JP2011044507A - Heat radiating device - Google Patents

Heat radiating device Download PDF

Info

Publication number
JP2011044507A
JP2011044507A JP2009190523A JP2009190523A JP2011044507A JP 2011044507 A JP2011044507 A JP 2011044507A JP 2009190523 A JP2009190523 A JP 2009190523A JP 2009190523 A JP2009190523 A JP 2009190523A JP 2011044507 A JP2011044507 A JP 2011044507A
Authority
JP
Japan
Prior art keywords
heat
radiator
diffusion plate
radiating device
attached
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2009190523A
Other languages
Japanese (ja)
Inventor
Kenji Okubo
健次 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009190523A priority Critical patent/JP2011044507A/en
Publication of JP2011044507A publication Critical patent/JP2011044507A/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat radiating device for eliminating the need for preparing each heat radiating device to a plurality of heating elements with different heights and shapes, and for efficiently radiating heat generated by the plurality of heating elements. <P>SOLUTION: The heat radiating device has a structure where a corrugate fin 3 is bonded with a flexible tabular heat diffusion plate 2 so that the heat radiating device itself has flexibility and the radiating device can be mutually attached to a plurality of the heating elements with different shapes by making the plurality of heating elements have intended attached areas where the radiating device is mutually and simultaneously attached. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は放熱器に係り、特に複数の発熱部品に同時共通に取り付け可能な柔軟性を有する放熱器に関する。   The present invention relates to a radiator, and more particularly to a radiator having flexibility that can be attached to a plurality of heat-generating components simultaneously.

電子機器等の高機能化や小型軽量化に伴い、機器内に実装される種々の発熱部品の高発熱密度化や、冷却が困難な箇所への発熱部品の取り付けなど、放熱環境に対する条件が厳しくなってきている。高発熱部品を放熱するためには、熱をできるだけ広い面積に広げるとともに、広げた熱を効率的に冷却媒体へ移動させる放熱器が必要である。   As electronic devices become more functional and smaller and lighter, the conditions for the heat dissipation environment are severe, such as increasing the heat generation density of various heat generating components mounted in the device and attaching heat generating components to places where cooling is difficult. It has become to. In order to radiate heat from a high heat-generating component, a heat radiator that spreads heat over a wide area as much as possible and efficiently moves the spread heat to a cooling medium is required.

従来より、例えば、電子機器内のユニット化されたモジュール内やPCB上等に実装された集積回路などの高発熱部品には、それぞれの形状や発熱量に適合する放熱器が取り付けられる。これらの放熱器は、例えば機械加工や押し出しなどの製造手法により作られたフィンまたはピンがベースとなる材料に作り込まれたものである。そして、図5に例示したように、例えばPCB11上に実装された発熱部品12及び13のそれぞれの大きさや高さといった形状やその発熱量に応じて、所定の放熱容量に適合するサイズの放熱器14及び15が、取り付けスペース等を考慮しつつ選択され、個々の発熱部品に取り付けられる。そのため、機器の小型軽量化に十分対処出来ない場合があり、また発熱部品の発熱量のバラツキや、個々の放熱器に放熱容量の余裕があっても、隣接する放熱器との熱のやりとりができず、熱を広い面積に拡散させて放熱させるという点では、必ずしも効率的でなかった。   Conventionally, for example, high heat-generating parts such as integrated circuits mounted on a unitized module in an electronic device, on a PCB, or the like are attached with a radiator that matches each shape and heat generation amount. These radiators are made of a material based on fins or pins made by a manufacturing method such as machining or extrusion. Then, as illustrated in FIG. 5, for example, a heat radiator having a size suitable for a predetermined heat radiation capacity according to the shape and the amount of heat generated by each of the heat generating components 12 and 13 mounted on the PCB 11. 14 and 15 are selected in consideration of the installation space and the like, and are attached to individual heat generating components. For this reason, it may not be possible to sufficiently cope with the reduction in the size and weight of the equipment, and even if there is a variation in the amount of heat generated by the heat-generating parts and the heat sink capacity of each heat sink, heat exchange between adjacent heat sinks is not possible. However, it was not always efficient in terms of radiating heat by diffusing heat over a wide area.

