JP2011041334A - Reactor arrangement structure in power converter - Google Patents

Reactor arrangement structure in power converter Download PDF

Info

Publication number
JP2011041334A
JP2011041334A JP2009183303A JP2009183303A JP2011041334A JP 2011041334 A JP2011041334 A JP 2011041334A JP 2009183303 A JP2009183303 A JP 2009183303A JP 2009183303 A JP2009183303 A JP 2009183303A JP 2011041334 A JP2011041334 A JP 2011041334A
Authority
JP
Japan
Prior art keywords
phase
solenoid
solenoids
reactor
phase reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009183303A
Other languages
Japanese (ja)
Other versions
JP5521430B2 (en
Inventor
Yoshihisa Uehara
義久 植原
Akio Toba
章夫 鳥羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2009183303A priority Critical patent/JP5521430B2/en
Publication of JP2011041334A publication Critical patent/JP2011041334A/en
Application granted granted Critical
Publication of JP5521430B2 publication Critical patent/JP5521430B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rectifiers (AREA)
  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reactor arrangement structure of a power converter, capable of executing stable power control by relieving a difference in magnetic coupling among a plurality of reactors each of which consists of a solenoid. <P>SOLUTION: Each of the reactors 17, 18, 19, connected to respective phases of a three-phase AC circuit, consists of the solenoid 42 of an opened magnetic path having a coil 41 around thereon, and the reactors (solenoids) 17, 18, 19 of the respective phases are disposed so as to be spaced at an equal interval in phase, sequentially on a circumference of a predetermined diameter D with axial lines directed toward identical direction. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電力変換装置のリアクトル配置構造に係り、例えば多相交流回路に使用されている複数のリアクトルの配置構造に関するものである。   The present invention relates to a reactor arrangement structure of a power converter, and for example, relates to an arrangement structure of a plurality of reactors used in a polyphase AC circuit.

多相交流回路として、例えば、特許文献1に記載した無停電電源装置が知られている。
この無停電電源装置は、図6に示すように、三相交流入力を、電圧または周波数の異なる別の三相交流に変換する装置であり、符号1は交流電源、符号2〜15はIGBTなどの半導体スイッチ、符号16A,16Bは直流コンデンサ、符号17〜23はリアクトル、符号24〜29はフィルタコンデンサである。
As a polyphase AC circuit, for example, an uninterruptible power supply device described in Patent Document 1 is known.
As shown in FIG. 6, this uninterruptible power supply is a device that converts a three-phase AC input into another three-phase AC having a different voltage or frequency. Reference numeral 1 is an AC power source, reference numerals 2 to 15 are IGBTs, and the like. , 16A and 16B are DC capacitors, 17 to 23 are reactors, and 24 to 29 are filter capacitors.

半導体スイッチ2〜7、直流コンデンサ16A,16B、リアクトル17〜19、フィルタコンデンサ24〜26は順変換器を構成しており、交流電源1の電力を、半導体スイッチ2〜7の高周波スイッチングにより直流に変換して直流コンデンサ16A,16Bに蓄積する動作を行う。また、直流コンデンサ16A,16B、半導体スイッチ8〜13、リアクトル20〜22、フィルタコンデンサ27〜29は逆変換器(インバータ)を構成しており、直流コンデンサ16A,16Bを直流電源として、半導体スイッチ8〜13の高周波スイッチングによりフィルタコンデンサ27〜29に波形歪みの小さな交流電圧を発生させ、図示しない負荷に交流電力を供給する動作を行う。   The semiconductor switches 2 to 7, the DC capacitors 16A and 16B, the reactors 17 to 19 and the filter capacitors 24 to 26 constitute a forward converter, and the power of the AC power source 1 is converted to DC by high frequency switching of the semiconductor switches 2 to 7. The operation of converting and accumulating in the DC capacitors 16A and 16B is performed. Further, the DC capacitors 16A and 16B, the semiconductor switches 8 to 13, the reactors 20 to 22 and the filter capacitors 27 to 29 constitute an inverse converter (inverter), and the DC capacitors 16A and 16B are used as a DC power supply, and the semiconductor switch 8 By performing high frequency switching of ˜13, an AC voltage with small waveform distortion is generated in the filter capacitors 27 to 29, and an operation of supplying AC power to a load (not shown) is performed.

ところで、上記装置の交流電源1のR相、S相、T相に直列に接続している交流用のリアクトル17〜19、或いは負荷のU相、V相、W相に直列に接続している交流用のリアクトル20〜22は、所望のインダクタンスを得るためにリアクトル体積を小さく抑えることができる閉磁路のUI型コア、EI型コア等からな閉磁路のリアクトルが多く採用されている。   By the way, the AC reactors 17 to 19 connected in series to the R phase, S phase, and T phase of the AC power supply 1 of the above apparatus, or the U phase, V phase, and W phase of the load are connected in series. The reactors 20 to 22 for alternating current use many closed magnetic circuit reactors such as a closed magnetic circuit UI type core and an EI type core that can keep the reactor volume small in order to obtain a desired inductance.

一方、上記閉磁路のリアクトルとは別のリアクトル形態として、図7に示すように、棒状コア30にコイル31を巻き付けた構成とした開磁路のソレノイド32がある。このソレノイド32の棒状コア30は、磁性体、或いは非磁性体であるが、棒状コアを使用しない空芯の開磁路のソレノイド32もある。
このソレノイド32からなる開磁路のリアクトルは、閉磁路のリアクトルと比較して、コイル起磁力に対する発生磁束が小さくなり、所望のインダクタンスを得るためにリアクトル体積が大きくなってしまう。
On the other hand, as a reactor form different from the closed magnetic path reactor, there is an open magnetic path solenoid 32 in which a coil 31 is wound around a rod-shaped core 30 as shown in FIG. The rod-shaped core 30 of the solenoid 32 is a magnetic material or a non-magnetic material, but there is also an air-core open magnetic path solenoid 32 that does not use a rod-shaped core.
Compared with the reactor of the closed magnetic circuit, the reactor of the open magnetic circuit composed of the solenoid 32 has a smaller magnetic flux generated with respect to the coil magnetomotive force, and the reactor volume is increased in order to obtain a desired inductance.

しかし、ソレノイド32は、UI型コア、EI型コア等のリアクトルと比較してコイル31の実装が容易となって安価に製造することができるので、交流用のリアクトル17〜22に採用すると、装置製造コストの低減化を図ることができる。   However, since the solenoid 32 can be manufactured at a low cost because the coil 31 can be easily mounted as compared with a reactor such as a UI-type core and an EI-type core, The manufacturing cost can be reduced.

特開2009−22094号公報JP 2009-22094 A

ところで、上記構成のソレノイド32を、図6の交流用のリアクトル17〜22として採用すると、各ソレノイド32の互いの磁気結合の差異を無視することができない。
すなわち、所定の相のソレノイド32のコイル31と他の相のソレノイド32のコイル31とに差異が生じると、三相の回路が不平衡になって各相のリアクトルを流れる交流電流に歪みが発生したり、振幅や位相がばらついてしまい、負荷に安定した電力制御を行なうことができなくなる場合がある。
By the way, if the solenoid 32 having the above-described configuration is adopted as the AC reactors 17 to 22 in FIG. 6, the difference in magnetic coupling between the solenoids 32 cannot be ignored.
That is, if there is a difference between the coil 31 of the solenoid 32 of the predetermined phase and the coil 31 of the solenoid 32 of the other phase, the three-phase circuit becomes unbalanced and distortion occurs in the alternating current flowing through the reactor of each phase. Or the amplitude and phase vary, and stable power control cannot be performed on the load.

そこで、本発明は、製造コストの低減化を図ることができるソレノイドを複数のリアクトルとして採用しても、各リアクトルの磁気結合の差異を緩和して安定した電力制御を行なうことができる電力変換装置のリアクトル配置構造を提供することを目的としている。   Therefore, the present invention provides a power conversion device that can perform stable power control by relaxing the difference in magnetic coupling of each reactor even if a solenoid capable of reducing the manufacturing cost is adopted as a plurality of reactors. It aims to provide a reactor arrangement structure.

上記目的を達成するために、本発明に係る電力変換装置のリアクトル配置構造は、電力変換装置に使用される複数のリアクトルの配置構造であって、複数のリアクトルの各々を、コイルを巻きつけた開磁路のソレノイドで構成し、これら複数のソレノイドの間の相互インダクタンスが実質的に均一となるように、当該複数のソレノイドを配置した。
この発明によると、複数のリアクトルがコイルを巻きつけた開磁路のソレノイドで構成されており、コイルの実装が容易となって安価に製造することができる。そして、複数のソレノイドは、各ソレノイド間の相互インダクタンスが実質的に均一となるように配置され、各相のソレノイドの磁気結合の差異を緩和しているので、各相を流れる電流が不平衡になるのが抑制される。
In order to achieve the above object, a reactor arrangement structure of a power converter according to the present invention is a structure of a plurality of reactors used in a power converter, and each of a plurality of reactors is wound with a coil. The plurality of solenoids are arranged so that mutual inductance between the plurality of solenoids is substantially uniform.
According to the present invention, the plurality of reactors are constituted by solenoids having an open magnetic path around which a coil is wound, so that the coil can be easily mounted and manufactured at low cost. The plurality of solenoids are arranged so that the mutual inductance between the solenoids is substantially uniform, and the difference in magnetic coupling between the solenoids of each phase is reduced, so that the current flowing through each phase is unbalanced. It is suppressed.

また、本発明に係る電力変換装置のリアクトル配置構造は、前記複数のソレノイドは電源の相数に等しい本数であり、各ソレノイドは、前記コイルの巻線数、コイル直径などの形状を同一としたものであり、前記複数のソレノイドを、互いの軸線を同一方向に向け、所定直径の円周上に相順に等間隔となるように離間配置した。
この発明によると、電力変換装置の相数に等しい本数のソレノイドは、それぞれがコイルの巻線数、コイル直径などの形状を同一としたものであり、互いの軸線を同一方向に向け、所定直径の円周上に相順に等間隔となるように離間配置しているので、各ソレノイド間の相互インダクタンスが実質的に均一となる。
Further, in the reactor arrangement structure of the power conversion device according to the present invention, the plurality of solenoids are equal in number to the number of phases of the power source, and each solenoid has the same shape such as the number of windings of the coil and the coil diameter. The plurality of solenoids are arranged so as to be equidistant from each other in the order of phases on a circumference of a predetermined diameter with the axes thereof in the same direction.
According to the present invention, the number of solenoids equal to the number of phases of the power conversion device have the same shape such as the number of windings of the coil and the coil diameter, and the respective axes are directed in the same direction, with a predetermined diameter. Are arranged so as to be equally spaced in the order of phase, so that the mutual inductance between the solenoids is substantially uniform.

また、本発明に係る電力変換装置のリアクトル配置構造は、前記複数のソレノイドが、電源の各相に少なくとも2本の前記ソレノイドを直列、或いは並列に接続した電源の相数の倍数の本数であり、各ソレノイドは、前記コイルの巻線数、コイル直径などの形状を同一としたものであり、各相の直列、或いは並列に接続された複数のソレノイドのうちの所定のソレノイド同士を選択して第1ソレノイド群とし、これら第1ソレノイド群を、互いの軸線を同一方向に向け、所定直径の円周上に相順に等間隔となるように離間配置し、各相の複数のソレノイドのうちの前記所定のソレノイドと異なる他のソレノイドを選択して第2ソレノイド群とし、これら第2ソレノイド群を、前記第1ソレノイド群を配置した位置に対して軸方向に離間した位置であって、前記第1ソレノイド群と同一方向に軸線を向け、前記第1ソレノイド群と同一の所定直径の円周上に相順に等間隔となるように離間配置した。   Further, in the reactor arrangement structure of the power conversion device according to the present invention, the plurality of solenoids is a multiple of the number of phases of the power source in which at least two solenoids are connected in series or in parallel to each phase of the power source. Each solenoid has the same number of coils, such as the number of windings and coil diameter, and a predetermined solenoid among a plurality of solenoids connected in series or in parallel in each phase is selected. The first solenoid group is arranged in such a manner that the axes of the first solenoid group are oriented in the same direction and are spaced apart at equal intervals on the circumference of a predetermined diameter. Another solenoid different from the predetermined solenoid is selected as a second solenoid group, and the second solenoid group is separated from the position where the first solenoid group is arranged in the axial direction. A is, the first toward the axis to solenoids and the same direction, and spaced at equal intervals in the phase sequence on the circumference of the same predetermined diameter as the first solenoids.

この発明によると、各ソレノイドが、コイルの巻線数、コイル直径などの形状を同一としたものであり、電源の各相に直列、或いは並列に接続したソレノイドの第1ソレノイド群及び第2ソレノイド群が、それぞれ同一方向に軸線を向け、所定直径の円周上に相順に等間隔となるように離間配置されているので、各ソレノイド間の相互インダクタンスが実質的に均一となる。   According to the present invention, each solenoid has the same shape such as the number of coil turns and coil diameter, and the first solenoid group and the second solenoid of the solenoids connected in series or in parallel with each phase of the power source. The groups are spaced apart from each other so that their axes are directed in the same direction and equidistant from each other on the circumference of a predetermined diameter, so that the mutual inductance between the solenoids is substantially uniform.

本発明に係る電力変換装置のリアクトル配置構造によれば、複数のリアクトルはコイルを巻きつけた開磁路のソレノイドで構成されており、コイルの実装が容易となって安価に製造することができるので、電力変換装置の製造コストの低減化を図ることができる。
また、本発明に係る複数のソレノイドは、各ソレノイド間の相互インダクタンスが実質的に均一となるように配置され、各相のソレノイドの磁気結合の差異を緩和しているので、各相を流れる電流が不平衡になるのを抑制して負荷に安定した電力制御を行なうことができる。
According to the reactor arrangement structure of the power conversion device according to the present invention, the plurality of reactors are configured by solenoids having an open magnetic circuit around which coils are wound, and the coils can be easily mounted and manufactured at low cost. Therefore, the manufacturing cost of the power conversion device can be reduced.
Further, the plurality of solenoids according to the present invention are arranged so that the mutual inductance between the solenoids is substantially uniform, and the difference in magnetic coupling between the solenoids of each phase is mitigated. Can be prevented from becoming unbalanced and stable power control can be performed on the load.

本発明に係る第1実施形態の電力変換装置の三相のリアクトル配置構造を示す概略図である。It is the schematic which shows the three-phase reactor arrangement structure of the power converter device of 1st Embodiment which concerns on this invention. 本発明に係る第2実施形態の電力変換装置の各相に直列に接続されている複数のリアクトルを示す回路図である。It is a circuit diagram which shows the several reactor connected in series to each phase of the power converter device of 2nd Embodiment which concerns on this invention. 図2で示した各相に直列に複数接続されているリアクトルの具体的な配置構造を示す図である。It is a figure which shows the specific arrangement structure of the reactor connected in series with each phase shown in FIG. 本発明に係る第2実施形態の電力変換装置の各相に並列に接続されている複数のリアクトルを示す回路図である。It is a circuit diagram which shows the several reactor connected in parallel with each phase of the power converter device of 2nd Embodiment which concerns on this invention. 本発明に係る第2実施形態の電力変換装置の各相に直列に接続されている複数のリアクトルを示す回路図である。It is a circuit diagram which shows the several reactor connected in series to each phase of the power converter device of 2nd Embodiment which concerns on this invention. 電力変換装置の一例である無停電電源装置の回路構成を示す図である。It is a figure which shows the circuit structure of the uninterruptible power supply device which is an example of a power converter device. 棒状コアにコイルを巻き付けたソレノイドを示す概略構成図である。It is a schematic block diagram which shows the solenoid which wound the coil around the rod-shaped core.

以下、本発明を実施するための形態(以下、実施形態という。)を、図面を参照しながら詳細に説明する。なお、図6で示した構成と同一構成部分には、同一符号を付して説明する。
[第1実施形態]
図1は本発明に係る第1実施形態であり、図6で示した三相交流回路である無停電電源装置の順変換器を構成しており、交流電源1のR相に直列に接続しているR相リアクトル17、S相に直列に接続しているS相リアクトル18及びT相に直列に接続しているT相リアクトル19の配置構造を示すものである。
DESCRIPTION OF EMBODIMENTS Hereinafter, modes for carrying out the present invention (hereinafter referred to as embodiments) will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected and demonstrated to the same component as the structure shown in FIG.
[First Embodiment]
FIG. 1 shows a first embodiment according to the present invention, which constitutes the forward converter of the uninterruptible power supply that is the three-phase AC circuit shown in FIG. 6, and is connected in series to the R phase of the AC power supply 1. The arrangement structure of the R-phase reactor 17, the S-phase reactor 18 connected in series to the S-phase, and the T-phase reactor 19 connected in series to the T-phase is shown.

これらR相、S相及びT相リアクトル17〜19は、棒状コア40にコイル41を巻き付けた開磁路のソレノイド42で構成されており、各リアクトル17〜19を構成するソレノイド42は、同一直径の棒状コア40に、同一巻線数のコイル41を巻き付けた同一形状のものである。なお、棒状コア30は、絶縁体、或いは非磁性体である。
そして、R相、S相及びT相リアクトル17〜19は、棒状コア40の軸線を同一方向に向け、所定直径Dの円周上に120°の間隔をあけて相順に配置されている。
These R-phase, S-phase, and T-phase reactors 17 to 19 are constituted by solenoids 42 of an open magnetic circuit in which a coil 41 is wound around a rod-shaped core 40, and the solenoids 42 constituting the reactors 17 to 19 have the same diameter. The same shape is obtained by winding a coil 41 having the same number of windings around the rod-shaped core 40. The rod-shaped core 30 is an insulator or a nonmagnetic material.
The R-phase, S-phase, and T-phase reactors 17 to 19 are arranged in phase order at intervals of 120 ° on the circumference of the predetermined diameter D with the axis of the rod-shaped core 40 directed in the same direction.

なお、図6の負荷に直列に接続しているU相、V相、W相に直列に接続しているリアクトル20〜22も、図示しないが、R相、S相及びT相リアクトル17〜19と同一の構成、配置構造とされている。
上記構成で配置されたR相、S相及びT相リアクトル17〜19には交流電源1から交流の電流が流れるが、R相、S相及びT相リアクトル17〜19を構成するソレノイド42の互いの磁気結合の差異を無視することができない。すなわち、例えばR相リアクトル17のコイル41とS相リアクトル18のコイル41とに差異が生じると、三相の回路が不平衡になって各相のリアクトル17〜19を流れる交流電流に歪みが発生したり、振幅や位相がばらついてしまい、順変換器を構成する半導体スイッチ2〜7に安定した交流電流を流すことができない。
In addition, although not shown, reactors 20 to 22 connected in series to the U-phase, V-phase, and W-phase connected in series to the load of FIG. 6 also have R-phase, S-phase, and T-phase reactors 17 to 19. And the same configuration and arrangement structure.
Alternating current flows from the AC power supply 1 to the R-phase, S-phase, and T-phase reactors 17 to 19 arranged in the above configuration, but the solenoids 42 that constitute the R-phase, S-phase, and T-phase reactors 17 to 19 are mutually connected. The difference in magnetic coupling cannot be ignored. That is, for example, if a difference occurs between the coil 41 of the R-phase reactor 17 and the coil 41 of the S-phase reactor 18, the three-phase circuit becomes unbalanced and distortion occurs in the alternating current flowing through the reactors 17 to 19 of each phase. Or the amplitude and phase vary, and a stable alternating current cannot be supplied to the semiconductor switches 2 to 7 constituting the forward converter.

しかし、本実施形態は、R相、S相及びT相リアクトル17〜19は、同一直径の棒状コア40に同一巻線数のコイル41を巻き付けた同一形状のソレノイド42で構成されており、しかも、各ソレノイド42は、棒状コア40の軸線を同一方向に向けて所定直径Dの円周上に等間隔に(120°の間隔をあけて)相順に配置されているので、R相リアクトル17のソレノイド42及びS相リアクトル18のソレノイド42間の相互インダクタンス、S相リアクトル18のソレノイド42及びT相リアクトル19のソレノイド42間の相互インダクタンス、T相リアクトル19のソレノイド42及びR相リアクトル17のソレノイド42間の相互インダクタンスが実質的に均一となる。   However, in the present embodiment, the R-phase, S-phase, and T-phase reactors 17 to 19 are configured by solenoids 42 having the same shape in which a coil 41 having the same number of windings is wound around a rod-shaped core 40 having the same diameter. The solenoids 42 are arranged in phase order at equal intervals (with an interval of 120 °) on the circumference of the predetermined diameter D with the axis of the rod-shaped core 40 directed in the same direction, so that the R-phase reactor 17 The mutual inductance between the solenoid 42 and the solenoid 42 of the S-phase reactor 18, the mutual inductance between the solenoid 42 of the S-phase reactor 18 and the solenoid 42 of the T-phase reactor 19, the solenoid 42 of the T-phase reactor 19 and the solenoid 42 of the R-phase reactor 17 The mutual inductance between them becomes substantially uniform.

したがって、R相リアクトル17及びS相リアクトル18、S相リアクトル18及びT相リアクトル19、T相リアクトル19及びR相リアクトル17のソレノイド42間の相互インダクタンスが実質的に均一になると、R相,S相及びT相のソレノイド42の磁気結合の差異が緩和されるので、交流電源1から各相に流れる交流電流が不平衡になるのを抑制することができ、順変換器を構成する半導体スイッチ2〜7に安定した交流電流を流すことができる。   Therefore, when the mutual inductances between the solenoids 42 of the R-phase reactor 17 and the S-phase reactor 18, the S-phase reactor 18 and the T-phase reactor 19, and the T-phase reactor 19 and the R-phase reactor 17 are substantially uniform, Since the difference in magnetic coupling between the phase 42 and T phase solenoids 42 is alleviated, it is possible to suppress an unbalanced AC current flowing from the AC power supply 1 to each phase, and the semiconductor switch 2 constituting the forward converter A stable alternating current can be applied to .about.7.

また、同様に、U相リアクトル20及びV相リアクトル21、V相リアクトル21及びW相リアクトル22、W相リアクトル22及びU相リアクトル20のソレノイド42間の相互インダクタンスも実質的に均一になり、U相,V相及びW相のソレノイド42の磁気結合の差異が緩和されるので、負荷に向けて各相に流れる交流電流が不平衡になるのを抑制することができ、負荷に向けて安定した交流電流を流すことができる。   Similarly, the mutual inductances between the solenoids 42 of the U-phase reactor 20 and the V-phase reactor 21, the V-phase reactor 21 and the W-phase reactor 22, the W-phase reactor 22 and the U-phase reactor 20 are also substantially uniform. Since the difference in the magnetic coupling of the phase 42, V phase and W phase solenoids 42 is alleviated, it is possible to suppress the unbalanced AC current flowing in each phase toward the load, and stable toward the load. AC current can flow.

また、本実施形態は、R相、S相及びT相リアクトル17〜19、U相、V相及びW相リアクトル20〜22が、棒状コア40にコイル41を巻き付けた開磁路のソレノイド42で構成されており、コイル41の実装が容易となって安価にソレノイド42を製造することができるので、三相交流回路からなる装置の製造コストの低減化を図ることができる。   In the present embodiment, the R-phase, S-phase, and T-phase reactors 17 to 19, the U-phase, V-phase, and W-phase reactors 20 to 22 are open-magnetic-path solenoids 42 in which a coil 41 is wound around a rod-shaped core 40. Since the coil 41 can be easily mounted and the solenoid 42 can be manufactured at low cost, the manufacturing cost of a device composed of a three-phase AC circuit can be reduced.

[第2実施形態]
次に、図2から図4は本発明に係る第2実施形態である。
図2は、図6で示した無停電電源装置の交流電源1に接続するR相リアクトルを直列に接続した第1R相リアクトル17a,第2R相リアクトル17bで構成し、交流電源1に接続するS相リアクトルを直列に接続した第1S相リアクトル18a,第2S相リアクトル18bで構成し、交流電源1に接続するT相リアクトルを直列に接続した第1T相リアクトル19a,第2T相リアクトル19bで構成したものを示している。
[Second Embodiment]
Next, FIGS. 2 to 4 show a second embodiment according to the present invention.
2 includes a first R-phase reactor 17a and a second R-phase reactor 17b in which R-phase reactors connected in series to the AC power source 1 of the uninterruptible power supply shown in FIG. A first S-phase reactor 18a and a second S-phase reactor 18b connected in series with a phase reactor, and a first T-phase reactor 19a and a second T-phase reactor 19b connected in series with a T-phase reactor connected to the AC power source 1 Shows things.

なお、第1R相リアクトル17a,第1S相リアクトル18a及び第1T相リアクトル19aが本発明の第1ソレノイド群に対応し、第2R相リアクトル17b,第2S相リアクトル18b及び第2T相リアクトル19bが本発明の第2ソレノイド群に対応している。
第1R相リアクトル17a,第1S相リアクトル18a及び第1T相リアクトル19a同士は、同一直径の棒状コア40に、同一巻線数のコイル41を巻き付けた同一形状のソレノイド42であり、第2R相リアクトル17b,第2S相リアクトル18b及び第2T相リアクトル19b同士も、同一直径の棒状コア40に、同一巻線数のコイル41を巻き付けた同一形状のソレノイド42である。
The first R-phase reactor 17a, the first S-phase reactor 18a, and the first T-phase reactor 19a correspond to the first solenoid group of the present invention, and the second R-phase reactor 17b, the second S-phase reactor 18b, and the second T-phase reactor 19b are present. This corresponds to the second solenoid group of the invention.
The first R-phase reactor 17a, the first S-phase reactor 18a, and the first T-phase reactor 19a are solenoids 42 having the same shape in which a coil 41 having the same number of windings is wound around a rod-shaped core 40 having the same diameter, and a second R-phase reactor. 17b, the 2nd S phase reactor 18b, and the 2nd T phase reactor 19b are also the solenoids 42 of the same shape which wound the coil 41 of the same winding number around the rod-shaped core 40 of the same diameter.

そして、第1R相リアクトル17a,第1S相リアクトル18a及び第1T相リアクトル19a同士は、棒状コア40の軸線を同一方向に向け、所定直径D1の円周上に120°の間隔をあけて相順に配置されている。
また、第2R相リアクトル17b,第2S相リアクトル18b及び第2T相リアクトル19b同士は、第1R相リアクトル17a,第1S相リアクトル18a及び第1T相リアクトル19aに対して軸方向に離間した位置で棒状コア40の軸線を同一方向に向け、前述した所定直径D1の円と中心が一致し、且つ直径も同一の円周上に120°の間隔をあけて相順に配置されている。
The first R-phase reactor 17a, the first S-phase reactor 18a, and the first T-phase reactor 19a are arranged in phase sequence with the axis of the rod-shaped core 40 oriented in the same direction and spaced 120 ° apart on the circumference of the predetermined diameter D1. Is arranged.
Further, the second R-phase reactor 17b, the second S-phase reactor 18b, and the second T-phase reactor 19b are rod-shaped at positions spaced apart from each other in the axial direction with respect to the first R-phase reactor 17a, the first S-phase reactor 18a, and the first T-phase reactor 19a. The axes of the cores 40 are oriented in the same direction, the centers of the circles having the predetermined diameter D1 coincide with each other, and the diameters of the cores 40 are also arranged in phase sequence at intervals of 120 ° on the same circumference.

上記構成のように、交流電源1のR相、S相、T相に直列に接続している2本のリアクトルのうちの一方の第1R相リアクトル17a,第1S相リアクトル18a及び第1T相リアクトル19a同士は、同一直径の棒状コア40に同一巻線数のコイル41を巻き付けた同一形状のソレノイド42で構成されており、しかも、各ソレノイド42が、棒状コア40の軸線を同一方向に向けて所定直径D1の円周上に等間隔に(120°の間隔をあけて)相順に配置されているので、第1R相リアクトル17aのソレノイド42及び第1S相リアクトル18aのソレノイド42間の相互インダクタンス、第1S相リアクトル18aのソレノイド42及び第1T相リアクトル19aのソレノイド42間の相互インダクタンス、第1T相リアクトル19aのソレノイド42及び第1R相リアクトル17aのソレノイド42間の相互インダクタンスが実質的に均一となる。   As in the above configuration, one of the two reactors connected in series to the R-phase, S-phase, and T-phase of the AC power source 1 is the first R-phase reactor 17a, the first S-phase reactor 18a, and the first T-phase reactor. 19a is comprised by the solenoid 42 of the same shape which wound the coil 41 of the same number of windings on the rod-shaped core 40 of the same diameter, and each solenoid 42 points the axis line of the rod-shaped core 40 in the same direction. Since they are arranged in phase order at equal intervals (with an interval of 120 °) on the circumference of the predetermined diameter D1, mutual inductance between the solenoid 42 of the first R-phase reactor 17a and the solenoid 42 of the first S-phase reactor 18a, The mutual inductance between the solenoid 42 of the first S-phase reactor 18a and the solenoid 42 of the first T-phase reactor 19a, the first T-phase reactor 19 Mutual inductance between the solenoid 42 of the solenoid 42 and the 1R-phase reactor 17a is substantially uniform.

また、R相、S相、T相に直列に接続している2本のリアクトルのうちの他方の第2R相リアクトル17b,第2S相リアクトル18b及び第2T相リアクトル19b同士も、同一直径の棒状コア40に同一巻線数のコイル41を巻き付けた同一形状のソレノイド42で構成されており、しかも、各ソレノイド42が、棒状コア40の軸線を同一方向に向けて所定直径D1の円周上に等間隔に(120°の間隔をあけて)相順に配置されているので、第2R相リアクトル17bのソレノイド42及び第2S相リアクトル18bのソレノイド42間の相互インダクタンス、第2S相リアクトル18bのソレノイド42及び第2T相リアクトル19bのソレノイド42間の相互インダクタンス、第2T相リアクトル19bのソレノイド42及び第2R相リアクトル17bのソレノイド42間の相互インダクタンスが実質的に均一となる。   Of the two reactors connected in series to the R-phase, S-phase, and T-phase, the other second R-phase reactor 17b, second S-phase reactor 18b, and second T-phase reactor 19b are also rod-shaped with the same diameter. The cores 40 are composed of solenoids 42 having the same shape in which coils 41 having the same number of windings are wound around the cores 40, and the solenoids 42 are arranged on the circumference of a predetermined diameter D1 with the axis of the rod-shaped core 40 directed in the same direction. Since they are arranged in phase order at equal intervals (with an interval of 120 °), the mutual inductance between the solenoid 42 of the second R-phase reactor 17b and the solenoid 42 of the second S-phase reactor 18b, and the solenoid 42 of the second S-phase reactor 18b. And the mutual inductance between the solenoid 42 of the second T-phase reactor 19b, the solenoid 42 and the second T-phase reactor 19b Mutual inductance between the solenoid 42 of the R-phase reactor 17b is substantially uniform.

したがって、本実施形態も、R相に直列に接続したリアクトル17a,17b、S相に直列に接続したリアクトル18a,18b、T相に直列に接続したリアクトル19a,19bの各ソレノイド42の磁気結合の差異が緩和されるので、交流電源1から各相に流れる交流電流が不平衡になるのを抑制することができ、順変換器を構成する半導体スイッチ2〜7に安定した交流電流を流すことができる。   Therefore, in this embodiment as well, the magnetic coupling of the respective reactors 42 of the reactors 17a and 17b connected in series to the R phase, the reactors 18a and 18b connected in series to the S phase, and the reactors 19a and 19b connected in series to the T phase. Since the difference is alleviated, it is possible to prevent the AC current flowing from the AC power supply 1 to each phase from becoming unbalanced, and to allow a stable AC current to flow through the semiconductor switches 2 to 7 constituting the forward converter. it can.

なお、図6に示した負荷に接続するU相リアクトル20、V相リアクトル21及びW相リアクトル22も直列に接続した複数のソレノイドで構成し、上記のように配置することで、U相,V相及びW相のソレノイド42の磁気結合の差異が緩和され、負荷に向けて各相に流れる交流電流が不平衡になるのを抑制することができるので、負荷に向けて安定した交流電流を流すことができる。   The U-phase reactor 20, the V-phase reactor 21, and the W-phase reactor 22 connected to the load shown in FIG. 6 are also configured by a plurality of solenoids connected in series, and arranged as described above, the U-phase, V The difference in the magnetic coupling between the phase and W phase solenoids 42 is alleviated, and it is possible to suppress the unbalanced alternating current flowing in each phase toward the load, so that a stable alternating current flows toward the load. be able to.

ここで、図4に示すように、交流電源1に接続するR相リアクトルを並列に接続した第1R相リアクトル17a,第2R相リアクトル17bで構成し、交流電源1に接続するS相リアクトルを並列に接続した第1S相リアクトル18a,第2S相リアクトル18bで構成し、交流電源1に接続するT相リアクトルを並列に接続した第1T相リアクトル19a,第2T相リアクトル19bで構成する場合もある。   Here, as shown in FIG. 4, a first R-phase reactor 17 a and a second R-phase reactor 17 b in which R-phase reactors connected to the AC power supply 1 are connected in parallel, and S-phase reactors connected to the AC power supply 1 are connected in parallel. The first S-phase reactor 18a and the second S-phase reactor 18b connected to the AC power source 1, and the first T-phase reactor 19a and the second T-phase reactor 19b connected in parallel may be configured.

なお、第1R相リアクトル17a,第1S相リアクトル18a及び第1T相リアクトル19aが本発明の第1ソレノイド群に対応し、第2R相リアクトル17b,第2S相リアクトル18b及び第2T相リアクトル19bが本発明の第2ソレノイド群に対応する。
この場合も、第1R相リアクトル17a,第1S相リアクトル18a及び第1T相リアクトル19a同士を、同一直径の棒状コア40に、同一巻線数のコイル41を巻き付けた同一形状のソレノイド42とし、第2R相リアクトル17b,第2S相リアクトル18b及び第2T相リアクトル19b同士も、同一直径の棒状コア40に、同一巻線数のコイル41を巻き付けた同一形状のソレノイド42とし、図3に示すように、第1R相リアクトル17a,第1S相リアクトル18a及び第1T相リアクトル19a同士を、棒状コア40の軸線を同一方向に向け、所定直径D1の円周上に120°の間隔をあけて相順に配置し、第2R相リアクトル17b,第2S相リアクトル18b及び第2T相リアクトル19b同士も、同一直径の棒状コア40に同一巻線数のコイル41を巻き付けた同一形状のソレノイド42とし、棒状コア40の軸線を同一方向に向けて所定直径D1の円周上に120°の間隔をあけて相順に配置することで、交流電源1のR相、S相、T相に直列に接続したリアクトルと同様の効果を奏することができる。
The first R-phase reactor 17a, the first S-phase reactor 18a, and the first T-phase reactor 19a correspond to the first solenoid group of the present invention, and the second R-phase reactor 17b, the second S-phase reactor 18b, and the second T-phase reactor 19b are present. This corresponds to the second solenoid group of the invention.
Also in this case, the first R-phase reactor 17a, the first S-phase reactor 18a, and the first T-phase reactor 19a are made into a solenoid 42 having the same shape in which a coil 41 having the same number of windings is wound around a rod-shaped core 40 having the same diameter. The 2R-phase reactor 17b, the second S-phase reactor 18b, and the second T-phase reactor 19b are also formed as a solenoid 42 having the same shape in which a coil 41 having the same winding number is wound around a rod-shaped core 40 having the same diameter, as shown in FIG. The first R-phase reactor 17a, the first S-phase reactor 18a, and the first T-phase reactor 19a are arranged in phase sequence with the axis of the rod-shaped core 40 in the same direction and spaced by 120 ° on the circumference of the predetermined diameter D1. The second R-phase reactor 17b, the second S-phase reactor 18b, and the second T-phase reactor 19b are also rod-shaped cores having the same diameter. A solenoid 42 having the same shape in which a coil 41 having the same number of windings is wound around 0, and the axis of the rod-shaped core 40 is oriented in the same direction and arranged in a phase sequence at intervals of 120 ° on the circumference of a predetermined diameter D1. Thus, the same effect as that of the reactor connected in series to the R phase, S phase, and T phase of the AC power supply 1 can be obtained.

[第3実施形態]
次に、図5は本発明に係る第3実施形態である。
本実施形態は、図示しない六相交流回路に互いに並列接続されている6相のリアクトル50〜55の配置構造を示すものである。
本実施形態の6相のリアクトル50〜55の全てが、棒状コア40にコイル41を巻き付けた開磁路のソレノイド42で構成されており、各リアクトル50〜5を構成するソレノイド42は、同一直径の棒状コア40に、同一巻線数のコイル41を巻き付けた同一形状のものである。なお、棒状コア30は、絶縁体、或いは非磁性体である。
[Third Embodiment]
Next, FIG. 5 is a third embodiment according to the present invention.
This embodiment shows an arrangement structure of six-phase reactors 50 to 55 connected in parallel to a six-phase AC circuit (not shown).
All of the six-phase reactors 50 to 55 of the present embodiment are constituted by solenoids 42 having an open magnetic path in which a coil 41 is wound around a rod-shaped core 40, and the solenoids 42 constituting the reactors 50 to 5 have the same diameter. The same shape is obtained by winding a coil 41 having the same number of windings around the rod-shaped core 40. The rod-shaped core 30 is an insulator or a nonmagnetic material.

そして、6相のリアクトル50〜55は、棒状コア40の軸線を同一方向に向け、所定直径Dの円周上に60°の間隔をあけて相順に配置されている。
本実施形態は、6相のリアクトル50〜55が、同一直径の棒状コア40に同一巻線数のコイル41を巻き付けた同一形状のソレノイド42で構成されており、しかも、各ソレノイド42は、棒状コア40の軸線を同一方向に向けて所定直径Dの円周上に等間隔に(60°の間隔をあけて)相順に配置されているので、第1相のリアクトル50及び第2相のリアクトル51間の相互インダクタンス、第2相のリアクトル51及び第3相のリアクトル52間の相互インダクタンス、第3相のリアクトル52及び第3相のリアクトル53間の相互インダクタンス、第3相のリアクトル53及び第4相のリアクトル54間の相互インダクタンス、第5相のリアクトル54及び第6相のリアクトル55間の相互インダクタンス、第6相のリアクトル55及び第1相のリアクトル50間の相互インダクタンスが実質的に均一となる。
The six-phase reactors 50 to 55 are arranged in phase order with a 60 ° interval on the circumference of the predetermined diameter D with the axis of the rod-shaped core 40 directed in the same direction.
In the present embodiment, the six-phase reactors 50 to 55 are configured by solenoids 42 having the same shape in which a coil 41 having the same number of windings is wound around a rod-shaped core 40 having the same diameter, and each solenoid 42 has a rod-like shape. Since the axes of the cores 40 are oriented in the same direction on the circumference of the predetermined diameter D at equal intervals (with an interval of 60 °), the first phase reactor 50 and the second phase reactor are arranged. 51, the mutual inductance between the second-phase reactor 51 and the third-phase reactor 52, the mutual inductance between the third-phase reactor 52 and the third-phase reactor 53, the third-phase reactor 53 and the first-phase reactor 53 Mutual inductance between the four-phase reactors 54, mutual inductance between the fifth-phase reactor 54 and the sixth-phase reactor 55, and the sixth-phase reactor 5 And the mutual inductance between the reactor 50 of the first phase is substantially uniform.

したがって、6相のリアクトル50〜55のソレノイド42間の相互インダクタンスが実質的に均一になると、6相のリアクトル50〜55を構成するソレノイド42の磁気結合の差異が緩和されるので、6相に流れる交流電流が不平衡になるのを抑制することができ、安定した交流電流を流すことができる。
また、本実施形態は、6相のリアクトル50〜55が、棒状コア40にコイル41を巻き付けた開磁路のソレノイド42で構成されており、コイル41の実装が容易となって安価にソレノイド42を製造することができるので、六相交流回路からなる装置の製造コストの低減化を図ることができる。
Therefore, when the mutual inductance between the solenoids 42 of the six-phase reactors 50 to 55 becomes substantially uniform, the difference in magnetic coupling of the solenoids 42 constituting the six-phase reactors 50 to 55 is alleviated. It is possible to suppress the flowing alternating current from becoming unbalanced, and it is possible to flow a stable alternating current.
Further, in the present embodiment, the six-phase reactors 50 to 55 are configured by an open magnetic path solenoid 42 in which the coil 41 is wound around the rod-shaped core 40, so that the coil 41 can be easily mounted at low cost. Therefore, it is possible to reduce the manufacturing cost of a device composed of a six-phase AC circuit.

なお、上記各実施形態では、棒状コア40にコイル41を巻き付けたソレノイド42を使用して説明したが、棒状コアを使用しない空芯の開磁路のソレノイドを使用しても同様の作用効果を奏することができる。
また、図6に示した多相交流回路に限るものではなく、さらには、図示しない交流−直流回路の直流用リアクトルに上記実施形態を適用してもよい。
In each of the above embodiments, the solenoid 42 in which the coil 41 is wound around the rod-shaped core 40 has been described. However, even if an air-core open magnetic circuit solenoid that does not use the rod-shaped core is used, the same effect can be obtained. Can play.
Further, the embodiment is not limited to the multiphase AC circuit shown in FIG. 6, and the above embodiment may be applied to a DC reactor of an AC-DC circuit (not shown).

1…交流電源、2〜15…半導体スイッチ、17…R相リアクトル、17a…第1R相リアクトル、17b…第2R相リアクトル、18…S相リアクトル、18a…第1S相リアクトル、18b…第2S相リアクトル、19…T相リアクトル、19a…第1T相リアクトル、19b…第2T相リアクトル、20…U相リアクトル、21…V相リアクトル、22…W相リアクトル、24〜26…フィルタコンデンサ、27〜29…フィルタコンデンサ、16A,16B…直流コンデンサ、40…棒状コア、41…コイル、42…ソレノイド、50…第1相のリアクトル、51…第2相のリアクトル、52…第3相のリアクトル、53…第4相のリアクトル、54…第5相のリアクトル、55…第6相のリアクトル   DESCRIPTION OF SYMBOLS 1 ... AC power source, 2-15 ... Semiconductor switch, 17 ... R phase reactor, 17a ... 1st R phase reactor, 17b ... 2nd R phase reactor, 18 ... S phase reactor, 18a ... 1st S phase reactor, 18b ... 2nd S phase Reactor, 19 ... T-phase reactor, 19a ... First T-phase reactor, 19b ... Second T-phase reactor, 20 ... U-phase reactor, 21 ... V-phase reactor, 22 ... W-phase reactor, 24-26 ... Filter capacitor, 27-29 ... Filter capacitors, 16A, 16B ... DC capacitors, 40 ... Rod core, 41 ... Coil, 42 ... Solenoid, 50 ... First phase reactor, 51 ... Second phase reactor, 52 ... Third phase reactor, 53 ... 4th phase reactor, 54 ... 5th phase reactor, 55 ... 6th phase reactor

Claims (3)

電力変換装置に使用される複数のリアクトルの配置構造であって、
複数のリアクトルの各々を、コイルを巻きつけた開磁路のソレノイドで構成し、これら複数のソレノイドの間の相互インダクタンスが実質的に均一となるように、当該複数のソレノイドを配置したことを特徴とする電力変換装置のリアクトル配置構造。
An arrangement structure of a plurality of reactors used in a power converter,
Each of the plurality of reactors is constituted by a solenoid having an open magnetic circuit around which a coil is wound, and the plurality of solenoids are arranged so that mutual inductance between the plurality of solenoids is substantially uniform. The reactor arrangement structure of the power converter.
前記複数のソレノイドは電源の相数に等しい本数であり、各ソレノイドは、前記コイルの巻線数、コイル直径などの形状を同一としたものであり、
前記複数のソレノイドを、互いの軸線を同一方向に向け、所定直径の円周上に相順に等間隔となるように離間配置したことを特徴とする請求項1記載の電力変換装置のリアクトル配置構造。
The plurality of solenoids has a number equal to the number of phases of the power source, and each solenoid has the same shape such as the number of windings of the coil and a coil diameter.
2. The reactor arrangement structure of a power converter according to claim 1, wherein the plurality of solenoids are arranged so as to be equidistant from each other in a phase sequence on a circumference having a predetermined diameter with their axes directed in the same direction. .
前記複数のソレノイドは、電源の各相に少なくとも2本の前記ソレノイドを直列、或いは並列に接続した電源の相数の倍数の本数であり、各ソレノイドは、前記コイルの巻線数、コイル直径などの形状を同一としたものであり、
各相の直列、或いは並列に接続された複数のソレノイドのうちの所定のソレノイド同士を選択して第1ソレノイド群とし、これら第1ソレノイド群を、互いの軸線を同一方向に向け、所定直径の円周上に相順に等間隔となるように離間配置し、
各相の複数のソレノイドのうちの前記所定のソレノイドと異なる他のソレノイドを選択して第2ソレノイド群とし、これら第2ソレノイド群を、前記第1ソレノイド群を配置した位置に対して軸方向に離間した位置であって、前記第1ソレノイド群と同一方向に軸線を向け、前記第1ソレノイド群と同一の所定直径の円周上に相順に等間隔となるように離間配置したことを特徴とする請求項1記載の電力変換装置のリアクトル配置構造。
The plurality of solenoids is a multiple of the number of phases of the power source in which at least two solenoids are connected in series or in parallel to each phase of the power source. Each solenoid includes the number of windings of the coil, the coil diameter, etc. Is the same shape,
A predetermined solenoid among a plurality of solenoids connected in series or in parallel in each phase is selected as a first solenoid group, and the first solenoid group is oriented in the same direction with a predetermined diameter. Spaced apart on the circumference to be equally spaced in phase order,
Of the plurality of solenoids of each phase, another solenoid different from the predetermined solenoid is selected as a second solenoid group, and these second solenoid groups are arranged in the axial direction with respect to the position where the first solenoid group is disposed. The positions are spaced apart, the axes are oriented in the same direction as the first solenoid group, and are spaced apart so as to be equidistant from each other on the circumference of the same predetermined diameter as the first solenoid group. The reactor arrangement structure of the power converter device of Claim 1 to do.
JP2009183303A 2009-08-06 2009-08-06 Reactor arrangement structure of power converter Expired - Fee Related JP5521430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009183303A JP5521430B2 (en) 2009-08-06 2009-08-06 Reactor arrangement structure of power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009183303A JP5521430B2 (en) 2009-08-06 2009-08-06 Reactor arrangement structure of power converter

Publications (2)

Publication Number Publication Date
JP2011041334A true JP2011041334A (en) 2011-02-24
JP5521430B2 JP5521430B2 (en) 2014-06-11

Family

ID=43768506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009183303A Expired - Fee Related JP5521430B2 (en) 2009-08-06 2009-08-06 Reactor arrangement structure of power converter

Country Status (1)

Country Link
JP (1) JP5521430B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012186405A (en) * 2011-03-08 2012-09-27 Hitachi Ltd Reactor device, and power converter using reactor device
WO2014108902A1 (en) * 2013-01-11 2014-07-17 Gridon Ltd Fault current limiter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56162628U (en) * 1980-05-01 1981-12-03
JPS6169109A (en) * 1984-06-27 1986-04-09 エレベ−タ−・ゲ−エムベ−ハ− Method of disposing air core choke

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56162628U (en) * 1980-05-01 1981-12-03
JPS6169109A (en) * 1984-06-27 1986-04-09 エレベ−タ−・ゲ−エムベ−ハ− Method of disposing air core choke

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012186405A (en) * 2011-03-08 2012-09-27 Hitachi Ltd Reactor device, and power converter using reactor device
WO2014108902A1 (en) * 2013-01-11 2014-07-17 Gridon Ltd Fault current limiter
US20150357814A1 (en) * 2013-01-11 2015-12-10 Gridon Ltd Fault Current Limiter
EP2943964A4 (en) * 2013-01-11 2016-11-02 Gridon Ltd Fault current limiter

Also Published As

Publication number Publication date
JP5521430B2 (en) 2014-06-11

Similar Documents

Publication Publication Date Title
US11088632B2 (en) Multi-channel inverter systems including coupled inductors
JP5091858B2 (en) Magnetic coupler supply method and apparatus
US20190096572A1 (en) Coupled Inductor Structure
JP5701380B2 (en) Correlated magnetic device for canceling harmonic components
EP2905789B1 (en) Coupled inductor and power converter
US6617814B1 (en) Integrated DC link choke and method for suppressing common-mode voltage in a motor drive
WO2016170869A1 (en) Power conversion device
EP2439756A2 (en) Multi-phase transformer
CN112771776A (en) Apparatus for conversion between AC power and DC power
US7750782B1 (en) Nine-phase autotransformer
JP2008178180A (en) Rectifier circuit
Khalid et al. Bidirectional modular Dual Active Bridge (DAB) converter using multi-limb-core transformer with symmetrical LC series resonant tank based on cascaded converters in solid state transformer (SST)
JP5521430B2 (en) Reactor arrangement structure of power converter
US20100067274A1 (en) Method and device for creating a direct voltage or a direct current
US7719858B1 (en) Fifteen-phase autotransformer
RU2324250C1 (en) Electrical reactor with magnetic biasing
US20130323136A1 (en) Power supply arrangement with an inverter for producing a single-phase alternating current
JP6093683B2 (en) AC motor drive device
KR20080081285A (en) Device for connection to an impedance having a mainly inductive character
CN105374497A (en) Multi-phase common mode choke
JP2022052756A (en) Three-phase magnetics assembly with unified core body
JP2008061361A5 (en)
Cougo et al. Impact of PWM methods and load configuration in the design of intercell transformers used in parallel three-phase inverters
RU191500U1 (en) ROTATING MAGNETIC FIELD TRANSFORMER
JP5220650B2 (en) Power converter

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140324

R150 Certificate of patent or registration of utility model

Ref document number: 5521430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees