JP2011038122A - Aluminum alloy sheet for secondary battery case and method for producing the same - Google Patents

Aluminum alloy sheet for secondary battery case and method for producing the same Download PDF

Info

Publication number
JP2011038122A
JP2011038122A JP2009183488A JP2009183488A JP2011038122A JP 2011038122 A JP2011038122 A JP 2011038122A JP 2009183488 A JP2009183488 A JP 2009183488A JP 2009183488 A JP2009183488 A JP 2009183488A JP 2011038122 A JP2011038122 A JP 2011038122A
Authority
JP
Japan
Prior art keywords
aluminum alloy
tensile strength
mass
secondary battery
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009183488A
Other languages
Japanese (ja)
Inventor
Qi Cui
祺 崔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2009183488A priority Critical patent/JP2011038122A/en
Publication of JP2011038122A publication Critical patent/JP2011038122A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy sheet for a secondary battery case which has excellent press formability and laser weldability, and restores deterioration in strength caused by laser welding. <P>SOLUTION: The aluminum alloy sheet has a composition composed of 0.7 to 1.4% Mn, 0.6 to 1.3% Cu, 0.2 to 0.6% Mg and >0.4 to 1.0% Fe, and the balance Al with inevitable impurities. Its tensile strength σs is 220 to 310 MPa, a difference between the tensile strength σs and proof stress ys ¾σs-ys¾ is ≤20 MPa, and provided that the tensile strength directly after welding in a laser weld zone is denoted as σi and the tensile strength after recovery is denoted as σr, σr/σi≥1.2 is satisfied. The aluminum alloy sheet is produced under the following conditions: process annealing at a temperature rising rate of 10 to 250°C/s, a holding temperature of 450 to 560°C, a holding time of 5 to 60s and a cooling rate of 20 to 250°C/s; stabilization annealing at a holding temperature of 60 to 220°C and a holding time of 2 to 8 hr; and final cold rolling at a draft of 10 to 50%. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、二次電池ケース用アルミニウム合金板に関し、特にリチウムイオン二次電池ケース用アルミニウム合金板に関する。   The present invention relates to an aluminum alloy plate for a secondary battery case, and more particularly to an aluminum alloy plate for a lithium ion secondary battery case.

リチウムイオン二次電池(以下二次電池と略称)は、ノート型パーソナルコンピュータや携帯電話などの携帯機器の電源として広く使用されているが、その優れた特性により、電気自動車やハイブリッド車の電源としても採用し始めている。
二次電池は通常、角型または円筒型金属ケースに電極体と電解質液を入れた後に、金属製蓋を付けてレーザ溶接により密封することで製造される。携帯電話等のモバイル電子機器の場合、前記の金属ケースには、アルミニウム合金板を多段プレスして製造したアルミニウム合金角型ケースが採用されていることが多い。従って、アルミニウム合金板には良好なプレス成形性が求められる。また、前述のように、蓋とケースはレーザ溶接によって接合するので、良好なレーザ溶接性も求められる。さらにモバイル電子機器に装着して使用しているときに、再充電により温度と内部圧力が上昇し、電池が膨らんで充電効率が著しく落ちる問題があるために、この内部圧力に耐える高強度アルミニウム合金板材が好ましくなる。
一方、車載二次電池の場合、モバイル電子機器よりはるかに大容量が必須のために、数十個の大型電池を組んだモジュール電池が使用される。安全性を重視する観点から、単体電池のケースには強度の高いステンレス鋼板を多段プレスして製造した角型ケースが採用されていることが多い。
近年、車体の軽量化やコストダウンのニーズが高まり、車載二次電池でもアルミニウム合金ケースを採用するニーズは高くなってきている。
Lithium ion secondary batteries (hereinafter abbreviated as secondary batteries) are widely used as power sources for portable devices such as notebook personal computers and mobile phones, but due to their superior characteristics, they can be used as power sources for electric and hybrid vehicles. Is also beginning to adopt.
A secondary battery is usually manufactured by putting an electrode body and an electrolyte solution in a square or cylindrical metal case, and then attaching a metal lid and sealing it by laser welding. In the case of a mobile electronic device such as a cellular phone, an aluminum alloy square case manufactured by multi-stage pressing of an aluminum alloy plate is often adopted as the metal case. Therefore, the aluminum alloy sheet is required to have good press formability. As described above, since the lid and the case are joined by laser welding, good laser weldability is also required. In addition, when mounted on a mobile electronic device, the temperature and internal pressure rise due to recharging, and the battery swells, causing a problem that the charging efficiency drops significantly. Therefore, a high-strength aluminum alloy that can withstand this internal pressure. A plate material is preferred.
On the other hand, in the case of an in-vehicle secondary battery, a much larger capacity is essential than a mobile electronic device, so a module battery in which several tens of large batteries are assembled is used. From the viewpoint of emphasizing safety, the case of the unit cell is often a square case manufactured by multi-stage pressing of a high-strength stainless steel plate.
In recent years, there has been a growing need for weight reduction and cost reduction of the vehicle body, and the need for adopting an aluminum alloy case for an in-vehicle secondary battery is increasing.

車載用モジュール電池の場合、モバイル電子機器と同様に単体電池ケースの材料にはプレス成形性とレーザ溶接性が求められるが、各々単体電池が外部より強力に拘束されるために、ケース自身には耐膨れへの要求はそれほど厳しくない。
ところが、蓋側では各種制御部品を装着する必要があるために外部より拘束することが難しい。一方、モバイル電子機器用二次電池よりも単体電池が大型化となり、電池内部の圧力が非常に大きくなるために、蓋とケースとの溶接部に対する高強度の要求ははるかに厳しくなる。一般には、ケース用アルミニウム合金板材は、加工硬化により高強度化されている。この場合、アルミニウム合金板自身の強度が高くても、蓋とのレーザ溶接時の入熱により局部的に軟化され、溶接後の溶接部または入熱の影響を受けたその近辺の熱影響部の強度が大幅に低下する。その結果、レーザ溶接部とその熱影響部は電池内部の高い圧力に耐えない恐れがある。
また、電池内部の圧力が大きく増大するために、レーザ溶接時の溶け込み深さを大きくし、接合強度を、モバイル電子機器用二次電池より高める必要がある。このためにレーザ溶接時の速度を下げざるを得ずに生産性が落ちる問題がある。
In the case of an in-vehicle module battery, the material of a single battery case is required to have press formability and laser weldability as in mobile electronic devices. However, since each single battery is strongly restrained from the outside, the case itself has The demand for blistering resistance is not so strict.
However, since it is necessary to mount various control components on the lid side, it is difficult to restrain from the outside. On the other hand, the unit battery becomes larger than the secondary battery for mobile electronic devices, and the pressure inside the battery becomes very large, so the demand for high strength for the welded portion between the lid and the case becomes much stricter. In general, the strength of case aluminum alloy sheets is increased by work hardening. In this case, even if the strength of the aluminum alloy plate itself is high, it is locally softened by heat input during laser welding to the lid, and the welded part after welding or the heat affected part in the vicinity affected by the heat input. The strength is greatly reduced. As a result, the laser weld and the heat affected zone may not withstand the high pressure inside the battery.
Further, since the pressure inside the battery greatly increases, it is necessary to increase the penetration depth during laser welding and to increase the bonding strength as compared with the secondary battery for mobile electronic devices. For this reason, there is a problem that productivity is reduced because the speed at the time of laser welding has to be reduced.