一方、複数の発熱体に取り付ける構造の放熱器も開示されている(例えば、特許文献1参照。)。しかし、複数の発熱部品に対して1つの放熱器を貼り付けて良好な放熱効果を得るには、各発熱部品と放熱器との間の熱抵抗を十分低くする必要がある。そのためには、モジュール内やPCB上等に実装された個々の電子部品のサイズ、形状、高さなどを揃えるなどして、放熱器を取り付けるための平面を設けることが望ましいが、その実現は必ずしも容易ではなかった。   On the other hand, a radiator having a structure attached to a plurality of heating elements is also disclosed (for example, see Patent Document 1). However, in order to obtain a good heat dissipation effect by attaching one heat radiator to a plurality of heat generating components, it is necessary to sufficiently reduce the thermal resistance between each heat generating component and the heat radiator. For this purpose, it is desirable to provide a plane for mounting the heatsink by aligning the size, shape, height, etc. of the individual electronic components mounted in the module, on the PCB, etc. It was not easy.

特開2006−202798号公報(第11ページ、図1)Japanese Patent Laying-Open No. 2006-202798 (page 11, FIG. 1)

上述したように、従来の放熱構造にあっては、個々の発熱体に放熱器を取り付けるような場合では、機器の小型軽量化が困難であるとともに、個々の放熱器の放熱容量の余裕を有効に活用できなかった。また、ひとつの放熱器を複数の発熱部品に共通に取り付け可能とする場合では、発熱部品そのものや発熱部品の実装されたモジュールやPCBの外形等に制約をきたすことがあった。   As described above, in the conventional heat dissipation structure, it is difficult to reduce the size and weight of the device when the heatsink is attached to each heating element, and the heat dissipation capacity margin of each heatsink is effective. It was not possible to use it. Further, in the case where one radiator can be commonly attached to a plurality of heat generating components, the heat generating component itself, the module on which the heat generating component is mounted, the external shape of the PCB, or the like may be restricted.

本発明は、上述の事情を考慮してなされたものであり、高さや形状等の異なる複数の発熱体に対しても個々に放熱器を準備する必要がなく、また複数の発熱体からの熱を効率的に放熱する放熱器を提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and it is not necessary to prepare a radiator individually for a plurality of heating elements having different heights and shapes, and heat from the plurality of heating elements is also provided. It aims at providing the heat radiator which thermally radiates efficiently.

上記目的を達成するために、本発明の放熱器は、平板状の熱拡散板と、この熱拡散板の片面を覆うように設けられた放熱フィンとを有する放熱器において、前記熱拡散板は、同時に複数の発熱体を対象にして取り付け可能な面積を有するとともに可撓性を有し、前記放熱フィンはコルゲートフィンとしたことを特徴とする。   In order to achieve the above object, a radiator of the present invention is a radiator having a flat plate-like heat diffusion plate and a heat radiation fin provided so as to cover one side of the heat diffusion plate, wherein the heat diffusion plate is In addition, it has an area that can be attached to a plurality of heating elements at the same time and is flexible, and the heat radiation fin is a corrugated fin.

本発明によれば、例えば、ユニット化されたモジュールやPCB上等に実装された、高さや形状等の異なる複数の発熱部品を放熱する場合のように、取り付け面が平面にならないような面領域からの発熱に対処する場合にも、個々に放熱器を準備する必要がなく、1つの放熱器により共通に放熱することができるとともに、複数の部品からの発熱を放熱器全体に拡散させることによる均熱化により効率的な放熱が可能な放熱器を得ることができる。   According to the present invention, for example, a surface region where the mounting surface is not flat, such as when heat is dissipated from a plurality of heat generating components having different heights and shapes mounted on a unitized module or PCB. Even when dealing with heat generated from the heat sink, it is not necessary to prepare heat radiators individually, and heat can be radiated in common by one heat radiator, and heat generated from a plurality of components is diffused throughout the heat radiator. A heat radiator capable of efficiently radiating heat by soaking can be obtained.

本発明に係る放熱器の一実施例を示す斜視図。The perspective view which shows one Example of the heat radiator which concerns on this invention. 図1に例示した放熱器の断面図。Sectional drawing of the heat radiator illustrated in FIG. 図1に例示した放熱器の可撓性をモデル化して例示した断面図。Sectional drawing which modeled and illustrated the flexibility of the heat radiator illustrated in FIG. 複数の発熱部品への取り付けをモデル化して例示した断面図。Sectional drawing which modeled and illustrated attachment to several heat-emitting components. 複数の発熱部品に個々に放熱器を取り付けた従来の発熱構造の一例を示す断面図。Sectional drawing which shows an example of the conventional heat generating structure which attached the heat radiator to the several heat-emitting component separately.

以下に、本発明に係る放熱器を実施するための形態について、図1乃至図5を参照して説明する。   Below, the form for implementing the heat radiator which concerns on this invention is demonstrated with reference to FIG. 1 thru | or FIG.

図1は、本発明に係る放熱器の一実施例を示す斜視図である。また、図2は、図1に例示した放熱器の断面図である。図1に例示したように、この放熱器1は、熱拡散板2と、この熱拡散板2の片面を覆うように放熱用のフィンとしてコルゲートフィン3が設けられ構成されている。熱拡散板2は、平板状の薄い金属板であり、可撓性を有するとともに、例えばユニット化されたモジュールやPCB上に実装された複数の発熱部品等に取り付け可能な面積を有する。コルゲートフィン3は、薄い金属板からなる波形の放熱フィンであり、波の進行方向に対して柔軟性を有している。   FIG. 1 is a perspective view showing an embodiment of a radiator according to the present invention. FIG. 2 is a cross-sectional view of the radiator illustrated in FIG. As illustrated in FIG. 1, the radiator 1 includes a heat diffusion plate 2 and corrugated fins 3 as heat dissipation fins so as to cover one surface of the heat diffusion plate 2. The heat diffusion plate 2 is a flat thin metal plate, has flexibility, and has an area that can be attached to, for example, a unitized module or a plurality of heat generating components mounted on a PCB. The corrugated fins 3 are corrugated heat dissipating fins made of a thin metal plate and have flexibility in the wave traveling direction.

これら熱拡散板2、及びコルゲートフィン3は、いずれも、例えば銅系の材料やアルミ合金等に代表される熱伝導率の高い材料で製造されている。また、熱拡散板2とコルゲートフィン3との接合は、図2の断面図に例示したように、熱拡散板2上でのすべての接触部分2aにおいてロウ付け、または熱伝導性接着剤により接着されている。それぞれの材料や接着の手法は、種々に組み合わせることが出来るが、例えば熱拡散板2、及びコルゲートフィン3ともにアルミ系の材料を用い、これらをその接触部分2aにおいてロウ付けにより接着した場合には、軽量かつ良好な放熱特性を持ったものとすることができる。   Each of the heat diffusion plate 2 and the corrugated fin 3 is manufactured from a material having high thermal conductivity represented by, for example, a copper-based material or an aluminum alloy. Further, as illustrated in the cross-sectional view of FIG. 2, the thermal diffusion plate 2 and the corrugated fin 3 are joined by brazing at all contact portions 2 a on the thermal diffusion plate 2 or by bonding with a heat conductive adhesive. Has been. Each material and bonding method can be combined in various ways. For example, when both the heat diffusion plate 2 and the corrugated fin 3 are made of an aluminum-based material and are bonded by brazing at the contact portion 2a. It can be lightweight and have good heat dissipation characteristics.

上記した構造の放熱器1においては、波形に成形されたコルゲートフィン3が、その波形の進行方向に対して湾曲することができ、可撓性を有する熱拡散板2の変形に対しても追従するように変形することが可能となる。この様子を、図3に例示する。図3は、熱拡散板2が湾曲した場合をモデル化して例示した断面図である。図3(a)はコルゲートフィン3の波形が拡がる方向に、また図3(b)はコルゲートフィン3の波形が縮まる方向に、それぞれ熱拡散板2が変形した場合における、放熱器1の断面図を例示したものである。   In the radiator 1 having the above-described structure, the corrugated fins 3 formed into a corrugated shape can be curved with respect to the traveling direction of the corrugated shape, and follow the deformation of the flexible heat diffusing plate 2. It becomes possible to deform | transform. This is illustrated in FIG. FIG. 3 is a cross-sectional view illustrating the case where the thermal diffusion plate 2 is curved as an example. 3A is a cross-sectional view of the radiator 1 when the heat diffusion plate 2 is deformed in a direction in which the corrugated fin 3 has a widened waveform, and FIG. 3B is a direction in which the corrugated fin 3 has a narrowed waveform. Is illustrated.

加えて、熱拡散板2は、複数の発熱部品等に取り付け可能な面積を有しているので、複数の発熱部品等の放熱に際しては、この放熱器1の発熱体側への取り付け面となる熱拡散板2を変形させながら、高さや形状が異なって凹凸面となるような複数の発熱部品等に共通に取り付けることができる。このときの様子を図4に例示する。図4は、放熱器1を、例えばPCB上に実装された高さの異なる複数の発熱部品に取り付けた場合をモデル化して例示した断面図である。図4において、放熱器1は、上記したように柔軟性を有しているので、PCB11上に実装された形状の異なる2つの発熱部品12及び13に対して、熱拡散板2を変形させながら同時共通に取り付けられている。従って、発熱部品毎にそれぞれ放熱器を準備する必要はなく、ひとつの放熱器により共通に放熱することができる。   In addition, since the heat diffusing plate 2 has an area that can be attached to a plurality of heat-generating components, etc., when heat is radiated from the plurality of heat-generating components, etc., While the diffusion plate 2 is deformed, it can be attached in common to a plurality of heat generating parts or the like that have uneven surfaces with different heights and shapes. The state at this time is illustrated in FIG. FIG. 4 is a cross-sectional view that models and exemplifies the case where the radiator 1 is attached to, for example, a plurality of heat generating components with different heights mounted on a PCB. In FIG. 4, since the heat radiator 1 has flexibility as described above, the heat diffusing plate 2 is deformed with respect to the two heat generating parts 12 and 13 having different shapes mounted on the PCB 11. It is attached at the same time. Therefore, it is not necessary to prepare a heat radiator for each heat generating component, and heat can be radiated in common by one heat radiator.

また、複数の発熱部品からの発熱量はそれぞれに異なるが、例えば、発熱部品12の発熱量が大きく、発熱部品13の発熱量が小さい場合に、図5に例示した従来の放熱構造では、放熱器14の放熱性能に余裕が少なくなる一方で、放熱器15の放熱性能には十分に余裕があるといった状況が、特に厳しい環境条件下において発生するおそれがある。これに対して、この放熱器1では、図4に例示したように、複数の発熱部品12及び13に共通に取り付けることができるので、このようなバラツキの大きな発熱に対しても、それぞれの発熱部品からの発熱が熱拡散板2により拡散される。従って、放熱面全体が均熱化されやすくなって、より効率的な放熱が可能となる。   Further, although the heat generation amounts from the plurality of heat generation components are different from each other, for example, when the heat generation amount of the heat generation component 12 is large and the heat generation amount of the heat generation component 13 is small, the conventional heat dissipation structure illustrated in FIG. There is a possibility that a situation in which the heat dissipation performance of the radiator 14 is reduced while the heat dissipation performance of the radiator 15 has a sufficient margin may occur under particularly severe environmental conditions. On the other hand, as shown in FIG. 4, the heat radiator 1 can be commonly attached to the plurality of heat generating components 12 and 13. Heat generated from the components is diffused by the heat diffusion plate 2. Therefore, the entire heat radiating surface is easily soaked, and more efficient heat radiation is possible.

以上説明したように、本実施例の放熱器は柔軟性を有し、かつ複数の発熱部品に対応可能な所望の取り付け面積を有しているので、例えば、ユニット化されたモジュールやPCB上等に実装された、高さや形状等の異なる複数の発熱部品を放熱する場合のように、取り付け面が平面にならないような面領域からの発熱に対処する場合にも、個々に放熱器を準備する必要がなく、1つの放熱器により共通に放熱することができる。また、複数の発熱部品に同時共通に取り付けられるので、発熱量にバラツキのある複数の部品からの発熱が放熱器全体に拡散されて均熱化され、効率的な放熱を可能にしている。   As described above, the radiator of the present embodiment has flexibility and has a desired mounting area that can handle a plurality of heat-generating components. For example, a unitized module, a PCB, etc. Prepare heat sinks individually even when dealing with heat generated from surface areas where the mounting surface does not become flat, such as when heat is dissipated from multiple heat-generating components mounted on the board, such as with different heights and shapes. There is no need to dissipate heat with a single radiator. Moreover, since it is attached to a plurality of heat generating components at the same time, the heat generated from the plurality of components having variations in the amount of heat generated is diffused and uniformed throughout the radiator, enabling efficient heat dissipation.

なお、本発明は、上記した実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を適宜組み合せてもよい。   Note that the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.

