JP2011036814A - Aluminum coated plate and manufacturing method of the same - Google Patents

Aluminum coated plate and manufacturing method of the same Download PDF

Info

Publication number
JP2011036814A
JP2011036814A JP2009186936A JP2009186936A JP2011036814A JP 2011036814 A JP2011036814 A JP 2011036814A JP 2009186936 A JP2009186936 A JP 2009186936A JP 2009186936 A JP2009186936 A JP 2009186936A JP 2011036814 A JP2011036814 A JP 2011036814A
Authority
JP
Japan
Prior art keywords
aluminum
silica
coating film
urethane resin
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009186936A
Other languages
Japanese (ja)
Other versions
JP5260440B2 (en
Inventor
Yuichi Tanaka
田中祐一
Toshiaki Kobayashi
小林敏明
Masahiro Kurata
倉田正裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP2009186936A priority Critical patent/JP5260440B2/en
Publication of JP2011036814A publication Critical patent/JP2011036814A/en
Application granted granted Critical
Publication of JP5260440B2 publication Critical patent/JP5260440B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • C10M173/02Lubricating compositions containing more than 10% water not containing mineral or fatty oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/10Compounds containing silicon
    • C10M2201/105Silica
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/045Polyureas; Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/055Particles related characteristics
    • C10N2020/06Particles of special shape or size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/055Particles related characteristics
    • C10N2020/061Coated particles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/023Multi-layer lubricant coatings
    • C10N2050/025Multi-layer lubricant coatings in the form of films or sheets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lubricating coating film coating aluminum material for molding processing used for an electric/electronic equipment member, a body sheet material for vehicles, a construction material, a container and the like which has an excellent press molding property and corrosion resistance. <P>SOLUTION: The aluminum plate includes: an aluminum substrate; and a lubricating coating film which is formed at least on one face of the aluminum substrate and has a dry thickness of 0.1 to 10.0 μm. The aluminum substrate has an oxide coated film whose thickness is ≤100 Å on its surface. The lubricating coating film includes: a water-based urethane resin; 1 to 50 wt.% of silica to 100 wt.% of the solid content of the water-based urethane resin; 1 to 30 wt.% of at least either a polyolefin system wax with 0.1 to 30.0 μm of average particle size or a fluororesin to 100 wt.% of the solid content of the water-based urethane resin as a lubricant. The silicon atom concentration existing in the lubricating coating film from the surface to the depth of 50 nm is lower than the silicon atom concentration existing in the lubricating coating film of the depth 50 nm or deeper. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は塗膜安定性、接着性、成形性、耐アルカリ性及び耐食性に優れ、電気電子機器部材、自動車用ボディシート材や建材、容器等で使用される潤滑塗膜が被覆された成形加工用のアルミニウム塗装板、ならびに、その製造方法に関する。   The present invention is excellent in coating film stability, adhesion, moldability, alkali resistance and corrosion resistance, and for molding processing coated with a lubricating coating film used in electrical and electronic equipment members, automotive body sheet materials, building materials, containers, etc. The present invention relates to an aluminum coated plate and a manufacturing method thereof.

アルミニウム板又はアルミニウム合金板(以下、「アルミニウム基板」という)は耐食性及び意匠性に優れ、且つ軽量で加工性にも優れるといった種々の特長から、飲料容器、電気部品、輸送機体構成材料等々幅広い分野で使用されている。特に最近では温室効果ガスの排出規制が厳しさを増していることから、輸送機体分野において軽量化を目的としたアルミニウム材の採用が増えている。   Aluminum plates or aluminum alloy plates (hereinafter referred to as “aluminum substrates”) have a wide range of fields such as beverage containers, electrical components, and transport aircraft components due to their excellent corrosion resistance and design, light weight and excellent workability. Used in. In recent years, in particular, since greenhouse gas emission regulations have become more stringent, the use of aluminum materials for the purpose of reducing the weight in the transport aircraft field has increased.

アルミニウム基板を上記用途に適用するに当たっては、通常、プレス加工によって成形される。厳しい加工条件の場合には表面摩擦抵抗が大きくなると伴に変形抵抗が増大し、過大な変形抵抗が加わる部分で強度不足となって加工割れが生じてしまう。そこで、こうした加工割れを防止する目的で高粘性の潤滑剤を塗付してプレス成形を行う方法が採用されており、成形後に潤滑油を脱脂し、耐食性向上を目的として化成処理がなされた後で塗装されていた。   In applying the aluminum substrate to the above-mentioned use, it is usually formed by press working. In severe processing conditions, as the surface friction resistance increases, the deformation resistance increases, and the portion where excessive deformation resistance is applied becomes insufficient in strength and causes processing cracks. Therefore, a method of applying a high-viscosity lubricant and press-molding is used to prevent such processing cracks, and after molding, the lubricant is degreased and chemical conversion treatment is performed to improve corrosion resistance. It was painted with.

このようなポスト塗装製品に代わって、予め塗膜を被覆したアルミニウム塗装板が使用されるようになってきている。従来、アルミニウム塗装板は化成処理を施したアルミニウム基板に塗膜を被覆したもので、化成処理としてクロメート処理を施すことで優れた耐食性が得られていた。しかしながら、クロメート処理は有害な6価クロムを使用することから、最近では6価クロムを含まないノンクロメート処理の開発が進んでいる。特許文献1には、リン酸系防錆顔料とイオン交換シリカ系防錆顔料とを併用したポリエステル系及びエポキシ系塗料により耐食性に優れた金属塗装板を提供する技術が開示されている。また、特許文献2には、タンニン又はタンニン酸、シランカップリング剤、微粒シリカを含有する化成皮膜層を形成し、この上にリン酸アルミニウム系顔料を含む塗膜を設けることで加工部密着性と耐食性に優れる金属塗装板を提供する技術が公開されている。   Instead of such a post-coating product, an aluminum coating plate pre-coated with a coating film has been used. Conventionally, an aluminum coating plate is obtained by coating a coated aluminum substrate with a chemical conversion treatment, and excellent corrosion resistance has been obtained by applying a chromate treatment as a chemical conversion treatment. However, since the chromate treatment uses harmful hexavalent chromium, development of a non-chromate treatment containing no hexavalent chromium has recently been advanced. Patent Document 1 discloses a technique for providing a metal-coated plate having excellent corrosion resistance by using a polyester-based and epoxy-based paint in which a phosphoric acid-based anticorrosive pigment and an ion exchange silica-based anticorrosive pigment are used in combination. In Patent Document 2, a chemical conversion coating layer containing tannin or tannic acid, a silane coupling agent, and fine silica is formed, and a coating film containing an aluminum phosphate pigment is provided thereon, thereby providing adhesion to the processed part. The technology to provide a metal coated plate with excellent corrosion resistance is disclosed.

特開平09−012931号公報JP 09-012931 A 特許第3950370号公報Japanese Patent No. 3950370

特許文献1に開示されている技術はプレス成形を行うとかじりが生じ易く、成形性が不十分であった。一方、特許文献2に開示されている技術では、化成処理と塗装工程とが別々で手間が掛かるとともに、成形時にかじりが生じ易く成形性が十分ではなかった。   The technique disclosed in Patent Document 1 is susceptible to galling when press molding is performed, and the moldability is insufficient. On the other hand, with the technique disclosed in Patent Document 2, the chemical conversion treatment and the coating process are separate and time-consuming, and galling is likely to occur during molding, and the moldability is not sufficient.

本発明は上記問題点を解決し、工程を増やすことなく塗膜安定性、接着性、成形性、耐アルカリ性及び耐食性に優れる成形加工用のアルミニウム塗装板を提供することを目的とする。   An object of the present invention is to solve the above-mentioned problems and to provide an aluminum coated plate for forming processing which is excellent in coating film stability, adhesiveness, formability, alkali resistance and corrosion resistance without increasing the number of steps.

本発明者等は、樹脂、シリカ、潤滑剤を主な構成要素とする潤滑塗膜を形成する際、潤滑塗膜の表層部分に含まれるシリカの濃度が、潤滑塗膜表面から50nmより深い潤滑塗膜中に含まれるシリカの濃度より低い場合に、かじりの発生が少なく成形性及び耐食性に優れることを見出した。本発明において潤滑塗膜の表層部分とは、潤滑塗膜表面からアルミニウム基板に向かって50nmまでの深さ部分をいう。本発明は掛かる知見に基づいて完成されたもので、その要旨とするところは以下の通りである。   When forming a lubricating coating mainly comprising resin, silica, and lubricant, the inventors of the present invention have a lubricant whose silica concentration in the surface layer portion of the lubricating coating is deeper than 50 nm from the surface of the lubricating coating. It has been found that when the concentration is lower than the concentration of silica contained in the coating film, the occurrence of galling is small and the moldability and corrosion resistance are excellent. In the present invention, the surface layer portion of the lubricating coating refers to a portion having a depth of up to 50 nm from the surface of the lubricating coating toward the aluminum substrate. The present invention has been completed based on the findings, and the gist thereof is as follows.

