JP2011047607A - Heat pump type hot water heating device - Google Patents

Heat pump type hot water heating device Download PDF

Info

Publication number
JP2011047607A
JP2011047607A JP2009197839A JP2009197839A JP2011047607A JP 2011047607 A JP2011047607 A JP 2011047607A JP 2009197839 A JP2009197839 A JP 2009197839A JP 2009197839 A JP2009197839 A JP 2009197839A JP 2011047607 A JP2011047607 A JP 2011047607A
Authority
JP
Japan
Prior art keywords
hot water
refrigerant
temperature
water
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009197839A
Other languages
Japanese (ja)
Other versions
JP5387235B2 (en
Inventor
Takayuki Kondo
貴幸 近藤
Masayuki Hamada
真佐行 濱田
Kenji Shirai
健二 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009197839A priority Critical patent/JP5387235B2/en
Publication of JP2011047607A publication Critical patent/JP2011047607A/en
Application granted granted Critical
Publication of JP5387235B2 publication Critical patent/JP5387235B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump type hot water heating device capable of performing a defrosting operation while preventing freezing of a water-refrigerant heat exchanger. <P>SOLUTION: This heat pump type hot water heating device includes a refrigerating cycle configured by successively and annularly connecting a compressor for compressing a refrigerant, a four-way valve for switching a refrigerant flow channel, the water-refrigerant heat exchanger exchanging heat between the refrigerant of high temperature and the water, a pressure reducing device for reducing a pressure of the refrigerant, and an evaporator for exchanging heat between the refrigerant and the air, a bypass circuit bypassing from between the pressure reducing device and the evaporator to a suction side of the compressor, a solenoid valve for opening and closing the bypass circuit, and a hot water pump for distributing the water of high temperature produced by the water-refrigerant heat exchanger to a heating terminal. In the defrosting operation of the evaporator, the four-way valve is switched to apply the flow channel to distribute the refrigerant of high temperature from the compressor to the evaporator, the solenoid valve is opened, and the pressure reducing device is closed. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ヒートポンプ式温水暖房装置に関連し、特に、室外熱交換器(蒸発器)の除霜制御に関する。   The present invention relates to a heat pump type hot water heating apparatus, and more particularly to defrosting control of an outdoor heat exchanger (evaporator).

従来では、石油やガスなどの燃焼系の燃料を熱源とした暖房機器の利用が大半を占めていたが、近年ではヒートポンプ技術を利用した暖房市場が急激に拡大している。また、従来の空気調和機においてもヒートポンプ技術を利用して、冷房と暖房の双方を利用することができるものもある(例えば、特許文献1参照)。   Conventionally, heating equipment using combustion fuels such as oil and gas as the heat source has occupied the majority, but in recent years the heating market using heat pump technology has expanded rapidly. Some conventional air conditioners can also use both cooling and heating by using heat pump technology (see, for example, Patent Document 1).

図5は、従来の冷暖可能な空気調和機の構成図である。図5に示すように、従来の空気調和機は、圧縮機101、四方弁102、室内熱交換器103、減圧装置104、室外熱交換器105を順次冷媒配管で環状に接続して構成される冷凍サイクルを有している。そして、室内熱交換器103および室外熱交換器105のそれぞれには空気と冷媒との熱交換を促進させるための室内ファン106、室外ファン107を備えている。   FIG. 5 is a configuration diagram of a conventional air conditioner capable of cooling and heating. As shown in FIG. 5, the conventional air conditioner is configured by sequentially connecting a compressor 101, a four-way valve 102, an indoor heat exchanger 103, a pressure reducing device 104, and an outdoor heat exchanger 105 in an annular manner with refrigerant piping. Has a refrigeration cycle. Each of the indoor heat exchanger 103 and the outdoor heat exchanger 105 includes an indoor fan 106 and an outdoor fan 107 for promoting heat exchange between air and the refrigerant.

そして、暖房運転時には四方弁102を図5(a)に示すように切り替え、圧縮機101からの高温冷媒を室内熱交換器103へ送り、室内ファン106を運転させて室内を暖房している。   During the heating operation, the four-way valve 102 is switched as shown in FIG. 5A, the high-temperature refrigerant from the compressor 101 is sent to the indoor heat exchanger 103, and the indoor fan 106 is operated to heat the room.

ところが、このような空気調和機において暖房運転を継続すると室外熱交換器に着霜してしまうことがある。そのため、図5(b)のように四方弁を切り替えることによって、圧縮機から吐出する高温冷媒を直接室外熱交換器へ送り、冷媒の熱で除霜を行っている。このとき、室内ファン106の運転を停止することによって、室内が冷えないようにしている。   However, when the heating operation is continued in such an air conditioner, the outdoor heat exchanger may be frosted. Therefore, by switching the four-way valve as shown in FIG. 5B, the high-temperature refrigerant discharged from the compressor is directly sent to the outdoor heat exchanger, and defrosting is performed with the heat of the refrigerant. At this time, the operation of the indoor fan 106 is stopped so that the room is not cooled.

また最近では、従来の空気調和機だけでは暖房時に足元が暖まりにくい等の課題があり、それを解消するためにヒートポンプ技術を利用した温水暖房装置が開発されている。ヒートポンプ式温水暖房装置とは、従来の空気調和機が空気と冷媒とを熱交換して室内を暖房していたのに対し、水と冷媒とで熱交換をして温水を室内に循環させることによって暖房を行うものである。   In addition, recently, there are problems such as that it is difficult for the feet to be warmed during heating only with a conventional air conditioner, and in order to solve the problem, a hot water heater using a heat pump technology has been developed. A heat pump type hot water heating device is a conventional air conditioner that heats the air and refrigerant to heat the room, while heat and water circulate in the room by exchanging heat between the water and the refrigerant. Is used for heating.

図6は、ヒートポンプ式温水暖房装置の構成である。図6に示すようにヒートポンプ式温水暖房装置では、図5に示す室内熱交換器103に変えて、水と冷媒とが熱交換を行う水冷媒熱交換器203となる。そして、水冷媒熱交換器203で生成した温水を床暖房パネル等の暖房端末204へ送るための温水ポンプ205を備えている。   FIG. 6 shows a configuration of a heat pump type hot water heating apparatus. As shown in FIG. 6, in the heat pump hot water heating apparatus, instead of the indoor heat exchanger 103 shown in FIG. 5, a water-refrigerant heat exchanger 203 that performs heat exchange between water and the refrigerant is used. And the hot water pump 205 for sending the warm water produced | generated with the water refrigerant | coolant heat exchanger 203 to heating terminals 204, such as a floor heating panel, is provided.