本発明者は、特許文献1において、高強度でプレス成形性、レーザ溶接性、耐膨れ性に優れた二次電池ケース用アルミニウム合金板を提案している。
この合金板は、Cu:1.0超〜1.8%、Mn:1.0超〜1.7%、Mg:0.1〜0.6%を含有し、残部がAlと不可避的不純物からなる組成を有し、引張強度260〜350MPa、導電率IACS39%以上、円相当直径0.5μm〜10μmの金属間化合物粒子が平均で11000〜30000個/mm分散する、というものである。
The present inventor has proposed an aluminum alloy plate for a secondary battery case having high strength and excellent press formability, laser weldability, and swelling resistance in Patent Document 1.
This alloy plate contains Cu: more than 1.0 to 1.8%, Mn: more than 1.0 to 1.7%, Mg: 0.1 to 0.6%, the balance being Al and inevitable impurities The intermetallic compound particles having a tensile strength of 260 to 350 MPa, an electrical conductivity of IACS of 39% or more, and an equivalent circle diameter of 0.5 μm to 10 μm are dispersed in an average of 11000 to 30000 particles / mm 2 .

特開2008−223087号公報JP 2008-223087 A

ところが、特許文献1で言うところのレーザ溶接性とは、レーザによって溶接ができるかどうかを判定しているに過ぎず、レーザ溶接の熱影響による強度低下までは考慮がなされていないという問題点が見出された。
本発明は、上記の問題点に鑑みて成し遂げられたものであり、その目的は、プレス成形性、レーザ溶接性が優れ、かつレーザ溶接による強度低下を回復できるアルミニウム合金板を提供することにある。
However, the laser weldability referred to in Patent Document 1 merely determines whether or not welding can be performed by a laser, and there is a problem that no consideration has been given to a reduction in strength due to the thermal effect of laser welding. It was found.
The present invention has been accomplished in view of the above problems, and an object of the present invention is to provide an aluminum alloy plate that is excellent in press formability and laser weldability and that can recover strength reduction due to laser welding. .

本発明者等は、合金組成、製造条件、特に焼鈍条件について検討を加えたところ、レーザ溶接による強度低下を、自然に又は低温熱処理を施すことにより、回復できることを知見した。
すなわち本発明の二次電池ケース用アルミニウム合金板は、Mnを0.7〜1.4質量%、Cuを0.6〜1.3質量%、Mgを0.2〜0.6質量%、Feを0.4超〜1.0質量%それぞれ含有し、残部が不可避的不純物及びAlからなる組成を有する。そして本発明の二次電池ケース用アルミニウム合金板は、引張強さσsが220〜310MPa、引張強さσsと耐力ysとの差|σs−ys|が20MPa以下であり、レーザ溶接部の溶接直後の引張強さをσi(MPa)、回復後の引張強さをσr(MPa)とすると、σr/σi≧1.2を満足することを特徴とする。なお、本願発明における引張強さσs及び耐力ysは、レーザ溶接部を除く素材としての引張強さ及び耐力を意味する。また、本願発明におけるσi、σrは、後述する実施例に記載のレーザ溶接条件、引張強さの測定条件に基づいて特定される値である。また、回復後とは、レーザ溶接後に、格別な処理を行うことなく放置することを意味する。ただし、現実に本発明の二次電池ケース用アルミニウム合金板を製造する場合に、熱処理を加えることを否定するものではない。
The inventors of the present invention have studied the alloy composition, manufacturing conditions, particularly annealing conditions, and have found that the strength reduction due to laser welding can be recovered naturally or by performing low-temperature heat treatment.
That is, the aluminum alloy plate for a secondary battery case of the present invention has a Mn of 0.7 to 1.4% by mass, a Cu of 0.6 to 1.3% by mass, a Mg of 0.2 to 0.6% by mass, Fe is contained in excess of 0.4 to 1.0% by mass, and the balance is composed of inevitable impurities and Al. The aluminum alloy plate for a secondary battery case of the present invention has a tensile strength σs of 220 to 310 MPa, a difference between the tensile strength σs and the yield strength ys | σs−ys | of 20 MPa or less, and immediately after welding of the laser welded portion. When the tensile strength of σi (MPa) and the recovered tensile strength is σr (MPa), σr / σi ≧ 1.2 is satisfied. In addition, tensile strength (sigma) s and yield strength ys in this invention mean the tensile strength and yield strength as a raw material except a laser welding part. Further, σi and σr in the present invention are values specified based on laser welding conditions and tensile strength measurement conditions described in Examples described later. Further, “after recovery” means leaving after laser welding without performing any special treatment. However, when actually manufacturing the aluminum alloy plate for secondary battery cases of this invention, it does not deny adding heat processing.

本発明のアルミニウム合金板は、引張強さが220〜310MPa、引張強さと耐力との差(|σs−ys|)が20MPa以下であることが好ましい。二次電池ケースに要求される機械的強度とプレス成形性を確保するためである。   The aluminum alloy plate of the present invention preferably has a tensile strength of 220 to 310 MPa and a difference between tensile strength and proof stress (| σs−ys |) of 20 MPa or less. This is to ensure the mechanical strength and press formability required for the secondary battery case.

以上の本発明による二次電池ケース用アルミニウム合金板は、以下の製造方法により製造される。すなわち本発明による二次電池ケース用アルミニウム合金板は、Mnを0.7〜1.4質量%、Cuを0.6〜1.3質量%、Mgを0.2〜0.6質量%、Feを0.4超〜1.0質量%それぞれ含有し、残部が不可避的不純物及びAlからなる合金を鋳造し、熱間圧延、冷間圧延、中間焼鈍、安定化焼鈍及び最終冷間圧延の各工程を経て製造される。本発明の製造方法は、中間焼鈍の昇温速度を10〜250℃/秒、保持温度を450〜560℃、保持時間を5〜60秒、冷却速度を20〜250℃/秒とし、安定化焼鈍の保持温度を60〜220℃、保持時間を2〜8時間とし、さらに最終冷間圧延の圧下率を10〜50%になるように制御することを特徴とする。
上記組成を有し、かつ以上の中間焼鈍、安定化焼鈍及び最終冷間圧延の条件を満足することにより、プレス成形性、レーザ溶接性が優れ、かつレーザ溶接による強度低下が回復できる二次電池ケース用アルミニウム合金板が提供される。
The aluminum alloy plate for a secondary battery case according to the present invention described above is manufactured by the following manufacturing method. That is, the aluminum alloy plate for a secondary battery case according to the present invention has a Mn content of 0.7 to 1.4 mass%, a Cu content of 0.6 to 1.3 mass%, a Mg content of 0.2 to 0.6 mass%, Casting an alloy containing Fe in excess of 0.4 to 1.0% by mass, the balance being inevitable impurities and Al, hot rolling, cold rolling, intermediate annealing, stabilization annealing, and final cold rolling It is manufactured through each process. In the production method of the present invention, the temperature increase rate of the intermediate annealing is 10 to 250 ° C./second, the holding temperature is 450 to 560 ° C., the holding time is 5 to 60 seconds, and the cooling rate is 20 to 250 ° C./second. The annealing holding temperature is 60 to 220 ° C., the holding time is 2 to 8 hours, and the rolling reduction of the final cold rolling is controlled to be 10 to 50%.
A secondary battery having the above composition and satisfying the above conditions of intermediate annealing, stabilization annealing and final cold rolling, which is excellent in press formability and laser weldability and can recover the strength reduction due to laser welding. An aluminum alloy plate for a case is provided.

本発明によれば、プレス成形性、レーザ溶接性が優れ、かつレーザ溶接による強度低下が回復できる二次電池ケース用アルミニウム合金板が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the aluminum alloy plate for secondary battery cases which is excellent in press moldability and laser weldability, and can recover | recover the intensity | strength fall by laser welding is provided.

以下、実施の形態に基づいてこの発明を詳細に説明する。
<合金組成>
まず、二次電池ケース用アルミニウム合金板の合金組成について説明する。
<Mn:0.7〜1.4質量%>
Mnは、Alと結合して、鋳造時に晶出物粒子を形成する。この粒子らはプレス成形時の金型への焼きつきを防止し、成形性を高める効果がある。また、Mnは、アルミニウム合金板の強度を高める効果がある。さらに、中間焼鈍時の再結晶粒の成長を抑制し、結晶粒微細化に寄与することによってプレス成形時の成形性を高める効果がある。
Mn含有量が0.7質量%未満では、上記効果が不十分となり、また、Mn含有量が1.4質量%を超えると、鋳造時に粗大な晶出物が生成しやすくなり、マトリックス中に分散してプレス成形性が低下する。そこで、本発明は、Mn含有量を0.7〜1.4質量%とする。好ましいMn含有量は、0.8〜1.3質量%、より好ましいMn含有量は、0.9〜1.2質量%である。
Hereinafter, the present invention will be described in detail based on embodiments.
<Alloy composition>
First, the alloy composition of the aluminum alloy plate for a secondary battery case will be described.
<Mn: 0.7 to 1.4% by mass>
Mn combines with Al to form crystallized particles during casting. These particles have the effect of preventing seizure on the mold during press molding and improving moldability. Further, Mn has an effect of increasing the strength of the aluminum alloy plate. Furthermore, it has the effect of suppressing the growth of recrystallized grains during intermediate annealing and improving the formability during press molding by contributing to refinement of crystal grains.
When the Mn content is less than 0.7% by mass, the above effects are insufficient, and when the Mn content exceeds 1.4% by mass, a coarse crystallized product is easily generated during casting, Disperse to reduce press formability. Then, this invention makes Mn content 0.7-1.4 mass%. A preferable Mn content is 0.8 to 1.3% by mass, and a more preferable Mn content is 0.9 to 1.2% by mass.

<Cu:0.6〜1.3質量%>
Cuは、レーザ溶接後の溶接部強度の自然回復または低温熱処理による強度回復に寄与する主要元素であり、合金板の強度を高める効果がある。また、Cuは高温クリープ特性を高め、耐膨れ性の向上に寄与する効果もある。
Cu含有量が0.6質量%未満では、それらの効果は不十分となり、Cu含有量が1.3質量%を超えると、プレス成形性が顕著に低下し、レーザ溶接時の熱間割れ感受性が増加する。そこで、本発明は、Cu含有量を0.6〜1.3質量%とする。好ましいCu含有量は、0.8〜1.3質量%、より好ましいCu含有量は、1.0〜1.2質量%である。
<Cu: 0.6 to 1.3% by mass>
Cu is a main element contributing to natural recovery of weld strength after laser welding or strength recovery by low-temperature heat treatment, and has an effect of increasing the strength of the alloy plate. Cu also has the effect of enhancing the high temperature creep characteristics and contributing to the improvement of blistering resistance.
If the Cu content is less than 0.6% by mass, these effects are insufficient, and if the Cu content exceeds 1.3% by mass, the press formability is remarkably lowered and the hot cracking susceptibility during laser welding is reduced. Will increase. Then, this invention makes Cu content 0.6-1.3 mass%. A preferable Cu content is 0.8 to 1.3% by mass, and a more preferable Cu content is 1.0 to 1.2% by mass.

<Mg:0.2〜0.6質量%>
Mgは、Cuと一緒に複合添加すると、レーザ溶接後の溶接部強度の自然回復または低温熱処理による強度回復を高める効果がある。また、アルミニウム合金板自身の強度とクリープ性を高め、耐膨れ性の向上に寄与する効果もある。
Mg含有量が0.2質量%未満では、それらの効果は不十分となり、Mg含有量が0.6質量%を超えると、レーザ溶接性とプレス成形性が低下する。好ましいMg含有量は、0.2〜0.5質量%、より好ましいMg含有量は、0.3〜0.5質量%である。
<Mg: 0.2-0.6% by mass>
When Mg is added together with Cu, it has the effect of increasing the strength recovery by low-temperature heat treatment or natural recovery of weld strength after laser welding. In addition, there is an effect that the strength and creep property of the aluminum alloy plate itself is increased and the bulging resistance is improved.
If the Mg content is less than 0.2% by mass, these effects are insufficient, and if the Mg content exceeds 0.6% by mass, the laser weldability and the press formability deteriorate. A preferable Mg content is 0.2 to 0.5% by mass, and a more preferable Mg content is 0.3 to 0.5% by mass.

<Fe:0.4超〜1.0質量%>
Feは、レーザ溶接時のレーザ吸収率を上げる効果があるために、同じ溶接速度でもより大きな溶け込み深さが得られる。
Fe含有量は0.4質量%以下では、この効果は不十分となり、1.0質量%を超えると、鋳造時に粗大なFe系化合物粒子が発生しやすくなり、プレス成形性が劣化する恐れがある。好ましいFe含有量は、0.5〜0.8質量%、より好ましいFe含有量は、0.55〜0.75質量%である。
<Fe: more than 0.4 to 1.0 mass%>
Fe has the effect of increasing the laser absorptance during laser welding, so that a greater penetration depth can be obtained even at the same welding speed.
When the Fe content is 0.4% by mass or less, this effect is insufficient. When the Fe content exceeds 1.0% by mass, coarse Fe-based compound particles are likely to be generated during casting, and press moldability may be deteriorated. is there. A preferable Fe content is 0.5 to 0.8% by mass, and a more preferable Fe content is 0.55 to 0.75% by mass.

<Si:0.1質量%以下>
Siは、不可避不純物として存在し、強度を若干高める効果がある。一方、Siは、レーザ溶接性を若干劣化させる。レーザ溶接性を満足できるのであれば、Si含有量を制限する必要はないが、高いレーザ溶接性を要求される場合には、Si含有量を0.1%以下に制限することが好ましい。
<Si: 0.1 mass% or less>
Si exists as an unavoidable impurity and has an effect of slightly increasing the strength. On the other hand, Si slightly degrades laser weldability. If the laser weldability can be satisfied, it is not necessary to limit the Si content. However, when high laser weldability is required, it is preferable to limit the Si content to 0.1% or less.

引張強さが220〜310MPaという制限理由は、引張強さが220MPaより低いと、ケース自体の耐圧能力が低下し、310MPaを超えると、プレス成形性が落ちるためである。
引張強さと耐力との差が20MPa以下という制限理由は、この差が20MPaを超えると、加工硬化が高くなりすぎて、多段プレス時の成形性が劣るためである。
The reason for limiting the tensile strength to 220 to 310 MPa is that if the tensile strength is lower than 220 MPa, the pressure resistance of the case itself decreases, and if it exceeds 310 MPa, the press formability decreases.
The reason why the difference between the tensile strength and the proof stress is 20 MPa or less is that when this difference exceeds 20 MPa, work hardening becomes too high and the formability during multi-stage pressing is poor.

次に、本発明の製造方法について説明する。
本発明のアルミニウム合金板は、鋳造、均質化処理、熱間圧延、冷間圧延、中間焼鈍、安定化焼鈍、及び最終冷間圧延の各工程を経て製造される。
中間焼鈍は、昇温速度が10〜250℃/秒、保持(焼鈍)温度が450〜560℃、保持時間が5〜60秒、冷却速度が20〜250℃/秒になるように制御される。また、安定化焼鈍は、保持(焼鈍)温度が60〜220℃、保持時間が2〜8時間になるように制御される。また、最終冷間圧延工程は、圧下率が10〜50%になるように制御される。
Next, the manufacturing method of this invention is demonstrated.
The aluminum alloy sheet of the present invention is manufactured through each process of casting, homogenization treatment, hot rolling, cold rolling, intermediate annealing, stabilization annealing, and final cold rolling.
The intermediate annealing is controlled such that the heating rate is 10 to 250 ° C./second, the holding (annealing) temperature is 450 to 560 ° C., the holding time is 5 to 60 seconds, and the cooling rate is 20 to 250 ° C./second. . Further, the stabilization annealing is controlled so that the holding (annealing) temperature is 60 to 220 ° C. and the holding time is 2 to 8 hours. Further, the final cold rolling process is controlled so that the rolling reduction is 10 to 50%.

<中間焼鈍>
中間焼鈍の昇温速度が10℃/秒より遅いと、その前の冷間圧延時に導入された蓄積エネルギーが解放されるために、再結晶核生成率が低下して、焼鈍後の結晶粒径が大きくなり、プレス成形性が劣る恐れがある。工業的生産規模で昇温速度が250℃/秒を超えるためには、高価な設備投入が必要となり、生産コストが増加する。したがって、中間焼鈍の昇温速度は10〜250℃/秒とし、好ましくは50〜200℃/秒とし、より好ましくは70〜150℃/秒とする。
中間焼鈍における保持温度が450℃より低いと、CuやMgの固溶量が減り、アルミニウム合金板自身の引張強さが低下する。また、レーザ溶接部の引張強さの回復度合いも低下し、σr/σi≧1.2を満足できなくなる恐れがある。保持温度が560℃より高くなると、アルミニウム合金板に局部溶融が発生し、プレス成形性が大幅に劣化する可能性がある。したがって、中間焼鈍の保持温度は450〜560℃とし、好ましくは480〜550℃とし、より好ましくは500〜550℃とする。
<Intermediate annealing>
If the temperature increase rate of the intermediate annealing is slower than 10 ° C./second, the stored energy introduced during the previous cold rolling is released, so the recrystallization nucleation rate decreases, and the crystal grain size after annealing May increase and press formability may be inferior. In order to increase the rate of temperature increase over 250 ° C./second on an industrial production scale, it is necessary to input expensive equipment and increase the production cost. Therefore, the temperature increase rate of the intermediate annealing is 10 to 250 ° C./second, preferably 50 to 200 ° C./second, more preferably 70 to 150 ° C./second.
When the holding temperature in intermediate annealing is lower than 450 ° C., the amount of Cu and Mg dissolved decreases, and the tensile strength of the aluminum alloy plate itself decreases. In addition, the degree of recovery of the tensile strength of the laser welded portion also decreases, and there is a possibility that σr / σi ≧ 1.2 cannot be satisfied. When the holding temperature is higher than 560 ° C., local melting occurs in the aluminum alloy plate, and press formability may be significantly deteriorated. Therefore, the holding temperature of the intermediate annealing is 450 to 560 ° C, preferably 480 to 550 ° C, more preferably 500 to 550 ° C.

中間焼鈍の保持時間が5秒より短くなると、CuやMgの固溶が不十分となり、アルミニウム合金板自身の引張強さの低下、および蓋とのレーザ溶接部の引張強さの回復度合いの低下が生じる。保持時間が60秒より長くなると、結晶粒が大きくなりすぎで、プレス成形性が劣化する恐れがある。したがって、中間焼鈍の保持時間は5〜60秒とし、好ましくは10〜50秒とし、より好ましくは15〜35秒とする。
中間焼鈍時の冷却速度が20℃/秒より遅いと、冷却中にCuとMgが析出してしまい、アルミニウム合金板自身の引張強さの低下、および蓋とのレーザ溶接部の引張強さの回復度合いの低下をもたらすために好ましくない。冷却速度が250℃/秒を超えると、冷却用の設備投資が増し、生産コストが増加する。したがって、中間焼鈍の降温速度は20〜250℃/秒とし、好ましくは50〜200℃/秒とし、より好ましくは70〜150℃/秒とする。
If the holding time of the intermediate annealing is shorter than 5 seconds, the solid solution of Cu and Mg becomes insufficient, the tensile strength of the aluminum alloy plate itself decreases, and the recovery degree of the tensile strength of the laser welded portion with the lid decreases. Occurs. If the holding time is longer than 60 seconds, the crystal grains become too large, and the press formability may deteriorate. Therefore, the holding time of the intermediate annealing is 5 to 60 seconds, preferably 10 to 50 seconds, and more preferably 15 to 35 seconds.
If the cooling rate during the intermediate annealing is slower than 20 ° C./second, Cu and Mg are precipitated during cooling, and the tensile strength of the laser welded portion with the lid is lowered due to the decrease in the tensile strength of the aluminum alloy plate itself. This is not preferable because it causes a reduction in the degree of recovery. When the cooling rate exceeds 250 ° C./second, the capital investment for cooling increases and the production cost increases. Therefore, the temperature decrease rate of the intermediate annealing is 20 to 250 ° C./second, preferably 50 to 200 ° C./second, more preferably 70 to 150 ° C./second.

<安定化焼鈍>
中間焼鈍に続いて安定化焼鈍を行う。安定化焼鈍は、保持温度を60〜220℃、保持時間を2〜8時間とする。この安定化焼鈍を施さないと、最終圧延後の室温保管時に板の引張強さが緩やかに上昇し、プレス成形時の生産管理が難しくなる恐れがある。さらに、最終圧延後の室温保管時の時間が長くなると、引張強さが上昇すると同時に耐力の低下も生じて、プレス成形性が顕著に劣化することがある。安定化焼鈍は、一般には最終冷間圧延後に実施することになるが、本発明の場合、中間焼鈍後、最終冷間圧延前に行うことにする。これは、最終冷間圧延後に行うと、引張強さが高すぎるか又は耐力が低すぎてしまい、引張強さと耐力との差が大きくなりすぎてプレス成形性が劣化するためである。
保持温度が60℃未満、保持時間が2時間未満では、緩やかな引張強さの上昇と耐力の低下を充分に抑制できない恐れがある。一方、保持温度が220℃超、保持時間が8時間超では、引張強さの低下幅が大きすぎる。安定化焼鈍の保持温度、保持時間は、保持温度を100〜200℃、保持時間を3〜5時間に制御することが好ましく、保持温度を120〜180℃、保持時間を3.5〜4.5時間に制御することがより好ましい。
<Stabilized annealing>
Stabilization annealing is performed following the intermediate annealing. In the stabilization annealing, the holding temperature is 60 to 220 ° C. and the holding time is 2 to 8 hours. If this stabilization annealing is not performed, the tensile strength of the plate gradually increases during storage at room temperature after final rolling, and production management during press forming may be difficult. Furthermore, if the time at room temperature storage after the final rolling becomes longer, the tensile strength increases and at the same time the proof stress decreases, and the press formability may deteriorate significantly. Stabilization annealing is generally performed after the final cold rolling, but in the case of the present invention, it is performed after the intermediate annealing and before the final cold rolling. This is because, if performed after the final cold rolling, the tensile strength is too high or the proof stress is too low, and the difference between the tensile strength and the proof strength becomes too large and press formability deteriorates.
When the holding temperature is less than 60 ° C. and the holding time is less than 2 hours, there is a possibility that a moderate increase in tensile strength and a decrease in yield strength cannot be sufficiently suppressed. On the other hand, if the holding temperature exceeds 220 ° C. and the holding time exceeds 8 hours, the range of decrease in tensile strength is too large. With respect to the holding temperature and holding time of the stabilization annealing, it is preferable to control the holding temperature to 100 to 200 ° C. and the holding time to 3 to 5 hours, the holding temperature to 120 to 180 ° C., and the holding time to 3.5 to 4. It is more preferable to control to 5 hours.

<最終冷間圧延>
最終冷間圧延工程の圧下率は10〜50%になるように制御することが好ましい。圧下率が10%未満では、引張強さと耐力との差が大きくなりすぎるために、多段絞りするプレス成形性が劣る。圧下率が50%を超えると、引張強さが高くなりすぎて、プレス成形ができない恐れがある。最終冷間圧延における圧下率は、15〜40%に制御することが好ましく、20〜30%に制御することがより好ましい。
<Final cold rolling>
It is preferable to control the rolling reduction in the final cold rolling step to be 10 to 50%. If the rolling reduction is less than 10%, the difference between the tensile strength and the proof stress becomes too large, so that the press formability for multistage drawing is inferior. If the rolling reduction exceeds 50%, the tensile strength becomes too high and press molding may not be possible. The rolling reduction in the final cold rolling is preferably controlled to 15 to 40%, more preferably 20 to 30%.

以下に実施例及び比較例によって本発明を説明する。
(第1実施例)
表1の試料No.1〜5に示す成分(質量%)のアルミニウム合金を、鋳造、均質化処理、熱間圧延、冷間圧延の各工程によって0.66mmの板材にした後に、以下の条件の中間焼鈍、安定化焼鈍を行い、その後、厚さ0.55mmまで最終冷間圧延した。最終冷間圧延の際の圧下率は16.6%である。
中間焼鈍
昇温速度:100℃/秒、保持温度:520℃、保持時間:25秒、冷却速度:150℃/秒
安定化焼鈍
保持温度:160℃、保持時間:4時間
The present invention will be described below with reference to examples and comparative examples.
(First embodiment)
After making the aluminum alloy of the component (mass%) shown in sample Nos. 1 to 5 in Table 1 into a plate material of 0.66 mm by each step of casting, homogenization treatment, hot rolling, and cold rolling, the following conditions are satisfied. Were subjected to intermediate annealing and stabilization annealing, and then the final cold rolling to a thickness of 0.55 mm. The rolling reduction during the final cold rolling is 16.6%.
Intermediate annealing Temperature rising rate: 100 ° C./second, Holding temperature: 520 ° C., Holding time: 25 seconds, Cooling rate: 150 ° C./second Stabilized annealing Holding temperature: 160 ° C., Holding time: 4 hours

(第1比較例)
表1の試料No.1〜5に示す成分組成となるようにした他は、上記第1実施例と同様の方法により、アルミニウム合金板を製造した。最終冷間圧延の際の圧下率は16.6%であった。
(First comparative example)
An aluminum alloy plate was produced by the same method as in the first example except that the component compositions shown in Sample Nos. 1 to 5 in Table 1 were used. The rolling reduction during the final cold rolling was 16.6%.

以上のアルミニウム合金板(試料)について、下記の評価方法により特性評価を行った。その結果を表2に示す。
<各特性の評価方法>
引張強さ,耐力:JIS5号試験片を採取し、JIS Z 2241に定めた方法による引張試験を行って測定し、引張強さσsと耐力ysとの差(|σs−ys|)を求めた。
σr/σi(レーザ溶接部の溶接直後と回復後の引張強さ):アルミニウム合金板(試料)上に直線状溶接ビードを作り出した後に、長手方向がこの溶接ビードに垂直、且つ溶接ビードが平行部の長手方向の中央になるようにJIS5号試験片を作製して引張試験を行って測定した。また、溶接部の強度回復は、レーザ溶接後の約10日間でほぼ飽和状態になるために、引張試験はレーザ溶接直後と溶接後の12日目で行うようにした。このレーザ溶接にはLD励起のベースレーザにランプ励起パルスレーザを付加したハイブリッド形の溶接機を用いた。LD励起レーザの最大平均出力が約25W、ランプ励起レーザの最大平均出力が約250Wである。溶接速度が25mm/sec、パルスHzが140pps、パルス波形が(1.0+2.05+2.00+1.95+1.90+1.85+1.80+1.75+1.70+1.65+1.60+1.50+1.40+1.30+1.20+1.10+1.05+1.00+0.95+0.90)kw×0.05msという溶接条件を用いた。
プレス成形性:径69.3mmのブランク、径40mm、33mmの2種類のポンチを使用して2段絞りを行って、割れの発生がなく成形できたものを○、割れが発生したものを×として評価した。
レーザ溶接性:上記と同様なレーザ溶接機と溶接条件を用いて、突合せ法によって本発明のアルミニウム合金板を溶接して、割れ、ポロシティ、溶け込み不良などの溶接欠陥がないものを○、あるものを×として評価した。
About the above aluminum alloy plate (sample), the characteristic evaluation was performed with the following evaluation method. The results are shown in Table 2.
<Evaluation method of each characteristic>
Tensile strength, yield strength: JIS No. 5 test piece was sampled and measured by conducting a tensile test according to the method defined in JIS Z 2241 to obtain the difference (| σs−ys |) between the tensile strength σs and the yield strength ys. .
σr / σi (Tensile strength immediately after welding and recovery after laser welding): After creating a linear weld bead on an aluminum alloy plate (sample), the longitudinal direction is perpendicular to the weld bead and the weld bead is parallel A JIS No. 5 test piece was prepared so as to be in the center in the longitudinal direction of the part, and a tensile test was performed for measurement. In addition, since the strength recovery of the welded portion is almost saturated in about 10 days after laser welding, the tensile test was performed immediately after laser welding and on the 12th day after welding. For this laser welding, a hybrid welding machine in which a lamp excitation pulse laser was added to an LD excitation base laser was used. The maximum average power of the LD pump laser is about 25 W, and the maximum average power of the lamp pump laser is about 250 W. The welding speed is 25 mm / sec, the pulse Hz is 140 pps, and the pulse waveform is (1.0 + 2.05 + 2.00 + 1.95 + 1.90 + 1.85 + 1.80 + 1.75 + 1.70 + 1.65 + 1.60 + 1.50 + 1.40 + 1.30 + 1.20 + 1.10 + 1.10). 05 + 1.00 + 0.95 + 0.90) kw × 0.05 ms welding conditions were used.
Press formability: Two-stage drawing using a blank with a diameter of 69.3 mm and two types of punches with a diameter of 40 mm and 33 mm. As evaluated.
Laser weldability: Using the same laser welding machine and welding conditions as described above, the aluminum alloy plate of the present invention is welded by the butt method, and there are no weld defects such as cracks, porosity, penetration defects, etc. Was evaluated as x.

(第2実施例)
表1の第1実施例の試料No.2と同じ成分、同じ鋳造、均質化処理、熱間圧延、冷間圧延の工程で、厚さ0.66mm(試料a)と厚さ0.78mm(試料b)の2種類のアルミニウム合金板を作製した。
試料aについては、表3の試料No.6〜9に示す条件で中間焼鈍、および安定化焼鈍を行い、その後、厚さ0.45mmまで最終圧延した。また、試料bについては、表3の試料No.10に示す条件で中間焼鈍、および安定化焼鈍を行い、その後、厚さ0.45mmまで最終圧延した。この時の最終冷間圧延の圧下率は、試料No.6〜9が31.8%、試料No.10が42.3%である。
(Second embodiment)
Sample No. 1 of the first embodiment in Table 1 was used. 2 kinds of aluminum alloy plates having a thickness of 0.66 mm (sample a) and a thickness of 0.78 mm (sample b) in the same components, the same casting, homogenization treatment, hot rolling and cold rolling processes. Produced.
Sample a was subjected to intermediate annealing and stabilization annealing under the conditions shown in Sample Nos. 6 to 9 in Table 3, and then final rolled to a thickness of 0.45 mm. Moreover, about the sample b, the intermediate annealing and the stabilization annealing were performed on the conditions shown in sample No. 10 of Table 3, and the final rolling was carried out to thickness 0.45mm after that. The reduction ratio of the final cold rolling at this time is 31.8% for sample Nos. 6 to 9, and 42.3% for sample No. 10.

(第2比較例)
また、表1に示した比較例1と同じ成分、同じ鋳造、均質化処理、熱間圧延、冷間圧延の工程で0.65mm板を作製した後に、表3の試料No.6,7に示す条件で中間焼鈍を行い、厚さ0.45mmまで最終圧延してアルミニウム合金板を作製した。この時の最終冷間圧延の際の圧下率は30.8%であった。
(Second comparative example)
Further, after producing a 0.65 mm plate by the same components, the same casting, homogenization treatment, hot rolling, and cold rolling steps as those in Comparative Example 1 shown in Table 1, Sample No. Intermediate annealing was performed under the conditions shown in 6 and 7, and final rolling was performed to a thickness of 0.45 mm to produce an aluminum alloy plate. At this time, the rolling reduction during the final cold rolling was 30.8%.

第2実施例、第2比較例についても、第1実施例等と同様にアルミニウム合金板の各特性評価を行った。その結果を表4に示す。   For the second example and the second comparative example, each characteristic evaluation of the aluminum alloy plate was performed in the same manner as in the first example. The results are shown in Table 4.

以上の表1〜4で示すように、本発明に従って製造したアルミニウム合金板(第1実施例 試料No.1〜5,第2実施例 試料No.6〜10)は全て、適切な引張強さを有しており、良好なプレス成形性およびレーザ溶接性を示し、溶接後の溶接部強度の回復が大きくなっている。これにより、第1実施例 試料No.1〜5,第2実施例 試料No.6〜10は、二次電池ケース用アルミニウム合金板として適切なものと判断される。
一方、本発明の合金組成範囲、または製造条件範囲からはずれた第1比較例 試料No.1〜5,第2比較例 試料No6、7のアルミニウム合金板では、引張強さが低すぎるか、成形性またはレーザ溶接性が劣って、溶接部の強度回復が不十分となっている。これより、第1比較例 試料No.1〜5,第2比較例 試料No6、7のアルミニウム合金板は、二次電池ケース用アルミニウム合金板としては、本発明に比べ、劣ったものと判断される。
As shown in the above Tables 1 to 4, all the aluminum alloy plates (first example sample No. 1 to 5, second example sample No. 6 to 10) manufactured according to the present invention have appropriate tensile strength. It has good press formability and laser weldability, and the recovery of the weld strength after welding is large. As a result, sample No. 1 to 5, Second Example Sample No. 6-10 are judged to be suitable as the aluminum alloy plate for the secondary battery case.
On the other hand, the first comparative example sample No. 1 deviated from the alloy composition range or manufacturing condition range of the present invention. 1-5, 2nd comparative example In the aluminum alloy plate of sample Nos. 6 and 7, tensile strength is too low, or formability or laser weldability is inferior, and strength recovery of a welded part is insufficient. Thus, the first comparative example Sample No. 1-5, 2nd Comparative Example It is judged that the aluminum alloy plate of sample No. 6 and 7 was inferior to this invention as an aluminum alloy plate for secondary battery cases.

(第3比較例)
さらに比較例8として、一般的な製造工程のように安定化焼鈍を最終冷間圧延後に行ってアルミニウム合金板を作製した。具体的には、表1の第1実施例の試料No.2と同じ成分、同じ鋳造、均質化処理、熱間圧延、冷間圧延の工程で、厚さ0.66mmのアルミニウム合金板を作製した後に、昇温速度100℃/秒、保持温度500℃、保持時間25秒、冷却速度150℃/秒の条件で中間焼鈍を行い、0.45mmまで最終冷間圧延して焼鈍温度160℃、保持時間4時間の条件で安定化焼鈍を施した。
第3比較例についても、第1実施例等と同様にアルミニウム合金板の各特性評価を行った。その結果を表5に示す。
(Third comparative example)
Further, as Comparative Example 8, the stabilized annealing was performed after the final cold rolling as in a general manufacturing process to produce an aluminum alloy plate. Specifically, the sample No. 1 of the first embodiment in Table 1 is used. After producing an aluminum alloy plate having a thickness of 0.66 mm in the same components, the same casting, homogenization treatment, hot rolling, and cold rolling, the heating rate is 100 ° C./second, the holding temperature is 500 ° C., Intermediate annealing was performed under the conditions of a holding time of 25 seconds and a cooling rate of 150 ° C./second, and finally cold-rolled to 0.45 mm and subjected to stabilization annealing under the conditions of an annealing temperature of 160 ° C. and a holding time of 4 hours.
For the third comparative example, each characteristic evaluation of the aluminum alloy plate was performed in the same manner as in the first example. The results are shown in Table 5.

Figure 2011038122
Figure 2011038122

Figure 2011038122
Figure 2011038122

Figure 2011038122
Figure 2011038122

Figure 2011038122
Figure 2011038122

Figure 2011038122
Figure 2011038122

Claims (2)

Mnを0.7〜1.4質量%、Cuを0.6〜1.3質量%、Mgを0.2〜0.6質量%、Feを0.4超〜1.0質量%それぞれ含有し、残部不可避的不純物とAlからなるアルミニウム合金板からなり、
引張強さσsが220〜310MPa、前記引張強さσsと耐力ysとの差|σs−ys|が20MPa以下であり、
レーザ溶接部の溶接直後の引張強さをσi(MPa)、回復後の引張強さをσr(MPa)とすると、σr/σi≧1.2を満足することを特徴とする二次電池ケース用アルミニウム合金板。
Containing 0.7 to 1.4 mass% Mn, 0.6 to 1.3 mass% Cu, 0.2 to 0.6 mass% Mg, and more than 0.4 to 1.0 mass% Fe And the balance consists of an aluminum alloy plate made of inevitable impurities and Al,
The tensile strength σs is 220 to 310 MPa, the difference | σs−ys | between the tensile strength σs and the yield strength ys is 20 MPa or less,
For a secondary battery case characterized in that σr / σi ≧ 1.2 is satisfied, where σi (MPa) is the tensile strength immediately after welding of the laser weld and σr (MPa) is the tensile strength after recovery. Aluminum alloy plate.
Mnを0.7〜1.4質量%、Cuを0.6〜1.3質量%、Mgを0.2〜0.6質量%、Feを0.4超〜1.0質量%それぞれ含有し、残部が不可避的不純物及びAlからなる合金を鋳造し、熱間圧延、冷間圧延、中間焼鈍、安定化焼鈍及び最終冷間圧延を経て二次電池ケース用アルミニウム合金板を製造する方法であって、
中間焼鈍の昇温速度を10〜250℃/秒、保持温度を450〜560℃、保持時間を5〜60秒、冷却速度を20〜250℃/秒とし、
安定化焼鈍の保持温度を60〜220℃、保持時間を2〜8時間とし、
最終冷間圧延の圧下率を10〜50%とすることを特徴とする二次電池ケース用アルミニウム合金板の製造方法。
Containing 0.7 to 1.4 mass% Mn, 0.6 to 1.3 mass% Cu, 0.2 to 0.6 mass% Mg, and more than 0.4 to 1.0 mass% Fe In the method of producing an aluminum alloy sheet for a secondary battery case by casting an alloy consisting of the inevitable impurities and Al, the remainder being subjected to hot rolling, cold rolling, intermediate annealing, stabilization annealing and final cold rolling. There,
The temperature increase rate of the intermediate annealing is 10 to 250 ° C./second, the holding temperature is 450 to 560 ° C., the holding time is 5 to 60 seconds, the cooling rate is 20 to 250 ° C./second,
The holding temperature of stabilization annealing is 60 to 220 ° C., the holding time is 2 to 8 hours,
A method for producing an aluminum alloy plate for a secondary battery case, wherein the rolling reduction of the final cold rolling is 10 to 50%.
JP2009183488A 2009-08-06 2009-08-06 Aluminum alloy sheet for secondary battery case and method for producing the same Pending JP2011038122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009183488A JP2011038122A (en) 2009-08-06 2009-08-06 Aluminum alloy sheet for secondary battery case and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009183488A JP2011038122A (en) 2009-08-06 2009-08-06 Aluminum alloy sheet for secondary battery case and method for producing the same

Publications (1)

Publication Number Publication Date
JP2011038122A true JP2011038122A (en) 2011-02-24

Family

ID=43766171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009183488A Pending JP2011038122A (en) 2009-08-06 2009-08-06 Aluminum alloy sheet for secondary battery case and method for producing the same

Country Status (1)

Country Link
JP (1) JP2011038122A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140116820A (en) 2013-03-25 2014-10-06 가부시키가이샤 고베 세이코쇼 Alluminum alloy plate for large-sized rectangular battery case
WO2014181544A1 (en) * 2013-05-09 2014-11-13 株式会社Uacj Aluminum alloy sheet for cell case and method for manufacturing said sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169574A (en) * 2004-12-15 2006-06-29 Mitsubishi Alum Co Ltd Aluminum alloy sheet for secondary battery case and producing method therefor
JP2006188744A (en) * 2004-03-31 2006-07-20 Kobe Steel Ltd Aluminum alloy sheet for battery case and production method therefor
JP2008127656A (en) * 2006-11-22 2008-06-05 Kobe Steel Ltd Aluminum alloy sheet for battery case and production method therefor
JP2008223087A (en) * 2007-03-13 2008-09-25 Mitsubishi Alum Co Ltd Aluminum alloy sheet for secondary battery case and its manufacturing method
JP2009097029A (en) * 2007-10-15 2009-05-07 Mitsubishi Alum Co Ltd Aluminum alloy material for secondary battery case, aluminum alloy sheet for secondary battery case and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188744A (en) * 2004-03-31 2006-07-20 Kobe Steel Ltd Aluminum alloy sheet for battery case and production method therefor
JP2006169574A (en) * 2004-12-15 2006-06-29 Mitsubishi Alum Co Ltd Aluminum alloy sheet for secondary battery case and producing method therefor
JP2008127656A (en) * 2006-11-22 2008-06-05 Kobe Steel Ltd Aluminum alloy sheet for battery case and production method therefor
JP2008223087A (en) * 2007-03-13 2008-09-25 Mitsubishi Alum Co Ltd Aluminum alloy sheet for secondary battery case and its manufacturing method
JP2009097029A (en) * 2007-10-15 2009-05-07 Mitsubishi Alum Co Ltd Aluminum alloy material for secondary battery case, aluminum alloy sheet for secondary battery case and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140116820A (en) 2013-03-25 2014-10-06 가부시키가이샤 고베 세이코쇼 Alluminum alloy plate for large-sized rectangular battery case
WO2014181544A1 (en) * 2013-05-09 2014-11-13 株式会社Uacj Aluminum alloy sheet for cell case and method for manufacturing said sheet
JP5864074B2 (en) * 2013-05-09 2016-02-17 株式会社Uacj Aluminum alloy plate for battery case and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR101039206B1 (en) Aluminum alloy sheet for battery case and its manufacturing method
JP5083802B2 (en) Aluminum alloy plate for secondary battery case and manufacturing method thereof
JP5816285B2 (en) Aluminum alloy foil for electrode current collector and method for producing the same
JP3867989B2 (en) Aluminum alloy plate for battery case and manufacturing method thereof
JP2007031825A (en) Aluminum alloy sheet for battery housing and method for producing the same
JP5684617B2 (en) High strength aluminum alloy plate for secondary battery large square can excellent in laser weldability and method for producing the same
JP6220773B2 (en) Method for producing aluminum alloy foil for electrode current collector
JP5448929B2 (en) Aluminum alloy hard foil having excellent bending resistance and method for producing the same
JP2008127656A (en) Aluminum alloy sheet for battery case and production method therefor
JP2009097029A (en) Aluminum alloy material for secondary battery case, aluminum alloy sheet for secondary battery case and manufacturing method thereof
WO2012086447A1 (en) Aluminum alloy foil for electrode current collectors and manufacturing method thereof
CN112553497B (en) Titanium-copper alloy plate for vapor chamber and vapor chamber
JP2011026656A (en) Aluminum alloy foil for lithium ion secondary battery and method for producing the same
WO2013176038A1 (en) Aluminum alloy foil for electrode collector, method for manufacturing same, and electrode material
JP4347137B2 (en) Method for producing high-strength aluminum alloy plate for secondary battery case
JP4539913B2 (en) Aluminum alloy plate for secondary battery case and manufacturing method thereof
JP5316938B2 (en) Pure nickel sheet and method for producing pure nickel sheet
JP2002266041A (en) Rolled copper alloy foil and production method therefor
JP2003007260A (en) Aluminum alloy plate for secondary battery case
JP2011038122A (en) Aluminum alloy sheet for secondary battery case and method for producing the same
JP5830100B2 (en) Aluminum alloy foil for electrode current collector and method for producing the same
JP2001131666A (en) Al-Mn-Mg ALLOY PLATE FOR FORMING CASE, AND ITS MANUFACTURING METHOD
JP4242225B2 (en) Aluminum alloy plate for battery case and manufacturing method thereof
CN114901844A (en) Aluminum alloy foil
JP4256269B2 (en) Aluminum alloy plate for high-strength prismatic battery case and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131211

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140402