JP2011049203A - Method of manufacturing solid-state imaging element - Google Patents

Method of manufacturing solid-state imaging element Download PDF

Info

Publication number
JP2011049203A
JP2011049203A JP2009193965A JP2009193965A JP2011049203A JP 2011049203 A JP2011049203 A JP 2011049203A JP 2009193965 A JP2009193965 A JP 2009193965A JP 2009193965 A JP2009193965 A JP 2009193965A JP 2011049203 A JP2011049203 A JP 2011049203A
Authority
JP
Japan
Prior art keywords
solid
state imaging
protective film
manufacturing
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009193965A
Other languages
Japanese (ja)
Inventor
Tomohito Kitamura
智史 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2009193965A priority Critical patent/JP2011049203A/en
Publication of JP2011049203A publication Critical patent/JP2011049203A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a highly reliable solid-state imaging element which is free of corrosion of electrode pads to have an excellent electric connection with the outside when manufacturing a solid-state imaging element having high use efficiency of light. <P>SOLUTION: The method of manufacturing the solid-state imaging element such that an insulating layer 4 having a plurality of recessed parts 5 corresponding to light reception parts of a plurality of photoelectric conversion elements 2 provided on a surface of a semiconductor substrate 1 and reaching the light reception parts on the surface of the substrate, the electrode pads 3 for the electric connection with the outside are provided on a surface of the insulating layer except the recessed parts, and a resin 7 having a higher refractive index than the insulating layer fills the recessed parts includes, in order, the steps of forming protective films 6 covering the electrode pads and exposing the recessed parts; filling the recessed parts with the high-refractive-index resin; and removing the protective films. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、CCDやCMOSからなる光電変換素子を形成した固体撮像素子の製造方法に関する。   The present invention relates to a method for manufacturing a solid-state imaging element in which a photoelectric conversion element composed of a CCD or a CMOS is formed.

近年、撮像装置は画像の記録、通信、放送の内容の拡大に伴って広く用いられるようになっている。撮像装置として種々の形式のものが提案されているが、小型、軽量で高性能のものが安定して製造されるようになった固体撮像素子を組み込んだ撮像装置が、デジタルカメラやデジタルビデオとして普及してきている。   In recent years, imaging devices have been widely used with the expansion of the contents of image recording, communication, and broadcasting. Various types of image pickup devices have been proposed. An image pickup device incorporating a solid-state image pickup device that has been stably manufactured with a small size, light weight, and high performance can be used as a digital camera or digital video. It has become widespread.

固体撮像素子は、撮影対象物からの光学像を受け、入射した光を電気信号に変換する複数の光電変換素子を有する。光電変換素子の種類はCCD(電荷結合素子)タイプとCMOS(相補型金属酸化物半導体)タイプとに大別される。また、光電変換素子の配列形態から、光電変換素子を1列に配置したリニアセンサー(ラインセンサー)と、光電変換素子を縦横に2次元的に配列させたエリアセンサー(面センサー)との2種類に大別される。いずれのセンサにおいても光電変換素子の数(画素数)が多いほど撮影された画像は精密になる。   The solid-state imaging device has a plurality of photoelectric conversion elements that receive an optical image from a subject and convert incident light into an electrical signal. The types of photoelectric conversion elements are roughly classified into CCD (charge coupled device) type and CMOS (complementary metal oxide semiconductor) type. In addition, there are two types of photoelectric conversion elements: linear sensors (line sensors) in which photoelectric conversion elements are arranged in a row, and area sensors (surface sensors) in which photoelectric conversion elements are two-dimensionally arranged vertically and horizontally. It is divided roughly into. In any sensor, the larger the number of photoelectric conversion elements (number of pixels), the more accurate the captured image.

また、光電変換素子に入射する光の経路に、特定の波長の光を透過する各種のカラーフィルタを設けることで対象物の色情報を得ることを可能としたカラーセンサーも普及している。カラーフィルタの色としては、赤色(R)、青色(B)、緑色(G)の3色からなる3原色系、あるいは、シアン色(C)、マゼンタ色(M)、イエロー色(Y)からなる補色系が一般的である。   In addition, a color sensor that can obtain color information of an object by providing various color filters that transmit light of a specific wavelength in the path of light incident on the photoelectric conversion element is also widespread. As the color of the color filter, three primary colors consisting of three colors of red (R), blue (B), and green (G), or cyan (C), magenta (M), and yellow (Y) are used. A complementary color system is generally used.

固体撮像素子に要求される性能で重要な課題の一つに、入射する光への感度を向上させることが挙げられる。できるだけ小型化した固体撮像素子で撮影した画像の情報量を多くするためには受光部となる光電変換素子を微細化して高集積化する必要がある。しかし、光電変換素子を微細化した場合、各光電変換素子の面積が小さくなり、受光部として利用できる面積割合も減るので、光を取り込む面積が小さくなるため、光電変換素子の受光部に取り込める光の量が少なくなり、実効的な感度は低下する。   One of the important issues in performance required for a solid-state imaging device is to improve the sensitivity to incident light. In order to increase the amount of information of an image taken with a solid-state imaging device that is as small as possible, it is necessary to miniaturize and highly integrate a photoelectric conversion device that serves as a light receiving unit. However, when the photoelectric conversion element is miniaturized, the area of each photoelectric conversion element is reduced, and the area ratio that can be used as the light receiving unit is also reduced. And the effective sensitivity decreases.