このように構成されたヒートポンプ式温水暖房装置では、温水ポンプ205を駆動することによって、暖房端末204内の温水を循環させて室内の暖房を行う。   In the heat pump type hot water heating apparatus configured as described above, the hot water pump 205 is driven to circulate the hot water in the heating terminal 204 to heat the room.

特開2006−336923号公報JP 2006-336923 A

しかしながら、暖房運転を継続していると室外熱交換器(蒸発器)105に着霜してし
まうので、空気調和機と同じように四方弁を切り替えて室外熱交換器105の除霜運転を行うと、水冷媒熱交換器203を通る水の熱を低温の冷媒に奪われてしまい、暖房端末204へは低温の湯水を送ってしまうことになってしまう。
However, if the heating operation is continued, the outdoor heat exchanger (evaporator) 105 is frosted, so that the outdoor heat exchanger 105 is defrosted by switching the four-way valve in the same manner as the air conditioner. Then, the heat of water passing through the water-refrigerant heat exchanger 203 is taken away by the low-temperature refrigerant, and the low-temperature hot water is sent to the heating terminal 204.

また、空気調和機が除霜運転中に室内ファン106の運転を停止するのと同じように、暖房端末204へ低温水を送らないために温水ポンプ205の運転を停止してしまうと、水冷媒熱交換器203内に残った水が凍結してしまうという課題を有していた。   Similarly, when the air conditioner stops the operation of the indoor fan 106 during the defrosting operation, if the operation of the hot water pump 205 is stopped in order not to send the low-temperature water to the heating terminal 204, the water refrigerant There was a problem that water remaining in the heat exchanger 203 would freeze.

本発明は、前記従来の課題を解決するもので、除霜運転時に水冷媒熱交換器の凍結を防止することができるヒートポンプ式温水暖房装置を提供することを目的とする。   This invention solves the said conventional subject, and it aims at providing the heat pump type hot water heating apparatus which can prevent freezing of a water refrigerant | coolant heat exchanger at the time of a defrost operation.

前記従来の課題を解決するために、本発明のヒートポンプ式温水暖房装置は、冷媒を圧縮する圧縮機、冷媒流路を切り替える四方弁、高温冷媒と水とが熱交換を行う水冷媒熱交換器、冷媒を減圧する減圧装置、冷媒と空気とが熱交換を行う蒸発器を順次環状に接続してなる冷凍サイクルと、減圧装置と蒸発器との間から圧縮機の吸入側へバイパスするバイパス回路と、バイパス回路を開閉する電磁弁と、水冷媒熱交換器で生成した高温水を暖房端末へ送る温水ポンプとを備え、蒸発器の除霜運転において、四方弁を切り替えて圧縮機からの高温冷媒を蒸発器へ送る流路にするとともに、電磁弁を開き、減圧装置を閉めることにより、除霜運転時には、水冷媒熱交換器へは冷媒を流さず、バイパス回路を通って圧縮機の吸入側へ戻されるので、暖房端末へ送る温水の温度低下を防ぐことができる。   In order to solve the above-mentioned conventional problems, a heat pump type hot water heating apparatus of the present invention includes a compressor for compressing a refrigerant, a four-way valve for switching a refrigerant flow path, and a water refrigerant heat exchanger for exchanging heat between high-temperature refrigerant and water. , A decompression device for decompressing the refrigerant, a refrigeration cycle in which an evaporator for heat exchange between the refrigerant and air is sequentially connected in an annular manner, and a bypass circuit for bypassing between the decompression device and the evaporator to the suction side of the compressor And a solenoid valve that opens and closes the bypass circuit, and a hot water pump that sends high-temperature water generated by the water-refrigerant heat exchanger to the heating terminal.In the defrosting operation of the evaporator, the four-way valve is switched to switch the high temperature from the compressor. In addition to the flow path for sending refrigerant to the evaporator, the solenoid valve is opened and the decompression device is closed, so that during the defrosting operation, the refrigerant does not flow to the water-refrigerant heat exchanger, and the compressor is sucked through the bypass circuit. Because it is returned to the side It is possible to prevent a temperature drop of hot water to be sent to the tufts terminal.

本発明は、水冷媒熱交換器の凍結を防止しつつ除霜運転をすることができるヒートポンプ式温水暖房装置を提供することができる。   The present invention can provide a heat pump hot water heating apparatus capable of performing a defrosting operation while preventing freezing of the water refrigerant heat exchanger.

本発明の実施の形態1におけるヒートポンプ式温水暖房装置の構成図The block diagram of the heat pump type hot water heating apparatus in Embodiment 1 of this invention 同実施の形態1における除霜運転のフローチャートFlow chart of defrosting operation in the first embodiment 同実施の形態1におけるヒートポンプ式温水暖房装置の構成図The block diagram of the heat pump type hot water heating apparatus in Embodiment 1 同実施の形態1におけるヒートポンプ式温水暖房装置の構成図The block diagram of the heat pump type hot water heating apparatus in Embodiment 1 (a)従来の空気調和機の構成図(b)従来の空気調和機の構成図(A) Configuration diagram of conventional air conditioner (b) Configuration diagram of conventional air conditioner 従来のヒートポンプ式温水暖房装置の構成図Configuration diagram of conventional heat pump hot water heater