本発明は請求項1において、アルミニウム又はアルミニウム合金からなるアルミニウム基板と、当該アルミニウム基板の少なくとも一方の面に形成され0.1〜10.0μmの乾燥厚さを有する潤滑塗膜とを備え、前記アルミニウム基板は表面に100Å以下の厚さを有する酸化皮膜を有し、前記潤滑塗膜は、水性ウレタン樹脂と、当該水性ウレタン樹脂の固形分100重量部に対して1〜50重量部のシリカと、0.1〜30.0μmの平均粒径を有し前記水性ウレタン樹脂の固形分100重量部に対して1〜30重量部の潤滑剤とを含み、その表面から深さ50nmまでの潤滑塗膜中に存在するシリコン原子濃度が、深さ50nmより深い潤滑塗膜中に存在するシリコン原子濃度より低いことを特徴とするアルミニウム塗装板とした。   The present invention includes, in claim 1, an aluminum substrate made of aluminum or an aluminum alloy, and a lubricating coating film formed on at least one surface of the aluminum substrate and having a dry thickness of 0.1 to 10.0 μm, The aluminum substrate has an oxide film having a thickness of 100 mm or less on the surface, and the lubricating coating film comprises an aqueous urethane resin and 1 to 50 parts by weight of silica with respect to 100 parts by weight of the solid content of the aqueous urethane resin. 1 to 30 parts by weight of a lubricant having an average particle diameter of 0.1 to 30.0 μm and a solid content of 100 parts by weight of the water-based urethane resin. The aluminum coated plate was characterized in that the concentration of silicon atoms present in the film was lower than the concentration of silicon atoms present in the lubricating coating deeper than 50 nm deep.

本発明は請求項2において、シリカをカルシウムイオン交換シリカとした。また、本発明は請求項3において、潤滑塗膜が、水性ウレタン樹脂の固形分100重量部に対して1〜50重量部の架橋剤を更に含有するようにした。   In the second aspect of the present invention, the silica is calcium ion exchanged silica. In the present invention, the lubricating coating further contains 1 to 50 parts by weight of a crosslinking agent with respect to 100 parts by weight of the solid content of the water-based urethane resin.

本発明は請求項4において、100Å以下の厚さの酸化皮膜を表面に有しアルミニウム又はアルミニウム合金からなるアルミニウム基板の少なくとも一方の面に、水性ウレタン樹脂と、当該水性ウレタン樹脂の固形分100重量部に対して1〜50重量部のシリカと、0.1〜30.0μmの平均粒径を有し前記水性ウレタン樹脂の固形分100重量部に対して1〜30重量部の潤滑剤とを含む水性塗料を塗布し、60〜80℃で2秒間以上保持する加熱保持過程を含む乾燥工程で厚さ0.1〜10.0μmの潤滑塗膜を形成することを特徴とするアルミニウム塗装板の製造方法とした。   The present invention according to claim 4, wherein an aqueous urethane resin and a solid content of the aqueous urethane resin of 100 weight are provided on at least one surface of an aluminum substrate having an oxide film having a thickness of 100 mm or less on the surface and made of aluminum or an aluminum alloy. 1 to 50 parts by weight of silica with respect to parts, and 1 to 30 parts by weight of lubricant with an average particle diameter of 0.1 to 30.0 μm and 100 parts by weight of the solid content of the aqueous urethane resin. An aluminum coating plate characterized by forming a lubricating coating film having a thickness of 0.1 to 10.0 μm in a drying process including a heating and holding process in which a water-based paint is applied and held at 60 to 80 ° C. for 2 seconds or more. It was set as the manufacturing method.

本発明は請求項5において、アルミニウム基板が、水性塗料を塗布する前に脱脂処理及び洗浄処理の少なくとも一方の処理が施されるものとした。本発明は請求項6において、シリカをカルシウムイオン交換シリカとした。また、本発明は請求項7において、水性塗料が、水性ウレタン樹脂の固形分100重量部に対して1〜50重量部の架橋剤を更に含有するようにした。   According to the present invention, in claim 5, the aluminum substrate is subjected to at least one of a degreasing process and a cleaning process before applying the water-based paint. In the sixth aspect of the present invention, the silica is calcium ion exchanged silica. In the present invention, the water-based paint further contains 1 to 50 parts by weight of a crosslinking agent with respect to 100 parts by weight of the solid content of the water-based urethane resin.

本発明によって、工程を増やすことなく、塗膜安定性、接着性、成形性、耐アルカリ性及び耐食性に優れる成形加工用のアルミニウム塗装板が提供される。   According to the present invention, there is provided an aluminum coated plate for molding processing which is excellent in coating film stability, adhesiveness, moldability, alkali resistance and corrosion resistance without increasing the number of steps.

以下、本発明を各要素に分けて詳述する。
A.アルミニウム塗装板
本発明に係るアルミニウム塗装板は、アルミニウム又はアルミニウム合金からなるアルミニウム基板の少なくとも一方の面に水性ウレタン樹脂、シリカ、潤滑剤を必須の構成要素とする潤滑塗膜を備える。上記潤滑塗膜表面から50nmまでの深さである表層部分に存在するシリコン原子濃度が、50nmより深い塗膜中のシリコン原子濃度より低いことを特徴とする。この炭素原子濃度の差異は、シリカの存在割合に起因するものである。シリカが表層部分に偏って少なく分布することで、潤滑性を損なうことがない。また、シリカが多く存在する部分では、緻密構造となり塗膜強度が増しかじり発生の少ない良好な成形性が得られ、耐食性も向上する。
本発明の潤滑塗膜では、表層部分までに存在する潤滑剤量がそれよりも深い部分に存在する潤滑剤量よりも多くなるのが好ましい。潤滑剤が表層部分に偏って多く分布することで塗膜の潤滑性能が向上し、更に良好な成形性が得られる。
Hereinafter, the present invention will be described in detail for each element.
A. Aluminum coating plate The aluminum coating plate according to the present invention includes a lubricating coating film containing water-based urethane resin, silica, and lubricant as essential components on at least one surface of an aluminum substrate made of aluminum or an aluminum alloy. The silicon atom concentration present in the surface layer portion having a depth of 50 nm from the surface of the lubricating coating film is lower than the silicon atom concentration in the coating film deeper than 50 nm. This difference in carbon atom concentration is attributed to the abundance of silica. Lubricating properties will not be impaired by the fact that silica is slightly distributed in the surface layer portion. Further, in a portion where a large amount of silica is present, a dense structure is obtained, the coating strength is increased, and good moldability with little occurrence is obtained, and the corrosion resistance is also improved.
In the lubricating coating film of the present invention, it is preferable that the amount of lubricant present up to the surface layer portion is larger than the amount of lubricant present in a deeper portion. Since the lubricant is distributed in a large amount biased to the surface layer portion, the lubrication performance of the coating film is improved, and better moldability is obtained.

また、本発明に係る成形加工用アルミニウム板は、アルミニウムの少なくとも一方の面に水性ウレタン樹脂、シリカ、潤滑剤を必須の構成要素とする潤滑塗膜を備える。架橋剤を更に添加することでアルカリや酸、有機溶剤等に対する潤滑塗膜の耐薬品性が向上する。   Moreover, the aluminum plate for shaping | molding processing which concerns on this invention is equipped with the lubricous coating film which uses water-based urethane resin, a silica, and a lubrication component as an essential component on the at least one surface of aluminum. Addition of a crosslinking agent improves the chemical resistance of the lubricating coating film against alkalis, acids, organic solvents, and the like.

A−1.アルミニウム基板
本発明に用いるアルミニウム基板には、純アルミニウム板、ならびに、鉄、銅、マンガン、珪素、マグネシウム、亜鉛、クロム、ニッケル等を1種又は2種以上含有するアルミニウム合金板を用いることができる。アルミニウム基板の厚さは特に限定されるものではないが、0.1〜3mmのものが好適に用いられる。
A-1. Aluminum substrate As the aluminum substrate used in the present invention, a pure aluminum plate and an aluminum alloy plate containing one or more of iron, copper, manganese, silicon, magnesium, zinc, chromium, nickel and the like can be used. . Although the thickness of an aluminum substrate is not specifically limited, A 0.1-3 mm thing is used suitably.

本発明を適用するに当たっては、製造工程においてアルミニウム基板の表面に付着した油分は潤滑塗膜の形成に悪影響を及ぼす虞があることから、これらを除去する目的でアルカリ性水溶液及び/又は酸性水溶液による脱脂処理を行うことが好ましい。また、アルミニウム表面に存在する酸化皮膜が厚い場合には、例えば接着剤を介して本発明のアルミニウム塗装板を他の部品に接着する際において、酸化皮膜が凝集破壊することで接着強度が損なわれる。そこで、酸化皮膜の厚さは100Å以下とする。酸化皮膜を除去する方法としては、アルカリ性水溶液及び/又は酸性水溶液を用いた洗浄処理が挙げられる。これらの洗浄には、通常のアルミニウム処理法として行われる方法でよく、市販の処理液を使用することもできる。   In applying the present invention, the oil adhering to the surface of the aluminum substrate in the manufacturing process may adversely affect the formation of the lubricating coating film. Therefore, degreasing with an alkaline aqueous solution and / or an acidic aqueous solution is necessary for the purpose of removing these oils. It is preferable to carry out the treatment. In addition, when the oxide film on the aluminum surface is thick, for example, when the aluminum coating plate of the present invention is bonded to another part via an adhesive, the oxide film cohesively breaks the adhesive strength. . Therefore, the thickness of the oxide film is set to 100 mm or less. Examples of the method for removing the oxide film include a cleaning process using an alkaline aqueous solution and / or an acidic aqueous solution. These washings may be performed by a normal aluminum treatment method, and a commercially available treatment solution can also be used.

これらの脱脂処理や洗浄処理には、通常のアルミニウム処理法として行われる方法でよく、市販の処理液を使用することも可能である。アルカリ性水溶液としては水酸化ナトリウムや水酸化カリウム等、酸性水溶液としては硫酸、硝酸、リン酸、フッ酸、硝酸とフッ酸の混合液等を用いることができる。   These degreasing treatments and cleaning treatments may be carried out by ordinary aluminum treatment methods, and commercially available treatment liquids can also be used. Examples of the alkaline aqueous solution include sodium hydroxide and potassium hydroxide, and examples of the acidic aqueous solution include sulfuric acid, nitric acid, phosphoric acid, hydrofluoric acid, a mixed solution of nitric acid and hydrofluoric acid, and the like.

A−2.潤滑塗膜
本発明に用いる潤滑塗膜は水性ウレタン樹脂、シリカ及び潤滑剤を必須成分とし、これらを含有する水性塗料をアルミニウム基板に塗布、乾燥することで得られる。潤滑塗膜の膜厚は、乾燥膜厚で0.1〜10.0μmの範囲である。0.1μm未満では塗膜が薄すぎるために、成形時にかじりが生じ成形性を満足することができず、耐食性も劣る。また、10.0μmを超える場合には乾燥後の塗膜から剥離粉が発生し塗膜安定性を満足することができず、接着性も劣る。また、金型のメンテナンス頻度の増加や作業環境の悪化にも繋がる。
A-2. Lubricating coating The lubricating coating used in the present invention is obtained by applying an aqueous urethane resin, silica and a lubricant as essential components, and applying and drying an aqueous coating containing these on an aluminum substrate. The film thickness of the lubricating coating is in the range of 0.1 to 10.0 μm as a dry film thickness. If the thickness is less than 0.1 μm, the coating film is too thin, galling occurs during molding, the moldability cannot be satisfied, and the corrosion resistance is also poor. On the other hand, when the thickness exceeds 10.0 μm, peeling powder is generated from the dried coating film, the coating film stability cannot be satisfied, and the adhesiveness is also inferior. In addition, the maintenance frequency of the mold is increased and the working environment is deteriorated.

A−2−1.水性ウレタン樹脂
本発明に使用される水性ウレタン樹脂は、水溶性の高分子ウレタン及びウレタン樹脂の水系エマルション樹脂を言うものとする。
A-2-1. Aqueous Urethane Resin The aqueous urethane resin used in the present invention refers to a water-soluble polymer urethane and an aqueous emulsion resin of urethane resin.

ウレタン樹脂は多価イソシアネートと多価アルコールと酸性基等を有する2官能性活性水素含有化合物とを、従来公知の方法により重合することによって得られる。上記多価イソシアネートとしては特に限定されず、例えばエチレンジイソシアネート、1,6−ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、シクロヘキサン−1,4−ジイソシアネート、4,4´−ジシクロヘキシルメタンジイソシアネート、p−キシリレンジイソシアネート、1,4−フェニレンジイソシアネート、2,4−トルエンジイソシアネート、2,6−トルエンジイソシアネート、4,4−ジフェニルメタンジイソシアネート、2,4´−ジフェニルメタンジイソシアネート、ポリメチレンポリフェニレンポリイソシアネート、1,5−ナフチレンジイソシアネート等を挙げることができる。更にこれらの混合物が使用可能である。   The urethane resin is obtained by polymerizing a polyfunctional isocyanate, a polyhydric alcohol, and a bifunctional active hydrogen-containing compound having an acidic group by a conventionally known method. The polyvalent isocyanate is not particularly limited. For example, ethylene diisocyanate, 1,6-hexamethylene diisocyanate, isophorone diisocyanate, cyclohexane-1,4-diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, p-xylylene diisocyanate, 1 , 4-phenylene diisocyanate, 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, 4,4-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, polymethylene polyphenylene polyisocyanate, 1,5-naphthylene diisocyanate, etc. Can be mentioned. Furthermore, mixtures of these can be used.

上記多価アルコールとしては特に限定されず、従来ポリウレタンエマルション合成原料として知られているものを使用することができ、例えばエチレングリコ一ル、プロピレングリコール、1,4−ブタンジオール、ジエチレングリコ一ル、ネオペンチルグリコール、シクロヘキサンジメタノール、グリセロール、トリメチロールプロパン、ペンタエリスリトール、ポリエステルポリオール、ポリエステルポリアミドポリオール、ポリエーテルポリオール、ポリチオエ一テルポリオール、ポリカーボネートポリオール、ポリアセタールポリオール、ポリオレフィンポリオール、ポリシロキサンポリオール等を挙げることができる。   The polyhydric alcohol is not particularly limited, and those conventionally known as polyurethane emulsion synthesis raw materials can be used. For example, ethylene glycol, propylene glycol, 1,4-butanediol, diethylene glycol, neo Examples include pentyl glycol, cyclohexanedimethanol, glycerol, trimethylolpropane, pentaerythritol, polyester polyol, polyester polyamide polyol, polyether polyol, polythioether polyol, polycarbonate polyol, polyacetal polyol, polyolefin polyol, polysiloxane polyol, and the like. .

上記酸性基を有する2官能性活性水素含有化合物としては特に限定されず、従来アニオン性ポリウレタンエマルションの合成原料として知られているものを使用することができ、例えば、2.2−ジメチロールプロパン酸、2.2−ジメチロールブタン酸、リシンシスチン、3,5−ジアミノ安息香酸等を挙げることができる。   The bifunctional active hydrogen-containing compound having an acidic group is not particularly limited, and those conventionally known as synthetic raw materials for anionic polyurethane emulsions can be used. For example, 2.2-dimethylolpropanoic acid can be used. 2.2-dimethylolbutanoic acid, lysine cystine, 3,5-diaminobenzoic acid and the like.

本発明に使用する水性樹脂の合成方法は特に限定されず、工業的に使用されている方法で合成されたものが使用できる。また、本発明に用いる水性ウレタン樹脂を水酸化ナトリウム又は水酸化カリウム等で中和して使用することができる。   The method for synthesizing the aqueous resin used in the present invention is not particularly limited, and those synthesized by industrially used methods can be used. The aqueous urethane resin used in the present invention can be used after neutralizing with sodium hydroxide or potassium hydroxide.

ウレタン樹脂の他にも性能を劣化させない範囲でアクリル樹脂、ポリエステル系樹脂、ポリビニルアルコール樹脂等を加えてもよい。水性ウレタン樹脂はホモジナイザー、ミキサー等を用いて水中に溶解又は分散させることで水性塗料とする。   In addition to the urethane resin, an acrylic resin, a polyester resin, a polyvinyl alcohol resin, or the like may be added as long as the performance is not deteriorated. The aqueous urethane resin is dissolved or dispersed in water using a homogenizer, a mixer or the like to form an aqueous paint.

A−2−2.シリカ
本発明では潤滑塗膜の強度及び耐食性の向上を目的として、シリカを塗膜に添加する。シリカとしてはコロイダルシリカやヒュームドシリカなどを用いることができる。コロイダルシリカとしては、例えば、日産化学工業(株)製のスノーテックスO、スノーテックスOS、スノーテックスOXS、スノーテックスOUP、スノーテックスAK、スノーテックスO40、スノーテックスOL、スノーテックスOL40、スノーテックスOZL、スノーテックスXS、スノーテックスS、スノーテックスNXS、スノーテックスNS、スノーテックスN、スノーテックスQAS−25、スノーテックスLSS−35、スノーテックスLSS−45、スノーテックスLSS−75、触媒化成工業(株)製のカタロイドS、カタロイドSI−350、カタロイドSI−40、カタロイドSA、カタロイドSN、旭電化工業(株)製のアデライトAT−20〜50、アデライトAT−20N、アデライトAT−300、アデライトAT−300S、アデライトAT20Q等を用いることができる。
A-2-2. Silica In the present invention, silica is added to the coating film for the purpose of improving the strength and corrosion resistance of the lubricating coating film. As silica, colloidal silica, fumed silica, or the like can be used. Examples of colloidal silica include Snowtex O, Snowtex OS, Snowtex OXS, Snowtex OUP, Snowtex AK, Snowtex O40, Snowtex OL, Snowtex OL40, Snowtex OZL manufactured by Nissan Chemical Industries, Ltd. , Snowtex XS, Snowtex S, Snowtex NXS, Snowtex NS, Snowtex N, Snowtex QAS-25, Snowtex LSS-35, Snowtex LSS-45, Snowtex LSS-75, Catalyst Kasei Kogyo Co., Ltd. ) Cataloid S, Cataloid SI-350, Cataloid SI-40, Cataloid SA, Cataloid SN, Adelite AT-20-50, Adelite AT-20N, Adelite AT-300, manufactured by Asahi Denka Kogyo Co., Ltd. Delight AT-300S, can be used ADELITE AT20Q like.