このような、微細化した固体撮像素子の感度の低下を防止するための手段として、光電変換素子の受光部に効率良く光を取り込むために、対象物から入射される光を集光して光電変換素子の受光部に導くマイクロレンズを形成する技術が提案されている。マイクロレンズで光を集光して光電変換素子の受光部に導くことで、受光部の見かけ上の開口率(面積)を大きくすることが可能になり、固体撮像素子の感度の向上が可能になる。また、マイクロレンズと光電変換素子の受光部との距離を短くして、光の取り込み角度を大きくすることで更なる高感度化を図る技術も提案されている。   As a means for preventing such a decrease in sensitivity of the miniaturized solid-state imaging device, in order to efficiently capture light into the light receiving portion of the photoelectric conversion device, the light incident from the object is condensed and photoelectrically A technique for forming a microlens that leads to a light receiving portion of a conversion element has been proposed. By condensing the light with a microlens and guiding it to the light receiving part of the photoelectric conversion element, it becomes possible to increase the apparent aperture ratio (area) of the light receiving part and improve the sensitivity of the solid-state image sensor Become. In addition, a technique for further increasing the sensitivity by shortening the distance between the microlens and the light receiving portion of the photoelectric conversion element and increasing the light capturing angle has been proposed.

また、光電変換素子の受光部上に光導波路を形成する技術も提案されている。即ち、光電変換素子の上部絶縁層にドライエッチングなどの手段で開口部を形成し、開口部内を絶縁層の屈折率よりも高い屈折率の材料で埋め込み、光導波路とする。該光導波路上に、必要により平坦化層を形成して、下地を平坦にした上で、前記カラーフィルタやマイクロレンズを積層形成することにより、マイクロレンズで集光した光を光漏れの少ない光導波路を通して、少ない損失で、光電変換素子に導くことができるので、光の利用効率の高い固体撮像素子が得られる(特許文献1参照)。   A technique for forming an optical waveguide on a light receiving portion of a photoelectric conversion element has also been proposed. That is, an opening is formed in the upper insulating layer of the photoelectric conversion element by means such as dry etching, and the inside of the opening is filled with a material having a refractive index higher than that of the insulating layer to form an optical waveguide. A flattening layer is formed on the optical waveguide, if necessary, and the base is flattened, and the color filter and the microlens are laminated, so that the light condensed by the microlens is light with little light leakage. Since the light can be guided to the photoelectric conversion element with a small loss through the waveguide, a solid-state imaging device with high light utilization efficiency can be obtained (see Patent Document 1).

前記光導波路を形成した固体撮像素子は、画素サイズが2μm以下の高微細化、高集積化した場合に、特に、光の利用効率を向上させるのに有効である。画素サイズが2μm以下の場合、光導波路を形成する開口部の孔径は通常1μm以下、開口部の孔の深さは1〜3μmとすることが多い。   The solid-state imaging device in which the optical waveguide is formed is particularly effective for improving the light utilization efficiency when the pixel size is 2 μm or less and the device is highly miniaturized and highly integrated. When the pixel size is 2 μm or less, the diameter of the opening forming the optical waveguide is usually 1 μm or less, and the depth of the hole in the opening is often 1 to 3 μm.

前記開口部の孔の中に高屈折率材料を埋め込んで光導波路を形成するには、CVD法や真空蒸着法等の薄膜形成手段で高屈折率材料層を形成する方法や、高屈折率性の樹脂をスピンコートやダイコート等の塗布法で形成する方法がある。   In order to form an optical waveguide by embedding a high refractive index material in the hole of the opening, a method of forming a high refractive index material layer by a thin film forming means such as a CVD method or a vacuum deposition method, or a high refractive index property There is a method of forming this resin by a coating method such as spin coating or die coating.

前記光導波路の形成法の内、前者のCVD法や真空蒸着法等の薄膜形成手段を用いる場合には、所定の形状のメタルマスクを基板上に被せた後に露出部に成膜を行う。しかし、前記孔に高屈折率材料を充填するには、1〜3μm程度の厚さの成膜が少なくとも必要となり、成膜時間を長く必要とする前記CVD法や真空蒸着法等の薄膜形成手段は、生産効率上、好ましくない。また、CVD法や真空蒸着法等では、膜表面の平坦性が劣る傾向があるため、後工程のカラーフィルタやマイクロレンズの形成において、所望の形状に形成できない可能性がある。さらに、前記平坦性を改良するために、前記成膜後に、成膜面を研磨して平坦化することができるが、生産性が低下し、生産コストが高くなるので好ましくない。   Among the methods for forming the optical waveguide, when using the former thin film forming means such as the CVD method or the vacuum evaporation method, the exposed portion is formed after a metal mask having a predetermined shape is placed on the substrate. However, in order to fill the hole with a high refractive index material, it is necessary to form a film having a thickness of about 1 to 3 μm, and a thin film forming means such as the CVD method or the vacuum evaporation method that requires a long film formation time. Is not preferable in terms of production efficiency. In addition, in the CVD method, the vacuum deposition method, and the like, the flatness of the film surface tends to be inferior, and thus there is a possibility that it cannot be formed into a desired shape in the formation of a color filter or a microlens in a later process. Furthermore, in order to improve the flatness, the film formation surface can be polished and flattened after the film formation, but this is not preferable because the productivity is lowered and the production cost is increased.

このため、前記光導波路の形成法の内、後者の塗布法が多く試みられている。すなわち、前記開口部の孔の中に高屈折率材料を埋め込んで光導波路を形成するには、例えばTiOの高屈折率の粒子を分散した樹脂を、光電変換素子を含む半導体基板上に全面塗布した後に、不要部の樹脂を除去することにより形成することができる。除去すべき不要部の樹脂とは、外部との電気的接続端子となる電極パッドなどの表面を覆う樹脂がその代表例である。 For this reason, many of the latter coating methods have been attempted among the methods for forming the optical waveguide. That is, in order to form an optical waveguide by embedding a high refractive index material in the hole of the opening, for example, a resin in which particles of high refractive index of TiO 2 are dispersed over the semiconductor substrate including the photoelectric conversion element After the application, the resin can be formed by removing unnecessary resin. A typical example of the unnecessary resin to be removed is a resin that covers the surface of an electrode pad or the like that serves as an electrical connection terminal with the outside.

