JP2011045798A - Catalyst for dehydrogenation silylation reaction and method of producing organosilicon compound - Google Patents

Catalyst for dehydrogenation silylation reaction and method of producing organosilicon compound Download PDF

Info

Publication number
JP2011045798A
JP2011045798A JP2009193964A JP2009193964A JP2011045798A JP 2011045798 A JP2011045798 A JP 2011045798A JP 2009193964 A JP2009193964 A JP 2009193964A JP 2009193964 A JP2009193964 A JP 2009193964A JP 2011045798 A JP2011045798 A JP 2011045798A
Authority
JP
Japan
Prior art keywords
group
transition metal
carbon
atom
aliphatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009193964A
Other languages
Japanese (ja)
Other versions
JP5429745B2 (en
Inventor
Hiroshi Nakazawa
浩 中沢
Masumi Itazaki
真澄 板崎
Kenji Tanaka
賢治 田中
Akinari Itagaki
明成 板垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Osaka University NUC
Osaka City University
Original Assignee
Shin Etsu Chemical Co Ltd
Osaka University NUC
Osaka City University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Osaka University NUC, Osaka City University filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2009193964A priority Critical patent/JP5429745B2/en
Publication of JP2011045798A publication Critical patent/JP2011045798A/en
Application granted granted Critical
Publication of JP5429745B2 publication Critical patent/JP5429745B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst which enables synthesis of organosilicon compounds having a carbon-carbon double bond by reacting a siloxane containing an unsaturated bond with a ≡Si-H group in the presence of it. <P>SOLUTION: The catalyst for reactions of introducing a silicon into an unsaturated carbon of a siloxane having an aliphatic or alicyclic unsaturated bond is a transition metal complex compound of formula (1) X<SB>t</SB>-M-R<SP>1</SP><SB>s</SB>(Y<SB>u</SB>) (wherein, M is a transition metal atom; R<SP>1</SP>is H, alkyl, aryl or SiR<SB>3</SB>; R is H, monovalent hydrocarbon, alkoxy, halogen or a siloxane residue; X is a cyclic group having an aliphatic unsaturated group, trispyrazolyl borate, tetrafluoroborate, hexafluorophosphate, porphin or phthalocyanine; Y is ammonia, carbonyl, an oxygen atom, oxygen molecule, amine, phosphine or a phosphite; 0<s≤3; 0≤t<2; 0≤u≤12; and s and t are such numbers as to give the oxidation number of the transition metal atom of II or IV). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、アルケニル基等の脂肪族又は脂環式不飽和結合を有するシロキサンの不飽和炭素へのケイ素導入反応用触媒としての脱水素シリル化反応用触媒、及び同触媒を用いた有機ケイ素化合物の製造方法に関するものである。   The present invention relates to a catalyst for dehydrogenation silylation as a catalyst for introducing silicon into an unsaturated carbon of a siloxane having an aliphatic or alicyclic unsaturated bond such as an alkenyl group, and an organosilicon compound using the catalyst It is related with the manufacturing method.

機能性化合物には様々な結合形式が用いられているが、特にケイ素炭素結合を有する化合物が多く使用されている。例として、シランカップリング剤、ゴム、剥離紙、接着剤、型取り剤、LIMS成形剤などが挙げられる。一般にケイ素炭素結合形成には副生成物が少なく、反応も容易であることから遷移金属触媒による水素化ケイ素化合物と不飽和化合物のヒドロシリル化反応が工業的大量生産に利用されている(非特許文献1:J. Org. Chem. 1987. 52. 4118.、非特許文献2:Org. Lett. 2005. 7. 5625.)。   Various types of bonds are used for the functional compound, and in particular, many compounds having a silicon carbon bond are used. Examples include silane coupling agents, rubber, release paper, adhesives, mold taking agents, LIMS molding agents and the like. In general, the formation of silicon-carbon bonds has few by-products and the reaction is easy, so the hydrosilylation reaction of a silicon hydride compound and an unsaturated compound with a transition metal catalyst is used for industrial mass production (Non-patent Documents). 1: J. Org. Chem. 1987. 52. 4118., Non-Patent Document 2: Org. Lett. 2005. 7. 5625.).

ヒドロシリル化反応は炭素炭素二重結合とSi−H基の反応例が大部分を占めるが、反応機構上ケイ素炭素結合が得られ、結合様式からその後の有機反応は行えない状況であった。そこで、炭素炭素二重結合を有する有機化合物又はSi−H基を有する化合物に反応性官能基を導入し、ヒドロシリル化反応後に、反応性官能基による変換反応を行えばよいと考えられる(特許文献1:国際公開第2007/66594号パンフレット)。しかし、このような反応性官能基は遷移金属触媒の触媒毒となり、ヒドロシリル化反応を著しく阻害することが知られている。そこでケイ素炭素結合を有し、また有機反応が可能な官能基を形成できる有機化合物の製造方法が存在すれば、より高機能な有機化合物が製造できるため非常に有用である。   In the hydrosilylation reaction, the reaction example of a carbon-carbon double bond and a Si—H group occupies most, but a silicon-carbon bond was obtained due to the reaction mechanism, and the subsequent organic reaction could not be performed due to the bonding mode. Therefore, it is considered that a reactive functional group is introduced into an organic compound having a carbon-carbon double bond or a compound having a Si—H group, and a conversion reaction with the reactive functional group is performed after the hydrosilylation reaction (Patent Document). 1: International Publication No. 2007/66594 pamphlet). However, it is known that such a reactive functional group becomes a catalyst poison of the transition metal catalyst and significantly inhibits the hydrosilylation reaction. Therefore, if there is a method for producing an organic compound having a silicon-carbon bond and capable of forming a functional group capable of organic reaction, it is very useful because a higher-functional organic compound can be produced.

国際公開第2007/66594号パンフレットInternational Publication No. 2007/66594 Pamphlet

J. Org. Chem. 1987. 52. 4118.J. et al. Org. Chem. 1987. 52. 4118. Org. Lett. 2005. 7. 5625.Org. Lett. 2005. 7. 5625.

本発明は、上記事情に鑑みなされたもので、新規な遷移金属錯体化合物触媒を用いて、Si−H基をアルケニル基等の脂肪族又は脂環式不飽和結合を有するシロキサンの不飽和炭素へ反応させ、β位にケイ素原子を有するような炭素炭素二重結合を形成させることができる脱水素シリル化反応用触媒及びこれを用いた上記二重結合を有する有機ケイ素化合物の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and by using a novel transition metal complex compound catalyst, an Si-H group is converted to an unsaturated carbon of a siloxane having an aliphatic or alicyclic unsaturated bond such as an alkenyl group. Provided is a catalyst for dehydrogenation silylation that can be reacted to form a carbon-carbon double bond having a silicon atom at the β-position, and a method for producing the organosilicon compound having the double bond using the same. For the purpose.

本発明者らは、上記目的を達成するため鋭意検討を重ねた結果、触媒として下記の特定の遷移金属錯体化合物を用いて≡Si−H基をアルケニル基等の脂肪族又は脂環式不飽和結合を有するシロキサンと反応させると、β位にケイ素原子を有するような炭素炭素二重結合を形成させる新規方法を見出した。   As a result of intensive studies to achieve the above-mentioned object, the present inventors have used the following specific transition metal complex compounds as catalysts to convert ≡Si—H groups into aliphatic or alicyclic unsaturated groups such as alkenyl groups. We have discovered a new method for forming a carbon-carbon double bond having a silicon atom at the β-position when reacted with a siloxane having a bond.

即ち、下記一般式(1)
t−M−R1 s(Yu) (1)
(式中、Mは3〜12族の遷移金属原子である。R1は水素原子、非置換もしくは置換の炭素数1〜10のアルキル基もしくはアリール基、又はSiR3基から形成される上記遷移金属原子の酸化数に影響を与える配位子である。Rは水素原子、非置換又は置換の炭素数1〜10の1価炭化水素基、アルコキシ基、ハロゲン原子、又はシロキサン残基を示す。Xは非置換又は置換の炭素数4〜10の脂肪族不飽和基を有する環状体、トリスピラゾリルボレート、テトラフルオロボレート、ヘキサフルオロホスフェート、ポルフィン、又はフタロシアニンから形成される上記遷移金属原子の酸化数に影響を与える配位子である。Yはアンモニア分子、カルボニル分子、酸素原子、酸素分子、アミン分子、ホスフィン分子、又はホスファイト分子から形成される上記遷移金属原子の酸化数に影響を与えない配位子である。s、t、uは、0<s≦3、0≦t<2、0≦u≦12であるが、金属塩全体が中性となるような数で、更にs、tは遷移金属原子の酸化数がII価又はIV価となるような数である。)
で示される遷移金属錯体化合物を用いると、Si−H基をアルケニル基等の脂肪族又は脂環式不飽和結合を有するシロキサンの当該不飽和炭素へ反応させ、脱水素シリル化反応が進行し、β位にケイ素原子を有するような炭素炭素二重結合が形成される。特に遷移金属が8族であるようなジカルボニルシクロペンタジエニルメチル金属[以下、C55−M’’−CH3(CO)2と記載]のような遷移金属(II)触媒を用いると、β位にケイ素原子を有するような炭素炭素二重結合が容易に形成することを見出した。本反応では、以下の理論に拘束されるものではないが、遷移金属錯体化合物が加熱されることにより、遷移金属錯体に結合した配位子が脱離するか、あるいはCO挿入反応が起こり、遷移金属錯体に空配位座が発生する。この空配位座にシロキサンの炭素−炭素多重結合基もしくはSi−H基が配位し、上記の反応が進行すると考えられる。
That is, the following general formula (1)
X t -M-R 1 s ( Y u) (1)
(In the formula, M is a transition metal atom belonging to groups 3 to 12. R 1 is a hydrogen atom, an unsubstituted or substituted alkyl group or aryl group having 1 to 10 carbon atoms, or the above-described transition formed from a SiR 3 group. R is a ligand that affects the oxidation number of a metal atom, and R represents a hydrogen atom, an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, an alkoxy group, a halogen atom, or a siloxane residue. X represents the oxidation number of the transition metal atom formed from a cyclic, trispirazolylborate, tetrafluoroborate, hexafluorophosphate, porphine, or phthalocyanine having an unsubstituted or substituted aliphatic unsaturated group having 4 to 10 carbon atoms. Is Y an ammonia molecule, carbonyl molecule, oxygen atom, oxygen molecule, amine molecule, phosphine molecule, or phosphite molecule? And s, t, and u are 0 <s ≦ 3, 0 ≦ t <2, 0 ≦ u ≦ 12, (The number is such that the entire metal salt is neutral, and s and t are numbers such that the oxidation number of the transition metal atom is II or IV.)
When the transition metal complex compound represented by is used, the Si—H group is reacted with the unsaturated carbon of the siloxane having an aliphatic or alicyclic unsaturated bond such as an alkenyl group, and the dehydrogenation silylation reaction proceeds. A carbon-carbon double bond having a silicon atom at the β-position is formed. In particular, a transition metal (II) catalyst such as a dicarbonylcyclopentadienylmethyl metal [hereinafter referred to as C 5 H 5 —M ″ —CH 3 (CO) 2 ] whose transition metal is group 8 is used. It was found that a carbon-carbon double bond having a silicon atom at the β-position can be easily formed. Although this reaction is not limited by the following theory, when the transition metal complex compound is heated, a ligand bonded to the transition metal complex is eliminated or a CO insertion reaction occurs, causing a transition. Vacant coordination sites are generated in the metal complex. It is considered that the siloxane carbon-carbon multiple bond group or Si—H group is coordinated to this vacant coordination site, and the above reaction proceeds.