第1の発明のヒートポンプ式温水暖房装置は、冷媒を圧縮する圧縮機、冷媒流路を切り替える四方弁、高温冷媒と水とが熱交換を行う水冷媒熱交換器、冷媒を減圧する減圧装置、冷媒と空気とが熱交換を行う蒸発器を順次環状に接続してなる冷凍サイクルと、減圧装置と蒸発器との間から圧縮機の吸入側へバイパスするバイパス回路と、バイパス回路を開閉する電磁弁と、水冷媒熱交換器で生成した高温水を暖房端末へ送る温水ポンプとを備え、蒸発器の除霜運転において、四方弁を切り替えて圧縮機からの高温冷媒を蒸発器へ送る流路にするとともに、電磁弁を開き、減圧装置を閉めることにより、除霜運転時には、水冷媒熱交換器へは冷媒を流さず、バイパス回路を通って圧縮機の吸入側へ戻されるので、暖房端末へ送る温水の温度低下を防ぐことができる。   The heat pump type hot water heating device of the first invention includes a compressor that compresses refrigerant, a four-way valve that switches a refrigerant flow path, a water refrigerant heat exchanger that exchanges heat between high-temperature refrigerant and water, a decompression device that depressurizes the refrigerant, A refrigerating cycle in which evaporators that exchange heat between refrigerant and air are sequentially connected in an annular manner, a bypass circuit that bypasses between the decompression device and the evaporator to the suction side of the compressor, and an electromagnetic that opens and closes the bypass circuit A flow path that includes a valve and a hot water pump that sends the high-temperature water generated by the water-refrigerant heat exchanger to the heating terminal, and in the defrosting operation of the evaporator, switches the four-way valve to send the high-temperature refrigerant from the compressor to the evaporator In addition, by opening the solenoid valve and closing the decompression device, during the defrosting operation, the refrigerant does not flow to the water-refrigerant heat exchanger and is returned to the compressor suction side through the bypass circuit. Temperature drop of hot water sent to It is possible to prevent.

第2の発明のヒートポンプ式温水暖房装置は、特に第1の発明において、蒸発器の除霜運転は、減圧装置を開き、電磁弁を閉じて圧縮機からの高温冷媒を蒸発器へ送る四方弁除霜運転と、減圧装置を閉じ、電磁弁を開いて圧縮機からの高温冷媒を蒸発器へ送るバイパス除霜運転とで構成され、状況に応じて使い分けることにより、より迅速に除霜運転を完了させることができる。   The heat pump type hot water heating device of the second invention is the four-way valve in which the defrosting operation of the evaporator opens the decompression device, closes the electromagnetic valve and sends the high-temperature refrigerant from the compressor to the evaporator, particularly in the first invention. It consists of a defrosting operation and a bypass defrosting operation that closes the decompression device, opens the solenoid valve, and sends the high-temperature refrigerant from the compressor to the evaporator. Can be completed.

第3の発明のヒートポンプ式温水暖房装置は、特に第2の発明において、水冷媒熱交換器へ入水する湯水の温度を検出する入水温度検出手段と、水冷媒熱交換器から出湯する湯水の温度を検出する出湯温度検出手段とを備え、蒸発器の除霜運転において、出湯温度検出手段で検出される出湯温度と、入水温度検出手段で検出される入水温度との温度差が第1の所定温度以上であれば、四方弁除霜運転を行い、出湯温度と入水温度との温度差が第1の所定温度以下であれば、バイパス除霜運転を行うことにより、除霜運転時間を短縮して高効率な運転ができるとともに、暖房端末へ送る湯水の温度低下を防止して快適性を維持することができる。   The heat pump type hot water heating apparatus of the third invention is the temperature of hot water discharged from the water / refrigerant heat exchanger and the water temperature detecting means for detecting the temperature of hot water entering the water / refrigerant heat exchanger in the second invention. The temperature difference between the hot water temperature detected by the hot water temperature detecting means and the incoming water temperature detected by the incoming water temperature detecting means in the defrosting operation of the evaporator is a first predetermined temperature. If the temperature is higher than the temperature, the four-way valve defrosting operation is performed. If the temperature difference between the tapping temperature and the incoming water temperature is equal to or lower than the first predetermined temperature, the defrosting operation time is shortened by performing the bypass defrosting operation. In addition to being able to operate with high efficiency, it is possible to maintain the comfort by preventing a drop in the temperature of hot water sent to the heating terminal.

第4の発明のヒートポンプ式温水暖房装置は、特に第1から第3の発明において、蒸発器の除霜運転において、水冷媒熱交換器から出湯する湯水の温度を検出する出湯温度検出手段を備え、出湯温度検出手段で検出される出湯温度が第2の所定温度以上であれば、温水ポンプを停止することにより、水冷媒熱交換器での凍結を防止しつつも、暖房運転時の快適性を維持することができる。   The heat pump type hot water heating apparatus according to the fourth aspect of the present invention comprises, particularly in the first to third aspects of the invention, a tapping temperature detecting means for detecting the temperature of the tapping water discharged from the water-refrigerant heat exchanger in the defrosting operation of the evaporator. If the hot water temperature detected by the hot water temperature detection means is equal to or higher than the second predetermined temperature, the hot water pump is stopped to prevent freezing in the water-refrigerant heat exchanger, and comfort during heating operation Can be maintained.

第5の発明のヒートポンプ式温水暖房装置は、特に第1から第4の発明において、圧縮機、四方弁、減圧装置、蒸発器を収納するヒートポンプユニットと、水冷媒熱交換器を収納する熱交換ユニットとを別ユニットにて構成し、熱交換ユニットを屋内に配したことにより、屋内と屋外との接続は冷媒配管で行うため、外気温度が低い寒冷地等においても配管が凍結する恐れを少なくすることができる。   The heat pump type hot water heating apparatus according to the fifth aspect of the invention is the heat exchange unit for storing the water refrigerant heat exchanger, and the heat pump unit for storing the compressor, the four-way valve, the pressure reducing device, and the evaporator, particularly in the first to fourth aspects of the invention. By configuring the unit as a separate unit and arranging the heat exchange unit indoors, the indoor and outdoor connections are made with refrigerant piping, so there is less risk of piping freezing even in cold regions where the outside air temperature is low. can do.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1におけるヒートポンプ式温水暖房装置の構成図である。まず、図1を用いてヒートポンプ式温水暖房装置の構成を説明する。本実施の形態のヒートポンプ式温水暖房装置は、冷媒を圧縮して高温冷媒を吐出する圧縮機1と、冷媒流路を切り替える四方弁30と、水と高温冷媒とを熱交換して高温水を生成する水冷媒熱交換器2と、冷媒を減圧する減圧装置3と、空気と冷媒とで熱交換を行う室外熱交換器4とを順次冷媒配管5で環状に接続してなる冷凍サイクル6を有している。さらに、室外熱交換器4の温度を検出する温度センサ4a、室外熱交換器4へ送風するための送風ファン7を有している。なお、冷媒にはR410Aを用いているが、その他、フルオロカーボン系の冷媒を用いることができる。また、圧縮機1は密閉型であり、高圧側にモータを配し、モータには希土類磁石を用いている。また、アキュームレータを用いない構成とすることで、小型化・軽量化が可能となる。
(Embodiment 1)
FIG. 1 is a configuration diagram of a heat pump hot water heating apparatus according to Embodiment 1 of the present invention. First, the structure of a heat pump type hot water heating apparatus will be described with reference to FIG. The heat pump hot water heating apparatus of the present embodiment exchanges heat between the compressor 1 that compresses the refrigerant and discharges the high-temperature refrigerant, the four-way valve 30 that switches the refrigerant flow path, and water and the high-temperature refrigerant. A refrigeration cycle 6 is formed by sequentially connecting a water refrigerant heat exchanger 2 to be generated, a decompression device 3 for decompressing the refrigerant, and an outdoor heat exchanger 4 for exchanging heat between the air and the refrigerant through a refrigerant pipe 5 in order. Have. Furthermore, it has the temperature sensor 4a which detects the temperature of the outdoor heat exchanger 4, and the ventilation fan 7 for ventilating to the outdoor heat exchanger 4. FIG. Note that R410A is used as the refrigerant, but other fluorocarbon refrigerants can also be used. The compressor 1 is a hermetically sealed type, and a motor is disposed on the high-pressure side, and a rare earth magnet is used for the motor. Further, by adopting a configuration that does not use an accumulator, it is possible to reduce the size and weight.