本発明では、上記シリカの他に、シリカ表面のシリコンをカルシウム、亜鉛、コバルト、鉛、ストロンチウム、リチウム、バリウム、マンガン等のカチオンで置換したイオン交換シリカを用いることができる。イオン交換シリカは腐食環境において、置換したカルシウム等の金属イオンがシリカ表面から放出され、放出された金属イオンがアルミニウム基板表面を保護することで防錆作用が現れると考えられている。本発明においては、耐食性の観点から、このようなイオン交換シリカ、特にカルシウムイオン交換シリカを使用することが好ましい。カルシウムイオン交換シリカのカルシウム含有量は2〜15%の範囲であることが好ましい。カルシウムイオン交換シリカとしては、例えばSHIELDEX(W.
R. Grace & Co.、富士シリア化学等)がある。本発明で潤滑塗膜中に含まれるシリカは、水性ウレタン樹脂の固形分100重量部に対して1〜50重量部であり、好ましくは4〜20重量部である。シリカの配合量が1重量部未満では十分な耐食性が得られない。一方、50重量部を超えると塗膜が脆くなり、成形時にかじりが生じて成形性に劣り、乾燥後の塗膜から剥離粉が発生して塗膜安定性に欠け、接着性も劣る。
In the present invention, in addition to the above silica, ion-exchanged silica in which silicon on the silica surface is replaced with cations such as calcium, zinc, cobalt, lead, strontium, lithium, barium, manganese can be used. Ion exchange silica is considered to exhibit a rust preventive action by releasing metal ions such as substituted calcium from the silica surface in a corrosive environment and protecting the aluminum substrate surface by the released metal ions. In the present invention, it is preferable to use such ion exchange silica, particularly calcium ion exchange silica, from the viewpoint of corrosion resistance. The calcium content of the calcium ion exchanged silica is preferably in the range of 2 to 15%. As calcium ion exchange silica, for example, SHIELDEX (W.
R. Grace & Co. , Fuji Syria Chemical, etc.). In the present invention, the silica contained in the lubricating coating is 1 to 50 parts by weight, preferably 4 to 20 parts by weight, based on 100 parts by weight of the solid content of the aqueous urethane resin. If the amount of silica is less than 1 part by weight, sufficient corrosion resistance cannot be obtained. On the other hand, if it exceeds 50 parts by weight, the coating film becomes brittle, galling occurs during molding, resulting in poor moldability, peeling powder is generated from the dried coating film, resulting in poor coating film stability, and poor adhesion.

A−2−3.潤滑剤
本発明で潤滑塗膜中に添加する潤滑剤は、0.1〜30μmの平均粒径を有する。このような潤滑剤は、ポリオレフィン系ワックス及びフッ素樹脂の少なくとも一方を用いるのが好ましい。ポリオレフィン系ワックスとしては、ポリエチレンワックス、ポリプロピレンワックス、変性ポリエチレン等、又はこれらの混合物が挙げられる。フッ素樹脂としては、ポリテトラフルオロエチレン(PTFE)、ポリヘキサフルオロポリプレン、ポリフッ化ビニリデン等、又はこれらの混合物が挙げられる。ポリオレフィン系ワックス及びフッ素樹脂の何れも、水中に安定して分散するものが用いられる。なお、潤滑塗膜の性能を劣化させない範囲で、マイクロクリスタリン、ラノリン、カルナバ、脂肪酸、脂肪酸エステル、脂肪族アルコール等の水性ウレタン樹脂と相溶しない潤滑性物質を、ポリオレフィン系ワックスやフッ素樹脂に加えて用いてもよい。
A-2-3. Lubricant The lubricant added to the lubricating coating in the present invention has an average particle size of 0.1 to 30 μm. As such a lubricant, it is preferable to use at least one of a polyolefin wax and a fluororesin. Examples of the polyolefin wax include polyethylene wax, polypropylene wax, modified polyethylene, and the like, or a mixture thereof. Examples of the fluororesin include polytetrafluoroethylene (PTFE), polyhexafluoropolyprene, polyvinylidene fluoride, and the like, or a mixture thereof. As the polyolefin wax and fluororesin, those that are stably dispersed in water are used. Lubricating substances that are incompatible with aqueous urethane resins such as microcrystalline, lanolin, carnauba, fatty acids, fatty acid esters, and aliphatic alcohols are added to polyolefin waxes and fluororesins within a range that does not degrade the performance of the lubricating coating. May be used.

上記潤滑剤の平均粒径が0.1μm未満では、十分な摩擦係数の低減が図れず成形性を満足できない。また、平均粒径が30.0μmを超えると、潤滑塗膜からの脱離し易くなり、成形性や接着性と共に、上述の塗膜安定性にも劣る。潤滑剤の添加量は水性ウレタン樹脂の固形分100重量部に対して1〜50重量部である。1重量部未満では十分な成形性が得られず、30重量部を超える場合には塗膜の強度低下が生じ、接着性の低下、潤滑剤の脱離によって上記塗膜安定性の低下が生じる。   If the average particle size of the lubricant is less than 0.1 μm, the friction coefficient cannot be sufficiently reduced and the moldability cannot be satisfied. Moreover, when an average particle diameter exceeds 30.0 micrometers, it will become easy to detach | leave from a lubricating coating film, and it is inferior to the above-mentioned coating-film stability with a moldability and adhesiveness. The addition amount of the lubricant is 1 to 50 parts by weight with respect to 100 parts by weight of the solid content of the aqueous urethane resin. If the amount is less than 1 part by weight, sufficient formability cannot be obtained, and if it exceeds 30 parts by weight, the strength of the coating film is reduced, and the above-mentioned coating film stability is reduced due to a decrease in adhesiveness and the desorption of the lubricant. .

A−2−4.架橋剤
本発明に用いる潤滑塗膜には、アルカリ、酸、有機溶剤等に対する耐薬品性や耐食性を向上させる目的で、シランカップリング剤、アミノ樹脂、多価イソシアネート化合物、そのブロック体、エポキシ化合物及びカルボジイミド化合物から成る群から選択される少なくとも1種の架橋剤を更に添加することができる。
A-2-4. Crosslinking agent The lubricating coating used in the present invention has a silane coupling agent, an amino resin, a polyvalent isocyanate compound, its block, an epoxy compound for the purpose of improving chemical resistance and corrosion resistance against alkalis, acids, organic solvents, etc. And at least one crosslinking agent selected from the group consisting of carbodiimide compounds can be further added.

上記シランカップリング剤としては特に限定されず、例えば、ビニルトリクロルシラン、ビニルトリス(βメトキシエトキシ)シラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、γ−(メタクリロキシプロピル)トリメトキシシラン、β−(3、4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルトリメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−クロロプロピルトリメトキシシランを挙げることができる。   The silane coupling agent is not particularly limited. For example, vinyltrichlorosilane, vinyltris (βmethoxyethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane, γ- (methacryloxypropyl) trimethoxysilane, β- ( 3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N- β (aminoethyl) γ-aminopropylmethyldimethoxysilane, γ-aminopropyltrimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane It can gel.

上記アミノ樹脂としては特に限定されず、例えば、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、グリコールウリル樹脂等を挙げることができる。   It does not specifically limit as said amino resin, For example, a melamine resin, a benzoguanamine resin, a urea resin, a glycoluril resin etc. can be mentioned.

上記多価イソシアネート化合物としては特に限定されず、上記に記載したものが使用できる。また、そのブロック体は、上記多価イソシアネート化合物のブロック化物である。   The polyvalent isocyanate compound is not particularly limited, and those described above can be used. The block body is a blocked product of the polyvalent isocyanate compound.

上記エポキシ化合物は、オキシラン環を複数個有する化合物であれば特に限定されず、例えば、アジピン酸ジグリシジルエステル、フタル酸ジグリシジルエステル、テレフタル酸ジグリシジルエステル、ソルビタンポリグルシジルエーテル、ペンタエリストールポリグリシジルエーテル、グリセリンポリグリシジルエーテル、トリメチルプロパンポリグリシジルエーテル、ネオペンチルグリコールポリグリシジルエーテル、エチレングリコールグリシジルエーテル、ポリエチレングリコールグリシジルエーテル、プロピレングリコールグリシジルエーテル、ポリグリプロピレングリコールジグリシジルエーテル、2,2−ビス−(4’−グリシジルオキシフェニル)−プロパン、トリス(2,3−エポキシプロピル)オキシアヌレート、ビスフェノールAジグリシジルエーテル、水素添加ビスフェノールAグリシジルエーテル等を挙げることができる。   The epoxy compound is not particularly limited as long as it is a compound having a plurality of oxirane rings. For example, adipic acid diglycidyl ester, phthalic acid diglycidyl ester, terephthalic acid diglycidyl ester, sorbitan polyglycidyl ether, pentaerythritol polyglycidyl Ether, glycerin polyglycidyl ether, trimethylpropane polyglycidyl ether, neopentyl glycol polyglycidyl ether, ethylene glycol glycidyl ether, polyethylene glycol glycidyl ether, propylene glycol glycidyl ether, polyglycol glycol diglycidyl ether, 2,2-bis- ( 4'-glycidyloxyphenyl) -propane, tris (2,3-epoxypropyl) oxyanurate, bis Phenol A diglycidyl ether, and hydrogenated bisphenol A glycidyl ether.