本発明により、β位にケイ素原子を有するような炭素炭素二重結合を有する有機ケイ素化合物が合成でき、酸化、付加反応等の二重結合由来の反応が可能であり、様々な官能基の導入が可能となる。ここで、本発明において、ケイ素についている炭素炭素二重結合の根本がα位、その先をβ位と定義する。本発明の反応ではβ位の炭素についているHがシリル基に置換する。   According to the present invention, an organosilicon compound having a carbon-carbon double bond having a silicon atom at the β-position can be synthesized, and reactions derived from double bonds such as oxidation and addition reactions are possible, and various functional groups can be introduced. Is possible. Here, in the present invention, the root of the carbon-carbon double bond attached to silicon is defined as α-position, and the tip is defined as β-position. In the reaction of the present invention, H attached to the β-position carbon is substituted with a silyl group.

従って、本発明は、下記遷移金属錯体化合物からなるケイ素導入反応用触媒及びこの触媒による脱水素シリル化反応を用いた有機ケイ素化合物の製造方法を提供する。
請求項1:
下記一般式(1)で示される遷移金属錯体化合物からなる脂肪族又は脂環式不飽和結合を有するシロキサンの不飽和炭素へのケイ素導入反応用触媒。
t−M−R1 s(Yu) (1)
(式中、Mは3〜12族の遷移金属原子である。R1は水素原子、非置換もしくは置換の炭素数1〜10のアルキル基もしくはアリール基、又はSiR3基から形成される上記遷移金属原子の酸化数に影響を与える配位子である。Rは水素原子、非置換又は置換の炭素数1〜10の1価炭化水素基、アルコキシ基、ハロゲン原子、又はシロキサン残基を示す。Xは非置換又は置換の炭素数4〜10の脂肪族不飽和基を有する環状体、トリスピラゾリルボレート、テトラフルオロボレート、ヘキサフルオロホスフェート、ポルフィン、又はフタロシアニンから形成される上記遷移金属原子の酸化数に影響を与える配位子である。Yはアンモニア分子、カルボニル分子、酸素原子、酸素分子、アミン分子、ホスフィン分子、又はホスファイト分子から形成される上記遷移金属原子の酸化数に影響を与えない配位子である。s、t、uは、0<s≦3、0≦t<2、0≦u≦12であるが、金属塩全体が中性となるような数で、更にs、tは遷移金属原子の酸化数がII価又はIV価となるような数である。)
請求項2:
上記遷移金属錯体化合物が、下記一般式(2)で表される化合物である請求項1に記載の遷移金属錯体化合物。
52 5−M’−R3 s(CO)u (2)
(式中、M’は6〜11族の遷移金属であり、R2は水素原子、炭素数1〜6の炭化水素基又はSiR3基(Rは上記の通り)であり、R3は水素原子、炭素数1〜8のアルキル基もしくはアリール基、又はSiR3基(Rは上記の通り)である。s、uは上記の通りである。)
請求項3:
遷移金属錯体化合物が、下記一般式(3)で表される化合物である請求項2に記載の遷移金属錯体化合物。
55−M’’−CH3(CO)2 (3)
(式中、M’’は8族の遷移金属である。)
請求項4:
脂肪族又は脂環式不飽和結合を有するシロキサンと≡Si−H基を持つケイ素化合物を原料とし、請求項1〜3のいずれか1項に記載の遷移金属錯体化合物からなるケイ素導入反応用触媒の存在下、有機溶媒の存在あるいは非存在の条件で、脱水素シリル化反応を行って、β位にケイ素原子を有する炭素炭素二重結合を持つ有機化合物を得ることを特徴とする炭素炭素二重結合を有する有機ケイ素化合物の製造方法。
請求項5:
不飽和結合を有するシロキサンが、下記平均組成式(4)で示される分子末端及び/又は側鎖に脂肪族又は脂環式不飽和結合を含有するオルガノシロキサンから選択されることを特徴とする請求項4に記載の有機ケイ素化合物の製造方法。

Figure 2011045798

(式中、R4は非置換又は置換の炭素数1〜10の脂肪族又は脂環式不飽和結合を含んでもよい1価炭化水素基であり、R5は非置換又は置換の炭素数1〜10の脂肪族又は脂環式不飽和結合を含まない1価炭化水素基である。また、オルガノシロキサン分子中の脂肪族又は脂環式不飽和結合を有する1価炭化水素基の数は2個以上であり、a、b、c、dは0又は正の数であるが、a、b、cのいずれか1つ以上は正の数である。)
請求項6:
≡Si−H基を持つケイ素化合物が、シラン化合物又はシロキサン化合物であることを特徴とする請求項4又は5に記載の有機ケイ素化合物の製造方法。 Accordingly, the present invention provides a catalyst for silicon introduction reaction comprising the following transition metal complex compound and a method for producing an organosilicon compound using a dehydrogenation silylation reaction with this catalyst.
Claim 1:
The catalyst for silicon introduction | transduction reaction to the unsaturated carbon of the siloxane which has an aliphatic or alicyclic unsaturated bond which consists of a transition metal complex compound shown by following General formula (1).
X t -M-R 1 s ( Y u) (1)
(In the formula, M is a transition metal atom belonging to groups 3 to 12. R 1 is a hydrogen atom, an unsubstituted or substituted alkyl group or aryl group having 1 to 10 carbon atoms, or the above-described transition formed from a SiR 3 group. R is a ligand that affects the oxidation number of a metal atom, and R represents a hydrogen atom, an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, an alkoxy group, a halogen atom, or a siloxane residue. X represents the oxidation number of the transition metal atom formed from a cyclic, trispirazolylborate, tetrafluoroborate, hexafluorophosphate, porphine, or phthalocyanine having an unsubstituted or substituted aliphatic unsaturated group having 4 to 10 carbon atoms. Is Y an ammonia molecule, carbonyl molecule, oxygen atom, oxygen molecule, amine molecule, phosphine molecule, or phosphite molecule? And s, t, and u are 0 <s ≦ 3, 0 ≦ t <2, 0 ≦ u ≦ 12, (The number is such that the entire metal salt is neutral, and s and t are numbers such that the oxidation number of the transition metal atom is II or IV.)
Claim 2:
The transition metal complex compound according to claim 1, wherein the transition metal complex compound is a compound represented by the following general formula (2).
C 5 R 2 5 -M'-R 3 s (CO) u (2)
(In the formula, M ′ is a transition metal of group 6 to 11, R 2 is a hydrogen atom, a hydrocarbon group having 1 to 6 carbon atoms or a SiR 3 group (R is as described above), and R 3 is hydrogen. An atom, an alkyl or aryl group having 1 to 8 carbon atoms, or a SiR 3 group (wherein R is as described above. S and u are as described above).
Claim 3:
The transition metal complex compound according to claim 2, wherein the transition metal complex compound is a compound represented by the following general formula (3).
C 5 H 5 —M ″ —CH 3 (CO) 2 (3)
(Where M ″ is a Group 8 transition metal.)
Claim 4:
A catalyst for silicon introduction reaction comprising a siloxane having an aliphatic or alicyclic unsaturated bond and a silicon compound having a ≡Si-H group, and comprising the transition metal complex compound according to any one of claims 1 to 3. In the presence or absence of an organic solvent in the presence or absence of an organic solvent to obtain an organic compound having a carbon-carbon double bond having a silicon atom at the β-position. A method for producing an organosilicon compound having a heavy bond.
Claim 5:
The siloxane having an unsaturated bond is selected from organosiloxanes containing an aliphatic or alicyclic unsaturated bond at the molecular end and / or side chain represented by the following average composition formula (4): Item 5. A method for producing an organosilicon compound according to Item 4.
Figure 2011045798

(In the formula, R 4 is a monovalent hydrocarbon group which may contain an unsubstituted or substituted aliphatic or alicyclic unsaturated bond having 1 to 10 carbon atoms, and R 5 is an unsubstituted or substituted carbon number of 1. 10 is a monovalent hydrocarbon group not containing an aliphatic or alicyclic unsaturated bond, and the number of monovalent hydrocarbon groups having an aliphatic or alicyclic unsaturated bond in the organosiloxane molecule is 2. And a, b, c and d are 0 or a positive number, but any one or more of a, b and c is a positive number.)
Claim 6:
6. The method for producing an organosilicon compound according to claim 4, wherein the silicon compound having an ≡Si—H group is a silane compound or a siloxane compound.

本発明の遷移金属錯体化合物を用いて上記不飽和結合含有シロキサンと≡Si−H基を反応させると、炭素炭素二重結合を有する有機ケイ素化合物が合成でき、酸化、付加反応等の二重結合由来の反応が可能であり、様々な官能基の導入が可能となる。従って、本発明により、機能性化合物である耐熱材料、電子材料、あるいはゴム材料等の前駆体として有用であるβ位にケイ素原子を有するような炭素炭素二重結合を有する化合物を製造することができる。これにより機能性化合物として有用なシロキサン又はシラン化合物を高収率で製造することができ、かつβ位にケイ素原子を有するような炭素炭素二重結合を有する有用な有機ケイ素化合物が合成でき、酸化、付加反応等の二重結合由来の反応が可能であるため、様々な官能基の導入が可能となり、応用分野が広がる。   By reacting the unsaturated bond-containing siloxane with the ≡Si—H group using the transition metal complex compound of the present invention, an organosilicon compound having a carbon-carbon double bond can be synthesized, and double bonds such as oxidation and addition reaction can be synthesized. Reactions derived from it are possible, and various functional groups can be introduced. Therefore, according to the present invention, it is possible to produce a compound having a carbon-carbon double bond having a silicon atom at the β-position that is useful as a precursor for a heat-resistant material, electronic material, or rubber material that is a functional compound. it can. As a result, a siloxane or silane compound useful as a functional compound can be produced in high yield, and a useful organosilicon compound having a carbon-carbon double bond having a silicon atom at the β-position can be synthesized and oxidized. Since a reaction derived from a double bond such as an addition reaction is possible, various functional groups can be introduced, and the application field is expanded.

本発明の脱水素シリル化反応用触媒、及び同触媒を用いた有機ケイ素化合物の製造方法は下記成分から構成される。以下、個々の成分に関して詳しく説明する。   The catalyst for dehydrogenation silylation reaction of the present invention and the method for producing an organosilicon compound using the catalyst are composed of the following components. Hereinafter, each component will be described in detail.

脱水素シリル化反応による有機ケイ素化合物の製造方法に使用する新規な触媒は、下記一般式(1)で示される遷移金属錯体化合物である。
t−M−R1 s(Yu) (1)
A novel catalyst used in the method for producing an organosilicon compound by dehydrogenation silylation reaction is a transition metal complex compound represented by the following general formula (1).
X t -M-R 1 s ( Y u) (1)

Mはスカンジウム、チタン、バナジウム、クロム、マンガン、鉄、ルテニウム、コバルト、ロジウム、イリジウム、ニッケル、パラジウム、白金、銅、銀、金、亜鉛等の3〜12族の遷移金属である。   M is a group 3-12 transition metal such as scandium, titanium, vanadium, chromium, manganese, iron, ruthenium, cobalt, rhodium, iridium, nickel, palladium, platinum, copper, silver, gold, and zinc.

1は独立に水素原子、又はメチル基、エチル基、プロピル基等のアルキル基、フェニル基、ピリジル基等のアリール基、又はこれらの基の炭素原子に結合している水素原子の一部(1個又は2個以上)又は全部をヒドロキシ基、シアノ基、ハロゲン原子などで置換したヒドロキシプロピル基、シアノエチル基、1−クロロプロピル基、3,3,3−トリフルオロプロピル基などから選択される非置換又は置換の炭素数1〜10のアルキル基、又はアリール基、又はSiR3で示される基である。Rは独立に水素原子、非置換又は置換の炭素数1〜10の1価炭化水素基又はアルコキシ基、ハロゲン原子、又はシロキサン残基を示す。この場合、非置換又は置換の炭素数1〜10の1価炭化水素基、アルコキシ基、ハロゲン原子としては後述する式(5)のR8と同様のものが例示される。シロキサン残基としては、後述する式(4)において、これからケイ素原子に結合する水素原子が1個脱離した基を挙げることができる。Rとしてはアルキル基、とりわけメチル基が好ましい。 R 1 is independently a hydrogen atom, an alkyl group such as a methyl group, an ethyl group or a propyl group, an aryl group such as a phenyl group or a pyridyl group, or a part of hydrogen atoms bonded to a carbon atom of these groups ( 1 or 2 or more) or all selected from a hydroxypropyl group, a cyanoethyl group, a 1-chloropropyl group, a 3,3,3-trifluoropropyl group, etc. substituted with a hydroxy group, a cyano group, a halogen atom, etc. An unsubstituted or substituted alkyl group having 1 to 10 carbon atoms, an aryl group, or a group represented by SiR 3 . R independently represents a hydrogen atom, an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms or an alkoxy group, a halogen atom, or a siloxane residue. In this case, examples of the unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, the alkoxy group, and the halogen atom include those similar to R 8 in the formula (5) described later. Examples of the siloxane residue include a group in which one hydrogen atom bonded to a silicon atom is eliminated in formula (4) described later. R is preferably an alkyl group, particularly a methyl group.