また、居室内を暖房する暖房端末8(例えば、床暖房パネルや輻射パネル等)を備えており、暖房端末8の内部を水冷媒熱交換器2で生成した高温水を流して居室内を暖房するものである。そのため、暖房端末8と水冷媒熱交換器2とを水が循環する構成となっており、水を循環させるための温水ポンプ9を備えている。また、水冷媒熱交換器2の温水入口側には入水温度を検出する入水温度検出手段である温度センサ2aと、水冷媒熱交換器2の温水出口側には出湯温度を検出する出湯温度検出手段である温度センサ2bとを備えている。   Moreover, the heating terminal 8 (for example, a floor heating panel, a radiation panel, etc.) which heats a living room is provided, and the inside of the heating terminal 8 is heated by flowing the high temperature water produced | generated with the water-refrigerant heat exchanger 2 inside. To do. Therefore, water is configured to circulate between the heating terminal 8 and the water refrigerant heat exchanger 2, and a hot water pump 9 for circulating water is provided. Further, a temperature sensor 2a, which is a water inlet temperature detecting means for detecting the incoming water temperature, is provided on the hot water inlet side of the water refrigerant heat exchanger 2, and a hot water temperature detection is provided for detecting the hot water temperature on the hot water outlet side of the water refrigerant heat exchanger 2. And a temperature sensor 2b as means.

さらに、本実施の形態では、減圧装置3と室外熱交換器4との間から圧縮機1の吸入側へ冷媒をバイパスするバイパス回路12を設けており、バイパス回路12には電磁弁13が設けられている。通常の暖房運転時には電磁弁13は全閉しており、バイパス回路12には冷媒が流れないようにしている。   Further, in the present embodiment, a bypass circuit 12 is provided that bypasses the refrigerant from between the decompression device 3 and the outdoor heat exchanger 4 to the suction side of the compressor 1, and the bypass circuit 12 is provided with an electromagnetic valve 13. It has been. During normal heating operation, the solenoid valve 13 is fully closed so that no refrigerant flows through the bypass circuit 12.

そして、ヒートポンプ式温水暖房装置の通常時の暖房運転では、温水ポンプ9を駆動して暖房端末8内に温水を循環させるとともに、温度センサ2bが検出する温水の温度が、リモコン装置等(図示せず)で設定した設定温度よりも所定温度高いことを検出するまで冷凍サイクルを運転し、温度センサ2bが検出する温度が設定温度よりも所定温度高い温度を検出すると、冷凍サイクルの運転を停止する。   In the normal heating operation of the heat pump type hot water heating apparatus, the hot water pump 9 is driven to circulate the hot water in the heating terminal 8, and the temperature of the hot water detected by the temperature sensor 2b is the remote control device or the like (not shown). The refrigeration cycle is operated until it is detected that the predetermined temperature is higher than the set temperature set in (1). When the temperature detected by the temperature sensor 2b is higher than the set temperature, the refrigeration cycle is stopped. .

一方、冷凍サイクルの運転は、圧縮機1から吐出する冷媒の温度を検出し、吐出される冷媒の温度が所定の温度となるように、減圧装置3の開度が制御される。但し、冷凍サイクルの運転を停止させた以降も、暖房端末8内を循環する温水の温度を検出しなければならないため、温水ポンプ9は駆動させたままの状態にする。なお、温水ポンプ9はACポンプとDCポンプのいずれであってもかまわない。   On the other hand, in the operation of the refrigeration cycle, the temperature of the refrigerant discharged from the compressor 1 is detected, and the opening degree of the decompression device 3 is controlled so that the temperature of the discharged refrigerant becomes a predetermined temperature. However, since the temperature of the hot water circulating in the heating terminal 8 must be detected even after the operation of the refrigeration cycle is stopped, the hot water pump 9 is kept driven. The hot water pump 9 may be either an AC pump or a DC pump.

また、本実施の形態のヒートポンプ式温水暖房装置は、冷凍サイクルを構成する機能部品のうち水冷媒熱交換器2以外の部品をヒートポンプユニット10aの筐体内に収納し、水冷媒熱交換器2および温水ポンプ9を熱交換ユニット10bの筐体内に収納する構成であってもよい。この場合、ヒートポンプユニット10aを屋外に配し、熱交換ユニット10bを屋内に配することで、屋内と屋外とは冷媒配管によって接続されることになる。そのため冬季など外気温度が低い時であっても、屋内と屋外とは冷媒配管で接続されているため、水配管で接続されているときに比べて凍結の恐れが低いという利点がある。   Moreover, the heat pump type hot water heating apparatus of the present embodiment stores parts other than the water refrigerant heat exchanger 2 among the functional parts constituting the refrigeration cycle in the housing of the heat pump unit 10a, and the water refrigerant heat exchanger 2 and The structure which accommodates the hot water pump 9 in the housing | casing of the heat exchange unit 10b may be sufficient. In this case, the heat pump unit 10a is arranged outdoors, and the heat exchange unit 10b is arranged indoors, so that the indoors and the outdoors are connected by refrigerant piping. Therefore, even when the outside air temperature is low, such as in winter, the indoor and the outdoor are connected by the refrigerant pipe, so that there is an advantage that the risk of freezing is lower than when the water pipe is connected.

そして、ヒートポンプユニット10aを屋外に配し、熱交換ユニット10bを屋内に配する構成のヒートポンプ式温水暖房装置では、施工時においてヒートポンプユニット10aと熱交換ユニット10bとの接続を解除するときには、ヒートポンプユニット10a内に冷媒を回収しなければならない。そのため本実施の形態のように熱交換ユニット10bを屋内に設けた構成においては、必ず四方弁30が必要になってくる。また、ヒートポンプユニット10a、熱交換ユニット10bのいずれにも制御装置11a、11bを有しており、各ユニット内に設けられた機器に運転指示を行う。   And in the heat pump type hot water heating apparatus having a configuration in which the heat pump unit 10a is arranged outdoors and the heat exchange unit 10b is arranged indoors, when the connection between the heat pump unit 10a and the heat exchange unit 10b is released during construction, the heat pump unit The refrigerant must be recovered in 10a. Therefore, in the configuration in which the heat exchange unit 10b is provided indoors as in the present embodiment, the four-way valve 30 is necessarily required. Moreover, both the heat pump unit 10a and the heat exchange unit 10b have the control devices 11a and 11b, and perform operation instructions to the devices provided in each unit.

以上のように構成されたヒートポンプ式温水暖房装置において、以下、除霜運転について説明する。   In the heat pump type hot water heating apparatus configured as described above, the defrosting operation will be described below.

まず、温度センサ4aで検出する温度Tgが、所定温度Taよりも低いことを検出すると、制御装置11aは室外熱交換器4に着霜していると判断し、除霜運転を開始する。   First, when detecting that the temperature Tg detected by the temperature sensor 4a is lower than the predetermined temperature Ta, the control device 11a determines that the outdoor heat exchanger 4 is frosted and starts the defrosting operation.

図2は、除霜運転時のフローチャートである。以下、本実施の形態の除霜運転について、図2を用いて説明する。除霜運転が開始されると、まずステップ1にて、温度センサ2bで検出される出湯温度Toと、温度センサ2aで検出される入水温度Tiとの温度差ΔTが、第1の所定温度Tbより大きいかどうかを判断する。そして、温度差ΔTと第1の所定温度Tbとを比較した結果、温度差ΔT≧第1の所定温度Tbの関係が成立した場合にはステップ2へと進み、成立しない場合にはステップ3へと進む。   FIG. 2 is a flowchart during the defrosting operation. Hereinafter, the defrosting operation of the present embodiment will be described with reference to FIG. When the defrosting operation is started, first, in step 1, the temperature difference ΔT between the tapping temperature To detected by the temperature sensor 2b and the incoming water temperature Ti detected by the temperature sensor 2a is a first predetermined temperature Tb. Determine if greater than. Then, as a result of comparing the temperature difference ΔT with the first predetermined temperature Tb, if the relationship of temperature difference ΔT ≧ first predetermined temperature Tb is established, the process proceeds to Step 2, and if not, the process proceeds to Step 3. Proceed with

次に、ステップ2では四方弁除霜運転を行う。図3に四方弁除霜運転時の冷媒流路を太線で示す。四方弁除霜運転では、四方弁30を動作させて高温冷媒を室外熱交換器4へ直接送る。このとき電磁弁13は全閉となっているのでバイパス回路には冷媒が流れない。四方弁除霜運転では、高温冷媒を室外熱交換器4へ送ることが出来る一方で、水冷媒熱交換器2が熱源となり、暖房端末8へ低温水を送ってしまう。そのため、温度差ΔTが大きく、快適性が維持できる間は除霜時間を短縮するために四方弁除霜運転を行う。   Next, in step 2, a four-way valve defrosting operation is performed. In FIG. 3, the refrigerant flow path during the four-way valve defrosting operation is indicated by a thick line. In the four-way valve defrosting operation, the four-way valve 30 is operated to send the high-temperature refrigerant directly to the outdoor heat exchanger 4. At this time, since the solenoid valve 13 is fully closed, no refrigerant flows through the bypass circuit. In the four-way valve defrosting operation, high-temperature refrigerant can be sent to the outdoor heat exchanger 4, while the water-refrigerant heat exchanger 2 serves as a heat source and sends low-temperature water to the heating terminal 8. Therefore, the four-way valve defrosting operation is performed to shorten the defrosting time while the temperature difference ΔT is large and the comfort can be maintained.

また、ステップ3ではバイパス除霜運転を行う。図4にバイパス除霜運転時の冷媒流路
を太線で示す。バイパス除霜運転では、四方弁30を動作させて冷媒を室外熱交換器4へ直接送る。このとき減圧装置3は全閉とし、電磁弁13を全開とする。その結果、圧縮機1から出た冷媒は室外熱交換器4へ送られ、バイパス回路12を通って圧縮機1の吸入側へ送られる。このとき冷媒は圧縮機1のモータの熱によって若干温められ、その熱によって室外熱交換器4の除霜を行う。バイパス除霜運転では、四方弁除霜運転ほど高温の冷媒を室外熱交換器4へ送ることができないが、水冷媒熱交換器2へ冷媒を流すことが無いので、暖房端末8へ低温水を送ることがなく、快適性を維持することができる。
In Step 3, a bypass defrosting operation is performed. The refrigerant flow path at the time of bypass defrosting operation is shown in FIG. In the bypass defrosting operation, the four-way valve 30 is operated to send the refrigerant directly to the outdoor heat exchanger 4. At this time, the pressure reducing device 3 is fully closed, and the electromagnetic valve 13 is fully opened. As a result, the refrigerant discharged from the compressor 1 is sent to the outdoor heat exchanger 4 and sent to the suction side of the compressor 1 through the bypass circuit 12. At this time, the refrigerant is slightly warmed by the heat of the motor of the compressor 1, and the outdoor heat exchanger 4 is defrosted by the heat. In the bypass defrosting operation, refrigerant as hot as the four-way valve defrosting operation cannot be sent to the outdoor heat exchanger 4. Comfort can be maintained without sending.

そして、ステップ2およびステップ3での除霜運転を開始すると、ステップ4へと進む。ステップ4では温度センサ2bで検出される出湯温度Toが、第2の所定温度Tcよりも大きいかどうかを判断する。そして出湯温度Toと第2の所定温度Tcとを比較した結果、出湯温度To≧第2の所定温度Tcの関係が成立した場合にはステップ5へ進み、成立しない場合にはステップ6へ進む。   And if the defrost operation in step 2 and step 3 is started, it will progress to step 4. In step 4, it is determined whether the tapping temperature To detected by the temperature sensor 2b is higher than a second predetermined temperature Tc. As a result of comparing the tapping temperature To with the second predetermined temperature Tc, the process proceeds to step 5 if the relation tapping temperature To ≧ second predetermined temperature Tc is established, and proceeds to step 6 if not.

ステップ5では、出湯温度Toが有る程度高いため、温水ポンプ9の運転を停止させて暖房端末8へ低温水を送ることを防止している。しかしながら、温水ポンプ9の運転を停止させてしまうと、暖房端末8を循環する温水の温度を検出できなくなってしまうため、温水ポンプ9の運転を停止させても、所定時間(例えば、5分)毎に温水ポンプ9を動作させて随時出湯温度Toを検出するようにしている。   In step 5, since the hot water temperature To is high to some extent, the operation of the hot water pump 9 is stopped to prevent the low temperature water from being sent to the heating terminal 8. However, if the operation of the hot water pump 9 is stopped, the temperature of the hot water circulating through the heating terminal 8 cannot be detected. Therefore, even if the operation of the hot water pump 9 is stopped, a predetermined time (for example, 5 minutes) The hot water pump 9 is operated every time and the hot water temperature To is detected at any time.

また、ステップ6では、出湯温度Toが低いため水冷媒熱交換器2内に残っている水が凍結してしまう恐れがあると判断し、常時、温水ポンプ9の運転を行っている。なお、温水ポンプ9にDCポンプを用いた時には、循環させる流量を可変することができるので、水冷媒熱交換器2内で湯水が凍結せず、かつ、暖房端末8への影響が出ない程度にまで流量を下げて運転させることで、暖房端末8での影響を最小限にとどめることができる。   Further, in step 6, it is determined that there is a possibility that water remaining in the water-refrigerant heat exchanger 2 may be frozen because the tapping temperature To is low, and the hot water pump 9 is always operated. When a DC pump is used as the hot water pump 9, the circulating flow rate can be varied, so that hot water does not freeze in the water-refrigerant heat exchanger 2 and does not affect the heating terminal 8. The operation at the heating terminal 8 can be kept to a minimum by operating at a reduced flow rate.

そして、ステップ5およびステップ6の次にステップ7へ進む。ステップ7では温度センサ4aで検出する温度Tgが、除霜運転を開始するTaよりも大きいかどうかを判断する。そして室外熱交換器温度Tg≧Taの関係が成立した場合には、除霜運転を終了し、四方弁30を切り替えて暖房運転へと戻る。   Then, after step 5 and step 6, the process proceeds to step 7. In step 7, it is determined whether the temperature Tg detected by the temperature sensor 4a is higher than Ta at which the defrosting operation is started. And when the relationship of outdoor heat exchanger temperature Tg> = Ta is materialized, a defrost operation is complete | finished, the four-way valve 30 is switched, and it returns to heating operation.

以上のように、本実施の形態のヒートポンプ式温水暖房装置は、暖房端末8の快適性を維持し、かつ、除霜時間をできるだけ短くすることができる。   As described above, the heat pump hot water heating apparatus of the present embodiment can maintain the comfort of the heating terminal 8 and can shorten the defrosting time as much as possible.

また、本実施の形態ではバイパス回路12に電磁弁13を設けて除霜運転を行ったが、電磁弁13に代えて減圧装置を用いて、さらにバイパス回路12にヒーター等の熱源を配することによって、バイパス除霜運転時にはヒーター等の熱源から吸熱し、室外熱交換器4で放熱する構成にしても良い。このように構成することで、さらに除霜時間を短縮することができる。   Further, in the present embodiment, the defrosting operation is performed by providing the electromagnetic valve 13 in the bypass circuit 12, but a heat source such as a heater is disposed in the bypass circuit 12 using a pressure reducing device instead of the electromagnetic valve 13. Thus, the heat may be absorbed from a heat source such as a heater during the bypass defrosting operation, and the outdoor heat exchanger 4 may dissipate heat. By comprising in this way, defrosting time can further be shortened.

以上のように、本発明のヒートポンプ式温水暖房装置は、貯湯タンクが無い温水暖房装置を用いて説明したが、貯湯タンクがある温水暖房装置であっても本発明を適用することができる。   As described above, the heat pump hot water heating apparatus of the present invention has been described using the hot water heating apparatus without a hot water storage tank, but the present invention can be applied even to a hot water heating apparatus with a hot water storage tank.

1 圧縮機
2 水冷媒熱交換器
2a 温度センサ
2b 温度センサ
3 減圧装置
4 室外熱交換器
4a 温度センサ
7 送風ファン
8 暖房端末
9 温水ポンプ
10a ヒートポンプユニット
10b 熱交換プユニット
12 バイパス回路
13 電磁弁
30 四方弁
DESCRIPTION OF SYMBOLS 1 Compressor 2 Water refrigerant heat exchanger 2a Temperature sensor 2b Temperature sensor 3 Pressure reducing device 4 Outdoor heat exchanger 4a Temperature sensor 7 Blower fan 8 Heating terminal 9 Hot water pump 10a Heat pump unit 10b Heat exchange unit 12 Bypass circuit 13 Solenoid valve 30 Four-way valve

Claims (5)

冷媒を圧縮する圧縮機、冷媒流路を切り替える四方弁、高温冷媒と水とが熱交換を行う水冷媒熱交換器、冷媒を減圧する減圧装置、冷媒と空気とが熱交換を行う蒸発器を順次環状に接続してなる冷凍サイクルと、前記減圧装置と前記蒸発器との間から前記圧縮機の吸入側へバイパスするバイパス回路と、前記バイパス回路を開閉する電磁弁と、前記水冷媒熱交換器で生成した高温水を暖房端末へ送る温水ポンプとを備え、前記蒸発器の除霜運転において、前記四方弁を切り替えて前記圧縮機からの高温冷媒を前記蒸発器へ送る流路にするとともに、前記電磁弁を開き、前記減圧装置を閉めることを特徴とするヒートポンプ式温水暖房装置。 A compressor that compresses the refrigerant, a four-way valve that switches the refrigerant flow path, a water refrigerant heat exchanger that exchanges heat between the high-temperature refrigerant and water, a decompressor that depressurizes the refrigerant, and an evaporator that exchanges heat between the refrigerant and air A refrigeration cycle that is sequentially connected in an annular manner, a bypass circuit that bypasses between the decompression device and the evaporator to the suction side of the compressor, an electromagnetic valve that opens and closes the bypass circuit, and the water refrigerant heat exchange A hot water pump that sends high-temperature water generated in the evaporator to the heating terminal, and in the defrosting operation of the evaporator, the four-way valve is switched to provide a flow path for sending high-temperature refrigerant from the compressor to the evaporator The heat pump type hot water heating device is characterized in that the electromagnetic valve is opened and the pressure reducing device is closed. 前記蒸発器の除霜運転は、前記減圧装置を開き、前記電磁弁を閉じて前記圧縮機からの高温冷媒を前記蒸発器へ送る四方弁除霜運転と、前記減圧装置を閉じ、前記電磁弁を開いて前記圧縮機からの高温冷媒を前記蒸発器へ送るバイパス除霜運転とで構成され、状況に応じて使い分けることを特徴とする請求項1に記載のヒートポンプ式温水暖房装置。 The defrosting operation of the evaporator is a four-way valve defrosting operation in which the decompression device is opened, the electromagnetic valve is closed and high temperature refrigerant from the compressor is sent to the evaporator, the decompression device is closed, and the electromagnetic valve The heat pump type hot water heating apparatus according to claim 1, wherein the heat pump type hot water heating apparatus is configured to be selectively used according to the situation. 前記水冷媒熱交換器へ入水する湯水の温度を検出する入水温度検出手段と、前記水冷媒熱交換器から出湯する湯水の温度を検出する出湯温度検出手段とを備え、前記蒸発器の除霜運転において、前記出湯温度検出手段で検出される出湯温度と、前記入水温度検出手段で検出される入水温度との温度差が第1の所定温度以上であれば、前記四方弁除霜運転を行い、出湯温度と入水温度との温度差が第1の所定温度以下であれば、前記バイパス除霜運転を行うことを特徴とする請求項2に記載のヒートポンプ式温水暖房装置。 A defrosting of the evaporator, comprising: an incoming water temperature detecting means for detecting a temperature of hot water entering the water refrigerant heat exchanger; and a hot water temperature detecting means for detecting a temperature of hot water discharged from the water refrigerant heat exchanger. In operation, if the temperature difference between the hot water temperature detected by the hot water temperature detecting means and the incoming water temperature detected by the incoming water temperature detecting means is not less than a first predetermined temperature, the four-way valve defrosting operation is performed. The heat pump type hot water heating apparatus according to claim 2, wherein the bypass defrosting operation is performed if a temperature difference between the hot water temperature and the incoming water temperature is equal to or lower than a first predetermined temperature. 前記蒸発器の除霜運転において、前記水冷媒熱交換器から出湯する湯水の温度を検出する出湯温度検出手段を備え、前記出湯温度検出手段で検出される出湯温度が第2の所定温度以上であれば、前記温水ポンプを停止することを特徴とする請求項1〜3のいずれか1項に記載のヒートポンプ式温水暖房装置。 In the defrosting operation of the evaporator, there is provided hot water temperature detecting means for detecting the temperature of hot water discharged from the water-refrigerant heat exchanger, and the hot water temperature detected by the hot water temperature detecting means is equal to or higher than a second predetermined temperature. If it exists, the said hot water pump will be stopped, The heat pump type hot water heating apparatus of any one of Claims 1-3 characterized by the above-mentioned. 前記圧縮機、前記四方弁、前記減圧装置、前記蒸発器を収納するヒートポンプユニットと、前記水冷媒熱交換器を収納する熱交換ユニットとを別ユニットにて構成し、前記熱交換ユニットを屋内に配したことを特徴とする請求項1から4のいずれか1項に記載のヒートポンプ式温水暖房装置。 The compressor, the four-way valve, the pressure reducing device, a heat pump unit that houses the evaporator, and a heat exchange unit that houses the water-refrigerant heat exchanger are configured as separate units, and the heat exchange unit is installed indoors. The heat pump type hot water heating apparatus according to any one of claims 1 to 4, wherein the heat pump type hot water heating apparatus is arranged.
JP2009197839A 2009-08-28 2009-08-28 Heat pump type hot water heater Expired - Fee Related JP5387235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009197839A JP5387235B2 (en) 2009-08-28 2009-08-28 Heat pump type hot water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009197839A JP5387235B2 (en) 2009-08-28 2009-08-28 Heat pump type hot water heater

Publications (2)

Publication Number Publication Date
JP2011047607A true JP2011047607A (en) 2011-03-10
JP5387235B2 JP5387235B2 (en) 2014-01-15

Family

ID=43834126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009197839A Expired - Fee Related JP5387235B2 (en) 2009-08-28 2009-08-28 Heat pump type hot water heater

Country Status (1)

Country Link
JP (1) JP5387235B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102721228A (en) * 2012-06-28 2012-10-10 广东志高空调有限公司 Air cooled cold/hot water unit
JP2013137170A (en) * 2011-12-28 2013-07-11 Daikin Industries Ltd Heat pump type water heater
EP2626640A2 (en) 2012-02-07 2013-08-14 Panasonic Corporation Heat pump hydronic heater
EP2639516A2 (en) 2012-03-12 2013-09-18 Panasonic Corporation Heat pump hydronic heater
WO2014097869A1 (en) * 2012-12-20 2014-06-26 三菱電機株式会社 Air-conditioning device
WO2014097439A1 (en) * 2012-12-20 2014-06-26 三菱電機株式会社 Air-conditioning device
WO2014128970A1 (en) * 2013-02-25 2014-08-28 三菱電機株式会社 Air conditioner
KR20160037752A (en) * 2014-09-29 2016-04-06 린나이코리아 주식회사 Heat pump heat source device
CN105737389A (en) * 2014-12-10 2016-07-06 青岛经济技术开发区海尔热水器有限公司 Efficient defrosting method and device implementing control according to fan speed and pressure
EP3115699A1 (en) * 2015-07-08 2017-01-11 Panasonic Intellectual Property Management Co., Ltd. Heat pump hot water apparatus
WO2018233259A1 (en) * 2017-06-19 2018-12-27 格力电器(武汉)有限公司 Electric vehicle, electric vehicle heat pump air conditioner assembly and control method thereof
WO2020017030A1 (en) * 2018-07-20 2020-01-23 三菱電機株式会社 Control device for air conditioning device, outdoor unit, relay unit, heat source unit, and air conditioning device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210104476A (en) * 2020-02-17 2021-08-25 엘지전자 주식회사 Air conditioner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004053153A (en) * 2002-07-22 2004-02-19 Sanyo Electric Co Ltd Heat pump device
JP2006097930A (en) * 2004-09-28 2006-04-13 Denso Corp Heat pump type heating device
WO2006103815A1 (en) * 2005-03-28 2006-10-05 Toshiba Carrier Corporation Hot water supply device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004053153A (en) * 2002-07-22 2004-02-19 Sanyo Electric Co Ltd Heat pump device
JP2006097930A (en) * 2004-09-28 2006-04-13 Denso Corp Heat pump type heating device
WO2006103815A1 (en) * 2005-03-28 2006-10-05 Toshiba Carrier Corporation Hot water supply device

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013137170A (en) * 2011-12-28 2013-07-11 Daikin Industries Ltd Heat pump type water heater
EP2626640A2 (en) 2012-02-07 2013-08-14 Panasonic Corporation Heat pump hydronic heater
EP2639516A2 (en) 2012-03-12 2013-09-18 Panasonic Corporation Heat pump hydronic heater
CN102721228A (en) * 2012-06-28 2012-10-10 广东志高空调有限公司 Air cooled cold/hot water unit
JP5921719B2 (en) * 2012-12-20 2016-05-24 三菱電機株式会社 Air conditioner
US10094604B2 (en) 2012-12-20 2018-10-09 Mitsubishi Electric Corporation Air-conditioning apparatus with a plurality of indoor units and a cooling and heating mixed mode of operation
WO2014097439A1 (en) * 2012-12-20 2014-06-26 三菱電機株式会社 Air-conditioning device
WO2014097870A1 (en) * 2012-12-20 2014-06-26 三菱電機株式会社 Air-conditioning device
WO2014097438A1 (en) * 2012-12-20 2014-06-26 三菱電機株式会社 Air-conditioning device
US10054337B2 (en) 2012-12-20 2018-08-21 Mitsubishi Electric Corporation Air-conditioning apparatus having indoor units and relay unit
JPWO2014097870A1 (en) * 2012-12-20 2017-01-12 三菱電機株式会社 Air conditioner
JPWO2014097869A1 (en) * 2012-12-20 2017-01-12 三菱電機株式会社 Air conditioner
WO2014097869A1 (en) * 2012-12-20 2014-06-26 三菱電機株式会社 Air-conditioning device
JPWO2014128970A1 (en) * 2013-02-25 2017-02-02 三菱電機株式会社 Air conditioner
WO2014128970A1 (en) * 2013-02-25 2014-08-28 三菱電機株式会社 Air conditioner
CN105074359A (en) * 2013-02-25 2015-11-18 三菱电机株式会社 Air conditioner
KR20160037752A (en) * 2014-09-29 2016-04-06 린나이코리아 주식회사 Heat pump heat source device
KR101721328B1 (en) 2014-09-29 2017-03-29 린나이코리아 주식회사 Heat pump heat source device
JP2016070565A (en) * 2014-09-29 2016-05-09 リンナイ株式会社 Heat pump heat source device
CN105737389A (en) * 2014-12-10 2016-07-06 青岛经济技术开发区海尔热水器有限公司 Efficient defrosting method and device implementing control according to fan speed and pressure
CN105737389B (en) * 2014-12-10 2019-06-18 青岛经济技术开发区海尔热水器有限公司 A kind of efficient defrost method and device of combination fan speed and pressure control
EP3115699A1 (en) * 2015-07-08 2017-01-11 Panasonic Intellectual Property Management Co., Ltd. Heat pump hot water apparatus
WO2018233259A1 (en) * 2017-06-19 2018-12-27 格力电器(武汉)有限公司 Electric vehicle, electric vehicle heat pump air conditioner assembly and control method thereof
US11254186B2 (en) 2017-06-19 2022-02-22 Gree Electric Appliances (Wuhan) Co., Ltd Electric vehicle, heat pump air conditioner assembly for electric vehicle, and control method thereof
WO2020017030A1 (en) * 2018-07-20 2020-01-23 三菱電機株式会社 Control device for air conditioning device, outdoor unit, relay unit, heat source unit, and air conditioning device
JPWO2020017030A1 (en) * 2018-07-20 2021-05-13 三菱電機株式会社 Air conditioner control device, outdoor unit, repeater, heat source unit and air conditioner

Also Published As

Publication number Publication date
JP5387235B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP5387235B2 (en) Heat pump type hot water heater
JP3925383B2 (en) Hot water supply device, air conditioning hot water supply system, and hot water supply system
KR101241631B1 (en) Heat pump system
CN101490482B (en) Air conditioning system
US10544973B2 (en) Air-conditioning apparatus with temperature controlled pump operation
WO2021039087A1 (en) Heat source unit and refrigeration device
JP6231395B2 (en) Combined heat source heat pump device
WO2022068281A1 (en) Air conditioning system and defrosting control method therefor, and storage medium and control apparatus
JP2013185803A (en) Heat pump hydronic heater
EP2541170A1 (en) Air-conditioning hot-water-supply system
JP2011080733A (en) Air conditioner
WO2014072743A1 (en) Heating system
KR100712196B1 (en) Heat pump system and a method for eliminating frost on the outdoor heat exchanger of the heat pump system
JP4229881B2 (en) Heat pump system
JP2012013354A (en) Heat-pump type hot-water heating device
JP2012013357A (en) Heat pump type hot-water heating device
CN101469916B (en) Air conditioning system
JP2012013356A (en) Heat pump type hot water heating device
JP2015083894A (en) Refrigeration unit
JP2009264716A (en) Heat pump hot water system
JP6968769B2 (en) Combined heat source heat pump device
JP6208086B2 (en) Combined heat source heat pump device
JP6258802B2 (en) Combined heat source heat pump device
JP2017187249A (en) Composite heat source heat pump device
JP6250195B2 (en) Thermal storage air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111110

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130923

LAPS Cancellation because of no payment of annual fees