1、14、15 放熱器
2 熱拡散板
3 コルゲートフィン
11 PCB
12、13 発熱部品
1, 14, 15 Radiator 2 Thermal diffusion plate 3 Corrugated fin 11 PCB
12, 13 Heating parts

Claims (3)

平板状の熱拡散板と、この熱拡散板の片面を覆うように設けられた放熱フィンとを有する放熱器において、
前記熱拡散板は、同時に複数の発熱体を対象にして取り付け可能な面積を有するとともに可撓性を有し、
前記放熱フィンは、コルゲートフィンとしたことを特徴とする放熱器。
In a radiator having a plate-shaped heat diffusion plate and a radiation fin provided so as to cover one side of the heat diffusion plate,
The heat diffusion plate has an area that can be attached to a plurality of heating elements at the same time and has flexibility,
The heat radiating fin is a corrugated fin.
前記熱拡散板と前記放熱フィンとをロウ付けにより接着したことを特徴とする請求項1に記載の放熱器。   The heat radiator according to claim 1, wherein the heat diffusion plate and the heat radiation fin are bonded by brazing. 前記熱拡散板と前記放熱フィンとを熱伝導性接着剤により接着したことを特徴とする請求項1に記載の放熱器。   The heat radiator according to claim 1, wherein the heat diffusion plate and the heat radiating fin are bonded with a heat conductive adhesive.
JP2009190523A 2009-08-19 2009-08-19 Heat radiating device Abandoned JP2011044507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009190523A JP2011044507A (en) 2009-08-19 2009-08-19 Heat radiating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009190523A JP2011044507A (en) 2009-08-19 2009-08-19 Heat radiating device

Publications (1)

Publication Number Publication Date
JP2011044507A true JP2011044507A (en) 2011-03-03

Family

ID=43831729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009190523A Abandoned JP2011044507A (en) 2009-08-19 2009-08-19 Heat radiating device

Country Status (1)

Country Link
JP (1) JP2011044507A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013077634A (en) * 2011-09-29 2013-04-25 Kaneka Corp Electronic apparatus with radiation structure
JP2020009989A (en) * 2018-07-12 2020-01-16 株式会社ジェイテクト Semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000216305A (en) * 1999-01-26 2000-08-04 Toyo Radiator Co Ltd Heat sink, its using method, and its manufacturing
JP2003218294A (en) * 2002-01-23 2003-07-31 Mitsubishi Electric Corp Radiator
JP2005085887A (en) * 2003-09-05 2005-03-31 Denso Corp Cooling plate and its manufacturing method
JP2007184424A (en) * 2006-01-06 2007-07-19 Nec Electronics Corp Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000216305A (en) * 1999-01-26 2000-08-04 Toyo Radiator Co Ltd Heat sink, its using method, and its manufacturing
JP2003218294A (en) * 2002-01-23 2003-07-31 Mitsubishi Electric Corp Radiator
JP2005085887A (en) * 2003-09-05 2005-03-31 Denso Corp Cooling plate and its manufacturing method
JP2007184424A (en) * 2006-01-06 2007-07-19 Nec Electronics Corp Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013077634A (en) * 2011-09-29 2013-04-25 Kaneka Corp Electronic apparatus with radiation structure
JP2020009989A (en) * 2018-07-12 2020-01-16 株式会社ジェイテクト Semiconductor device

Similar Documents

Publication Publication Date Title
JP5684228B2 (en) heatsink
JP5537777B2 (en) Heat sink, cooling module and coolable electronic board
TWI722195B (en) Electronic device and heat radiation structure of electronic device
JP2009099878A (en) Heat sink and its manufacturing method
US9978922B2 (en) Heat sink using graphite and light emitting device
JP5335839B2 (en) Power conversion module heat dissipation device
JP2008041893A (en) Heat radiating apparatus
JP2011044507A (en) Heat radiating device
JP2006210611A (en) Heat sink equipped with radiation fin, and manufacturing method thereof
JPH0210800A (en) Radiator
WO2017115627A1 (en) Inverter
JP7172065B2 (en) semiconductor equipment
JP5480123B2 (en) Heat dissipation structure
JP2010287730A (en) Heat receiving surface parallel-fin type flat heat dissipation structure
JP7042857B2 (en) Power converter
JP2015216143A (en) Heat radiation structure of heating element
CN220208198U (en) Surface cover heat radiation structure and heat radiation machine case suitable for electronic chip
JP3928099B2 (en) Heat sink and manufacturing method thereof
KR102427626B1 (en) Heat radiating apparatus and method with pyrolytic graphite sheet
JP2011171686A (en) Metal-based printed board with heat radiation part
JP2012023166A (en) Flexible printed wiring board and heater element radiation structure
TWI449497B (en) Method of manufacturing fin
JP4151265B2 (en) Radiator
JP2009076623A (en) Electronic equipment
JP2008288379A (en) Semiconductor package

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20111020

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Effective date: 20111125

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121026

A762 Written abandonment of application

Effective date: 20121225

Free format text: JAPANESE INTERMEDIATE CODE: A762