特開2002−118245号公報JP 2002-118245 A

前記塗布法による光導波路の形成に際して、TiOの高屈折率の粒子を分散した樹脂を全面塗布した後に不要部の樹脂を除去する方法には、大別して2つの方法がある。1つは、熱硬化剤を混合して熱硬化性樹脂を使用する場合で、樹脂の硬化後、電極パッド上の樹脂をドライエッチング等で選択的に除去する。しかし、前記熱硬化性樹脂のドライエッチングに用いるフッ素系ガスがアルミニウム等の金属からなる電極パッドを腐食し、外部との電気的接続に支障をきたす。 When forming the optical waveguide by the coating method, there are roughly two methods for removing the resin in unnecessary portions after coating the entire surface of the resin in which particles of high refractive index of TiO 2 are dispersed. One is a case where a thermosetting resin is used by mixing a thermosetting agent. After the resin is cured, the resin on the electrode pad is selectively removed by dry etching or the like. However, the fluorine-based gas used for dry etching of the thermosetting resin corrodes the electrode pad made of a metal such as aluminum, thereby hindering electrical connection with the outside.

不要部の樹脂を除去する他の方法は、感光性を有する高屈折率粒子分散樹脂を使用する場合で、樹脂を塗布後、所定の部位にパターン露光した後に現像を行い、必要により樹脂の硬化を行うことで、所定の部位に樹脂を残存させるフォトリソグラフィー法を用いる。フォトリソグラフィー法のみを用いる本工程は、比較的高い生産性が得られる。しかし、感光性樹脂を現像する際に、現像液がアルミニウム等の金属からなる電極パッドを腐食し、外部との電気的接続に支障をきたす。   Another method for removing the resin in unnecessary parts is when a high refractive index particle-dispersed resin having photosensitivity is used. After applying the resin, development is performed after pattern exposure to a predetermined portion, and if necessary, the resin is cured. By using the photolithography method, the resin is left in a predetermined portion. In this process using only the photolithography method, relatively high productivity can be obtained. However, when developing the photosensitive resin, the developer corrodes the electrode pad made of a metal such as aluminum, which hinders electrical connection with the outside.

また、固体撮像素子の製造において、前記光導波路の形成後、必要に応じてカラーフィルタやマイクロレンズを形成する。カラーフィルタやマイクロレンズを形成するにあたっても、フォトリソグラフィー法を用いることが一般的である。すなわち、感光性を有する材料を塗布後、所定のパターンを有する露光用フォトマスクを介して材料塗布面にパター
ン露光を行い、しかる後に材料の現像、さらに必要により、現像後の残存物の硬膜処理を行う。カラーフィルタやマイクロレンズを形成する場合にも現像液を用いるため、現像液がアルミニウム等の金属からなる電極パッドを腐食し、外部との電気的接続に支障をきたす。
In the manufacture of a solid-state imaging device, a color filter and a microlens are formed as necessary after the optical waveguide is formed. In forming a color filter or a microlens, a photolithography method is generally used. That is, after applying a photosensitive material, pattern exposure is performed on the material application surface through an exposure photomask having a predetermined pattern, and then the material is developed, and if necessary, the cured film of the residue after development. Process. Since a developing solution is used also when forming a color filter or a microlens, the developing solution corrodes an electrode pad made of a metal such as aluminum, thereby hindering electrical connection with the outside.

本発明は、前記の問題点に鑑みて提案するものであり、本発明が解決しようとする課題は、光の利用効率の高い固体撮像素子を製造するにあたって、電極パッドに腐食が無く、外部との電気的接続が良好で信頼性の高い固体撮像素子を製造する方法を提供することである。   The present invention is proposed in view of the above-described problems, and the problem to be solved by the present invention is that, when manufacturing a solid-state imaging device with high light utilization efficiency, the electrode pad is not corroded, and externally It is an object of the present invention to provide a method for manufacturing a solid-state imaging device with good electrical connection and high reliability.

上記の課題を解決するための手段として、請求項1に記載の発明は、半導体基板表面に設けた複数の光電変換素子の受光部に対応して該受光部に達する複数の凹部を有する絶縁層を該基板表面に形成し、該絶縁層の凹部を除く表面に外部との電気的接続のための電極パッドを設け、該絶縁層の屈折率より高い屈折率を有する樹脂にて該凹部を充填した固体撮像素子の製造方法であって、前記電極パッドを被覆し、かつ、該凹部を露出する状態に保護膜を形成する工程と、該凹部に高屈折率樹脂を埋め込む工程と、前記保護膜を除去する工程と、を上記の順に実行することを特徴とする固体撮像素子の製造方法である。   As means for solving the above problems, the invention according to claim 1 is an insulating layer having a plurality of recesses reaching the light receiving portions corresponding to the light receiving portions of the plurality of photoelectric conversion elements provided on the surface of the semiconductor substrate. Is formed on the surface of the substrate, and electrode pads for electrical connection to the outside are provided on the surface of the insulating layer excluding the recesses, and the recesses are filled with a resin having a refractive index higher than that of the insulating layer. A method of manufacturing a solid-state imaging device comprising: a step of forming a protective film so as to cover the electrode pad and exposing the concave portion; a step of embedding a high refractive index resin in the concave portion; and the protective film And a step of removing the solid-state imaging device.

また、請求項2に記載の発明は、前記保護膜に感光性ネガ型レジストを使用し、フォトリソグラフィー法により前記保護膜を形成することを特徴とする請求項1に記載の固体撮像素子の製造方法である。   The invention according to claim 2 uses a photosensitive negative resist as the protective film, and forms the protective film by a photolithography method. Is the method.

また、請求項3に記載の発明は、前記保護膜の厚さを0.03〜0.5μmとすることを特徴とする請求項1または2に記載の固体撮像素子の製造方法である。   The invention according to claim 3 is the method for manufacturing a solid-state imaging device according to claim 1 or 2, wherein the thickness of the protective film is 0.03 to 0.5 μm.

また、請求項4に記載の発明は、前記保護膜を除去する工程が、前記電極パッド上に被覆した前記保護膜の所定の部位を露出する状態に耐エッチング層を形成する工程と、前記保護膜の露出部分のドライエッチングを行って前記電極パッドを露出する工程と、を上記の順に実行することを特徴とする請求項1〜3のいずれかに記載の固体撮像素子の製造方法である。   According to a fourth aspect of the present invention, the step of removing the protective film includes a step of forming an etching resistant layer in a state in which a predetermined portion of the protective film coated on the electrode pad is exposed, and the protection The method of manufacturing a solid-state imaging device according to claim 1, wherein the step of performing dry etching on an exposed portion of the film to expose the electrode pad is performed in the order described above.

また、請求項5に記載の発明は、前記凹部に高屈折率樹脂を埋め込む工程と、前記耐エッチング層を形成する工程との間に、カラーフィルタ形成工程を実行することを特徴とする請求項4に記載の固体撮像素子の製造方法である。   The invention according to claim 5 is characterized in that a color filter forming step is executed between the step of embedding a high refractive index resin in the recess and the step of forming the etching resistant layer. 4. A method for producing a solid-state imaging device according to 4.

また、請求項6に記載の発明は、前記カラーフィルタ形成工程と前記耐エッチング層形成工程との間に、マイクロレンズ形成工程を実行することを特徴とする請求項5に記載の固体撮像素子の製造方法である。   The invention described in claim 6 is characterized in that a microlens forming step is executed between the color filter forming step and the etching resistant layer forming step. It is a manufacturing method.

本発明は、固体撮像素子を製造するための複数の光電変換素子を有する半導体基板上で、微細化した光電変換素子の光利用効率を高めて総合的に感度向上を図る手段として、光電変換素子の受光部上の開口部に光導波路を設ける方式を実施するにあたって、最適な製造方法を提案する。すなわち、光導波路を構成するための凹部への埋め込み材料形成に際して、予め電極パッドを選択的に保護膜で覆っておくことにより、電極パッドの腐食を発生させず、外部との電気的接続が良好で信頼性の高い固体撮像素子を製造できる。   The present invention relates to a photoelectric conversion element as a means for enhancing the light utilization efficiency of a miniaturized photoelectric conversion element and improving sensitivity comprehensively on a semiconductor substrate having a plurality of photoelectric conversion elements for manufacturing a solid-state imaging element. An optimal manufacturing method is proposed in implementing the method of providing an optical waveguide in the opening on the light receiving portion. That is, when forming the filling material in the concave portion for forming the optical waveguide, the electrode pad is selectively covered with a protective film in advance, so that the electrode pad is not corroded and the external electrical connection is good. And a highly reliable solid-state imaging device can be manufactured.

また、請求項5によれば、前記電極パッドの腐食を発生させず、外部との電気的接続が良好で信頼性の高い、カラーセンサー機能を有する固体撮像素子を製造できる。   According to the fifth aspect of the present invention, it is possible to manufacture a solid-state imaging device having a color sensor function that does not cause corrosion of the electrode pad, has good electrical connection with the outside, and has high reliability.

また、請求項6によれば、前記電極パッドの腐食を発生させず、外部との電気的接続が良好で信頼性の高い、さらに高感度のカラーセンサー機能を有する固体撮像素子を製造できる。   According to the sixth aspect of the present invention, it is possible to manufacture a solid-state imaging device that does not cause corrosion of the electrode pad, has good electrical connection with the outside, has high reliability, and has a highly sensitive color sensor function.

本発明の固体撮像素子の製造方法の第一の例を工程順に説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the 1st example of the manufacturing method of the solid-state image sensor of this invention to process order. 本発明の固体撮像素子の製造方法の中で、保護膜を除去する工程を順に説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating in order the process of removing a protective film in the manufacturing method of the solid-state image sensor of this invention. 本発明の固体撮像素子の製造方法の第二の例の一部を工程順に説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating a part of 2nd example of the manufacturing method of the solid-state image sensor of this invention to process order. 本発明の固体撮像素子の製造方法の第三の例の一部を工程順に説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating a part of 3rd example of the manufacturing method of the solid-state image sensor of this invention to process order.

本発明を実施するための形態について、以下、図面に従って説明する。
図1は、本発明の固体撮像素子の製造方法の第一の例を工程順に説明するための断面模式図である。(a)は、基板表面に設けた複数の光電変換素子2の受光部に対応して該受光部に達する複数の凹部5を有する絶縁層4を該基板表面に形成し、該絶縁層の凹部5を除く表面に外部との電気的接続のための電極パッド3を設けた半導体基板1を示す。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
FIG. 1 is a schematic cross-sectional view for explaining a first example of a method for producing a solid-state imaging device of the present invention in the order of steps. (A) forms an insulating layer 4 having a plurality of recesses 5 reaching the light receiving portions corresponding to the light receiving portions of the plurality of photoelectric conversion elements 2 provided on the substrate surface, and the recesses of the insulating layer 1 shows a semiconductor substrate 1 in which electrode pads 3 for electrical connection with the outside are provided on the surface excluding 5.

半導体基板1としては、通常シリコン基板を用い、フォトダイオードとして機能する光電変換素子2を基板表面に受光部を設けて、1次元または2次元状に多数配置する。前記受光部を設けた基板表面上にSiO膜よりなる絶縁層4を形成し、各受光部に対応してほぼ垂直に受光面に達する複数の凹部5を設ける。該凹部は光導波路として、各凹部の入口部分から対応する各受光部へ光の損失を少なく導くための構造を形作る。また、該絶縁層の凹部5を除く表面に外部との電気的接続のためにアルミニウム等の金属からなる電極パッド3を適宜設け、絶縁層4の内部に予め設けた多層配線層(図示せず)を通じて、複数の光電変換素子2による光電変換信号を転送することができる。 As the semiconductor substrate 1, a silicon substrate is usually used, and a large number of photoelectric conversion elements 2 functioning as photodiodes are arranged in a one-dimensional or two-dimensional manner by providing a light receiving portion on the substrate surface. An insulating layer 4 made of a SiO 2 film is formed on the substrate surface provided with the light receiving portion, and a plurality of recesses 5 reaching the light receiving surface substantially vertically corresponding to each light receiving portion. The concave portion serves as an optical waveguide to form a structure for reducing light loss from the entrance portion of each concave portion to the corresponding light receiving portion. In addition, an electrode pad 3 made of a metal such as aluminum is appropriately provided on the surface of the insulating layer excluding the recess 5 for electrical connection to the outside, and a multilayer wiring layer (not shown) provided in advance inside the insulating layer 4. ), The photoelectric conversion signals by the plurality of photoelectric conversion elements 2 can be transferred.

本発明は、(c)に示す高屈折率樹脂7の前記凹部5への埋め込みに先立って、前記電極パッド3を被覆し、かつ、該凹部5を露出する状態に保護膜6を形成する工程を実施する(b)。前記保護膜6に感光性ネガ型レジストを使用し、フォトリソグラフィー法により前記保護膜6を形成する。感光性ネガ型レジストを使用する理由は、微細化した光電変換素子の光利用効率を高めて総合的に感度向上を図る目的で設ける光導波路の前記凹部5を露出することに関係する。即ち、例えば前記凹部5の孔径が1μm、深さが1〜3μm程度である場合、前記保護膜6に感光性ポジ型レジストを使用して凹部内に光を照射後現像してレジストを分解除去し、該凹部5を露出する状態にしようとすると、凹部内のレジストへの光照射が不充分となることが多く、現像後に除去すべきレジストが残渣として残る可能性が有る。   In the present invention, prior to embedding the high refractive index resin 7 shown in (c) in the recess 5, the electrode pad 3 is covered and the protective film 6 is formed so as to expose the recess 5. (B). A photosensitive negative resist is used for the protective film 6, and the protective film 6 is formed by photolithography. The reason for using the photosensitive negative resist is related to exposing the concave portion 5 of the optical waveguide provided for the purpose of improving the light utilization efficiency of the miniaturized photoelectric conversion element and improving the sensitivity comprehensively. That is, for example, when the hole diameter of the concave portion 5 is about 1 μm and the depth is about 1 to 3 μm, a photosensitive positive resist is used for the protective film 6 and light is irradiated into the concave portion, followed by development to decompose and remove the resist. However, if it is attempted to expose the concave portion 5, light irradiation to the resist in the concave portion is often insufficient, and the resist to be removed after development may remain as a residue.

前記保護膜6の厚さは、0.03〜0.5μmとすることが好ましい。0.03μmに満たない厚さの薄いものでは、前記電極パッド3を被覆し保護する目的を充分に果たせない。また、0.5μmを超える厚い保護膜6を形成しようとすると、保護膜に用いるレジストを塗布する工程で、レジストにより前記凹部5を塞いでしまい、現像工程で、凹部内への現像液の充分な進入が妨げられる。その結果、凹部内のレジストを残渣無く除去することが困難になる。   The thickness of the protective film 6 is preferably 0.03 to 0.5 μm. If the thickness is less than 0.03 μm, the object of covering and protecting the electrode pad 3 cannot be sufficiently achieved. Further, if a thick protective film 6 exceeding 0.5 μm is to be formed, the recess 5 is blocked by the resist in the step of applying a resist used for the protective film, and a sufficient amount of developer in the recess is formed in the development step. Entry is hindered. As a result, it becomes difficult to remove the resist in the recess without any residue.

図1(c)に示す高屈折率樹脂7の前記凹部5への埋め込み材料として、絶縁層4を構
成するSiO膜より高い屈折率を有する感光性ポジ型レジストを用いる。(b)に示す保護膜6を形成済みの基板上に、約1μmの厚さに塗布し、画素部分に多数開いた光導波路となる凹部5の集まりの上に選択的に高屈折率樹脂7を残すように、選択露光し、その後、現像、熱処理することにより、該凹部5に高屈折率樹脂7を埋め込む。高屈折率樹脂7が埋め込まれた凹部5は、光導波路として機能して、外部からの光を各光電変換素子2に効率良く導くことができる。
A photosensitive positive resist having a higher refractive index than the SiO 2 film constituting the insulating layer 4 is used as a material for embedding the high refractive index resin 7 shown in FIG. The protective film 6 shown in (b) is applied to a substrate having a thickness of about 1 μm, and the high refractive index resin 7 is selectively formed on a group of recesses 5 to be optical waveguides that are open in the pixel portion. The high refractive index resin 7 is embedded in the recess 5 by performing selective exposure so as to leave, and then developing and heat treatment. The concave portion 5 in which the high refractive index resin 7 is embedded functions as an optical waveguide, and can efficiently guide light from the outside to each photoelectric conversion element 2.

次に、(d)に示すように、電極パッド3上の保護膜6を除去する工程を行って、電極パッド露出面31を得る。この工程の詳細を、以下、図2に従って述べる。   Next, as shown in (d), the step of removing the protective film 6 on the electrode pad 3 is performed to obtain the electrode pad exposed surface 31. Details of this step will be described below with reference to FIG.

図2は、本発明の固体撮像素子の製造方法の中で、保護膜を除去する工程を順に説明するための断面模式図である。図2(a)は、図1(c)に示した状態と同一であって、高屈折率樹脂7を前記凹部5に選択的に埋め込んだ状態である。前記保護膜6を除去する工程の第一段階として、図2(b)に示すように、前記保護膜6を含む表面上に耐エッチング層61を形成する。耐エッチング層61として、感光性ポジ型レジストを7μmの厚さに塗布し、プレベイク後、前記電極パッド3上に被覆した前記保護膜6の所定の部位に選択的に露光し、引き続き有機アルカリ現像水溶液にて現像することにより、前記保護膜6の所定の部位を露出する状態とする。   FIG. 2 is a schematic cross-sectional view for sequentially explaining the process of removing the protective film in the method for manufacturing the solid-state imaging device of the present invention. FIG. 2A is the same as the state shown in FIG. 1C, and shows a state in which the high refractive index resin 7 is selectively embedded in the concave portion 5. As a first step in the process of removing the protective film 6, an etching resistant layer 61 is formed on the surface including the protective film 6, as shown in FIG. As the etching resistant layer 61, a photosensitive positive resist is applied to a thickness of 7 μm, and after pre-baking, a predetermined portion of the protective film 6 coated on the electrode pad 3 is selectively exposed, followed by organic alkali development. By developing with an aqueous solution, a predetermined portion of the protective film 6 is exposed.

次に、ドライエッチングにより、前記保護膜6の露出された部位を除去して下部の電極パッド露出面31を得る(c)。なお、ドライエッチングに使用するガスとしては、前記保護膜6と前記耐エッチング層61とに使用されるレジスト材料の性質より、酸素系ガスを使用することができるので、前述の高屈折率粒子分散の熱硬化樹脂材料をドライエッチングする場合のようなフッ素系ガスを使って電極パッド3を腐食する恐れは無い。   Next, the exposed portion of the protective film 6 is removed by dry etching to obtain a lower electrode pad exposed surface 31 (c). As the gas used for dry etching, an oxygen-based gas can be used because of the nature of the resist material used for the protective film 6 and the etching-resistant layer 61. There is no possibility that the electrode pad 3 is corroded by using a fluorine-based gas as in the case of dry etching the thermosetting resin material.

次いで、(d)に示すように、エッチングされずに残った耐エッチング層61を剥離液にて除去する。なお、図では、電極パッド3の周辺部上に保護膜6の一部が残る構造となっているが、外部との電気的接続に支障が無く、完成した固体撮像素子の実装時に影響のない範囲であれば、制約されない。   Next, as shown in (d), the etching-resistant layer 61 remaining without being etched is removed with a stripping solution. In the figure, a part of the protective film 6 remains on the periphery of the electrode pad 3, but there is no problem in electrical connection with the outside, and there is no influence when the completed solid-state imaging device is mounted. If it is a range, it is not restricted.

本発明は、また、カラーフィルタやマイクロレンズを有する固体撮像素子の製造方法を提案することができる。図3は、本発明の固体撮像素子の製造方法の第二の例の一部を工程順に説明するための断面模式図であって、カラーフィルタを有する場合である。図1(c)に示した高屈折率樹脂を埋め込む工程を、図3(a)に再掲する。カラーフィルタ82を形成する工程(b)が、前記耐エッチング層61を形成する工程(c)に先立って実施される。なお、カラーフィルタ82を形成する前に、下地の平坦化を改善しておくことが望ましいので、第一の平坦化膜81を形成する。第一の平坦化膜81としては、アクリル樹脂溶液を0.1μmの厚さで塗布形成し、熱処理する。第一の平坦化膜81を形成後、緑色の顔料分散樹脂である感光性ネガ型レジストを塗布し、プレベイク、選択的露光、現像、熱処理の各工程を経て、緑色パターンを形成し、以下、同様の手段で、青色パターン、赤色パターンを隣接位置に形成して3色のカラーフィルタパターンを得る。次に、耐エッチング層61の形成と、その後の保護膜6のドライエッチングと、最後の耐エッチング層61の剥離除去は、図3(c)、(d)に示すように、前述のカラーフィルタの無い構造の場合の図2の(b)、(c)、(d)と同様に行うことができる。   The present invention can also propose a method for manufacturing a solid-state imaging device having a color filter and a microlens. FIG. 3 is a schematic cross-sectional view for explaining a part of the second example of the manufacturing method of the solid-state imaging device of the present invention in the order of steps, and shows a case where a color filter is included. The process of embedding the high refractive index resin shown in FIG. 1C is shown again in FIG. The step (b) for forming the color filter 82 is performed prior to the step (c) for forming the etching resistant layer 61. Since it is desirable to improve the planarization of the base before forming the color filter 82, the first planarization film 81 is formed. As the first planarizing film 81, an acrylic resin solution is applied and formed to a thickness of 0.1 μm and heat-treated. After forming the first flattened film 81, a photosensitive negative resist that is a green pigment dispersion resin is applied, and a green pattern is formed through prebaking, selective exposure, development, and heat treatment steps. By using the same means, a blue pattern and a red pattern are formed at adjacent positions to obtain three color filter patterns. Next, the formation of the etching resistant layer 61, the subsequent dry etching of the protective film 6, and the last removal of the etching resistant layer 61 are performed as shown in FIGS. 3 (c) and 3 (d). This can be performed in the same manner as (b), (c), and (d) in FIG.

図4は、本発明の固体撮像素子の製造方法の第三の例の一部を工程順に説明するための断面模式図であって、カラーフィルタとマイクロレンズとを有する場合である。図3(b)に示したカラーフィルタ形成工程を、図4(a)に再掲する。マイクロレンズ84を形成する工程(b)が、前記耐エッチング層61を形成する工程(c)に先立って実施される。なお、マイクロレンズ84を形成する前に、下地の平坦化を改善しておくことが望ましいので、第二の平坦化膜83を形成する。第二の平坦化膜83としては、アクリル樹脂溶液を0.2μmの厚さで塗布形成し、熱処理する。第二の平坦化膜83を形成後、レンズ材料となる透明樹脂である感光性ポジ型レジストを塗布形成し、プレベイク、選択露光後、有機アルカリ現像水溶液にて現像し、熱処理工程を加えて熱フロー挙動を利用することによりマイクロレンズを形成する。次に、耐エッチング層61の形成と、その後の保護膜6のドライエッチングと、最後の耐エッチング層61の剥離除去は、図4(c)、(d)に示すように、前述のカラーフィルタもマイクロレンズも無い構造の場合の図2の(b)、(c)、(d)と同様に行うことができる。   FIG. 4 is a schematic cross-sectional view for explaining a part of the third example of the manufacturing method of the solid-state imaging device of the present invention in the order of steps, and includes a case where a color filter and a microlens are included. The color filter forming process shown in FIG. 3B is repeated in FIG. The step (b) of forming the microlens 84 is performed prior to the step (c) of forming the etching resistant layer 61. Since it is desirable to improve the planarization of the base before forming the microlens 84, the second planarization film 83 is formed. As the second planarizing film 83, an acrylic resin solution is applied and formed to a thickness of 0.2 μm and heat-treated. After forming the second planarizing film 83, a photosensitive positive resist, which is a transparent resin as a lens material, is applied and formed, pre-baked, selectively exposed, developed with an organic alkali developing aqueous solution, and subjected to a heat treatment step to add heat. Microlenses are formed by utilizing flow behavior. Next, the formation of the etching resistant layer 61, the subsequent dry etching of the protective film 6, and the last removal of the etching resistant layer 61 are performed as shown in FIGS. 4 (c) and 4 (d). And (b), (c), and (d) of FIG.

なお、上記のマイクロレンズを有する構造の固体撮像素子の例は、一般的にカラーフィルタを伴う場合が多いが、カラーフィルタを有しないマイクロレンズ付きの固体撮像素子の場合にも、上記と同様の考え方で、マイクロレンズ形成工程を組み込むことは容易に考えられる。   In addition, although the example of the solid-state image sensor of the structure which has said micro lens generally has a color filter in many cases, it is the same as the above also in the case of the solid-state image sensor with a micro lens which does not have a color filter. In view of this, it is easy to incorporate a microlens formation process.

本発明によって、カラーフィルタとマイクロレンズを有する固体撮像素子を製造したところ、得られた固体撮像素子は、電極パッドの腐食が無く、実装時のボンディング不良の無い、信頼性の高い高品質のカラー固体撮像素子であった。また、光導波路構造となっているため、画素サイズ1.75μmと微細な素子であるにも拘らず、高感度で混色の無い特性が得られた。   According to the present invention, a solid-state imaging device having a color filter and a microlens was manufactured. As a result, the obtained solid-state imaging device had no electrode pad corrosion, no bonding failure during mounting, and a high-quality color with high reliability. It was a solid-state image sensor. In addition, because of the optical waveguide structure, high sensitivity and no color mixing characteristics were obtained despite the small element size of 1.75 μm.

1・・・半導体基板
2・・・光電変換素子
3・・・電極パッド
4・・・絶縁層
5・・・凹部
6・・・保護膜
7・・・高屈折率樹脂
31・・電極パッド露出面
61・・耐エッチング層
81・・第一の平坦化膜
82・・カラーフィルタ
83・・第二の平坦化膜
84・・マイクロレンズ
DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate 2 ... Photoelectric conversion element 3 ... Electrode pad 4 ... Insulating layer 5 ... Recess 6 ... Protective film 7 ... High refractive index resin 31 ... Electrode pad exposure Surface 61 .. Etching resistant layer 81.. First planarization film 82.. Color filter 83.. Second planarization film 84.

Claims (6)

半導体基板表面に設けた複数の光電変換素子の受光部に対応して該受光部に達する複数の凹部を有する絶縁層を該基板表面に形成し、該絶縁層の凹部を除く表面に外部との電気的接続のための電極パッドを設け、該絶縁層の屈折率より高い屈折率を有する樹脂にて該凹部を充填した固体撮像素子の製造方法であって、前記電極パッドを被覆し、かつ、該凹部を露出する状態に保護膜を形成する工程と、該凹部に高屈折率樹脂を埋め込む工程と、前記保護膜を除去する工程と、を上記の順に実行することを特徴とする固体撮像素子の製造方法。   An insulating layer having a plurality of recesses reaching the light receiving portions corresponding to the light receiving portions of the plurality of photoelectric conversion elements provided on the surface of the semiconductor substrate is formed on the substrate surface, and the surface of the insulating layer excluding the recesses is connected to the outside. An electrode pad for electrical connection is provided, and a method of manufacturing a solid-state imaging device in which the recess is filled with a resin having a refractive index higher than that of the insulating layer, the electrode pad being covered, and A solid-state imaging device comprising: a step of forming a protective film in a state of exposing the concave portion; a step of embedding a high refractive index resin in the concave portion; and a step of removing the protective film in the order described above. Manufacturing method. 前記保護膜に感光性ネガ型レジストを使用し、フォトリソグラフィー法により前記保護膜を形成することを特徴とする請求項1に記載の固体撮像素子の製造方法。   The method for manufacturing a solid-state imaging device according to claim 1, wherein a photosensitive negative resist is used for the protective film, and the protective film is formed by a photolithography method. 前記保護膜の厚さを0.03〜0.5μmとすることを特徴とする請求項1または2に記載の固体撮像素子の製造方法。   The method for manufacturing a solid-state imaging device according to claim 1, wherein the protective film has a thickness of 0.03 to 0.5 μm. 前記保護膜を除去する工程が、前記電極パッド上に被覆した前記保護膜の所定の部位を露出する状態に耐エッチング層を形成する工程と、前記保護膜の露出部分のドライエッチングを行って前記電極パッドを露出する工程と、を上記の順に実行することを特徴とする請求項1〜3のいずれかに記載の固体撮像素子の製造方法。   The step of removing the protective film includes a step of forming an etching resistant layer so as to expose a predetermined portion of the protective film coated on the electrode pad, and dry etching the exposed portion of the protective film, The method of manufacturing a solid-state imaging device according to claim 1, wherein the step of exposing the electrode pad is performed in the order described above. 前記凹部に高屈折率樹脂を埋め込む工程と、前記耐エッチング層を形成する工程との間に、カラーフィルタ形成工程を実行することを特徴とする請求項4に記載の固体撮像素子の製造方法。   5. The method for manufacturing a solid-state imaging device according to claim 4, wherein a color filter forming step is executed between the step of embedding a high refractive index resin in the concave portion and the step of forming the etching-resistant layer. 前記カラーフィルタ形成工程と前記耐エッチング層形成工程との間に、マイクロレンズ形成工程を実行することを特徴とする請求項5に記載の固体撮像素子の製造方法。   6. The method of manufacturing a solid-state imaging device according to claim 5, wherein a microlens forming step is executed between the color filter forming step and the etching resistant layer forming step.
JP2009193965A 2009-08-25 2009-08-25 Method of manufacturing solid-state imaging element Pending JP2011049203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009193965A JP2011049203A (en) 2009-08-25 2009-08-25 Method of manufacturing solid-state imaging element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009193965A JP2011049203A (en) 2009-08-25 2009-08-25 Method of manufacturing solid-state imaging element

Publications (1)

Publication Number Publication Date
JP2011049203A true JP2011049203A (en) 2011-03-10

Family

ID=43835299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009193965A Pending JP2011049203A (en) 2009-08-25 2009-08-25 Method of manufacturing solid-state imaging element

Country Status (1)

Country Link
JP (1) JP2011049203A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018559A1 (en) * 2011-07-29 2013-02-07 ソニー株式会社 Imaging element and method for manufacturing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018559A1 (en) * 2011-07-29 2013-02-07 ソニー株式会社 Imaging element and method for manufacturing same
JP2013030652A (en) * 2011-07-29 2013-02-07 Sony Corp Imaging element and method for manufacturing the same
KR20140053961A (en) * 2011-07-29 2014-05-08 소니 주식회사 Imaging element and method for manufacturing same
US9380277B2 (en) 2011-07-29 2016-06-28 Sony Corporation Imaging device with reduced color mixing and method of manufacturing the same
KR20190133271A (en) * 2011-07-29 2019-12-02 소니 세미컨덕터 솔루션즈 가부시키가이샤 Imaging element and method for manufacturing same
KR102048592B1 (en) * 2011-07-29 2020-01-22 소니 세미컨덕터 솔루션즈 가부시키가이샤 Imaging element and method for manufacturing same
KR102153848B1 (en) * 2011-07-29 2020-09-08 소니 세미컨덕터 솔루션즈 가부시키가이샤 Imaging element and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP5504695B2 (en) Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus
JP4944399B2 (en) Solid-state imaging device
JP5487686B2 (en) Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus
JP4743842B2 (en) Solid-state image sensor
JP2006295125A (en) Solid-state imaging apparatus, its manufacturing method and camera
JP2012204354A (en) Solid state imaging device, manufacturing method thereof and electronic apparatus
KR102626696B1 (en) Solid-state imaging device and method of manufacturing the same
JP2006261247A (en) Solid state imaging device and its fabrication process
JP2011171328A (en) Solid-state image pickup element and method of manufacturing the same
JP2008103478A (en) Solid-state image sensing device and its manufacturing method
JP2013012518A (en) Solid state imaging device
JP2011124501A (en) Solid-state imaging apparatus and method of manufacturing the same
JP2010062417A (en) Solid-state imaging device and method of manufacturing the same
JP2008160104A (en) Image sensor, and its manufacturing method
JP4905760B2 (en) Color filter manufacturing method, color filter, solid-state image sensor manufacturing method, and solid-state image sensor using the same
JP5224685B2 (en) Photoelectric conversion device, manufacturing method thereof, imaging module, and imaging system
JP6168915B2 (en) Manufacturing method of semiconductor device
JP4549195B2 (en) Solid-state imaging device and manufacturing method thereof
JP4957564B2 (en) Solid-state imaging device and imaging apparatus using the same
JP2008210904A (en) Solid-state image sensing device and its manufacturing method
WO2018193986A1 (en) Solid-state imaging element and method for manufacturing same
KR20060033963A (en) Cmos image sensor and method for fabricating of the same
JP2009152314A (en) Image sensor and its manufacturing method
JP2008016559A (en) Solid-state imaging apparatus
JP2011049203A (en) Method of manufacturing solid-state imaging element