Xはシクロペンタジエニル基、シクロヘキサジエニル基、シクロオクタテトラエニル基又はこれらの基の炭素原子に結合している水素原子の一部(1個又は2個以上)又は全部をヒドロキシ基、シアノ基、ハロゲン原子などで置換したヒドロキシプロピル基、シアノエチル基、1−クロロプロピル基、3,3,3−トリフルオロプロピル基などから選択される基で置換した又は非置換の炭素数4〜10の脂肪族不飽和基を有する環状体、トリスピラゾリルボレート、テトラフルオロボレート、ヘキサフルオロホスフェートなどの塩を形成する陰イオン、ポルフィン、フタロシアニンから形成される配位子である。中でもシクロペンタジエニル陰イオンが好ましい。Yはアンモニア分子、カルボニル分子、酸素原子、酸素分子、アミン分子、トリフェニルホスフィンなどのホスフィン分子、トリエチルホスファイト、トリフェニルホスファイトなどのホスファイト分子から選択される遷移金属の酸化数に影響を与えない配位子である。   X represents a cyclopentadienyl group, a cyclohexadienyl group, a cyclooctatetraenyl group, or a part (one or two or more) of hydrogen atoms bonded to the carbon atom of these groups as a hydroxy group, cyano Group, a hydroxypropyl group substituted with a halogen atom or the like, a cyanoethyl group, a 1-chloropropyl group, a 3,3,3-trifluoropropyl group or the like, or a substituted or unsubstituted 4 to 10 carbon atoms It is a ligand formed from an anion, porphine, and phthalocyanine that forms a salt such as a cyclic compound having an aliphatic unsaturated group, trispyrazolyl borate, tetrafluoroborate, hexafluorophosphate. Of these, cyclopentadienyl anion is preferred. Y affects the oxidation number of transition metals selected from ammonia molecules, carbonyl molecules, oxygen atoms, oxygen molecules, amine molecules, phosphine molecules such as triphenylphosphine, phosphite molecules such as triethyl phosphite and triphenyl phosphite. It is a ligand that does not give.

s、t、uは0<s≦3、0≦t<2、0≦u≦12である。sは0より大きく、t、uは0以上であるが、s、t、uは金属塩全体が中性となるような数で、更にs、tは遷移金属の酸化数がII価又はIV価となるような数である。好ましくはR1が水素原子又はメチル基、エチル基、フェニル基、ピリジル基などの炭素数1〜8のアルキル基又はアリール基、XはC52 5で表記され、R2は水素原子、メチル基、エチル基等の炭素数1〜6の炭化水素基、Yはカルボニル分子、トリフェニルホスフィンなどのホスフィン分子である。 s, t, and u are 0 <s ≦ 3, 0 ≦ t <2, and 0 ≦ u ≦ 12. s is greater than 0 and t and u are 0 or more, but s, t, and u are numbers such that the entire metal salt is neutral, and s and t are the transition metal oxidation numbers II or IV. It is a number that gives a value. Preferably R 1 is a hydrogen atom or a methyl group, an ethyl group, a phenyl group, an alkyl group or an aryl group having 1 to 8 carbon atoms such as a pyridyl group, X is denoted by C 5 R 2 5, R 2 is a hydrogen atom, C1-C6 hydrocarbon groups, such as a methyl group and an ethyl group, Y is phosphine molecules, such as a carbonyl molecule and a triphenylphosphine.

遷移金属錯体化合物として、下記一般式(2)
52 5−M’−R3 s(CO)u (2)
(式中、M’は6〜11族の遷移金属であり、R2、s、uは上記の通り、R3は水素原子、炭素数1〜8のアルキル基もしくはアリール基、又はSiR3(Rは上記の通り)を示す。)
で示されるものが特に好ましく、更に好ましくは、下記一般式(3)
55−M’’−CH3(CO)2 (3)
(式中、M’’は8族の遷移金属である。)
で示されるジカルボニルシクロペンタジエニルメチル金属(II)である。
As a transition metal complex compound, the following general formula (2)
C 5 R 2 5 -M'-R 3 s (CO) u (2)
(In the formula, M ′ is a group 6-11 transition metal, R 2 , s and u are as described above, R 3 is a hydrogen atom, an alkyl or aryl group having 1 to 8 carbon atoms, or SiR 3 ( R represents as described above.)
Particularly preferred are those represented by the following general formula (3):
C 5 H 5 —M ″ —CH 3 (CO) 2 (3)
(Where M ″ is a Group 8 transition metal.)
It is a dicarbonylcyclopentadienylmethyl metal (II) represented by

あるいは、下記一般式(3’)
55−M’’−(SiR32(H)(CO) (3’)
(式中、M’’、Rは上記の通りであるが、特にSiR3はトリアルキルシリル基、とりわけトリメチルシリル基が好ましい。)
で示されるものである。
Alternatively, the following general formula (3 ′)
C 5 H 5 -M ″-(SiR 3 ) 2 (H) (CO) (3 ′)
(In the formula, M ″ and R are as described above, and SiR 3 is particularly preferably a trialkylsilyl group, particularly a trimethylsilyl group.)
It is shown by.

即ち、下記式(A)、(C)で示されるものが特に有効に用いられる。

Figure 2011045798
That is, those represented by the following formulas (A) and (C) are particularly effectively used.
Figure 2011045798

ここで、以下の理論に限定されるものではないが、(A)は触媒前駆体であり、実際の触媒活性種は(B)であると思われる。(A)を出発錯体としてこれとヒドロシランが反応して(B)が生成し、これにオレフィンとヒドロシランが順次反応してヒドロシリル化反応が起こっていると考えられる。一方、(A)に例えばヒドロシランを2当量反応させると錯体(C)が生成し、この錯体は溶液中で加熱すると遷移金属原子上からシリル基とヒドリドが還元的脱離して(B)を生じるもので、従って(C)もアルケニル基含有シロキサンの不飽和炭素へのケイ素導入反応の触媒前駆体となり、錯体(C)はIV価遷移金属錯体である。   Here, although not limited to the following theory, (A) is a catalyst precursor, and the actual catalytically active species seems to be (B). It is considered that (B) is formed by reacting (A) with the starting complex and hydrosilane, and olefin and hydrosilane are sequentially reacted with this to cause a hydrosilylation reaction. On the other hand, when (A) is reacted with, for example, 2 equivalents of hydrosilane, a complex (C) is formed. When this complex is heated in solution, a silyl group and a hydride are reductively eliminated from the transition metal atom to yield (B). Therefore, (C) also becomes a catalyst precursor for the silicon introduction reaction to the unsaturated carbon of the alkenyl group-containing siloxane, and the complex (C) is an IV-valent transition metal complex.

本発明に係る脱水素シリル化反応によるβ位にケイ素原子を有するような炭素炭素二重結合を有する有機化合物の製造においては、脂肪族又は脂環式不飽和結合を有するシロキサン、特にアルケニル基含有シロキサン、≡Si−H基を持つケイ素化合物、一般式(1)で示される遷移金属錯体化合物を用い、有機溶媒を任意成分とすると、β位にケイ素原子を有するような炭素炭素二重結合を有する有機化合物の製造が可能である。より好適に脱水素シリル化反応によりβ位にケイ素原子を有するような炭素炭素二重結合を有する有機化合物を製造するための各成分を下記に記載する。   In the production of an organic compound having a carbon-carbon double bond having a silicon atom at the β-position by a dehydrogenation silylation reaction according to the present invention, a siloxane having an aliphatic or alicyclic unsaturated bond, particularly containing an alkenyl group Using a siloxane, a silicon compound having a ≡Si—H group, and a transition metal complex compound represented by the general formula (1) and using an organic solvent as an optional component, a carbon-carbon double bond having a silicon atom at the β-position is formed. It is possible to produce an organic compound having the same. Each component for producing an organic compound having a carbon-carbon double bond having a silicon atom at the β-position by a dehydrogenation silylation reaction is described below.

アルケニル基等の脂肪族又は脂環式不飽和結合を有するシロキサンとしては、以下に示す成分(D)を例示することができる。
成分(D)は、下記平均組成式(4)で示される分子末端及び/又は側鎖にアルケニル基等の脂肪族又は脂環式不飽和結合を有するオルガノポリシロキサンである。
Examples of the siloxane having an aliphatic or alicyclic unsaturated bond such as an alkenyl group include the component (D) shown below.
Component (D) is an organopolysiloxane having an aliphatic or alicyclic unsaturated bond such as an alkenyl group at the molecular end and / or side chain represented by the following average composition formula (4).

Figure 2011045798

(式中、R4は非置換又は置換の炭素数1〜10の脂肪族又は脂環式不飽和結合を含んでもよい1価炭化水素基であり、R5は非置換又は置換の炭素数1〜10の脂肪族又は脂環式不飽和結合を含まない1価炭化水素基である。また、オルガノシロキサン分子中の脂肪族又は脂環式不飽和結合を有する1価炭化水素基の数は2個以上であり、a、b、c、dは0又は正の数であるが、a、b、cのいずれか1つ以上は正の数である。)
Figure 2011045798

(In the formula, R 4 is a monovalent hydrocarbon group which may contain an unsubstituted or substituted aliphatic or alicyclic unsaturated bond having 1 to 10 carbon atoms, and R 5 is an unsubstituted or substituted carbon number of 1. 10 is a monovalent hydrocarbon group not containing an aliphatic or alicyclic unsaturated bond, and the number of monovalent hydrocarbon groups having an aliphatic or alicyclic unsaturated bond in the organosiloxane molecule is 2. And a, b, c and d are 0 or a positive number, but any one or more of a, b and c is a positive number.)

ここで、脂肪族又は脂環式不飽和結合を有する1価炭化水素基は、直鎖状又は分岐鎖状のエーテル基(−O−)又はエステル基(−COO−)を有していてもよい脂肪族炭化水素基中に炭素−炭素多重結合を有する基、又は環状のエーテル基(−O−)又はエステル基(−COO−)を有していてもよい脂肪族炭化水素基(脂環式炭化水素基)の脂環中に炭素−炭素多重結合を有する基を示し、アルケニル基、シクロアルケニル基、アルキニル基等が挙げられ、ビニル基、アリル基、ヘキセニル基等の−(CH2i−CH=CH2(iは0〜6)で表される基や、シクロセキセニル基、アクリロイル基、メタクリロイル基等が例示される。 Here, the monovalent hydrocarbon group having an aliphatic or alicyclic unsaturated bond may have a linear or branched ether group (—O—) or an ester group (—COO—). A group having a carbon-carbon multiple bond in a good aliphatic hydrocarbon group, or an aliphatic hydrocarbon group (alicyclic ring) optionally having a cyclic ether group (—O—) or an ester group (—COO—) Group having a carbon-carbon multiple bond in the alicyclic ring of the formula hydrocarbon group), and examples thereof include alkenyl groups, cycloalkenyl groups, alkynyl groups, and the like, — (CH 2 ) such as vinyl groups, allyl groups, hexenyl groups, and the like. i -CH = CH 2 or a group (i is 0-6) represented by Shikurosekiseniru group, an acryloyl group, a methacryloyl group and the like.

上記式(4)において、R4は上記不飽和結合を有する基のほか、メチル基、エチル基、プロピル基、ブチル基などのアルキル基、シクロヘキシル基などのシクロアルキル基、フェニル基、トリル基などのアリール基、又はこれらの基の炭素原子に結合している水素原子の一部(1個又は2個以上)又は全部をヒドロキシ基、シアノ基、ハロゲン原子などで置換したヒドロキシプロピル基、シアノエチル基、1−クロロプロピル基、3,3,3−トリフルオロプロピル基などから選択される非置換又は置換の炭素数1〜10の1価炭化水素基である。R5はメチル基、エチル基、プロピル基、ブチル基などのアルキル基、シクロヘキシル基などのシクロアルキル基、フェニル基、トリル基などのアリール基、又はこれらの基の炭素原子に結合している水素原子の一部(1個又は2個以上)又は全部をヒドロキシ基、シアノ基、ハロゲン原子などで置換したヒドロキシプロピル基、シアノエチル基、1−クロロプロピル基、3,3,3−トリフルオロプロピル基などから選択される非置換又は置換の炭素数1〜10の1価炭化水素基である。 In the above formula (4), R 4 is a group having an unsaturated bond, an alkyl group such as a methyl group, an ethyl group, a propyl group or a butyl group, a cycloalkyl group such as a cyclohexyl group, a phenyl group, a tolyl group, etc. Or a hydroxypropyl group or a cyanoethyl group in which part (one or more) or all of the hydrogen atoms bonded to the carbon atoms of these groups are substituted with a hydroxy group, a cyano group, a halogen atom, or the like , An unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms selected from 1-chloropropyl group, 3,3,3-trifluoropropyl group and the like. R 5 is an alkyl group such as a methyl group, an ethyl group, a propyl group or a butyl group, a cycloalkyl group such as a cyclohexyl group, an aryl group such as a phenyl group or a tolyl group, or a hydrogen atom bonded to a carbon atom of these groups. Hydroxypropyl group, cyanoethyl group, 1-chloropropyl group, 3,3,3-trifluoropropyl group in which part (one or more) or all of the atoms are substituted with a hydroxy group, cyano group, halogen atom, etc. An unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms.

オルガノシロキサン分子中のアルケニル基等の上記不飽和結合を有する1価炭化水素基の数は2個以上であればよく、入手の容易さや経済面からはアルケニル基としてビニル基を有するものが好ましい。具体的には、末端にビニル基を有するオルガノポリシロキサン、側鎖にビニル基を有するオルガノポリシロキサン、末端及び側鎖にビニル基を有するオルガノポリシロキサン、末端にトリビニルシロキシ単位を有するオルガノポリシロキサン、末端にトリビニルシロキシ単位を有し側鎖にビニル基を有するオルガノポリシロキサンなどが例示されるが、これらに限定されるものではない。   The number of monovalent hydrocarbon groups having an unsaturated bond such as an alkenyl group in the organosiloxane molecule may be two or more, and those having a vinyl group as an alkenyl group are preferred from the standpoint of availability and economy. Specifically, an organopolysiloxane having a vinyl group at the terminal, an organopolysiloxane having a vinyl group at the side chain, an organopolysiloxane having a vinyl group at the terminal and the side chain, and an organopolysiloxane having a trivinylsiloxy unit at the terminal Examples include, but are not limited to, organopolysiloxanes having a trivinylsiloxy unit at the terminal and a vinyl group in the side chain.

式(4)において、a、b、c、dは0又は正の数であるが、a、b、cのいずれかは必ず正の数で、a+b+c+d≧2となる正の数である。好ましくは2≦a+b+c+d≦2,000、より好ましくは2≦a+b+c+d≦500、更に好ましくは2≦a+b+c+d≦50である。また、aは正の数であり、更にbも正の数であることが好ましい。   In Expression (4), a, b, c, and d are 0 or a positive number, but any one of a, b, and c is always a positive number and is a positive number that satisfies a + b + c + d ≧ 2. Preferably 2 ≦ a + b + c + d ≦ 2,000, more preferably 2 ≦ a + b + c + d ≦ 500, and still more preferably 2 ≦ a + b + c + d ≦ 50. Further, a is a positive number, and b is preferably a positive number.

≡Si−H基を持つケイ素化合物としては、以下に示す成分(E)、(F)を例示することができる。   Examples of silicon compounds having ≡Si—H groups include the following components (E) and (F).

成分(E)は、下記平均組成式(5)で示されるオルガノハイドロジェンシロキサンである。

Figure 2011045798
The component (E) is an organohydrogensiloxane represented by the following average composition formula (5).
Figure 2011045798

6は水素原子、又は非置換もしくは置換の炭素数1〜10の1価炭化水素基であり、脂肪族不飽和結合を有さない、例えばメチル基、エチル基、プロピル基等のアルキル基、フェニル基等のアリール基、ベンジル基、フェニルエチル基等のアラルキル基、3,3,3−トリフルオロプロピル基等のハロゲン置換アルキル基などが挙げられる。R7は非置換又は置換の炭素数1〜10の1価炭化水素基であり、脂肪族不飽和結合を有さない。かかる1価炭化水素基としては、メチル基、エチル基、プロピル基等のアルキル基、フェニル基等のアリール基、ベンジル基、フェニルエチル基等のアラルキル基、3,3,3−トリフルオロプロピル基等のハロゲン置換アルキル基などが挙げられる。また、e、f、g、hは0又は正の数であるが、e、f、gのいずれかは必ず正の数で、e+f+g+h≧2かつSi−H基を1分子中に1個以上有するものである。より好ましくは2≦e+f+g+h≦1,000であり、更に好ましくは2≦e+f+g+h≦100であり、Si数は2〜1,000、特に2〜100であることが好ましく、またSi−H数は1以上、特に1〜100であることが好ましい。 R 6 is a hydrogen atom or an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms and does not have an aliphatic unsaturated bond, for example, an alkyl group such as a methyl group, an ethyl group, or a propyl group, Examples thereof include aryl groups such as a phenyl group, aralkyl groups such as a benzyl group and a phenylethyl group, and halogen-substituted alkyl groups such as a 3,3,3-trifluoropropyl group. R 7 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms and does not have an aliphatic unsaturated bond. Examples of the monovalent hydrocarbon group include an alkyl group such as a methyl group, an ethyl group, and a propyl group, an aryl group such as a phenyl group, an aralkyl group such as a benzyl group and a phenylethyl group, and a 3,3,3-trifluoropropyl group. And halogen-substituted alkyl groups. E, f, g, and h are 0 or a positive number, but any one of e, f, and g must be a positive number, and e + f + g + h ≧ 2 and one or more Si—H groups in one molecule. I have it. More preferably, 2 ≦ e + f + g + h ≦ 1,000, still more preferably 2 ≦ e + f + g + h ≦ 100, the Si number is preferably 2 to 1,000, particularly 2 to 100, and the Si—H number is 1 As mentioned above, it is especially preferable that it is 1-100.

このハイドロジェンシロキサンの配合量は、ケイ素原子に結合した水素原子のモル数がアルケニル基等の上記不飽和基含有シロキサンのアルケニル基等の不飽和基の総数に対して0.3〜10倍モルに相当する質量部になるようにすればよく、好ましくは0.5〜5倍モルに相当する質量部であればよい。配合量が0.3倍モル未満では、アルケニル基等の不飽和基含有シロキサンの不飽和炭素へのケイ素導入反応のもう一方の反応原料である炭素−炭素多重結合基を持つ有機化合物の残存量が多くなるため実用的ではなく、また10倍モルを超えて用いても、アルケニル基等の不飽和基含有シロキサンの不飽和炭素へのケイ素導入反応の収率は向上しない。   The amount of the hydrogen siloxane blended is such that the number of moles of hydrogen atoms bonded to silicon atoms is 0.3 to 10 times the total number of unsaturated groups such as alkenyl groups of the unsaturated group-containing siloxane such as alkenyl groups. The mass part may be equivalent to 0.5 parts by mass, preferably 0.5 to 5 times mol. If the blending amount is less than 0.3-fold mol, the remaining amount of the organic compound having a carbon-carbon multiple bond group, which is another reaction raw material for silicon introduction reaction into unsaturated carbon of unsaturated group-containing siloxane such as alkenyl group Therefore, the yield of silicon introduction reaction to unsaturated carbon of unsaturated group-containing siloxane such as alkenyl group does not improve even if it is used more than 10 times mole.

成分(F)は、下記一般式(6)で示される≡Si−H基を持つシラン化合物である。

Figure 2011045798
The component (F) is a silane compound having an ≡Si—H group represented by the following general formula (6).
Figure 2011045798

8は水素原子、メチル基、エチル基、プロピル基、ブチル基などのアルキル基、シクロヘキシル基などのシクロアルキル基、フェニル基、ビフェニル基などのアリール基、又はこれらの基の炭素原子に結合している水素原子の一部(1個又は2個以上)又は全部をヒドロキシ基、シアノ基、ハロゲン原子などで置換したトリフルオロメチル基、ヒドロキシプロピル基、シアノエチル基などから選択される非置換又は置換の炭素数1〜10の炭化水素基、メトキシ基、エトキシ基、イソプロポキシ基などの非置換又は置換の炭素数1〜10のアルコキシ基、フッ素、塩素、臭素、ヨウ素などのハロゲン原子などが挙げられる。反応性の面からアルキル基、アリール基、アルコキシ基が好ましく、更に好ましくはアルキル基、アルコキシ基である。 R 8 is bonded to a hydrogen atom, an alkyl group such as a methyl group, an ethyl group, a propyl group or a butyl group, a cycloalkyl group such as a cyclohexyl group, an aryl group such as a phenyl group or a biphenyl group, or a carbon atom of these groups. Unsubstituted or substituted selected from a trifluoromethyl group, a hydroxypropyl group, a cyanoethyl group, etc. in which part (one or more) or all of the hydrogen atoms are substituted with a hydroxy group, a cyano group, a halogen atom, etc. And an unsubstituted or substituted alkoxy group having 1 to 10 carbon atoms such as methoxy group, ethoxy group and isopropoxy group, and a halogen atom such as fluorine, chlorine, bromine and iodine. It is done. From the viewpoint of reactivity, an alkyl group, an aryl group, and an alkoxy group are preferable, and an alkyl group and an alkoxy group are more preferable.

このシラン化合物の使用量は、ケイ素原子に結合した水素原子のモル数が上記ポリシロキサンのアルケニル基等の不飽和基の総数に対して0.3〜10倍モルに相当する質量部になるようにすればよく、好ましくは0.5〜5倍モルに相当する質量部であればよい。配合量が0.3倍モル未満では、アルケニル基等の不飽和基含有シロキサンの不飽和炭素へのケイ素導入反応のもう一方の反応原料である炭素−炭素多重結合基を持つ有機化合物の残存量が多くなるため実用的ではなく、また10倍モルを超えて用いても、アルケニル基等の不飽和基含有シロキサンの不飽和炭素へのケイ素導入反応の収率は向上しない。   The amount of the silane compound used is such that the number of moles of hydrogen atoms bonded to silicon atoms is 0.3 parts by weight corresponding to the total number of unsaturated groups such as alkenyl groups of the polysiloxane. What is necessary is just to be the mass part corresponded to 0.5-5 times mole preferably. If the blending amount is less than 0.3-fold mol, the remaining amount of the organic compound having a carbon-carbon multiple bond group, which is another reaction raw material for silicon introduction reaction into unsaturated carbon of unsaturated group-containing siloxane such as alkenyl group Therefore, the yield of silicon introduction reaction to unsaturated carbon of unsaturated group-containing siloxane such as alkenyl group does not improve even if it is used more than 10 times mole.

成分(G)は、アルケニル基等の不飽和基含有シロキサンの不飽和炭素へのケイ素導入反応用触媒であり、一般式(1)で示される遷移金属錯体化合物である。
上記の遷移金属錯体化合物は、成分(D)中のアルケニル基等の不飽和基の総数に対して0.0001〜10倍モル、好ましくは0.001〜1倍モルが好適に使用できる。
Component (G) is a catalyst for introducing silicon into an unsaturated carbon of an unsaturated group-containing siloxane such as an alkenyl group, and is a transition metal complex compound represented by the general formula (1).
The transition metal complex compound can be suitably used in an amount of 0.0001 to 10 times mol, preferably 0.001 to 1 times mol, based on the total number of unsaturated groups such as alkenyl groups in component (D).

また、炭素炭素二重結合を有する有機化合物の製造に関しては、任意で有機溶剤を使用することができる。有機溶剤としては脱水素シリル化反応に関与しない有機溶剤、好ましくは炭化水素系、更に好ましくはヘプタン、オクタン、トルエンである。   Moreover, an organic solvent can be used arbitrarily regarding manufacture of the organic compound which has a carbon carbon double bond. The organic solvent is an organic solvent that does not participate in the dehydrogenation silylation reaction, preferably a hydrocarbon type, more preferably heptane, octane, or toluene.

上記の脱水素シリル化反応による炭素炭素二重結合を有する有機化合物の製造は、反応温度として20〜150℃、好ましくは50〜120℃である。
なお、上記有機ケイ素化合物を得る反応式の一例を挙げると、下記の通りである。
The production of the organic compound having a carbon-carbon double bond by the dehydrogenation silylation reaction is 20 to 150 ° C., preferably 50 to 120 ° C. as the reaction temperature.
An example of the reaction formula for obtaining the organosilicon compound is as follows.

Figure 2011045798
Figure 2011045798

以下、実施例を示し、本発明を具体的に説明するが、本発明はこれによって限定されるものではない。   EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated concretely, this invention is not limited by this.

[脱水素化シリル化反応を用いた有機ケイ素化合物の製造]
下記には、新規なヒドロシリル化反応用触媒を用いた有機ケイ素化合物の製造について記載する。
ここで、下記に示すMeはメチル基、Phはフェニル基を表す。
[Production of organosilicon compound using dehydrogenation silylation reaction]
The following describes the production of an organosilicon compound using a novel hydrosilylation reaction catalyst.
Here, Me shown below represents a methyl group, and Ph represents a phenyl group.

[実施例1]
窒素で置換したシュレンク管に、C55Fe(CO)2CH3[ジカルボニルシクロペンタジエニルメチル鉄(II)]192mg(1.0mmol)、ペンタメチルジシロキサン912μL(4.0mmol)をトルエン5mLに溶解させ、光照射を5℃で2時間行った。減圧下で過剰量のシランと溶媒を留去した後、ヘキサン1mLに溶解させ、ろ過し、再度、減圧下で溶媒を留去することにより、目的とする鉄(IV)錯体C55FeH(SiMe2OSiMe32(CO)(7)を355mg得た。
[Example 1]
To a Schlenk tube substituted with nitrogen, 192 mg (1.0 mmol) of C 5 H 5 Fe (CO) 2 CH 3 [dicarbonylcyclopentadienylmethyliron (II)] and 912 μL of pentamethyldisiloxane (4.0 mmol) were added. It was made to melt | dissolve in toluene 5mL, and light irradiation was performed at 5 degreeC for 2 hours. Excessive amount of silane and solvent were distilled off under reduced pressure, then dissolved in 1 mL of hexane, filtered, and again the solvent was distilled off under reduced pressure to obtain the target iron (IV) complex C 5 H 5 FeH. 355 mg of (SiMe 2 OSiMe 3 ) 2 (CO) (7) was obtained.

Figure 2011045798
Figure 2011045798

収率:80%
元素分析:C16363Si4Fe、理論値(%) C:43.22%,H:8.16%、実測値(%) C:42.82%,H:7.84%.
1HNMR(400MHz,C66,rt)δ=−13.72(s,1H,Fe−H)、0.18(s,18H,SiMe3)、0.64(s,6H,SiMe2)、0.69(s,6H,SiMe2)、4.25(s,5H,C55).
13C{1H}NMR(100.4MHz,C66,rt)δ=2.43(s,SiMe3)、13.11(s,SiMe2)、13.32(s,SiMe2)、84.00(s,C55)、213.15(CO).
Yield: 80%
Elemental analysis: C 16 H 36 O 3 Si 4 Fe, theoretical value (%) C: 43.22%, H: 8.16%, measured value (%) C: 42.82%, H: 7.84% .
1 HNMR (400 MHz, C 6 D 6 , rt) δ = -13.72 (s, 1H, Fe—H), 0.18 (s, 18H, SiMe 3 ), 0.64 (s, 6H, SiMe 2) ), 0.69 (s, 6H, SiMe 2 ), 4.25 (s, 5H, C 5 H 5 ).
13 C { 1 H} NMR (100.4 MHz, C 6 D 6 , rt) δ = 2.43 (s, SiMe 3 ), 13.11 (s, SiMe 2 ), 13.32 (s, SiMe 2 ) , 84.00 (s, C 5 H 5), 213.15 (CO).

[実施例2]
窒素で置換したシュレンク管に、C55(CO)FeH(SiMe2OSiMe32、45mg(0.1mmol,4mol%)、ペンタメチルジシロキサン1.47mL(7.5mmol)、1,3−ジビニルテトラメチルジシロキサン0.57mL(2.5mmol)及びトルエン1.0mLを加え、80℃で24時間攪拌した。冷却後、反応混合物を減圧濃縮した。得られた残渣をカラムクロマトグラフィー(充填剤:アルミナ、展開溶媒:ヘキサン)で精製し、E構造体である生成物2,2,4,4,7,7,9,9−オクタメチル−3,8−ジオキサ−2,4,7,9−テトラシラウンデカ−5−エン生成物(8)を定量的に得た。
[Example 2]
To a Schlenk tube substituted with nitrogen, C 5 H 5 (CO) FeH (SiMe 2 OSiMe 3 ) 2 , 45 mg (0.1 mmol, 4 mol%), 1.47 mL (7.5 mmol) of pentamethyldisiloxane, 1, 3 -Divinyltetramethyldisiloxane 0.57mL (2.5mmol) and toluene 1.0mL were added, and it stirred at 80 degreeC for 24 hours. After cooling, the reaction mixture was concentrated under reduced pressure. The obtained residue was purified by column chromatography (filler: alumina, developing solvent: hexane), and the product 2,2,4,4,7,7,9,9-octamethyl-3, which was an E structure, was obtained. The 8-dioxa-2,4,7,9-tetrasilaundec-5-ene product (8) was obtained quantitatively.

Figure 2011045798
Figure 2011045798

元素分析値:C13342Si4、理論値(%) C:46.64%,H:10.24%、実測値(%) C:46.99%,H:10.37%.
質量分析値(EI):C13342Si4:334.1635、実測値:334.1636.
1HNMR(400MHz,CDCl3)δ=0.06(s,6H,OSi(C 32CH2)、0.08(s,9H,Si(C 33)、0.13(s,12H,(C 32SiCH=CHSi(C 32)、0.51(q,3HH=8Hz,2H,C 2CH3)、0.90(t,3HH=8Hz,3H,CH2 3)、6.59(s,2H,C=C).
13CNMR(100.4MHz,CDCl3)δ=−0.08(q,1CH=117.4Hz,OSi(32CH2)、0.36(q,1CH=117.7Hz,(32SiCH=CHSi(32)、2.08(q,1CH=117.7Hz,Si(33)、6.87(qt,1CH=126.0Hz,2CH=4.9Hz,CH2 3)、10.14(tm,1CH=116.9Hz,2CH3)、150.40(dm,1CH=139.3Hz,H=H).
29SiNMR(79.3MHz,CDCl3)δ=−5.07,−4.82,8.26,9.52.
Elemental analysis value: C 13 H 34 O 2 Si 4 , theoretical value (%) C: 46.64%, H: 10.24%, actual measurement value (%) C: 46.99%, H: 10.37% .
Mass analysis value (EI): C 13 H 34 O 2 Si 4 : 334.1635, measured value: 334.1636.
1 HNMR (400 MHz, CDCl 3 ) δ = 0.06 (s, 6H, OSi (C H 3 ) 2 CH 2 ), 0.08 (s, 9H, Si (C H 3 ) 3 ), 0.13 ( s, 12H, (C H 3 ) 2 SiCH═CHSi (C H 3 ) 2 ), 0.51 (q, 3 J HH = 8 Hz, 2H, C H 2 CH 3 ), 0.90 (t, 3 J HH = 8Hz, 3H, CH 2 C H 3), 6.59 (s, 2H, C H = C H).
13 CNMR (100.4MHz, CDCl 3) δ = -0.08 (q, 1 J CH = 117.4Hz, OSi (C H 3) 2 CH 2), 0.36 (q, 1 J CH = 117. 7 Hz, ( C H 3 ) 2 SiCH═CHSi ( C H 3 ) 2 ), 2.08 (q, 1 J CH = 117.7 Hz, Si ( C H 3 ) 3 ), 6.87 (qt, 1 J CH = 126.0Hz, 2 J CH = 4.9Hz, CH 2 C H 3), 10.14 (tm, 1 J CH = 116.9Hz, C H 2 CH 3), 150.40 (dm, 1 J CH = 139.3 Hz, C H = C H).
29 Si NMR (79.3 MHz, CDCl 3 ) δ = −5.07, −4.82, 8.26, 9.52.

[実施例3]
窒素で置換したシュレンク管に、C55Fe(CO)2CH3[ジカルボニルシクロペンタジエニルメチル鉄(II)]17.6mg(0.091mmol)、1,3−ジビニルテトラメチルジシロキサン0.501mL(2.18mmol)、ペンタメチルジシロキサン1.29mL(6.55mmol)にトルエン1mLを添加し、80℃で24時間攪拌した。冷却後、反応混合物を減圧濃縮した。得られた残渣をカラムクロマトグラフィー(充填剤:シリカゲル、展開溶媒:ヘキサン)で精製し、E構造体である生成物2,2,4,4,7,7,9,9−オクタメチル−3,8−ジオキサ−2,4,7,9−テトラシラウンデカ−5−エン(8)を590mg得た。収率84%。
[Example 3]
In a Schlenk tube substituted with nitrogen, C 5 H 5 Fe (CO) 2 CH 3 [dicarbonylcyclopentadienylmethyliron (II)] 17.6 mg (0.091 mmol), 1,3-divinyltetramethyldisiloxane To 0.501 mL (2.18 mmol) and pentamethyldisiloxane 1.29 mL (6.55 mmol), 1 mL of toluene was added and stirred at 80 ° C. for 24 hours. After cooling, the reaction mixture was concentrated under reduced pressure. The obtained residue was purified by column chromatography (filler: silica gel, developing solvent: hexane), and the product 2,2,4,4,7,7,9,9-octamethyl-3, which was an E structure, was obtained. 590 mg of 8-dioxa-2,4,7,9-tetrasilaundec-5-ene (8) was obtained. Yield 84%.

[実施例4]
窒素で置換したシュレンク管に、C55Fe(CO)2CH3[ジカルボニルシクロペンタジエニルメチル鉄(II)]20.7mg(0.107mmol)、1,3−ジビニルテトラメチルジシロキサン0.601mL(2.67mmol)、ジフェニルメチルシラン1.56mL(7.86mmol)にトルエン1mLを添加し、80℃で48時間攪拌した。冷却後、反応混合物を減圧濃縮した。得られた残渣をカラムクロマトグラフィー(充填剤:シリカゲル、展開溶媒:ヘキサン)で精製し、E構造体である生成物5,5,7,7−テトラメチル−2,2−ジフェニル−6−オキサ−2,5,7−トリシラノナ−3−エン(9)を728mg得た。
[Example 4]
To a Schlenk tube substituted with nitrogen, 20.7 mg (0.107 mmol) of C 5 H 5 Fe (CO) 2 CH 3 [dicarbonylcyclopentadienylmethyliron (II)], 1,3-divinyltetramethyldisiloxane 1 mL of toluene was added to 0.601 mL (2.67 mmol) and 1.56 mL (7.86 mmol) of diphenylmethylsilane, and the mixture was stirred at 80 ° C. for 48 hours. After cooling, the reaction mixture was concentrated under reduced pressure. The obtained residue was purified by column chromatography (filler: silica gel, developing solvent: hexane), and the product 5,5,7,7-tetramethyl-2,2-diphenyl-6-oxa, which is an E structure, was obtained. 728 mg of -2,5,7-trisilananon-3-ene (9) was obtained.

Figure 2011045798
Figure 2011045798

収率72%
元素分析値:C2132OSi3、理論値(%) C:65.56%,H:8.38%、実測値(%) C:65.98%,H:8.25%.
質量分析値(EI):C2132OSi3:384.1761、実測値:384.1759.
1HNMR(400MHz,CDCl3)δ=0.05(s,6H,OSi(C 32CH2)、0.16(s,6H,O(C 32SiCH=CH)、0.50(q,3HH=8Hz,2H,C 2CH3)、0.64(s,3H,C 3SiPh2)、0.92(t,3HH=8Hz,3H,CH2 3)、6.71(d,3HH=22.4Hz,1H,CH=CH)、6.95(d,3HH=22.4Hz,1H,CH=CH)、7.36−7.52(m,10H,Ph).
13CNMR(100.4MHz,CDCl3)δ=−3.91(q,1CH=120.0Hz,3SiPh2)、−0.07(q,1CH=117.6Hz,OSi(32CH2)、0.61(q,1CH=118.4Hz,O(32SiCH=CH)、7.03(qt,1CH=125.8Hz,2CH=4.9Hz,CH2 3)、10.26(tm,1CH=116.7Hz,2CH3)、127.88(dd,1CH=159.8Hz,2CH=5.0Hz,ortho−C in Ph)、129.31(dt,1CH=159.0Hz,2CH=7.4Hz,para−C in Ph)、134.96(ddd,1CH=158.2Hz,2CH=7.4Hz,meta−C in Ph)、136.47(s,ipso−C in Ph)、146.05(d,1CH=135.0Hz,CH=CH)、154.71(d,1CH=135.0Hz,CH=CH).
29SiNMR(79.3MHz,CDCl3)δ=−15.15,−5.17,−4.01.
Yield 72%
Elemental analysis value: C 21 H 32 OSi 3 , theoretical value (%) C: 65.56%, H: 8.38%, measured value (%) C: 65.98%, H: 8.25%.
Mass analysis value (EI): C 21 H 32 OSi 3 : 384.1761, actual measurement: 384.1759.
1 HNMR (400 MHz, CDCl 3 ) δ = 0.05 (s, 6H, OSi (C H 3 ) 2 CH 2 ), 0.16 (s, 6H, O (C H 3 ) 2 SiCH═CH), 0 .50 (q, 3 J HH = 8 Hz, 2 H, C H 2 CH 3 ), 0.64 (s, 3 H, C H 3 SiPh 2 ), 0.92 (t, 3 J HH = 8 Hz, 3 H, CH 2 C H 3), 6.71 ( d, 3 J HH = 22.4Hz, 1H, CH = CH), 6.95 (d, 3 J HH = 22.4Hz, 1H, CH = CH), 7. 36-7.52 (m, 10H, Ph).
13 CNMR (100.4 MHz, CDCl 3 ) δ = −3.91 (q, 1 J CH = 120.0 Hz, C H 3 SiPh 2 ), −0.07 (q, 1 J CH = 117.6 Hz, OSi (C H 3) 2 CH 2 ), 0.61 (q, 1 J CH = 118.4Hz, O (C H 3) 2 SiCH = CH), 7.03 (qt, 1 J CH = 125.8Hz, 2 J CH = 4.9Hz, CH 2 C H 3), 10.26 (tm, 1 J CH = 116.7Hz, C H 2 CH 3), 127.88 (dd, 1 J CH = 159.8Hz, 2 J CH = 5.0 Hz, ortho-C in Ph), 129.31 (dt, 1 J CH = 159.0 Hz, 2 J CH = 7.4 Hz, para-C in Ph), 134.96 (ddd, 1 J CH = 158.2Hz, 2 J CH = 7.4Hz, meta-C in Ph), 1 6.47 (s, ipso-C in Ph), 146.05 (d, 1 J CH = 135.0Hz, CH = CH), 154.71 (d, 1 J CH = 135.0Hz, CH = CH) .
29 Si NMR (79.3 MHz, CDCl 3 ) δ = −15.15, −5.17, −4.01.

[実施例5]
窒素で置換したシュレンク管に、C55Fe(CO)2CH3[ジカルボニルシクロペンタジエニルメチル鉄(II)]26.1mg(0.135mmol)、1,3−ジビニルテトラメチルジシロキサン0.308mL(1.35mmol)、ベンジルジメチルシラン0.639mL(4.03mmol)にトルエン1mLを混合し、80℃で48時間攪拌した。冷却後、反応混合物を減圧濃縮した。得られた残渣をカラムクロマトグラフィー(充填剤:シリカゲル、展開溶媒:ヘキサン)で精製し、E構造体である2,2,5,5,7,7−ヘキサメチル−1−フェニル−6−オキサ−2,5,7−トリシラノナ−3−エン(10)を213mg得た。
[Example 5]
To a Schlenk tube substituted with nitrogen, 26.1 mg (0.135 mmol) of C 5 H 5 Fe (CO) 2 CH 3 [dicarbonylcyclopentadienylmethyliron (II)], 1,3-divinyltetramethyldisiloxane 0.38 mL (1.35 mmol) and benzyldimethylsilane 0.639 mL (4.03 mmol) were mixed with 1 mL of toluene and stirred at 80 ° C. for 48 hours. After cooling, the reaction mixture was concentrated under reduced pressure. The obtained residue was purified by column chromatography (filler: silica gel, developing solvent: hexane), and 2,2,5,5,7,7-hexamethyl-1-phenyl-6-oxa-, which is an E structure. 213 mg of 2,5,7-trisilanona-3-ene (10) was obtained.

Figure 2011045798
Figure 2011045798

収率46%
元素分析値:C1732OSi3、理論値(%) C:60.64%,H:9.58%、実測値(%) C:61.31%,H:9.83%.
1HNMR(400MHz,CDCl3)δ=0.04(s,12H,(C 32SiOSi(C 32)、0.09(s,6H,PhCH2Si(C 32)、0.49(qt,3HH=7.8Hz,2H,C 2CH3)、0.92(t,3HH=7.8Hz,3H,CH2 3)、2.13(s,2H,PhC 2Si(CH32)、6.56(d,3HH=22.4Hz,1H,CH=CH)、6.59(d,3HH=22.4Hz,1H,CH=CH)、6.77(d,3HH=7.3Hz,2H,ortho−H in Ph)、7.03(t,3HH=7.3Hz,1H,para−H in Ph)、7.19(t,3HH=7.3Hz,2H,meta−H in Ph).
13CNMR(100.4MHz,CDCl3)δ=−3.59(q,1CH=118.4Hz,PhCH3Si(32)、−0.09(q,1CH=117.6Hz,OSi(32CH2)、0.58(q,1CH=118.4Hz,O(32SiCH=CH)、7.03(qt,1CH=125.8Hz,3CH=4.9Hz,2CH3)、10.26(tm,1CH=118.4Hz,2CH3)、25.93(t,1CH=120.0Hz,Ph2Si(CH32)、124.00(dt,1CH=160.6Hz,2CH=7.4Hz,para−C in Ph)、127.39−129.01(dm,overlapped ortho− and meta−C in Ph)、140.03(t,2CH=6.5Hz,ipso−C in Ph)、148.93(dm,1CH=140.0Hz,CH=CH)、151.61(dm,1CH=139.9Hz,CH=CH).
Yield 46%
Elemental analysis value: C 17 H 32 OSi 3 , theoretical value (%) C: 60.64%, H: 9.58%, measured value (%) C: 61.31%, H: 9.83%.
1 HNMR (400 MHz, CDCl 3 ) δ = 0.04 (s, 12 H, (C H 3 ) 2 SiOSi (C H 3 ) 2 ), 0.09 (s, 6 H, PhCH 2 Si (C H 3 ) 2 ), 0.49 (qt, 3 J HH = 7.8Hz, 2H, C H 2 CH 3), 0.92 (t, 3 J HH = 7.8Hz, 3H, CH 2 C H 3), 2. 13 (s, 2H, PhC H 2 Si (CH 3 ) 2 ), 6.56 (d, 3 J HH = 22.4 Hz, 1 H, CH = CH), 6.59 (d, 3 J HH = 22. 4 Hz, 1 H, CH = CH), 6.77 (d, 3 J HH = 7.3 Hz, 2 H, ortho-H in Ph), 7.03 (t, 3 J HH = 7.3 Hz, 1 H, para- H in Ph), 7.19 (t, 3 J HH = 7.3 Hz, 2H, meta-H in Ph).
13 CNMR (100.4MHz, CDCl 3) δ = -3.59 (q, 1 J CH = 118.4Hz, PhCH 3 Si (C H 3) 2), - 0.09 (q, 1 J CH = 117 .6Hz, OSi (C H 3) 2 CH 2), 0.58 (q, 1 J CH = 118.4Hz, O (C H 3) 2 SiCH = CH), 7.03 (qt, 1 J CH = 125.8 Hz, 3 J CH = 4.9 Hz, C H 2 CH 3 ), 10.26 (tm, 1 J CH = 18.4 Hz, C H 2 CH 3 ), 25.93 (t, 1 J CH = 120.0Hz, Ph C H 2 Si ( CH 3) 2), 124.00 (dt, 1 J CH = 160.6Hz, 2 J CH = 7.4Hz, para-C in Ph), 127.39-129 .01 (dm, overlapped ortho- and meta-C in Ph), 140 03 (t, 2 J CH = 6.5Hz, ipso-C in Ph), 148.93 (dm, 1 J CH = 140.0Hz, CH = CH), 151.61 (dm, 1 J CH = 139. 9 Hz, CH = CH).

[実施例6]
窒素で置換したシュレンク管に、C55Fe(CO)2CH3[ジカルボニルシクロペンタジエニルメチル鉄(II)]22.8mg(0.118mmol)、1,3−ジビニルテトラメチルジシロキサン0.675mL(2.95mmol)、2−ハイドロジェンヘプタメチルトリシロキサン2.39mL(8.83mmol)にトルエン1mLを混合し、80℃で96時間攪拌した。冷却後、反応混合物を減圧濃縮した。得られた残渣をカラムクロマトグラフィー(充填剤:シリカゲル、展開溶媒:ヘキサン)で精製し、E構造体である5,5,7,7−テトラメチル−2,2−ビス(トリメチルシロキシ)−6−オキサ−2,5,7−トリシラノナ−3−エン(11)を1.20g得た。
[Example 6]
In a Schlenk tube substituted with nitrogen, 22.8 mg (0.118 mmol) of C 5 H 5 Fe (CO) 2 CH 3 [dicarbonylcyclopentadienylmethyliron (II)], 1,3-divinyltetramethyldisiloxane 0.675 mL (2.95 mmol) and 2-hydrogenheptamethyltrisiloxane 2.39 mL (8.83 mmol) were mixed with 1 mL of toluene and stirred at 80 ° C. for 96 hours. After cooling, the reaction mixture was concentrated under reduced pressure. The obtained residue was purified by column chromatography (filler: silica gel, developing solvent: hexane), and 5,5,7,7-tetramethyl-2,2-bis (trimethylsiloxy) -6, which is an E structure. 1.20 g of -oxa-2,5,7-trisilanana-3-ene (11) was obtained.

Figure 2011045798
Figure 2011045798

収率:79%
元素分析値:C15403Si5、理論値(%) C:44.06%,H:9.86%、実測値(%) C:43.83%,H:9.74%.
1HNMR(400MHz,CDCl3)δ=0.04(s,6H,OSi(C 32CH2)、0.10(s,18H,OSi(C 33)、0.12(s,O(C 32SiCH=CH overlapped with C 3Si(OSiMe32)、0.50(q,3HH=7.8Hz,2H,C 2CH3)、0.92(t,3HH=7.8Hz,3H,CH2 3)、6.43(d,1H,3HH=22.4Hz,CH=CHA)、6.62(d,1H,3HH=22.4Hz,CH=CHA').
13CNMR(100.4MHz,CDCl3)δ=−0.07(q,1CH=118.4Hz,O2Si3)、−0.03(q,1CH=117.5Hz,OSi(32CH2)、0.45(q,1CH=118.4Hz,O(32SiCH=CH)、2.10(q,1CH=117.5Hz,Si(33)、7.00(qt,1CH=125.8Hz,2CH=4.9Hz,CH2 3)、10.23(tm,1CH=114.9Hz,2CH3)、148.12(dm,1CH=132.5Hz,CH=CH)、151.61(dm,1CH=130.8Hz,CH=CH).
29SiNMR(79.3MHz,CDCl3)δ=−35.81,−4.56,8.11,9.73.
Yield: 79%
Elemental analysis value: C 15 H 40 O 3 Si 5 , theoretical value (%) C: 44.06%, H: 9.86%, actual measurement value (%) C: 43.83%, H: 9.74% .
1 HNMR (400 MHz, CDCl 3 ) δ = 0.04 (s, 6H, OSi (C H 3 ) 2 CH 2 ), 0.10 (s, 18H, OSi (C H 3 ) 3 ), 0.12 ( s, O (C H 3 ) 2 SiCH = CH overlapped with C H 3 Si (OSiMe 3 ) 2 ), 0.50 (q, 3 J HH = 7.8 Hz, 2H, C H 2 CH 3 ), 0. 92 (t, 3 J HH = 7.8Hz, 3H, CH 2 C H 3), 6.43 (d, 1H, 3 J HH = 22.4Hz, CH = CH A), 6.62 (d, 1H , 3 J HH = 22.4 Hz, CH = CH A ′ ).
13 CNMR (100.4MHz, CDCl 3) δ = -0.07 (q, 1 J CH = 118.4Hz, O 2 Si C H 3), - 0.03 (q, 1 J CH = 117.5Hz, OSi (C H 3) 2 CH 2), 0.45 (q, 1 J CH = 118.4Hz, O (C H 3) 2 SiCH = CH), 2.10 (q, 1 J CH = 117.5Hz , Si (C H 3) 3 ), 7.00 (qt, 1 J CH = 125.8Hz, 2 J CH = 4.9Hz, CH 2 C H 3), 10.23 (tm, 1 J CH = 114 .9 Hz, C H 2 CH 3 ), 148.12 (dm, 1 J CH = 132.5 Hz, CH = CH), 151.61 (dm, 1 J CH = 130.8 Hz, CH = CH).
29 Si NMR (79.3 MHz, CDCl 3 ) δ = −35.81, −4.56, 8.11, 9.73.

[実施例7]
窒素で置換したシュレンク管に、C55Fe(CO)2CH3[ジカルボニルシクロペンタジエニルメチル鉄(II)]22.8mg(0.118mmol)、1,3−ジビニルテトラメチルジシロキサン0.675mL(2.95mmol)、ジメチルフェニルシラン1.34mL(8.80mmol)にトルエン1mLを混合し、80℃で24時間加熱した。反応混合物を減圧乾固し、得られた残渣をヘキサンに溶解し、カラムクロマトグラフィー(充填剤:シリカゲル、展開溶媒:ヘキサン)で精製した。流出液を集め、溶媒を除去して、E構造体である無色油状の2,5,5,7,7−ペンタメチル−2−フェニル−6−オキサ−2,5,7−トリシラノナ−3−エン(12)を128mg(0.396mmol)得た。収率13%。
[Example 7]
In a Schlenk tube substituted with nitrogen, 22.8 mg (0.118 mmol) of C 5 H 5 Fe (CO) 2 CH 3 [dicarbonylcyclopentadienylmethyliron (II)], 1,3-divinyltetramethyldisiloxane 0.675 mL (2.95 mmol) and dimethylphenylsilane 1.34 mL (8.80 mmol) were mixed with 1 mL of toluene and heated at 80 ° C. for 24 hours. The reaction mixture was dried under reduced pressure, and the resulting residue was dissolved in hexane and purified by column chromatography (filler: silica gel, developing solvent: hexane). The effluent was collected, the solvent was removed, and colorless oily 2,5,5,7,7-pentamethyl-2-phenyl-6-oxa-2,5,7-trisilanona-3-ene having E structure was obtained. 128 mg (0.396 mmol) of (12) was obtained. Yield 13%.

Figure 2011045798
Figure 2011045798

1HNMR(400MHz,CDCl3):δ=0.04(s,6H,OSi(C 32CH2)、0.14(s,6H,O(C 32SiCH=CH)、0.31(s,6H,(C 32SiPh)、0.49(q,3HH=8.0Hz,2H,C 2CH3)、0.92(t,3HH=8.0Hz,3H,CH2 3)、6.71(d,3HH=22.4Hz,1H,CH=CH)、6.95(d,3HH=22.4Hz,1H,CH=CH)、7.36−7.53(m,5H,Ph). 1 HNMR (400 MHz, CDCl 3 ): δ = 0.04 (s, 6H, OSi (C H 3 ) 2 CH 2 ), 0.14 (s, 6H, O (C H 3 ) 2 SiCH═CH), 0.31 (s, 6H, (C H 3 ) 2 SiPh), 0.49 (q, 3 J HH = 8.0 Hz, 2H, C H 2 CH 3 ), 0.92 (t, 3 J HH = 8.0Hz, 3H, CH 2 C H 3), 6.71 (d, 3 J HH = 22.4Hz, 1H, CH = CH), 6.95 (d, 3 J HH = 22.4Hz, 1H, CH = CH), 7.36-7.53 (m, 5H, Ph).

[実施例8]
窒素で置換したシュレンク管に、C55Fe(CO)2CH3[ジカルボニルシクロペンタジエニルメチル鉄(II)]20.0mg(0.104mmol)、1,3−ジビニルテトラフェニルジシロキサン1.13g(2.60mmol)、ペンタメチルジシロキサン1.52mL(7.55mmol)にトルエン1mLを混合し、80℃で72時間加熱した。反応混合物を減圧乾固し、得られた残渣をヘキサンに溶解し、カラムクロマトグラフィー(充填剤:シリカゲル、展開溶媒:ヘキサン)で精製した。流出液を集め、溶媒を除去して、E構造体である無色油状の2,2,4,4−テトラメチル−7,7,9,9−テトラフェニル−3,8−ジオキサ−2,4,7,9−テトラシラウンデカ−5−エン(13)を218mg(0.373mmol)得た。収率14%。
[Example 8]
To a Schlenk tube substituted with nitrogen, 20.0 mg (0.104 mmol) of C 5 H 5 Fe (CO) 2 CH 3 [dicarbonylcyclopentadienylmethyliron (II)], 1,3-divinyltetraphenyldisiloxane 1.13 g (2.60 mmol) and 1.52 mL (7.55 mmol) of pentamethyldisiloxane were mixed with 1 mL of toluene and heated at 80 ° C. for 72 hours. The reaction mixture was dried under reduced pressure, and the resulting residue was dissolved in hexane and purified by column chromatography (filler: silica gel, developing solvent: hexane). The effluent was collected, the solvent was removed, and colorless oily 2,2,4,4-tetramethyl-7,7,9,9-tetraphenyl-3,8-dioxa-2,4, which is an E structure, was obtained. , 7,9-tetrasilaundec-5-ene (13) was obtained in an amount of 218 mg (0.373 mmol). Yield 14%.

Figure 2011045798
Figure 2011045798

1HNMR(400MHz,CDCl3):δ=−0.04(s,9H,Si(C 33)、0.05(s,6H,Si(C 32)、0.92(m,3H,CH2 3)、1.03(m,2H,C 2CH3)、6.66(d,3HH=22.0Hz,1H,CH=CH)、6.80(d,3HH=22.4Hz,1H,CH=CH)、7.26−7.48(m,20H,Ph). 1 HNMR (400 MHz, CDCl 3 ): δ = −0.04 (s, 9H, Si (C H 3 ) 3 ), 0.05 (s, 6H, Si (C H 3 ) 2 ), 0.92 ( m, 3H, CH 2 C H 3), 1.03 (m, 2H, C H 2 CH 3), 6.66 (d, 3 J HH = 22.0Hz, 1H, CH = CH), 6.80 (D, 3 J HH = 22.4 Hz, 1H, CH = CH), 7.26-7.48 (m, 20H, Ph).

Claims (6)

下記一般式(1)で示される遷移金属錯体化合物からなる脂肪族又は脂環式不飽和結合を有するシロキサンの不飽和炭素へのケイ素導入反応用触媒。
t−M−R1 s(Yu) (1)
(式中、Mは3〜12族の遷移金属原子である。R1は水素原子、非置換もしくは置換の炭素数1〜10のアルキル基もしくはアリール基、又はSiR3基から形成される上記遷移金属原子の酸化数に影響を与える配位子である。Rは水素原子、非置換又は置換の炭素数1〜10の1価炭化水素基、アルコキシ基、ハロゲン原子、又はシロキサン残基を示す。Xは非置換又は置換の炭素数4〜10の脂肪族不飽和基を有する環状体、トリスピラゾリルボレート、テトラフルオロボレート、ヘキサフルオロホスフェート、ポルフィン、又はフタロシアニンから形成される上記遷移金属原子の酸化数に影響を与える配位子である。Yはアンモニア分子、カルボニル分子、酸素原子、酸素分子、アミン分子、ホスフィン分子、又はホスファイト分子から形成される上記遷移金属原子の酸化数に影響を与えない配位子である。s、t、uは、0<s≦3、0≦t<2、0≦u≦12であるが、金属塩全体が中性となるような数で、更にs、tは遷移金属原子の酸化数がII価又はIV価となるような数である。)
The catalyst for silicon introduction | transduction reaction to the unsaturated carbon of the siloxane which has an aliphatic or alicyclic unsaturated bond which consists of a transition metal complex compound shown by following General formula (1).
X t -M-R 1 s ( Y u) (1)
(In the formula, M is a transition metal atom belonging to groups 3 to 12. R 1 is a hydrogen atom, an unsubstituted or substituted alkyl group or aryl group having 1 to 10 carbon atoms, or the above-described transition formed from a SiR 3 group. R is a ligand that affects the oxidation number of a metal atom, and R represents a hydrogen atom, an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, an alkoxy group, a halogen atom, or a siloxane residue. X represents the oxidation number of the transition metal atom formed from a cyclic, trispirazolylborate, tetrafluoroborate, hexafluorophosphate, porphine, or phthalocyanine having an unsubstituted or substituted aliphatic unsaturated group having 4 to 10 carbon atoms. Is Y an ammonia molecule, carbonyl molecule, oxygen atom, oxygen molecule, amine molecule, phosphine molecule, or phosphite molecule? And s, t, and u are 0 <s ≦ 3, 0 ≦ t <2, 0 ≦ u ≦ 12, (The number is such that the entire metal salt is neutral, and s and t are numbers such that the oxidation number of the transition metal atom is II or IV.)
上記遷移金属錯体化合物が、下記一般式(2)で表される化合物である請求項1に記載の遷移金属錯体化合物。
52 5−M’−R3 s(CO)u (2)
(式中、M’は6〜11族の遷移金属であり、R2は水素原子、炭素数1〜6の炭化水素基又はSiR3基(Rは上記の通り)であり、R3は水素原子、炭素数1〜8のアルキル基もしくはアリール基、又はSiR3基(Rは上記の通り)である。s、uは上記の通りである。)
The transition metal complex compound according to claim 1, wherein the transition metal complex compound is a compound represented by the following general formula (2).
C 5 R 2 5 -M'-R 3 s (CO) u (2)
(In the formula, M ′ is a transition metal of group 6 to 11, R 2 is a hydrogen atom, a hydrocarbon group having 1 to 6 carbon atoms or a SiR 3 group (R is as described above), and R 3 is hydrogen. An atom, an alkyl or aryl group having 1 to 8 carbon atoms, or a SiR 3 group (wherein R is as described above. S and u are as described above).
遷移金属錯体化合物が、下記一般式(3)で表される化合物である請求項2に記載の遷移金属錯体化合物。
55−M’’−CH3(CO)2 (3)
(式中、M’’は8族の遷移金属である。)
The transition metal complex compound according to claim 2, wherein the transition metal complex compound is a compound represented by the following general formula (3).
C 5 H 5 —M ″ —CH 3 (CO) 2 (3)
(Where M ″ is a Group 8 transition metal.)
脂肪族又は脂環式不飽和結合を有するシロキサンと≡Si−H基を持つケイ素化合物を原料とし、請求項1〜3のいずれか1項に記載の遷移金属錯体化合物からなるケイ素導入反応用触媒の存在下、有機溶媒の存在あるいは非存在の条件で、脱水素シリル化反応を行って、β位にケイ素原子を有する炭素炭素二重結合を持つ有機化合物を得ることを特徴とする炭素炭素二重結合を有する有機ケイ素化合物の製造方法。   A catalyst for silicon introduction reaction comprising a siloxane having an aliphatic or alicyclic unsaturated bond and a silicon compound having a ≡Si-H group, and comprising the transition metal complex compound according to any one of claims 1 to 3. In the presence or absence of an organic solvent in the presence or absence of an organic solvent to obtain an organic compound having a carbon-carbon double bond having a silicon atom at the β-position. A method for producing an organosilicon compound having a heavy bond. 不飽和結合を有するシロキサンが、下記平均組成式(4)で示される分子末端及び/又は側鎖に脂肪族又は脂環式不飽和結合を含有するオルガノシロキサンから選択されることを特徴とする請求項4に記載の有機ケイ素化合物の製造方法。
Figure 2011045798

(式中、R4は非置換又は置換の炭素数1〜10の脂肪族又は脂環式不飽和結合を含んでもよい1価炭化水素基であり、R5は非置換又は置換の炭素数1〜10の脂肪族又は脂環式不飽和結合を含まない1価炭化水素基である。また、オルガノシロキサン分子中の脂肪族又は脂環式不飽和結合を有する1価炭化水素基の数は2個以上であり、a、b、c、dは0又は正の数であるが、a、b、cのいずれか1つ以上は正の数である。)
The siloxane having an unsaturated bond is selected from organosiloxanes containing an aliphatic or alicyclic unsaturated bond at the molecular end and / or side chain represented by the following average composition formula (4): Item 5. A method for producing an organosilicon compound according to Item 4.
Figure 2011045798

(In the formula, R 4 is a monovalent hydrocarbon group which may contain an unsubstituted or substituted aliphatic or alicyclic unsaturated bond having 1 to 10 carbon atoms, and R 5 is an unsubstituted or substituted carbon number of 1. 10 is a monovalent hydrocarbon group not containing an aliphatic or alicyclic unsaturated bond, and the number of monovalent hydrocarbon groups having an aliphatic or alicyclic unsaturated bond in the organosiloxane molecule is 2. And a, b, c and d are 0 or a positive number, but any one or more of a, b and c is a positive number.)
≡Si−H基を持つケイ素化合物が、シラン化合物又はシロキサン化合物であることを特徴とする請求項4又は5に記載の有機ケイ素化合物の製造方法。   6. The method for producing an organosilicon compound according to claim 4, wherein the silicon compound having an ≡Si—H group is a silane compound or a siloxane compound.
JP2009193964A 2009-08-25 2009-08-25 Catalyst for dehydrogenation silylation reaction, and method for producing organosilicon compound Active JP5429745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009193964A JP5429745B2 (en) 2009-08-25 2009-08-25 Catalyst for dehydrogenation silylation reaction, and method for producing organosilicon compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009193964A JP5429745B2 (en) 2009-08-25 2009-08-25 Catalyst for dehydrogenation silylation reaction, and method for producing organosilicon compound

Publications (2)

Publication Number Publication Date
JP2011045798A true JP2011045798A (en) 2011-03-10
JP5429745B2 JP5429745B2 (en) 2014-02-26

Family

ID=43832665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009193964A Active JP5429745B2 (en) 2009-08-25 2009-08-25 Catalyst for dehydrogenation silylation reaction, and method for producing organosilicon compound

Country Status (1)

Country Link
JP (1) JP5429745B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014133014A1 (en) * 2013-03-01 2014-09-04 国立大学法人九州大学 Mononuclear ruthenium complex and organic synthesis reaction using same
WO2014133017A1 (en) * 2013-03-01 2014-09-04 国立大学法人九州大学 Mononuclear iron complex and organic synthesis reaction using same
JP2015510494A (en) * 2011-12-01 2015-04-09 ダウ コーニング コーポレーションDow Corning Corporation Hydrosilylation reaction catalysts and curable compositions and methods for their preparation and use
WO2015114939A1 (en) * 2014-01-31 2015-08-06 信越化学工業株式会社 Organopolysiloxane compound and method for producing same, and addition-curable silicone composition
JP2016166136A (en) * 2015-03-09 2016-09-15 国立大学法人九州大学 Mononuclear complex and organic synthetic reaction using the same
JP2017533179A (en) * 2014-08-26 2017-11-09 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Platinum complexes and their use in compounds crosslinkable by hydrosilylation reactions

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05228372A (en) * 1992-02-19 1993-09-07 Sagami Chem Res Center Catalyst for dehydrogenation and silylation
JPH09227581A (en) * 1996-01-16 1997-09-02 Dow Corning Corp Hydrosilylation of alkyne using cycloalkadiene-platinum complex as catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05228372A (en) * 1992-02-19 1993-09-07 Sagami Chem Res Center Catalyst for dehydrogenation and silylation
JPH09227581A (en) * 1996-01-16 1997-09-02 Dow Corning Corp Hydrosilylation of alkyne using cycloalkadiene-platinum complex as catalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6009055256; BRUNNER, H. et al.: 'Synthesis of (C5H5)Fe(CO)(SiHPh2)2H, a catalytically active intermediate in the hydrosilylation of a' J. Organomet. Chem. Vol. 412, No. 1-2, 1991, p. C11-C13 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015510494A (en) * 2011-12-01 2015-04-09 ダウ コーニング コーポレーションDow Corning Corporation Hydrosilylation reaction catalysts and curable compositions and methods for their preparation and use
US9782762B2 (en) 2013-03-01 2017-10-10 Kyushu University, National University Corporation Substituted mononuclear ruthenium complexes for catalysis of synthetic organic reactions
CN105026409A (en) * 2013-03-01 2015-11-04 国立大学法人九州大学 Mononuclear ruthenium complex and organic synthesis reaction using same
JPWO2014133017A1 (en) * 2013-03-01 2017-02-02 国立大学法人九州大学 Mononuclear iron complexes and organic synthesis reactions using them
JPWO2014133014A1 (en) * 2013-03-01 2017-02-02 国立大学法人九州大学 Mononuclear ruthenium complex and organic synthesis reaction using it
CN105026410A (en) * 2013-03-01 2015-11-04 国立大学法人九州大学 Mononuclear iron complex and organic synthesis reaction using same
US9421532B2 (en) 2013-03-01 2016-08-23 Kyushu University, National University Corporation Mononuclear iron complex and organic synthesis reaction using same
KR101811670B1 (en) * 2013-03-01 2018-01-25 고쿠리쓰다이가쿠호진 규슈다이가쿠 Mononuclear iron complex and organic synthesis reaction using same
KR101807167B1 (en) * 2013-03-01 2018-01-10 고쿠리쓰다이가쿠호진 규슈다이가쿠 Mononuclear ruthenium complex and organic synthesis reaction using same
WO2014133014A1 (en) * 2013-03-01 2014-09-04 国立大学法人九州大学 Mononuclear ruthenium complex and organic synthesis reaction using same
WO2014133017A1 (en) * 2013-03-01 2014-09-04 国立大学法人九州大学 Mononuclear iron complex and organic synthesis reaction using same
WO2015114939A1 (en) * 2014-01-31 2015-08-06 信越化学工業株式会社 Organopolysiloxane compound and method for producing same, and addition-curable silicone composition
US9840594B2 (en) 2014-01-31 2017-12-12 Shin-Etsu Chemical Co., Ltd. Organopolysiloxane compound and method for producing the same, and addition-curable silicone composition
TWI650348B (en) * 2014-01-31 2019-02-11 日商信越化學工業股份有限公司 Organic polyoxyalkylene compound, process for producing the same, and addition-hardening polyoxonium composition
JP6024839B2 (en) * 2014-01-31 2016-11-16 信越化学工業株式会社 Organopolysiloxane compound, method for producing the same, and addition-curable silicone composition
JP2017533179A (en) * 2014-08-26 2017-11-09 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Platinum complexes and their use in compounds crosslinkable by hydrosilylation reactions
US10363551B2 (en) 2015-03-09 2019-07-30 Kyushu University, National University Corporation Mononuclear iron complex and organic synthesis reaction using same
WO2016143769A1 (en) * 2015-03-09 2016-09-15 国立大学法人九州大学 Mononuclear iron complex and organic synthesis reaction using same
JP2016166136A (en) * 2015-03-09 2016-09-15 国立大学法人九州大学 Mononuclear complex and organic synthetic reaction using the same

Also Published As

Publication number Publication date
JP5429745B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP6389220B2 (en) Hydrosilylation catalyst
JP5572798B2 (en) Catalyst for hydrosilylation reaction, and method for producing organosilicon compound using the catalyst
KR101450080B1 (en) Hydrosilylation catalysts
EP2790829B1 (en) Non-precious metal-based hydrosilylation catalysts
KR102008593B1 (en) Method of hydrosilylation implementing an organic catalyst derived from germylene
JP5429745B2 (en) Catalyst for dehydrogenation silylation reaction, and method for producing organosilicon compound
Hreczycho et al. A new selective approach to unsymmetrical siloxanes and germasiloxanes via O-metalation of silanols with 2-methylallylsilanes and 2-methylallylgermanes
EP3071585B1 (en) Cobalt catalysts and their use for hydrosilylation and dehydrogenative silylation
JP4253664B2 (en) Process for producing organosilicon compounds having silanol groups and such compounds
JP4821991B2 (en) Method for producing 1- (alkoxysilyl) ethyl-1,1,3,3-tetramethyldisiloxane
JP5652829B2 (en) Method for producing silanol under anhydrous conditions
EP0578186B1 (en) Method for the preparation of 1-aza-2-silacyclopentane compounds
JP3915881B2 (en) Method for producing branched low-molecular siloxane
JP5290386B2 (en) Process for the production of alkoxy-substituted 1,2-bis-silyl-ethane
Mingotaud et al. Synthesis of difunctional borasiloxanes and their behavior in metathesis reactions
EP0578185B1 (en) 1-aza-2-silacyclobutane compounds and method for their preparation
JP4470886B2 (en) Method for producing cyclic organosilicon compound
JP3856088B2 (en) Method for producing bissilylnorbornane compound
JP7126088B2 (en) Method for producing organosilicon compound using halosilanes as raw material
JP6598406B2 (en) Method for producing silyl compound by hydrosilylation of allyl compound using iridium complex, etc.
JP4172342B2 (en) Cyclic organosilicon compound and method for producing the same
JPH0657002A (en) Production of polyorganosilane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5429745

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370