上記カルボジイミド化合物としては、例えば、芳香族ジイソシアネート、脂肪族ジイソシアネート、脂環族ジイソシアネート等のジイソシアネート化合物の脱二酸化炭素を伴う縮合反応によりイソシアネート末端カルボジイミドを合成した後、更にイソシアネート基との反応性を有する官能基を有する親水性セグメントを付加した化合物等を挙げることができる。   As the carbodiimide compound, for example, an isocyanate-terminated carbodiimide is synthesized by a condensation reaction involving decarbonization of a diisocyanate compound such as an aromatic diisocyanate, an aliphatic diisocyanate, and an alicyclic diisocyanate, and further has reactivity with an isocyanate group. The compound etc. which added the hydrophilic segment which has a functional group can be mentioned.

上記シランカップリング剤、アミノ樹脂、多価イソシアネート化合物、そのブロック体、エポキシ化合物及びカルボジイミド化合物から成る群から選択される少なくとも1種の架橋剤は、水性樹脂の固形分100重量部に対して1〜50重量部含有することが好ましい。1重量部未満では、耐薬品性や耐食性の向上効果が得られない場合がある。50重量部を超えると、塗膜が脆くなり成形性が低下する場合がある。   At least one crosslinking agent selected from the group consisting of the silane coupling agent, amino resin, polyvalent isocyanate compound, block body thereof, epoxy compound and carbodiimide compound is 1 per 100 parts by weight of the solid content of the aqueous resin. It is preferable to contain -50 weight part. If the amount is less than 1 part by weight, the effect of improving chemical resistance and corrosion resistance may not be obtained. If it exceeds 50 parts by weight, the coating film may become brittle and formability may be reduced.

本発明に用いる潤滑塗膜は、上記水性ウレタン樹脂、シリカ及び潤滑剤を溶媒に溶解又は分散した水性塗料を用いて形成される。ここで、水性塗料には、金属酸化物、導電性添加剤、界面活性剤、増粘剤、消泡剤、潤滑剤、レベリング剤、分散剤、乾燥剤、安定剤、皮張り防止剤、防菌防黴剤、防腐剤、着色剤、凍結防止剤等を、塗膜性能を低下させない範囲内で目的に応じ添加することができる。塗料の溶媒には水が用いられるが、塗装性改善等を目的として、必要に応じてアルコール、ケトン、セロソルブ系の水性有機溶剤を潤滑塗膜の性能を損なわない範囲で加えてもよい。   The lubricating coating used in the present invention is formed using a water-based paint in which the water-based urethane resin, silica and lubricant are dissolved or dispersed in a solvent. Here, water-based paints include metal oxides, conductive additives, surfactants, thickeners, antifoaming agents, lubricants, leveling agents, dispersants, desiccants, stabilizers, antiskinning agents, anti-skinning agents. A fungicide, a preservative, a coloring agent, an antifreezing agent and the like can be added according to the purpose within a range in which the coating film performance is not deteriorated. Water is used as a solvent for the coating material. For the purpose of improving paintability, alcohol, ketone, and cellosolve-based aqueous organic solvent may be added as necessary so long as the performance of the lubricating coating is not impaired.

B.アルミニウム塗装板の作製方法
次に本発明に係る成形加工用のアルミニウム塗装板の作製方法について述べる。
本発明に係る成形加工用のアルミニウム塗装板は、ウレタン樹脂、シリカ、潤滑剤を所定の配合量で含有する水性塗料をアルミニウム基板に塗布した後、到達板温度60〜80℃で2秒間以上保持する加熱保持過程を含む乾燥工程で乾燥させることで、潤滑塗膜を形成することにより作製できる。上記水性塗料の塗布方法としてはロールコート法、ロールスクイズ法、エアナイフ法、ケミコーター法、浸漬法、スプレー法、バーコート法等を用いることができる。潤滑塗膜の均一性に優れ、生産性が良好なロールコーター法を適用することが好ましい。
B. It describes a manufacturing method of an aluminum coated plates for molding according to the manufacturing method the present invention will now aluminum coated plates.
The aluminum coated plate for forming according to the present invention is applied to an aluminum substrate with a water-based paint containing urethane resin, silica, and lubricant in a predetermined blending amount, and then held at a final plate temperature of 60 to 80 ° C. for 2 seconds or more. It can be produced by forming a lubricating coating film by drying in a drying process including a heating and holding process. As a method for applying the water-based paint, a roll coating method, a roll squeeze method, an air knife method, a chemicoater method, a dipping method, a spray method, a bar coating method, or the like can be used. It is preferable to apply a roll coater method which is excellent in the uniformity of the lubricating coating and has good productivity.

到達板温60〜80℃で2秒間以上保持する加熱保持過程において、アルミニウム基板上の塗料中にアルミニウム基板からアルミニウムイオンが溶け出し、このアルミニウムイオンによってシリカのゲル化が促進される。この時、水性ウレタン樹脂もゲル化したシリカにアルミニウムイオンと共に取り込まれることで緻密な潤滑塗膜構造が形成される。そして、この緻密な構造を保ったまま塗膜を完全に乾燥させることで、アルミニウム基板との密着性に優れた高強度でかじり発生の少ない良好な成形性と、耐食性にも優れる潤滑塗膜が得られる。   In the heating and holding process of holding at the ultimate plate temperature of 60 to 80 ° C. for 2 seconds or more, aluminum ions are dissolved from the aluminum substrate into the paint on the aluminum substrate, and the gelation of silica is promoted by the aluminum ions. At this time, the water-based urethane resin is also taken into the gelled silica together with the aluminum ions, so that a dense lubricating coating structure is formed. And, by thoroughly drying the coating film while maintaining this dense structure, a high-strength, excellent formability with little galling and excellent corrosion resistance is obtained. can get.

表面エネルギーが小さく水性塗料と相溶性を有しない潤滑剤は、シリカのゲル化に伴って押し出される形で塗膜の表層部分に偏在することになる。また、溶媒が蒸発することで塗料粘度が上昇して溶媒の対流が抑制されることで、潤滑剤及びシリカの所望の分布状態が維持され易くなる。表層部分は潤滑剤に富むと共に、シリカが少ないことで潤滑性が向上する。一方、塗膜のより深い部分はシリカに富み、緻密な構造が形成されることで密着性が高く、しかも水分の浸透し難い耐食性に優れた潤滑塗膜となる。このようにして形成された潤滑塗膜は、塗膜表面から深さ方向に成分分析を行ったところ、シリコン原子は塗膜表面から50nmまでの濃度がこれより深い塗膜中の濃度より低い。   The lubricant having a small surface energy and not compatible with the water-based paint is unevenly distributed in the surface layer portion of the coating film in such a form that it is extruded as the silica gels. In addition, since the viscosity of the paint is increased by evaporation of the solvent and the convection of the solvent is suppressed, the desired distribution state of the lubricant and silica is easily maintained. The surface layer portion is rich in a lubricant, and the lubricity is improved due to the small amount of silica. On the other hand, the deeper part of the coating film is rich in silica, and a dense structure is formed, so that the adhesion is high, and the lubricating coating film is excellent in corrosion resistance in which moisture hardly penetrates. When the lubricating coating thus formed was subjected to component analysis in the depth direction from the coating surface, the concentration of silicon atoms from the coating surface to 50 nm is lower than the concentration in the coating film deeper than this.

加熱保持過程において到達板温度が60℃未満の場合には、シリカの偏在が十分に起こるために必要なアルミニウムイオンの溶出が起こる前に溶媒が蒸発することで塗料粘度が上昇し、偏在が不十分なままで塗膜の構造が固定されてしまう。そのため表層部分のシリカ濃度が高く、成形性が劣ってしまう。到達板温度が80℃を超える場合には、溶媒の蒸発が速過ぎるために潤滑剤の偏在が十分に進行する前に分布が固定されてしまう。その結果、塗膜の表層部分における潤滑剤の濃度が低くなってしまうと共に、表層部分にシリカが多く分布する状態で固定されることで潤滑性能が低下し、十分な成形性が得られない。
同様に、加熱保持過程において保持時間が2秒未満の場合にも、潤滑剤の偏在が十分に進行する前に分布が固定されてしまい成形性が劣ることになる。加熱保持時間が10秒を超える場合、これ以上保持しても塗膜中の分布に特に変化は生じない。そのため生産性の観点から上限を10秒とするのが好ましい。
When the ultimate plate temperature is less than 60 ° C. during the heating and holding process, the viscosity of the paint increases due to the evaporation of the solvent before the elution of the aluminum ions necessary for sufficient uneven distribution of the silica, and the uneven distribution does not occur. The structure of the coating film is fixed as it is sufficient. Therefore, the silica concentration in the surface layer portion is high and the moldability is poor. When the reaching plate temperature exceeds 80 ° C., the evaporation of the solvent is too fast, and the distribution is fixed before the uneven distribution of the lubricant sufficiently proceeds. As a result, the concentration of the lubricant in the surface layer portion of the coating film is lowered, and the silica is fixed in a state where a large amount of silica is distributed in the surface layer portion, so that the lubricating performance is lowered and sufficient moldability cannot be obtained.
Similarly, even when the holding time is less than 2 seconds in the heating and holding process, the distribution is fixed before the uneven distribution of the lubricant sufficiently proceeds, and the moldability is poor. When the heating and holding time exceeds 10 seconds, there is no particular change in the distribution in the coating film even if the heating and holding time is longer than this. Therefore, the upper limit is preferably 10 seconds from the viewpoint of productivity.

乾燥工程の加熱保持過程後において、到達板温度が100℃以上の乾燥過程を設けるのが好ましい。到達板温度が100℃未満の場合には乾燥が不十分となる場合があり、その結果、潤滑塗膜中の水分によって腐食が進行してしまう場合がある。潤滑塗膜を構成する成分が変質するような高温では目的の塗膜性能を得られないことから、到達板温度は250℃以下とする必要がある。なお、6000系合金等の時効硬化するアルミニウム基板に対しては170℃以下で60秒以下とすることが好ましい。
なお、乾燥過程の時間が5分を超える場合には、それ以上乾燥しても残存水分率に特に変化は生じないので、生産性の観点から5分間を限度とするのが適当である。乾燥工程では、熱風乾燥炉、誘導加熱炉、赤外線炉等を利用することができる。
It is preferable to provide a drying process in which the ultimate plate temperature is 100 ° C. or higher after the heating and holding process in the drying process. If the ultimate plate temperature is less than 100 ° C., drying may be insufficient, and as a result, corrosion may proceed due to moisture in the lubricating coating. Since the target coating film performance cannot be obtained at a high temperature at which the components constituting the lubricating coating film are altered, the ultimate plate temperature needs to be 250 ° C. or lower. In addition, it is preferable to set it as 170 degrees C or less and 60 seconds or less with respect to the age-hardening aluminum board | substrates, such as 6000 type alloy.
If the drying process time exceeds 5 minutes, there is no particular change in the residual moisture content even if the drying process is further continued, so it is appropriate to limit the remaining time to 5 minutes from the viewpoint of productivity. In the drying process, a hot air drying furnace, an induction heating furnace, an infrared furnace, or the like can be used.

以下、実施例により本発明を具体的に説明するが、本実施例は一例に過ぎず、本発明を限定するものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, a present Example is only an example and does not limit this invention.

アルミニウム基板として冷延により厚さ1.0mmとしたA5182アルミニウム合金板を準備し、到達板温度550℃で加熱することでO材とした。このアルミニウム基板に対し、潤滑塗膜を被覆塗装する前処理として、下記A1〜A3の洗浄を行なったものと行なわないものを供試材とした。
水性塗料の水性ウレタン樹脂としては、アデカボンタイター−HUX320(株式会社ADEKA製)を用い、シリカ、潤滑剤、架橋剤には下記のものを用い、表1、2に記載の添加量とした。表1、2に示す添加量は、水性ウレタン樹脂の固形分100重量部に対する重量部を表す。水性塗料の溶媒には水を用い、水性ウレタン樹脂、シリカ、潤滑剤及び架橋剤(実施例18〜23及び比較例10)を水に溶解、分散して水性塗料を調製した。なお、塗料中における水の量は、表1、2に示す塗膜厚が得られるように適宜選択した。
An A5182 aluminum alloy plate having a thickness of 1.0 mm was prepared as an aluminum substrate by cold rolling, and heated at a reaching plate temperature of 550 ° C. to obtain an O material. As a pretreatment for coating and coating the lubricating coating on the aluminum substrate, samples subjected to the following cleanings A1 to A3 and those not performed were used as test materials.
Adekabon titer-HUX320 (manufactured by ADEKA Co., Ltd.) was used as the water-based urethane resin of the water-based paint, and the followings were used as the silica, lubricant, and cross-linking agent. The addition amount shown to Table 1, 2 represents the weight part with respect to 100 weight part of solid content of water-based urethane resin. Water was used as a solvent for the aqueous coating material, and an aqueous urethane resin, silica, a lubricant and a crosslinking agent (Examples 18 to 23 and Comparative Example 10) were dissolved and dispersed in water to prepare an aqueous coating material. The amount of water in the paint was appropriately selected so that the coating thicknesses shown in Tables 1 and 2 were obtained.

このようにして調製した水性塗料を、供試材の両面にバーコーターで塗布し、熱風乾燥炉での加熱保持過程と乾燥過程とからなる乾燥工程を経ることでアルミニウム塗装板の試料を作製した。加熱保持過程条件は表1、2の通りである。乾燥過程は一律、到達板温120℃までの加熱とした。   The water-based paint thus prepared was applied to both sides of the test material with a bar coater, and a sample of an aluminum coated plate was produced through a drying process consisting of a heating and holding process in a hot air drying furnace and a drying process. . Tables 1 and 2 show the heating and holding process conditions. The drying process was uniformly heated to an ultimate plate temperature of 120 ° C.

Figure 2011036814
Figure 2011036814

Figure 2011036814
Figure 2011036814

アルミニウム基板の洗浄方法を以下に示す。
A1:40℃市販のアルカリ脱脂剤(水酸化ナトリウム系)に10秒間浸漬+40℃、10%硝酸水溶液に10秒間浸漬
A2:40℃、5%水酸化ナトリウム水溶液に10秒間浸漬
A3:40℃、10%硝酸水溶液に10秒間浸漬
A method for cleaning the aluminum substrate will be described below.
A1: 40 ° C. immersion in a commercially available alkaline degreasing agent (sodium hydroxide type) for 10 seconds + 40 ° C., 10% nitric acid aqueous solution for 10 seconds A2: 40 ° C., 5% sodium hydroxide aqueous solution for 10 seconds A3: 40 ° C. Immerse in 10% nitric acid aqueous solution for 10 seconds

使用したシリカを以下に示す。
B1:AEROSIL200(乾式シリカ、日本アエロジル社製)
B2:SHIELDEX(カルシウムイオン交換シリカ、W.R.Grace社製)
The silica used is shown below.
B1: AEROSIL200 (dry silica, manufactured by Nippon Aerosil Co., Ltd.)
B2: SHIELDEX (calcium ion exchange silica, manufactured by WR Grace)

使用した架橋剤を以下に示す。
C1:シランカップリング剤(信越化学工業社製、γ−アミノプロピルトリメトキシシラン)
C2:メラミン樹脂(サイテック社製、サイメル385)
C3:カルボジイミド化合物(日清紡績社製、カルボジライト)
C4:エポキシ化合物(長瀬ケムテックス社製、デナコール)
The used crosslinking agent is shown below.
C1: Silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., γ-aminopropyltrimethoxysilane)
C2: Melamine resin (Cytech, Cymel 385)
C3: Carbodiimide compound (Nisshinbo Industries, Carbodilite)
C4: Epoxy compound (Nagase Chemtex, Denacol)

上記のようにして調製したアルミニウム塗装板試料を、下記の通りに測定、評価した。
1)潤滑塗膜中の成分分布
アルミニウム塗装板の試料を100mm×100mmに切断し、試料上の潤滑塗膜における深さ方向の成分分布として炭素原子及びシリコン原子の分布をGD−OESを用いて測定した。測定結果を、下記基準a、bにより分類した。GD−OES装置は、堀場製作所製JY5000RFを用い、アノード径φ4mmで測定した。また、測定条件としてアルゴンガス雰囲気圧力600Pa、出力30W、炭素原子検出波長156nm、炭素原子の検出感度を決める光電子増倍管の加速電圧を500V、シリコン原子の検出波長288nm、シリコン原子の検出感度を決める光電子増倍管の加速電圧を999Vとした。測定後にスパッタリングにより掘られた穴の深さをスパッタリング時間で割ることでスパッタリング速度を求め、スパッタリング時間を塗膜深さに換算した。
a:潤滑塗膜表面から深さ50nmまでに存在するシリコン原子濃度がそれより深い塗
膜中に存在するシリコン原子濃度より低い
b:潤滑塗膜表面から深さ50nmまでに存在するシリコン原子濃度がそれより深い塗
膜中に存在するシリコン原子濃度以上
The aluminum coated plate sample prepared as described above was measured and evaluated as follows.
1) Component distribution in lubricating coating A sample of an aluminum coated plate is cut into 100 mm x 100 mm, and the distribution of carbon atoms and silicon atoms as a component distribution in the depth direction in the lubricating coating on the sample is obtained using GD-OES. It was measured. The measurement results were classified according to the following criteria a and b. The GD-OES apparatus used JY5000RF by Horiba, Ltd., and measured with an anode diameter of 4 mm. In addition, the measurement conditions include an argon gas atmospheric pressure of 600 Pa, an output of 30 W, a carbon atom detection wavelength of 156 nm, a photomultiplier tube acceleration voltage that determines the detection sensitivity of carbon atoms of 500 V, a silicon atom detection wavelength of 288 nm, and a silicon atom detection sensitivity of The accelerating voltage of the photomultiplier tube to be determined was set to 999V. After the measurement, the depth of the hole dug by sputtering was divided by the sputtering time to obtain the sputtering rate, and the sputtering time was converted to the coating film depth.
a: The concentration of silicon atoms existing from the surface of the lubricating coating to a depth of 50 nm is lower than the concentration of silicon atoms existing in the coating deeper than that. b: The concentration of the silicon atoms existing from the surface of the lubricating coating to a depth of 50 nm. More than the concentration of silicon atoms present in deeper coatings

2)塗膜安定性
アルミニウム基板上の潤滑塗膜にセロハンテープを貼り付け、剥がしたセロハンテープへの剥離粉付着の有無を目視により確認した。下記の基準で評価した。
○:剥離粉の付着無し
×:剥離粉の付着有り
○を合格とし、×を不合格とした。
2) Coating film stability A cellophane tape was affixed to the lubricating coating on the aluminum substrate, and the presence or absence of peeling powder adhered to the peeled cellophane tape was visually confirmed. Evaluation was made according to the following criteria.
○: No adhesion of release powder ×: Adhesion of release powder ○ was accepted and x was rejected.

3)接着性
幅25mm×長さ150mmに切断した試料に油研工業製RP−75Nを塗油し、1日室温放置したものを試験片とした。完全に重ね合わせた2枚の試験片を、幅方向に完全に重なり合った状態で長手方向に10mmだけが重なるように試験片同士をずらし、重なり合った25mm×10mmの範囲を、構造用接着剤(サンスター製#1086)の厚さ0.2mmとなるように接着した。接着した試験片に180℃×20分の加熱処理を施し、接着剤を硬化させた。この試験片を40℃の純水中に30日間浸漬させ、純水から取り出した後、2時間以内にせん断剥離強度を測定した。下記の基準で評価した。
○:せん断剥離強度≧16MPa
△:16MPa>せん断剥離強度≧14MPa
×:せん断剥離強度<14MPa
○を合格とし、△、×を不合格とした。
3) Adhesiveness RP-75N manufactured by Yuken Kogyo Co., Ltd. was applied to a sample cut into a width of 25 mm and a length of 150 mm, and the sample was allowed to stand at room temperature for 1 day to obtain a test piece. The two test pieces that were completely overlapped with each other were shifted so that only 10 mm overlapped in the longitudinal direction in the state of being completely overlapped in the width direction, and the overlapping range of 25 mm × 10 mm was changed to a structural adhesive ( It was bonded to a thickness of 0.2 mm made by Sunstar # 1086). The bonded test piece was heated at 180 ° C. for 20 minutes to cure the adhesive. The test piece was immersed in pure water at 40 ° C. for 30 days, taken out from the pure water, and the shear peel strength was measured within 2 hours. Evaluation was made according to the following criteria.
○: Shear peel strength ≧ 16 MPa
Δ: 16 MPa> shear peel strength ≧ 14 MPa
×: Shear peel strength <14 MPa
○ was accepted, and Δ and x were rejected.

4)成形性(絞り性)
ポンチ径φ50mm、肩R5mmの金型にて、しわ抑え圧600N、成形速度5mm/sで深絞り成形を行い、限界絞り比(LDR=ブランク径/ポンチ径)を求めた。下記の基準で評価した。
○:LDR≧2.10
△:2.10>LDR≧2.00
×:LDR<2.00
○を合格とし、△、×を不合格とした。
4) Formability (drawability)
Deep drawing was performed with a mold having a punch diameter of φ50 mm and a shoulder R of 5 mm at a wrinkle suppressing pressure of 600 N and a forming speed of 5 mm / s, and a limit drawing ratio (LDR = blank diameter / punch diameter) was obtained. Evaluation was made according to the following criteria.
○: LDR ≧ 2.10
Δ: 2.10> LDR ≧ 2.00
X: LDR <2.00
○ was accepted, and Δ and x were rejected.

5)耐アルカリ性
1%NaOH水溶液に試料を3時間浸漬した時の潤滑塗膜の残留割合を求め、下記基準により評価を行った。
◎: 残留割合≧99%
○:99%>残留割合≧95%
△:95%>残留割合≧90%
×:90%>残留割合
◎、○を合格とし、△、×を不合格とした。
5) Alkali resistance The residual ratio of the lubricating coating when the sample was immersed in a 1% NaOH aqueous solution for 3 hours was determined and evaluated according to the following criteria.
A: Residual ratio ≧ 99%
○: 99%> Residual ratio ≧ 95%
Δ: 95%> remaining ratio ≧ 90%
X: 90%> Residual ratio ◎, ○ was accepted and Δ, x was rejected.

6)耐食性
試料を150mm×70mmに切断して試験片とし、この試験片に対してサクセードS#30S(デュポン神東製)を用いた200V×3分による電着塗装を行い、続いて150℃×20分で焼付けることにより電着塗装試験片を作製した。この電着塗装試験片に120mmの傷を2本、交差するようにカッターで入れ、SST24時間→恒温恒湿槽(40℃・70%RH)中10日間保管を1サイクルとする腐食加速操作を4サイクル実施し
、発生した腐食の数を数えた。試験はn=3で行い、平均腐食発生数を下記の基準で評価した。
◎:腐食発生無し
○:0<平均腐食発生数≦1
×:平均腐食発生数>1
◎、○を合格とし、×を不合格とした。
6) Corrosion resistance A sample was cut into 150 mm x 70 mm to obtain a test piece, and this test piece was subjected to electrodeposition coating at 200 V x 3 minutes using Saxade S # 30S (manufactured by DuPont Shinto), followed by 150 ° C. The electrodeposition coating test piece was produced by baking in x20 minutes. Two 120mm scratches are put in this electrodeposition coating test piece with a cutter so that they cross each other, and the corrosion acceleration operation with one cycle of storage for 10 days in a constant temperature and humidity chamber (40 ° C, 70% RH) for 24 hours SST Four cycles were performed and the number of corrosions that occurred was counted. The test was performed with n = 3, and the average number of corrosion occurrences was evaluated according to the following criteria.
◎: No corrosion occurrence ○: 0 <Average number of corrosion occurrences ≦ 1
×: Average number of corrosion occurrences> 1
◎ and ○ were accepted and x was rejected.

塗膜中の成分分布、塗膜安定性、接着性、成形性、耐アルカリ性及び耐食性の評価結果を、表1、2に示す。表1、2に示すように、実施例1〜31では、全ての評価項目での結果が合格であった。   Tables 1 and 2 show the evaluation results of component distribution in the coating film, coating film stability, adhesion, moldability, alkali resistance and corrosion resistance. As shown in Tables 1 and 2, in Examples 1 to 31, the results for all the evaluation items were acceptable.

比較例1では、酸化皮膜を除去するための洗浄を行なわなかった。その結果、厚過ぎた酸化皮膜で凝集破壊が発生し接着性が劣った。
比較例2では潤滑塗膜が薄過ぎたために、成形性及び耐食性が劣った。
比較例3では潤滑塗膜が厚過ぎたために、塗膜安定性及び接着性が劣った。
比較例4では潤滑塗膜中のシリカ添加量が少な過ぎたために、耐食性が劣った。
比較例5で潤滑塗膜中のシリカ添加量が多過ぎたために塗膜が脆くなり、塗膜安定性、接着性、成形性が劣った。
比較例6では潤滑剤の粒径が小さ過ぎたために、成形性が劣った。
比較例7では潤滑剤の粒径が大き過ぎたために潤滑皮膜からの脱落が著しく、塗膜安定性、接着性、成形性が劣った。
比較例で8は潤滑剤の添加量が少な過ぎたために、成形性が劣った。
比較例で9は潤滑剤の添加量が多過ぎたために潤滑皮膜の強度が低下し、塗膜安定性及び接着性が劣った。
比較例10では比較例5と同様にシリカ添加量が多過ぎたために塗膜安定性、接着性、成形性が劣っているが、架橋剤の添加量が多いために塗膜が脆くなり、比較例5に比べて成形性が劣った。
比較例11では加熱保持温度が低過ぎたために、塗膜の表層部分におけるシリカ濃度が高くなり成形性が劣った。
比較例12では加熱保持温度が高過ぎたために塗膜の表層部分におけるシリカ濃度が高くなり、成形性が劣った。
In Comparative Example 1, cleaning for removing the oxide film was not performed. As a result, the cohesive failure occurred in the oxide film that was too thick, and the adhesiveness was poor.
In Comparative Example 2, since the lubricating coating was too thin, the moldability and corrosion resistance were inferior.
In Comparative Example 3, since the lubricating coating film was too thick, the coating film stability and adhesiveness were poor.
In Comparative Example 4, since the amount of silica added in the lubricating coating was too small, the corrosion resistance was inferior.
In Comparative Example 5, since the amount of silica added in the lubricating coating film was too large, the coating film became brittle, and the coating film stability, adhesion, and moldability were inferior.
In Comparative Example 6, the moldability was inferior because the particle size of the lubricant was too small.
In Comparative Example 7, since the lubricant particle size was too large, the lubricant film dropped out significantly, and the coating film stability, adhesiveness, and moldability were inferior.
In Comparative Example 8, since the amount of lubricant added was too small, the moldability was inferior.
In Comparative Example 9, since the amount of the lubricant added was too large, the strength of the lubricating film was lowered and the coating film stability and adhesiveness were inferior.
In Comparative Example 10, as in Comparative Example 5, since the amount of silica added was too large, the coating film stability, adhesiveness, and moldability were inferior, but the coating amount became brittle due to the large amount of addition of the crosslinking agent. Compared with Example 5, the moldability was inferior.
In Comparative Example 11, since the heat holding temperature was too low, the silica concentration in the surface layer portion of the coating film was high and the moldability was poor.
In Comparative Example 12, since the heating and holding temperature was too high, the silica concentration in the surface layer portion of the coating film was high, and the moldability was poor.

本発明により、工程を増やすことなく塗膜安定性、接着性、成形性、耐アルカリ性及び耐食性に優れる成形加工用のアルミニウム塗装板を提供することができる。
According to the present invention, it is possible to provide an aluminum coated plate for molding process that is excellent in coating film stability, adhesiveness, moldability, alkali resistance and corrosion resistance without increasing the number of steps.

Claims (7)

アルミニウム又はアルミニウム合金からなるアルミニウム基板と、当該アルミニウム基板の少なくとも一方の面に形成され0.1〜10.0μmの乾燥厚さを有する潤滑塗膜とを備え、前記アルミニウム基板は表面に100Å以下の厚さを有する酸化皮膜を有し、前記潤滑塗膜は、水性ウレタン樹脂と、当該水性ウレタン樹脂の固形分100重量部に対して1〜50重量部のシリカと、0.1〜30.0μmの平均粒径を有し前記水性ウレタン樹脂の固形分100重量部に対して1〜30重量部の潤滑剤とを含み、その表面から深さ50nmまでの潤滑塗膜中に存在するシリコン原子濃度が、深さ50nmより深い潤滑塗膜中に存在するシリコン原子濃度より低いことを特徴とするアルミニウム塗装板。   An aluminum substrate made of aluminum or an aluminum alloy, and a lubricating coating film formed on at least one surface of the aluminum substrate and having a dry thickness of 0.1 to 10.0 μm. It has an oxide film having a thickness, and the lubricating coating film comprises an aqueous urethane resin, 1 to 50 parts by weight of silica with respect to 100 parts by weight of the solid content of the aqueous urethane resin, and 0.1 to 30.0 μm. 1 to 30 parts by weight of lubricant based on 100 parts by weight of the solid content of the water-based urethane resin, and the concentration of silicon atoms present in the lubricating coating from the surface to a depth of 50 nm Is lower than the concentration of silicon atoms present in the lubricating coating deeper than 50 nm in depth. 前記シリカがカルシウムイオン交換シリカである、請求項1に記載のアルミニウム塗装板。   The aluminum coating plate of Claim 1 whose said silica is a calcium ion exchange silica. 前記潤滑塗膜が、水性ウレタン樹脂の固形分100重量部に対して1〜50重量部の架橋剤を更に含有する、請求項1又は2に記載のアルミニウム塗装板。   The aluminum coating board of Claim 1 or 2 in which the said lubricating coating film further contains 1-50 weight part of crosslinking agents with respect to 100 weight part of solid content of water-based urethane resin. 100Å以下の厚さの酸化皮膜を表面に有しアルミニウム又はアルミニウム合金からなるアルミニウム基板の少なくとも一方の面に、水性ウレタン樹脂と、当該水性ウレタン樹脂の固形分100重量部に対して1〜50重量部のシリカと、0.1〜30.0μmの平均粒径を有し前記水性ウレタン樹脂の固形分100重量部に対して1〜30重量部の潤滑剤とを含む水性塗料を塗布し、60〜80℃で2秒間以上保持する加熱保持過程を含む乾燥工程で厚さ0.1〜10.0μmの潤滑塗膜を形成することを特徴とするアルミニウム塗装板の製造方法。   On the surface of an aluminum substrate made of aluminum or an aluminum alloy having an oxide film with a thickness of 100 mm or less on the surface, the water-based urethane resin and 1 to 50 weights per 100 parts by weight of the solid content of the water-based urethane resin 60 parts of silica and an aqueous paint having an average particle size of 0.1 to 30.0 μm and containing 1 to 30 parts by weight of a lubricant with respect to 100 parts by weight of the solid content of the aqueous urethane resin, A method for producing an aluminum coated plate, comprising forming a lubricating coating film having a thickness of 0.1 to 10.0 μm in a drying step including a heating and holding step of holding at ˜80 ° C. for 2 seconds or more. 前記アルミニウム基板が、水性塗料を塗布する前に脱脂処理及び洗浄処理の少なくとも一方の処理が施される、請求項4に記載のアルミニウム塗装板の製造方法。   The manufacturing method of the aluminum coating plate of Claim 4 with which the process of at least one of a degreasing process and a washing process is given to the said aluminum substrate before apply | coating a water-based coating material. 前記シリカがカルシウムイオン交換シリカである、請求項4又は5に記載のアルミニウム塗装板の製造方法。   The manufacturing method of the aluminum coating plate of Claim 4 or 5 whose said silica is a calcium ion exchange silica. 前記水性塗料が、水性ウレタン樹脂の固形分100重量部に対して1〜50重量部の架橋剤を更に含有する、請求項4〜6のいずれか一項に記載のアルミニウム塗装板の製造方法。   The manufacturing method of the aluminum coating plate as described in any one of Claims 4-6 in which the said water-based coating material further contains 1-50 weight part of crosslinking agents with respect to 100 weight part of solid content of water-based urethane resin.
JP2009186936A 2009-08-12 2009-08-12 Aluminum coated plate and method for producing the same Expired - Fee Related JP5260440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009186936A JP5260440B2 (en) 2009-08-12 2009-08-12 Aluminum coated plate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009186936A JP5260440B2 (en) 2009-08-12 2009-08-12 Aluminum coated plate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011036814A true JP2011036814A (en) 2011-02-24
JP5260440B2 JP5260440B2 (en) 2013-08-14

Family

ID=43765154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009186936A Expired - Fee Related JP5260440B2 (en) 2009-08-12 2009-08-12 Aluminum coated plate and method for producing the same

Country Status (1)

Country Link
JP (1) JP5260440B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152117A1 (en) * 2015-03-23 2016-09-29 日新製鋼株式会社 Coated al-containing formed metal material, composite obtained by joining coated al-containing formed metal material and molded article of thermoplastic resin composition, and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07228828A (en) * 1993-12-22 1995-08-29 Kobe Steel Ltd Resin-coated aluminum material or aluminum alloy material excellent in press moldability, corrosion resistance and coatability
JPH08224830A (en) * 1994-08-19 1996-09-03 Kawasaki Steel Corp Aluminum alloy plate having excellent press processability and spot welding property, and manufacture thereof
JP2000129458A (en) * 1998-10-20 2000-05-09 Kobe Steel Ltd Aluminum alloy sheet excellent in press formability and corrosion resistance
JP2000144448A (en) * 1998-11-08 2000-05-26 Nkk Corp Organic coated steel sheet excellent in corrosion resistance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07228828A (en) * 1993-12-22 1995-08-29 Kobe Steel Ltd Resin-coated aluminum material or aluminum alloy material excellent in press moldability, corrosion resistance and coatability
JPH08224830A (en) * 1994-08-19 1996-09-03 Kawasaki Steel Corp Aluminum alloy plate having excellent press processability and spot welding property, and manufacture thereof
JP2000129458A (en) * 1998-10-20 2000-05-09 Kobe Steel Ltd Aluminum alloy sheet excellent in press formability and corrosion resistance
JP2000144448A (en) * 1998-11-08 2000-05-26 Nkk Corp Organic coated steel sheet excellent in corrosion resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152117A1 (en) * 2015-03-23 2016-09-29 日新製鋼株式会社 Coated al-containing formed metal material, composite obtained by joining coated al-containing formed metal material and molded article of thermoplastic resin composition, and method for producing same

Also Published As

Publication number Publication date
JP5260440B2 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
EP3176285B1 (en) Electrical steel sheet for stacking, stacked electrical steel sheet, method of manufacturing stacked electrical steel sheet, and iron core for automotive motor
TWI613071B (en) Aluminum plastic film packaging material for lithium battery
JP5860582B2 (en) Metal surface treatment agent and metal surface treatment method
JP5718752B2 (en) Metal surface treatment agent and metal material treated with the treatment agent
TWI408255B (en) Coated steel plate
JP5231738B2 (en) Metal material processed using metal surface treatment composition
TWI646717B (en) Exterior materials for lithium-ion batteries
TWI500717B (en) Excellent corrosion resistance of the coating composition
KR20120112839A (en) Metal surface treatment agent and metal surface treatment method
KR20090122194A (en) Conductive, organic coatings with low layer thickness and good plasticity
JP2788131B2 (en) Method for forming composite film on aluminum or aluminum alloy surface
JP2005200757A (en) Surface-treated metallic sheet
JP6184266B2 (en) Aluminum paint for capacitor case
JP2005298837A (en) Metal surface treatment composition and metal plate using the same
JP5260440B2 (en) Aluminum coated plate and method for producing the same
KR970004371B1 (en) Zinc-plated steel plate having high press formability and corrosion resistance
JP2010275610A (en) Surface treated aluminum material
JP6368733B2 (en) Heat-resistant adhesive insulating coating composition and electrical steel sheet with insulating coating
JP2011005425A (en) Lubricating film coating aluminum material
TWI621526B (en) Resin coated zinc plated metal sheet
JP2015174984A (en) Coating composition for coating material for capacitor case and aluminum coating material for capacitor case
JP6946377B2 (en) Resin coated metal plate
JP2853547B2 (en) Galvanized steel sheet with excellent press formability, appearance after press forming, and corrosion resistance
JP4774629B2 (en) Polyester resin coated tin alloy plated steel sheet
JP2012076423A (en) Aluminum resin-coated material, method of manufacturing the same, and different material laminated body including the aluminum resin-coated material and steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5260440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees