JP2011038898A - Charge cable insulation testing device of quick charger for electric vehicle - Google Patents

Charge cable insulation testing device of quick charger for electric vehicle Download PDF

Info

Publication number
JP2011038898A
JP2011038898A JP2009186515A JP2009186515A JP2011038898A JP 2011038898 A JP2011038898 A JP 2011038898A JP 2009186515 A JP2009186515 A JP 2009186515A JP 2009186515 A JP2009186515 A JP 2009186515A JP 2011038898 A JP2011038898 A JP 2011038898A
Authority
JP
Japan
Prior art keywords
voltage
smoothing capacitor
insulation
discharge
voltage reference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009186515A
Other languages
Japanese (ja)
Other versions
JP5443094B2 (en
Inventor
Hiroomi Funakoshi
博臣 舩越
Toshiyuki Oto
敏之 大戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HASETEKKU KK
Tokyo Electric Power Co Holdings Inc
Original Assignee
HASETEKKU KK
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HASETEKKU KK, Tokyo Electric Power Co Inc filed Critical HASETEKKU KK
Priority to JP2009186515A priority Critical patent/JP5443094B2/en
Priority to PCT/JP2010/055731 priority patent/WO2011018910A1/en
Publication of JP2011038898A publication Critical patent/JP2011038898A/en
Application granted granted Critical
Publication of JP5443094B2 publication Critical patent/JP5443094B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/18Cables specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable insulation tests of a charge cable of a quick charger for electric vehicles, where a grounding detection circuit is formed between charge cables, without using any ammeters capable of measuring a wide range. <P>SOLUTION: A voltage reference signal of a smoothing capacitor C when insulation of charge cables 13a, 13b is normal is stored in a voltage reference signal memory 28 in advance, the voltage of the smoothing capacitor C is measured by a voltmeter 23 after applying voltage to the charge cables 13a, 13b and charging the smoothing capacitor C, and a comparison decision unit 27 compares the voltage of the smoothing capacitor C measured by the voltmeter 23 with a voltage reference signal stored in the voltage reference signal memory 28 to determine whether insulation of the charge cables 13a, 13b is normal. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電気自動車用急速充電器の充電ケーブルの絶縁試験を行う電気自動車用急速充電器の充電ケーブル絶縁試験装置に関する。   The present invention relates to a charging cable insulation test device for a quick charger for an electric vehicle, which performs an insulation test of a charging cable for the quick charger for an electric vehicle.

一般に、電気自動車は、走行モータまたは車載補機駆動のための高電圧のバッテリを搭載しており、この高電圧バッテリ回路は対車体的に浮遊状態に保持されている。このような対車体的に浮遊状態に保持された高電圧バッテリ回路の絶縁不良を検出するには、カップリングコンデンサ型交流検出方式の絶縁監視回路が使用されている(例えば、特許文献1参照)。   In general, an electric vehicle is equipped with a high-voltage battery for driving a traveling motor or on-vehicle auxiliary equipment, and this high-voltage battery circuit is held in a floating state with respect to the vehicle body. In order to detect such an insulation failure in a high-voltage battery circuit held in a floating state with respect to the vehicle body, an insulation monitoring circuit of a coupling capacitor type AC detection system is used (see, for example, Patent Document 1). .

これは、高電圧バッテリ回路は直流回路であることから、高電圧バッテリ回路中の所定の一点に電圧検出抵抗及びカップリングコンデンサを順次介して低周波電圧を印加し、高電圧バッテリ回路における絶縁不良による電圧検出抵抗の電圧降下の変動を低周波電圧で検出するものである。   This is because the high-voltage battery circuit is a DC circuit, so a low-frequency voltage is sequentially applied to a predetermined point in the high-voltage battery circuit via a voltage detection resistor and a coupling capacitor, resulting in poor insulation in the high-voltage battery circuit. The fluctuation of the voltage drop of the voltage detection resistor due to the is detected with a low frequency voltage.

すなわち、カップリングコンデンサにより絶縁監視回路系を直流回路である高電圧バッテリ回路から直流的に分離し、かつ、絶縁監視回路が検出した信号電圧を、浮遊電圧系である直流回路である高電圧バッテリ回路と無関係の通常の対車体電源電圧で作動する制御回路系に出力して検出する。この方式は、安全性が高くかつフォトカプラなどを必要としないために回路構成を簡素化することができるという利点がある。   That is, the insulation monitoring circuit system is separated from the high-voltage battery circuit that is a DC circuit by a coupling capacitor in a DC manner, and the signal voltage detected by the insulation monitoring circuit is converted to a high-voltage battery that is a DC circuit that is a floating voltage system. It is output to a control circuit system that operates with a normal vehicle power supply voltage that is unrelated to the circuit and is detected. This method has the advantage that the circuit configuration can be simplified because it is highly safe and does not require a photocoupler or the like.

一方、電気自動車の高電圧バッテリに充電を行う電気自動車用急速充電器側では、電気自動車の車両側でカップリングコンデンサ型交流検出方式の絶縁監視回路が採用されており、これとの干渉を避けるため、電気自動車用急速充電器の出力回路にはこの方式とは別の方式の地絡検出回路が形成されている。   On the other hand, on the side of the electric vehicle quick charger that charges the high-voltage battery of the electric vehicle, an insulation monitoring circuit of a coupling capacitor type AC detection method is adopted on the vehicle side of the electric vehicle, and interference with this is avoided. Therefore, a ground fault detection circuit of a system different from this system is formed in the output circuit of the quick charger for electric vehicles.

図5は、電気自動車用急速充電器の地絡検出回路の構成図である。図5に示すように、電気自動車用急速充電器11の地絡検出回路12は、電気自動車用急速充電器11の充電ケーブル13a、13bの間に接続された直流電源14の直流電圧を平滑する平滑コンデンサCに、直列接続の制限抵抗R1、R2を並列接続し、制限抵抗R1、R2の接続点に電流計15を接続して構成されている。   FIG. 5 is a configuration diagram of a ground fault detection circuit of a quick charger for an electric vehicle. As shown in FIG. 5, the ground fault detection circuit 12 of the electric vehicle quick charger 11 smoothes the DC voltage of the DC power source 14 connected between the charging cables 13 a and 13 b of the electric vehicle quick charger 11. The smoothing capacitor C is configured by connecting limit resistors R1 and R2 connected in series in parallel and connecting an ammeter 15 to the connection point of the limit resistors R1 and R2.

電気自動車用急速充電器11は、コネクタ16にて自動車17の高電圧バッテリ18に接点19a、19bを介して接続される。制御装置20は、自動車17側の図示省略の情報処理装置と通信線21を介して情報交換を行い、自動車17の高電圧バッテリ18が要求する電流値や電圧値などの情報を通信線21を介して入力する。また、制御装置20は、電流計22で測定した直流電源14の出力電流及び電圧計23で測定した直流電源の出力電圧を入力し、直流電源14の出力電流や出力電圧が、自動車17の高電圧バッテリ18が要求する電流値や電圧値などを満たすように直流電源14を制御する。   The quick charger 11 for an electric vehicle is connected to a high voltage battery 18 of the vehicle 17 by a connector 16 via contacts 19a and 19b. The control device 20 exchanges information with an information processing device (not shown) on the automobile 17 side via the communication line 21, and transmits information such as a current value and a voltage value required by the high voltage battery 18 of the automobile 17 through the communication line 21. Input through. Further, the control device 20 inputs the output current of the DC power source 14 measured by the ammeter 22 and the output voltage of the DC power source measured by the voltmeter 23, and the output current and output voltage of the DC power source 14 are high. The DC power supply 14 is controlled so as to satisfy the current value and voltage value required by the voltage battery 18.

このような地絡検出回路12を有した電気自動車用急速充電器11の充電ケーブル13a、13bにおいて、自動車17の充電開始前、つまり直流電流出力前に、充電ケーブル13a、13bの短絡(地絡)の健全性を確認するために絶縁試験を行うことは、安全確保上重要なことである。   In the charging cables 13a and 13b of the electric vehicle quick charger 11 having such a ground fault detection circuit 12, the charging cables 13a and 13b are short-circuited before the start of charging of the automobile 17, that is, before the DC current is output (ground fault). It is important for ensuring safety to conduct an insulation test to confirm the soundness of).

特開2003−274504号公報JP 2003-274504 A

しかし、絶縁抵抗計を用いたメガー測定で充電ケーブル13a、13bの短絡(地絡)の健全性を確認するために絶縁試験を行う場合には、充電ケーブル13a、13b間に地絡検出器12が接続されていることから、地絡検出器12の制限抵抗R1、R2を介して充電ケーブル13a、13b間に数mA程度の電流が流れ、先行技術をそのまま用いると異常と判定されてしまう。   However, when an insulation test is performed in order to confirm the soundness of a short circuit (ground fault) of the charging cables 13a and 13b by megger measurement using an insulation resistance meter, the ground fault detector 12 is interposed between the charging cables 13a and 13b. Is connected, the current of about several mA flows between the charging cables 13a and 13b via the limiting resistors R1 and R2 of the ground fault detector 12, and if the prior art is used as it is, it is determined to be abnormal.

従って、絶縁試験において、短絡電流と地絡検出器12の制限抵抗R1、R2での通電電流とを識別することが必要となる。そのため、電流計22には測定可能な下限の電流値がmAオーダーの感度が必要となる。一方、充電時には、直流電源14から100A超の直流電流が流れるため、電流値がmAオーダーから100A超の範囲の広い電流を測定可能な電流計が必要となる。このような広範囲を測定可能な電流計はコストが高くなる。   Therefore, in the insulation test, it is necessary to distinguish between the short-circuit current and the current flowing through the limiting resistors R1 and R2 of the ground fault detector 12. For this reason, the ammeter 22 needs to have a sensitivity in the order of mA for the lower limit current value that can be measured. On the other hand, since a direct current exceeding 100 A flows from the DC power source 14 during charging, an ammeter capable of measuring a wide current with a current value ranging from the mA order to over 100 A is required. Such an ammeter capable of measuring a wide range is expensive.

本発明の目的は、広範囲の測定可能な電流計を用いることなく、充電ケーブルの間に地絡検出回路が形成された電気自動車用急速充電器の充電ケーブルの絶縁試験を行うことができる電気自動車用急速充電器の充電ケーブル絶縁試験装置を提供することである。   An object of the present invention is to provide an electric vehicle capable of performing an insulation test on a charging cable of a quick charger for an electric vehicle in which a ground fault detection circuit is formed between the charging cables without using an ammeter capable of measuring a wide range. It is to provide a charging cable insulation test device for a quick charger.

請求項1の発明に係わる電気自動車用急速充電器の充電ケーブル絶縁試験装置は、直流電圧を平滑する平滑コンデンサに制限抵抗を並列接続して地絡検出回路が形成された電気自動車用急速充電器の充電ケーブルの絶縁試験を行う電気自動車用急速充電器の充電ケーブル絶縁試験装置において、前記充電ケーブルに電圧を印加して前記平滑コンデンサを充電した後の前記平滑コンデンサの電圧を測定する電圧計と、前記充電ケーブルの絶縁が正常であるときの前記平滑コンデンサの電圧基準信号を予め記憶した電圧基準信号記憶部と、前記電圧計で測定した前記平滑コンデンサの電圧と前記電圧基準信号記憶部に記憶された電圧基準信号とを比較し前記充電ケーブルの絶縁が正常であるか否かを判定する比較判定部とを備えたことを特徴とする。   A charging cable insulation testing device for a quick charger for an electric vehicle according to the invention of claim 1 is a quick charger for an electric vehicle in which a ground fault detection circuit is formed by connecting a limiting resistor in parallel to a smoothing capacitor for smoothing a DC voltage. In a charging cable insulation test apparatus for a quick charger for an electric vehicle that performs an insulation test of the charging cable of the voltmeter, a voltage meter that measures the voltage of the smoothing capacitor after applying a voltage to the charging cable and charging the smoothing capacitor; The voltage reference signal storage unit that stores in advance the voltage reference signal of the smoothing capacitor when the insulation of the charging cable is normal, and the voltage of the smoothing capacitor measured by the voltmeter and the voltage reference signal storage unit And a comparison / determination unit for comparing whether the insulation of the charging cable is normal by comparing with the voltage reference signal thus obtained. .

請求項2の発明に係わる電気自動車用急速充電器の充電ケーブル絶縁試験装置は、請求項1の発明において、前記電圧基準信号は、前記平滑コンデンサの放電開始から所定時間経過後における予め定めた電圧基準値であり、前記比較判定部は、前記平滑コンデンサの放電開始から所定時間経過後の電圧値が前記電圧基準値の許容範囲にあるときは絶縁は正常であると判定することを特徴とする。   According to a second aspect of the invention, there is provided a charging cable insulation test apparatus for a quick charger for an electric vehicle according to the first aspect, wherein the voltage reference signal is a predetermined voltage after a predetermined time has elapsed since the discharge of the smoothing capacitor. It is a reference value, and the comparison and determination unit determines that insulation is normal when a voltage value after a predetermined time has elapsed from the start of discharge of the smoothing capacitor is within an allowable range of the voltage reference value. .

請求項3の発明に係わる電気自動車用急速充電器の充電ケーブル絶縁試験装置は、請求項1の発明において、前記電圧基準信号は、前記平滑コンデンサの放電開始から複数の異なる所定時間経過後における予め定められた複数の電圧基準値であり、前記比較判定部は、前記平滑コンデンサの放電開始から所定時間経過後の電圧値が複数の電圧基準値のいずれかの許容範囲にあるときは絶縁は正常であると判定することを特徴とする。   According to a third aspect of the present invention, there is provided a charging cable insulation test apparatus for a quick charger for an electric vehicle according to the first aspect, wherein the voltage reference signal is obtained in advance after a plurality of different predetermined times from the start of discharge of the smoothing capacitor. When the voltage value after a predetermined time has elapsed from the start of discharge of the smoothing capacitor is within an allowable range of any of the plurality of voltage reference values, the insulation is normal. It is determined that it is.

請求項4の発明に係わる電気自動車用急速充電器の充電ケーブル絶縁試験装置は、請求項1の発明において、前記電圧基準信号は、前記充電ケーブルの絶縁が正常のときの前記平滑コンデンサの放電基準電圧波形であり、前記比較判定部は、前記平滑コンデンサの放電開始から所定時間経過後までの前記平滑コンデンサの放電電圧波形と前記平滑コンデンサの放電基準電圧波形との差分の積分値が許容範囲にあるときは絶縁は正常であると判定することを特徴とする。   According to a fourth aspect of the present invention, there is provided a charging cable insulation test apparatus for a quick charger for an electric vehicle according to the first aspect, wherein the voltage reference signal is a discharge reference of the smoothing capacitor when the insulation of the charging cable is normal. The comparison and determination unit has an integrated value of a difference between a discharge voltage waveform of the smoothing capacitor and a discharge reference voltage waveform of the smoothing capacitor from the start of discharge of the smoothing capacitor until a lapse of a predetermined time within an allowable range. In some cases, the insulation is determined to be normal.

本発明によれば、充電ケーブルに電圧を印加して平滑コンデンサを充電した後の平滑コンデンサの電圧を測定し、その測定した平滑コンデンサの電圧と、充電ケーブルの絶縁が正常であるときの電圧基準信号とを比較し、充電ケーブルの絶縁が正常であるか否かを判定するので、簡便に充電ケーブルの健全性を判定することができる。また、絶縁試験を行うにあたって、追加部品を必要とすることなく、各部品の機能を増強する必要もないので、コスト高となることがない。   According to the present invention, the voltage of the smoothing capacitor after charging the smoothing capacitor by applying a voltage to the charging cable is measured, and the voltage of the measured smoothing capacitor and the voltage reference when the insulation of the charging cable is normal Since the signal is compared and it is determined whether or not the insulation of the charging cable is normal, the soundness of the charging cable can be easily determined. In addition, when performing an insulation test, there is no need for additional parts, and it is not necessary to enhance the function of each part.

また、電圧基準信号を、平滑コンデンサの放電開始から所定時間経過後における予め定めた電圧基準値とした場合には、絶縁が正常であるか否かの判定は、測定した電圧値と電圧基準値との値の比較で行え、比較判定の処理を簡素化できる。   In addition, when the voltage reference signal is a predetermined voltage reference value after a lapse of a predetermined time from the start of discharge of the smoothing capacitor, whether or not the insulation is normal is determined by the measured voltage value and the voltage reference value. The comparison determination process can be simplified.

また、電圧基準信号を、平滑コンデンサの放電開始から複数の異なる所定時間経過後における予め定められた複数の電圧基準値とした場合には、絶縁が正常であるか否かの判定は、測定した電圧値と電圧基準値との値の比較を複数回行うことができるので、絶縁の健全性の信頼度を向上できる。   Further, when the voltage reference signal is a plurality of predetermined voltage reference values after a plurality of different predetermined times from the start of discharge of the smoothing capacitor, the determination as to whether the insulation is normal was measured. Since the comparison between the voltage value and the voltage reference value can be performed a plurality of times, the reliability of the soundness of insulation can be improved.

さらに、電圧基準信号を、充電ケーブルの絶縁が正常のときの平滑コンデンサの放電基準電圧波形とした場合には、絶縁が正常であるか否かの判定は、平滑コンデンサの放電電圧波形と放電基準電圧波形との差分の積分値に基づいて絶縁が正常である否かを判定できるので、より絶縁の健全性の信頼度を向上できる。   Furthermore, when the voltage reference signal is the discharge reference voltage waveform of the smoothing capacitor when the insulation of the charging cable is normal, whether the insulation is normal or not is determined by the discharge voltage waveform of the smoothing capacitor and the discharge reference voltage. Since it can be determined whether or not the insulation is normal based on the integrated value of the difference from the voltage waveform, the reliability of insulation soundness can be further improved.

本発明の実施の形態に係わる充電ケーブル絶縁試験装置24の構成図。The block diagram of the charging cable insulation test apparatus 24 concerning embodiment of this invention. 本発明の実施の形態における比較判定部での絶縁が正常であるか否かの判定の一例の説明図。Explanatory drawing of an example of determination whether the insulation in the comparison determination part in embodiment of this invention is normal. 本発明の実施の形態における比較判定部での絶縁が正常であるか否かの判定の他の一例の説明図。Explanatory drawing of another example of determination whether the insulation in the comparison determination part in embodiment of this invention is normal. 本発明の実施の形態における比較判定部での絶縁が正常であるか否かの判定の別の他の一例の説明図。Explanatory drawing of another example of determination of whether the insulation in the comparison determination part in embodiment of this invention is normal. 電気自動車用急速充電器の地絡検出回路の構成図。The lineblock diagram of the ground fault detection circuit of the quick charger for electric vehicles.

以下、本発明の実施の形態を説明する。図1は本発明の実施の形態に係わる充電ケーブル絶縁試験装置24の構成図である。充電ケーブル絶縁試験装置24は制御装置20内に形成される。   Embodiments of the present invention will be described below. FIG. 1 is a configuration diagram of a charging cable insulation test apparatus 24 according to an embodiment of the present invention. The charging cable insulation test device 24 is formed in the control device 20.

制御装置20は、電気自動車用急速充電器11がコネクタ16により自動車17と接続されたとき、自動車17側の図示省略の情報処理装置と通信線21を介して情報交換を行い、自動車17の高電圧バッテリ18が要求する電流値や電圧値などの情報を通信線21を介して入力する。すなわち、制御装置20の入力処理部25は、自動車17からの情報や、電流計22で測定した直流電源14の出力電流及び電圧計23で測定した直流電源14の出力電圧を入力し、入力した情報を入力データ記憶部26に記憶する。そして、制御装置20の充電制御部31は、自動車17の高電圧バッテリ18が要求する電流値や電圧値などを満たすように、直流電源14の出力電流及び出力電圧を制御する。   When the electric vehicle quick charger 11 is connected to the vehicle 17 via the connector 16, the control device 20 exchanges information with an information processing device (not shown) on the vehicle 17 side via the communication line 21, and Information such as a current value and a voltage value required by the voltage battery 18 is input via the communication line 21. That is, the input processing unit 25 of the control device 20 inputs and inputs information from the automobile 17, the output current of the DC power supply 14 measured by the ammeter 22 and the output voltage of the DC power supply 14 measured by the voltmeter 23. Information is stored in the input data storage unit 26. And the charge control part 31 of the control apparatus 20 controls the output current and output voltage of the DC power supply 14 so that the electric current value, voltage value, etc. which the high voltage battery 18 of the motor vehicle 17 may satisfy | fill.

電気自動車用急速充電器11の充電ケーブル13a、13bの絶縁試験は、車両側の接点19a、19bを介して高電圧バッテリ18に接続される前に実施される。まず、充電ケーブル13a、13bに直流電源14から直流電圧を印加して、平滑コンデンサCを充電する。そして、平滑コンデンサCの充電が完了した後に、充電ケーブル絶縁試験装置24を起動する。   The insulation test of the charging cables 13a, 13b of the electric vehicle quick charger 11 is performed before being connected to the high voltage battery 18 via the vehicle side contacts 19a, 19b. First, the smoothing capacitor C is charged by applying a DC voltage from the DC power supply 14 to the charging cables 13a and 13b. Then, after the charging of the smoothing capacitor C is completed, the charging cable insulation test device 24 is activated.

充電ケーブル絶縁試験装置24の比較判定部27は、平滑コンデンサCを充電して所定時間経過後の電圧計23で測定された電圧を入力データ記憶部26から入力するとともに、電圧基準信号記憶部28に記憶された電圧基準信号を入力する。電圧基準信号記憶部28には、予め充電ケーブル13a、13bの絶縁が正常であるときの平滑コンデンサCの電圧基準信号が記憶されている。比較判定部27は、電圧計23で測定した平滑コンデンサCの電圧と、電圧基準信号記憶部28に記憶された電圧基準信号とを比較し、充電ケーブルの絶縁性能が正常であるか否かを判定する。比較判定部27の判定結果は、出力処理部29を介して出力装置30に出力される。   The comparison / determination unit 27 of the charging cable insulation test device 24 inputs the voltage measured by the voltmeter 23 after the predetermined time has elapsed after charging the smoothing capacitor C from the input data storage unit 26 and the voltage reference signal storage unit 28. The voltage reference signal stored in is input. The voltage reference signal storage unit 28 stores in advance a voltage reference signal of the smoothing capacitor C when the insulation of the charging cables 13a and 13b is normal. The comparison / determination unit 27 compares the voltage of the smoothing capacitor C measured by the voltmeter 23 with the voltage reference signal stored in the voltage reference signal storage unit 28 to determine whether or not the insulation performance of the charging cable is normal. judge. The determination result of the comparison determination unit 27 is output to the output device 30 via the output processing unit 29.

図2は、比較判定部27での絶縁が正常であるか否かの判定の一例の説明図である。図2中の曲線Srは充電ケーブル13a、13bの絶縁性能が正常のときの平滑コンデンサCの放電基準電圧波形、Vr1は放電基準電圧波形Sr上の平滑コンデンサCの放電開始から所定時間T1の経過後における電圧基準値、曲線Sは絶縁試験対象の充電ケーブル13a、13bの平滑コンデンサCの放電電圧波形、V1は放電電圧波形S上の絶縁試験対象の平滑コンデンサCの放電開始から所定時間T1の経過後における電圧値である。   FIG. 2 is an explanatory diagram of an example of determination as to whether or not the insulation in the comparison determination unit 27 is normal. A curve Sr in FIG. 2 is a discharge reference voltage waveform of the smoothing capacitor C when the insulation performance of the charging cables 13a and 13b is normal, and Vr1 is a lapse of a predetermined time T1 from the start of discharge of the smoothing capacitor C on the discharge reference voltage waveform Sr. Later voltage reference value, curve S is the discharge voltage waveform of the smoothing capacitor C of the charging cables 13a and 13b subject to insulation test, and V1 is a predetermined time T1 from the start of discharge of the smoothing capacitor C subject to insulation test on the discharge voltage waveform S. It is a voltage value after progress.

電圧基準信号記憶部28には電圧基準信号として、この電圧基準値Vr1を予め記憶しておく。   The voltage reference signal storage unit 28 stores the voltage reference value Vr1 in advance as a voltage reference signal.

そして、比較判定部27は、絶縁試験対象の充電ケーブル13a、13bの平滑コンデンサCを充電した後の電圧計23で測定された時系列の電圧値のうち、平滑コンデンサCが放電開始してから所定時間経過T1後の平滑コンデンサCの電圧値V1を入力データ記憶部26から取り出し、電圧基準信号記憶部28に予め記憶されている電圧基準値Vr1と比較する。比較判定部27は、平滑コンデンサCの電圧値V1が電圧基準値Vr1に対して許容範囲にあるときは、絶縁は正常であると判定する。   And the comparison determination part 27 is after the smoothing capacitor C starts discharge among the time series voltage values measured with the voltmeter 23 after charging the smoothing capacitor C of the charging cables 13a and 13b of the insulation test target. The voltage value V1 of the smoothing capacitor C after a predetermined time T1 is taken out from the input data storage unit 26 and compared with the voltage reference value Vr1 stored in advance in the voltage reference signal storage unit 28. The comparison determination unit 27 determines that the insulation is normal when the voltage value V1 of the smoothing capacitor C is within an allowable range with respect to the voltage reference value Vr1.

これにより、充電ケーブル13a、13bの絶縁が正常であるか否かの判定は、測定した電圧値V1と電圧基準値Vr1との値の比較だけで行えるので、比較判定の処理を簡素化できる。   As a result, whether or not the insulation of the charging cables 13a and 13b is normal can be determined only by comparing the measured voltage value V1 with the voltage reference value Vr1, thereby simplifying the comparison determination process.

図3は、比較判定部27での絶縁が正常であるか否かの判定の他の一例の説明図である。この他の一例は、図2に示した一例に対し、複数の電圧基準信号としたものであり、図3では2個の電圧基準信号Vr2、Vr3とした場合を示している。   FIG. 3 is an explanatory diagram of another example of whether or not the insulation in the comparison / determination unit 27 is normal. Another example is a case where a plurality of voltage reference signals are used as compared with the example shown in FIG. 2, and FIG. 3 shows a case where two voltage reference signals Vr2 and Vr3 are used.

図3中の曲線Srは充電ケーブル13a、13bの絶縁が正常のときの平滑コンデンサCの放電基準電圧波形、Vr2は放電基準電圧波形Sr上の平滑コンデンサCの放電開始から所定時間T2の経過後における電圧基準値、Vr3は放電基準電圧波形Sr上の平滑コンデンサCの放電開始から所定時間T3の経過後における電圧基準値、曲線Sは絶縁試験対象の充電ケーブル13a、13bの平滑コンデンサCの放電電圧波形、V2は放電電圧波形S上の絶縁試験対象の平滑コンデンサCの放電開始から所定時間T2の経過後における電圧値、V3は放電電圧波形S上の絶縁試験対象の平滑コンデンサCの放電開始から所定時間T3の経過後における電圧値である。電圧基準信号記憶部28には電圧基準信号として、この電圧基準値Vr2、Vr3を予め記憶しておく。   The curve Sr in FIG. 3 is the discharge reference voltage waveform of the smoothing capacitor C when the insulation of the charging cables 13a and 13b is normal, and Vr2 is the discharge of the smoothing capacitor C on the discharge reference voltage waveform Sr after a predetermined time T2 has elapsed. Vr3 is the voltage reference value after a predetermined time T3 has elapsed from the start of discharge of the smoothing capacitor C on the discharge reference voltage waveform Sr, and the curve S is the discharge of the smoothing capacitor C of the charging cables 13a and 13b to be insulated. A voltage waveform, V2 is a voltage value after a lapse of a predetermined time T2 from the start of discharge of the smoothing capacitor C to be insulated on the discharge voltage waveform S, and V3 is discharge start of the smoothing capacitor C to be insulated on the discharge voltage waveform S. Is a voltage value after a predetermined time T3 has elapsed. The voltage reference signal storage unit 28 stores the voltage reference values Vr2 and Vr3 in advance as voltage reference signals.

そして、比較判定部27は、絶縁試験対象の充電ケーブル13a、13bの平滑コンデンサCを充電した後の電圧計23で測定された時系列の電圧値のうち、平滑コンデンサCが放電開始してから所定時間経過T2後の平滑コンデンサCの電圧値V2を入力データ記憶部26から取り出し、電圧基準信号記憶部28に予め記憶されている電圧基準値Vr2と比較する。比較判定部27は、平滑コンデンサCの電圧値V2が電圧基準値Vr2の許容範囲にあるときは、絶縁は正常であると判定する。   And the comparison determination part 27 is after the smoothing capacitor C starts discharge among the time series voltage values measured with the voltmeter 23 after charging the smoothing capacitor C of the charging cables 13a and 13b of the insulation test target. The voltage value V2 of the smoothing capacitor C after a predetermined time T2 is extracted from the input data storage unit 26 and compared with the voltage reference value Vr2 stored in advance in the voltage reference signal storage unit 28. The comparison determination unit 27 determines that the insulation is normal when the voltage value V2 of the smoothing capacitor C is within the allowable range of the voltage reference value Vr2.

平滑コンデンサCの電圧値V2が電圧基準値Vr2の許容範囲にないときは、さらに、平滑コンデンサCが放電開始してから所定時間経過T3後の平滑コンデンサCの電圧値V3を入力データ記憶部26から取り出し、電圧基準信号記憶部28に予め記憶されている電圧基準値Vr3と比較する。比較判定部27は、平滑コンデンサCの電圧値V3が電圧基準値Vr3の許容範囲にあるときは、絶縁は正常であると判定し、平滑コンデンサCの電圧値V3が電圧基準値Vr3の許容範囲にないときは、絶縁は正常でないと判断する。   When the voltage value V2 of the smoothing capacitor C is not within the allowable range of the voltage reference value Vr2, the input data storage unit 26 further calculates the voltage value V3 of the smoothing capacitor C after a lapse of a predetermined time T3 after the smoothing capacitor C starts discharging. And is compared with the voltage reference value Vr3 stored in advance in the voltage reference signal storage unit 28. The comparison determination unit 27 determines that the insulation is normal when the voltage value V3 of the smoothing capacitor C is within the allowable range of the voltage reference value Vr3, and the voltage value V3 of the smoothing capacitor C is within the allowable range of the voltage reference value Vr3. If not, determine that insulation is not normal.

以上の説明では、平滑コンデンサCの電圧値V2が最初の電圧基準値Vr2の許容範囲にあるときは、絶縁は正常であると判定したが、平滑コンデンサCの電圧値V2が最初の電圧基準値Vr2の許容範囲にあり、かつ平滑コンデンサCの電圧値V3が最初の電圧基準値Vr3の許容範囲にあるとき、つまり、双方の電圧基準値Vr2、Vr3の許容範囲にあるときに、絶縁は正常であると判定するようにしてもよい。これにより、測定した電圧値Vと電圧基準値Vrとの値の比較を複数回行うことができるので、絶縁の健全性の信頼度を向上できる。   In the above description, when the voltage value V2 of the smoothing capacitor C is within the allowable range of the first voltage reference value Vr2, it is determined that the insulation is normal, but the voltage value V2 of the smoothing capacitor C is the first voltage reference value. When Vr2 is within the allowable range and the voltage value V3 of the smoothing capacitor C is within the allowable range of the first voltage reference value Vr3, that is, when the voltage reference values Vr2 and Vr3 are within the allowable range, the insulation is normal. You may make it determine with it. Thereby, since the comparison between the measured voltage value V and the voltage reference value Vr can be performed a plurality of times, the reliability of the soundness of insulation can be improved.

図4は、比較判定部27での絶縁が正常であるか否かの判定の別の他の一例の説明図である。この別の他の一例は、電圧基準信号を、充電ケーブル13a、13bの絶縁が正常のときの平滑コンデンサCの放電基準電圧波形Srとしたものである。   FIG. 4 is an explanatory diagram of another example of determining whether or not the insulation in the comparison determination unit 27 is normal. In another example, the voltage reference signal is the discharge reference voltage waveform Sr of the smoothing capacitor C when the insulation of the charging cables 13a and 13b is normal.

図4中の曲線Srは充電ケーブル13a、13bの絶縁が正常のときの平滑コンデンサCの放電基準電圧波形、曲線Sは絶縁試験対象の充電ケーブル13a、13bの平滑コンデンサCの放電電圧波形である。電圧基準信号記憶部28には電圧基準信号として、放電基準電圧波形Srを予め記憶しておく。   A curve Sr in FIG. 4 is a discharge reference voltage waveform of the smoothing capacitor C when the insulation of the charging cables 13a and 13b is normal, and a curve S is a discharge voltage waveform of the smoothing capacitor C of the charging cables 13a and 13b to be insulated. . The voltage reference signal storage unit 28 stores in advance a discharge reference voltage waveform Sr as a voltage reference signal.

比較判定部27は、平滑コンデンサCの放電開始から所定時間経過T4後までの平滑コンデンサCの放電電圧波形Sと、平滑コンデンサCの放電基準電圧波形Srとの各時点における差分積分値を演算し、その差分の積分値I1が許容範囲にあるときは絶縁は正常であると判定する。   The comparison / determination unit 27 calculates a difference integral value at each point in time between the discharge voltage waveform S of the smoothing capacitor C and the discharge reference voltage waveform Sr of the smoothing capacitor C from the start of discharge of the smoothing capacitor C to after a predetermined time T4. When the integral value I1 of the difference is within the allowable range, it is determined that the insulation is normal.

このように、本発明の実施の形態では、平滑コンデンサCを充電し、充電が完了した平滑コンデンサCから地絡検出回路12の制限抵抗R1、R2に電流が流れ、制限抵抗R1、R2で電力が消費されることを利用する。すなわち、制限抵抗R1、R2で電力が消費される場合における平滑コンデンサCの電圧降下を測定する。   As described above, in the embodiment of the present invention, the smoothing capacitor C is charged, current flows from the smoothing capacitor C that has been charged to the limiting resistors R1 and R2 of the ground fault detection circuit 12, and power is supplied to the limiting resistors R1 and R2. Take advantage of being consumed. That is, the voltage drop of the smoothing capacitor C when power is consumed by the limiting resistors R1 and R2 is measured.

充電完了後の一定電圧の平滑コンデンサCの電圧が一定時間後にどれだけ下がるかを、短絡がない場合(絶縁劣化がない場合)の電圧降下特性と比較し、充電ケーブル13a、13bの絶縁劣化を判断する。この場合、充電制御の際に使用する電圧計23で平滑コンデンサCの電圧降下を測定できるので、新たに絶縁試験のための計測器を設ける必要がなく、コスト高となることがない。   Compared with the voltage drop characteristics when there is no short circuit (when there is no insulation degradation), how much the voltage of the smoothing capacitor C with a constant voltage after charging is reduced after a certain time is compared with the insulation degradation of the charging cables 13a and 13b. to decide. In this case, since the voltage drop of the smoothing capacitor C can be measured with the voltmeter 23 used in charge control, it is not necessary to newly provide a measuring instrument for an insulation test, and the cost does not increase.

11…電気自動車用急速充電器、12…地絡検出回路、13…充電ケーブル、14…直流電源、15…電流計、16…コネクタ、17…自動車、18…高圧バッテリ、19…接点、20…制御装置、21…通信線、22…電流計、23…電圧計、24…充電ケーブル絶縁試験装置、25…入力処理部、26…入力データ記憶部、27…比較判定部、28…電圧基準信号記憶部、29…出力処理部、30…出力装置、31…充電制御部 DESCRIPTION OF SYMBOLS 11 ... Electric vehicle quick charger, 12 ... Ground fault detection circuit, 13 ... Charging cable, 14 ... DC power supply, 15 ... Ammeter, 16 ... Connector, 17 ... Automobile, 18 ... High voltage battery, 19 ... Contact, 20 ... Control device, 21 ... communication line, 22 ... ammeter, 23 ... voltmeter, 24 ... charge cable insulation test device, 25 ... input processing unit, 26 ... input data storage unit, 27 ... comparison / determination unit, 28 ... voltage reference signal Storage unit 29 ... Output processing unit 30 ... Output device 31 ... Charge control unit

Claims (4)

直流電圧を平滑する平滑コンデンサに制限抵抗を並列接続して地絡検出回路が形成された電気自動車用急速充電器の充電ケーブルの絶縁試験を行う電気自動車用急速充電器の充電ケーブル絶縁試験装置において、前記充電ケーブルに電圧を印加して前記平滑コンデンサを充電した後の前記平滑コンデンサの電圧を測定する電圧計と、前記充電ケーブルの絶縁が正常であるときの前記平滑コンデンサの電圧基準信号を予め記憶した電圧基準信号記憶部と、前記電圧計で測定した前記平滑コンデンサの電圧と前記電圧基準信号記憶部に記憶された電圧基準信号とを比較し前記充電ケーブルの絶縁が正常であるか否かを判定する比較判定部とを備えたことを特徴とする電気自動車用急速充電器の充電ケーブル絶縁試験装置。 In a charging cable insulation test device for a quick charger for an electric vehicle, which performs an insulation test of the charging cable of the quick charger for an electric vehicle in which a ground fault detection circuit is formed by connecting a limiting resistor in parallel to a smoothing capacitor for smoothing DC voltage A voltage meter for measuring the voltage of the smoothing capacitor after charging the smoothing capacitor by applying a voltage to the charging cable, and a voltage reference signal of the smoothing capacitor when the insulation of the charging cable is normal Whether the insulation of the charging cable is normal by comparing the stored voltage reference signal storage unit, the voltage of the smoothing capacitor measured by the voltmeter and the voltage reference signal stored in the voltage reference signal storage unit A charging cable insulation test device for a quick charger for an electric vehicle, comprising: 前記電圧基準信号は、前記平滑コンデンサの放電開始から所定時間経過後における予め定めた電圧基準値であり、前記比較判定部は、前記平滑コンデンサの放電開始から所定時間経過後の電圧値が前記電圧基準値の許容範囲にあるときは絶縁は正常であると判定することを特徴とする請求項1記載の電気自動車用急速充電器の充電ケーブル絶縁試験装置。 The voltage reference signal is a predetermined voltage reference value after a lapse of a predetermined time from the start of discharge of the smoothing capacitor, and the comparison determination unit determines that the voltage value after the lapse of a predetermined time from the start of discharge of the smoothing capacitor is the voltage. 2. The charging cable insulation testing device for a quick charger for an electric vehicle according to claim 1, wherein the insulation is determined to be normal when the reference value is within an allowable range. 前記電圧基準信号は、前記平滑コンデンサの放電開始から複数の異なる所定時間経過後における予め定められた複数の電圧基準値であり、前記比較判定部は、前記平滑コンデンサの放電開始から所定時間経過後の電圧値が複数の電圧基準値のいずれかの許容範囲にあるときは絶縁は正常であると判定することを特徴とする請求項1記載の電気自動車用急速充電器の充電ケーブル絶縁試験装置。 The voltage reference signal is a plurality of predetermined voltage reference values after a plurality of different predetermined times have elapsed from the start of discharge of the smoothing capacitor, and the comparison / determination unit is after a predetermined time has elapsed from the start of discharge of the smoothing capacitor. 2. The charging cable insulation testing device for a quick charger for an electric vehicle according to claim 1, wherein the insulation is determined to be normal when the voltage value of is within a permissible range of a plurality of voltage reference values. 前記電圧基準信号は、前記充電ケーブルの絶縁が正常のときの前記平滑コンデンサの放電基準電圧波形であり、前記比較判定部は、前記平滑コンデンサの放電開始から所定時間経過後までの前記平滑コンデンサの放電電圧波形と前記平滑コンデンサの放電基準電圧波形との差分の積分値が許容範囲にあるときは絶縁は正常であると判定することを特徴とする請求項1記載の電気自動車用急速充電器の充電ケーブル絶縁試験装置。 The voltage reference signal is a discharge reference voltage waveform of the smoothing capacitor when the insulation of the charging cable is normal, and the comparison and determination unit is configured to output the smoothing capacitor from the start of discharge of the smoothing capacitor until a predetermined time elapses. 2. The quick charger for an electric vehicle according to claim 1, wherein the insulation is determined to be normal when an integrated value of a difference between a discharge voltage waveform and a discharge reference voltage waveform of the smoothing capacitor is within an allowable range. Charging cable insulation test equipment.
JP2009186515A 2009-08-11 2009-08-11 Electric vehicle quick charger charging cable insulation test equipment Expired - Fee Related JP5443094B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009186515A JP5443094B2 (en) 2009-08-11 2009-08-11 Electric vehicle quick charger charging cable insulation test equipment
PCT/JP2010/055731 WO2011018910A1 (en) 2009-08-11 2010-03-30 Charging cable insulation testing device for quick charger for electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009186515A JP5443094B2 (en) 2009-08-11 2009-08-11 Electric vehicle quick charger charging cable insulation test equipment

Publications (2)

Publication Number Publication Date
JP2011038898A true JP2011038898A (en) 2011-02-24
JP5443094B2 JP5443094B2 (en) 2014-03-19

Family

ID=43586091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009186515A Expired - Fee Related JP5443094B2 (en) 2009-08-11 2009-08-11 Electric vehicle quick charger charging cable insulation test equipment

Country Status (2)

Country Link
JP (1) JP5443094B2 (en)
WO (1) WO2011018910A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102729833A (en) * 2011-03-31 2012-10-17 富士重工业株式会社 Charging system
WO2013051484A1 (en) * 2011-10-03 2013-04-11 パナソニック株式会社 Power charging device for electric vehicle
CN103124091A (en) * 2011-11-18 2013-05-29 富士重工业株式会社 Electric charging system and electric vehicle
JP2014117070A (en) * 2012-12-10 2014-06-26 Hasetekku:Kk Charger
JP5705382B1 (en) * 2013-11-22 2015-04-22 三菱電機株式会社 Insulation detector and electrical equipment

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103675591B (en) * 2013-12-09 2016-08-17 惠州市亿能电子有限公司 A kind of electrokinetic cell output bus multipoint insulation fault detection circuit
DE102021106891A1 (en) * 2021-03-19 2022-09-22 Webasto SE Method for checking an insulation condition of a battery or a battery system
JP7449581B2 (en) 2021-06-28 2024-03-14 株式会社 東京ウエルズ Capacitor measuring device and capacitor measuring method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6078359A (en) * 1983-10-05 1985-05-04 Hitachi Ltd Static leonard device
JPH05276674A (en) * 1992-03-27 1993-10-22 Nissan Motor Co Ltd Charger
JPH08182180A (en) * 1994-12-22 1996-07-12 Tempearl Ind Co Ltd Integration judging circuit and resistance component leakage detecting circuit using it
JP2002352931A (en) * 2001-03-19 2002-12-06 Yazaki Corp Terminal pressure contact state determining method
JP2004286522A (en) * 2003-03-20 2004-10-14 Yazaki Corp Ground detector and insulation resistance measuring device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6078359A (en) * 1983-10-05 1985-05-04 Hitachi Ltd Static leonard device
JPH05276674A (en) * 1992-03-27 1993-10-22 Nissan Motor Co Ltd Charger
JPH08182180A (en) * 1994-12-22 1996-07-12 Tempearl Ind Co Ltd Integration judging circuit and resistance component leakage detecting circuit using it
JP2002352931A (en) * 2001-03-19 2002-12-06 Yazaki Corp Terminal pressure contact state determining method
JP2004286522A (en) * 2003-03-20 2004-10-14 Yazaki Corp Ground detector and insulation resistance measuring device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102729833A (en) * 2011-03-31 2012-10-17 富士重工业株式会社 Charging system
WO2013051484A1 (en) * 2011-10-03 2013-04-11 パナソニック株式会社 Power charging device for electric vehicle
CN103124091A (en) * 2011-11-18 2013-05-29 富士重工业株式会社 Electric charging system and electric vehicle
JP2013108793A (en) * 2011-11-18 2013-06-06 Fuji Heavy Ind Ltd Charging system and electric vehicle
JP2014117070A (en) * 2012-12-10 2014-06-26 Hasetekku:Kk Charger
JP5705382B1 (en) * 2013-11-22 2015-04-22 三菱電機株式会社 Insulation detector and electrical equipment
WO2015075821A1 (en) * 2013-11-22 2015-05-28 三菱電機株式会社 Insulation detector and electrical device

Also Published As

Publication number Publication date
JP5443094B2 (en) 2014-03-19
WO2011018910A1 (en) 2011-02-17

Similar Documents

Publication Publication Date Title
JP5443094B2 (en) Electric vehicle quick charger charging cable insulation test equipment
CN105486923B (en) Bus leakage resistance estimation for electrical isolation testing and diagnostics
US10161982B2 (en) Failure inspection system enabling discrimination between leakage current failure and short-circuit failure
JP5369833B2 (en) Electric vehicle charger and ground fault detection method
JP6414520B2 (en) Inspection system
CN104641244B (en) For detecting and measuring the device of insulation fault
KR101658522B1 (en) Method and system for measuring isolation resistance of battery pack arranged on vehicle chassis
JP6369407B2 (en) Failure detection system
CN102463903A (en) Method and apparatus for monitoring a vehicular propulsion system battery
KR101189582B1 (en) Voltage sensing system for detecting disconnection of voltage sensing line of battery
US20150346257A1 (en) Continuous Leakage Detection Circuit with Integrated Robustness Check and Balanced Fault Detection
WO2011010349A1 (en) Testing device
US9493079B2 (en) Method and device for charging an energy store of a vehicle
EP2821802B1 (en) In-vehicle charger
KR20210002971A (en) Device for ground fault detection of electric car charger and method for the same
JP2016130706A (en) Ungrounded power supply insulation detection device
KR101918493B1 (en) Electrical safety multi inspection device for eco-vehicles
WO2010113917A1 (en) Ground fault detection device, electric vehicle charger, and ground fault detection method
KR20230002747A (en) How to detect insulation failure between power and ground
JP5575326B2 (en) On-board power supply network for vehicles and control device for on-board power supply network
EP4116724A1 (en) Ground impedance and fault detection system and method
JP2014202696A (en) Electrical leak detection method
CN114428216A (en) Battery current detection method and device and storage medium
US20230280385A1 (en) Method for Monitoring at Least One Y-Capacitance of an Electrical On-Board Power Supply of a Vehicle, and Electrical On-Board Power Supply
JP6764732B2 (en) Railroad vehicle ground fault detection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131219

R150 Certificate of patent or registration of utility model

Ref document number: 5443094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees