196740A 2009-08-27 2009-08-27 Optical characteristic measuring device and calibration method of the same, and exposure method and exposure device Withdrawn JP2011049369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009196740A JP2011049369A (en) 2009-08-27 2009-08-27 Optical characteristic measuring device and calibration method of the same, and exposure method and exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009196740A JP2011049369A (en) 2009-08-27 2009-08-27 Optical characteristic measuring device and calibration method of the same, and exposure method and exposure device

Publications (1)

Publication Number Publication Date
JP2011049369A true JP2011049369A (en) 2011-03-10

Family

ID=43835414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009196740A Withdrawn JP2011049369A (en) 2009-08-27 2009-08-27 Optical characteristic measuring device and calibration method of the same, and exposure method and exposure device

Country Status (1)

Country Link
JP (1) JP2011049369A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103335824A (en) * 2013-07-04 2013-10-02 中国科学院长春光学精密机械与物理研究所 Detection method of outfield wave front aberration of large-aperture space optical system
CN104335021A (en) * 2012-05-30 2015-02-04 株式会社尼康 Method and device for measuring wavefront, and exposure method and device
CN105842832A (en) * 2016-04-24 2016-08-10 湖南戴斯光电有限公司 Attenuation device for measuring distribution of high-power laser focused light beam
CN116859682A (en) * 2023-08-31 2023-10-10 光科芯图(北京)科技有限公司 Exposure calibration device and method for mask

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104335021A (en) * 2012-05-30 2015-02-04 株式会社尼康 Method and device for measuring wavefront, and exposure method and device
CN103335824A (en) * 2013-07-04 2013-10-02 中国科学院长春光学精密机械与物理研究所 Detection method of outfield wave front aberration of large-aperture space optical system
CN105842832A (en) * 2016-04-24 2016-08-10 湖南戴斯光电有限公司 Attenuation device for measuring distribution of high-power laser focused light beam
CN116859682A (en) * 2023-08-31 2023-10-10 光科芯图(北京)科技有限公司 Exposure calibration device and method for mask
CN116859682B (en) * 2023-08-31 2023-12-08 光科芯图(北京)科技有限公司 Exposure calibration device and method for mask

Similar Documents

Publication Publication Date Title
JP6525045B2 (en) Illumination optical apparatus, exposure apparatus and method of manufacturing device
US7667829B2 (en) Optical property measurement apparatus and optical property measurement method, exposure apparatus and exposure method, and device manufacturing method
US6982786B2 (en) Reticle and optical characteristic measuring method
JP5582287B2 (en) Illumination optical apparatus and exposure apparatus
KR100588117B1 (en) Lithographic Apparatus and Device Manufacturing Method
JP4914408B2 (en) Catadioptric optical system for light diffusion measurement
KR102321222B1 (en) Method and device for inspecting spatial light modulator, and exposure method and device
JPWO2002052620A1 (en) Wavefront aberration measuring apparatus, wavefront aberration measuring method, exposure apparatus, and method for manufacturing microdevice
US7385672B2 (en) Exposure apparatus and method
JP2006332586A (en) Measuring device, device and method for exposing, and device manufacturing method
JP2004289116A (en) Lithographic apparatus and measurement system
JP2002075824A (en) Lighting apparatus using plurality of light sources, lighting control device and method and exposure system
US10120283B2 (en) Illumination method, illumination optical device, and exposure device
JP2011049369A (en) Optical characteristic measuring device and calibration method of the same, and exposure method and exposure device
JP2003059799A (en) Illumination optical system, exposure system, and method of manufacturing microdevice
JP2011077438A (en) Optical characteristic measuring method and device, and exposure method and device
JP2010123724A (en) Method and apparatus for measuring optical characteristic, and exposure apparatus
WO2012160728A1 (en) Illumination method, illumination optical device, and exposure device
JP2005158829A (en) Wavefront aberration instrumentation method and equipment, and aligner
JP4366374B2 (en) Exposure equipment
JP2006108465A (en) Optical characteristic measurement equipment and exposure device
JP2010266418A (en) Measurement method and device, and exposure method and apparatus
JP2011187512A (en) Method and device for wave front aberration measurement, and method and device for exposure
JP2002270491A (en) Aligner, aligner manufacturing method, wave front aberration measuring apparatus and microdevice manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20121106