JP2011032134A - Method and apparatus for producing high-purity silicon - Google Patents

Method and apparatus for producing high-purity silicon Download PDF

Info

Publication number
JP2011032134A
JP2011032134A JP2009180555A JP2009180555A JP2011032134A JP 2011032134 A JP2011032134 A JP 2011032134A JP 2009180555 A JP2009180555 A JP 2009180555A JP 2009180555 A JP2009180555 A JP 2009180555A JP 2011032134 A JP2011032134 A JP 2011032134A
Authority
JP
Japan
Prior art keywords
purity silicon
hydrogen
reducing agent
silicon
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009180555A
Other languages
Japanese (ja)
Inventor
Takemi Aizawa
健実 相沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2009180555A priority Critical patent/JP2011032134A/en
Publication of JP2011032134A publication Critical patent/JP2011032134A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Silicon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly productive method etc, for producing a high-purity silicon, capable of ensuing a low production cost and stable operation while maintaining purity of the silicon at a prescribed level. <P>SOLUTION: The high-purity silicon PS is produced by melting a purified silica RS by contacting the same to a flame produced and emitted by a burner 4 through combustion of oxyhydrogen OH in a melting furnace 3 and reducing a resulting molten product MS by adding a reducing agent to the same. Since there is no inflow of impurity from any carbon material, a step of removing carbon impurities can be omitted. Since gas reaction does not take place, the structure of an apparatus can be made compact and facility cost can be reduced. The molten product of the high-purity silicon PS is gradually discharged from a bottom part 9a of a finishing furnace 9 and unidirectionally solidified vertically downward to obtain the high-purity silicon PS in a solid state as a product. When performing the reduction, hydrogen H<SB>2</SB>can be added as a reducing agent. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、高純度シリコンの製造方法及び製造装置に関し、特に、太陽電池用結晶シリコンを製造する装置及び方法に関する。   The present invention relates to a method and apparatus for producing high-purity silicon, and more particularly to an apparatus and method for producing crystalline silicon for solar cells.

太陽光発電は、二酸化炭素を発生させずに電気エネルギーを生成させるため、生成した電気で家庭の電気需要を補い、火力発電所での化石燃料の消費量を削減することで、地球温暖化防止に貢献することができる。   Since solar power generation generates electrical energy without generating carbon dioxide, the generated electricity supplements household electricity demand and reduces fossil fuel consumption at thermal power plants, thereby preventing global warming. Can contribute.

この太陽光発電に用いられる太陽電池は、光吸収層の材料、素子の形態等で多種に分類される。例えば、GaAs系太陽電池は、宇宙用等、特に高い変換効率が必要な用途に用いられ、光吸収層(光電変換層)に有機化合物を用いた有機系太陽電池も開発されている。しかし、結晶系シリコンを用いた太陽電池が、変換効率、耐用年数に優れることから、世界的に広く用いられている。   Solar cells used for this solar power generation are classified into various types depending on the material of the light absorption layer, the form of the element, and the like. For example, GaAs solar cells are used for applications that require particularly high conversion efficiency, such as for space use, and organic solar cells using an organic compound for a light absorption layer (photoelectric conversion layer) have also been developed. However, solar cells using crystalline silicon are widely used worldwide because of their excellent conversion efficiency and longevity.

従来、太陽電池に用いられる結晶シリコンは、半導体素子用シリコンのような11N(99.999999999%)の高純度の物は必要ではないものの、6N(99.9999%)〜7N(99.99999%)程度の純度が求められ、このような高純度シリコンを得るにあたって、シーメンス法、冶金法 、流動床法、亜鉛還元法(特許文献1参照)、シリコンの塩素化合物を還元する方法(特許文献2参照)、シリカを電解還元する方法(特許文献3参照)等が用いられ、又は提案されている。   Conventionally, crystalline silicon used for solar cells is required to have a purity of about 6N (99.9999%) to 7N (99.99999%), although a high purity of 11N (99.999999999%) like silicon for semiconductor elements is not necessary. In order to obtain such high-purity silicon, Siemens method, metallurgical method, fluidized bed method, zinc reduction method (see Patent Document 1), silicon chlorine compound reduction method (see Patent Document 2), silica electrolysis A reduction method (see Patent Document 3) or the like is used or proposed.

特開2003−34519号公報JP 2003-34519 A 特開2007−284259号公報JP 2007-284259 A 特開2006−321688号公報JP 2006-321688 A

しかし、上記従来の太陽電池用結晶シリコンの製造方法においては、いずれの方法においても、得られるシリコンの純度、装置及び運転コスト、装置の安定運転等の面で課題があり、改善の余地があった。   However, in any of the above conventional methods for producing crystalline silicon for solar cells, there are problems in terms of the purity of the silicon obtained, the device and operation cost, the stable operation of the device, etc., and there is room for improvement. It was.

そこで、本発明は、太陽電池用結晶シリコンを製造するにあたって、所定のシリコン純度を維持しながら、製造コストが低く、安定運転を確保することができて生産性の高い方法及び装置を提供することを目的とする。   Accordingly, the present invention provides a method and apparatus with high productivity that can secure a stable operation at a low manufacturing cost while maintaining a predetermined silicon purity in manufacturing crystalline silicon for solar cells. With the goal.

上記目的を達成するため、本発明は、高純度シリコンの製造方法であって、精製したシリカに、酸素と水素の混合気を燃焼させて生じた火炎を接触させて該シリカを溶融させながら、還元剤を添加して該溶融物を還元することを特徴とする。ここで、酸素と水素の混合気とは、酸素と水素を別々に発生させた後、混合したものでもよく、水を電気分解して得られる、いわゆる酸水素ガスでもよい。尚、酸素と水素を別々に発生させる場合には、その混合比は概ね1:2であることが望ましい。   In order to achieve the above object, the present invention is a method for producing high-purity silicon, in which purified silica is brought into contact with a flame generated by burning a mixture of oxygen and hydrogen to melt the silica, The melt is reduced by adding a reducing agent. Here, the mixed gas of oxygen and hydrogen may be a mixture of oxygen and hydrogen generated separately, or may be a so-called oxyhydrogen gas obtained by electrolyzing water. In the case where oxygen and hydrogen are separately generated, the mixing ratio is preferably about 1: 2.

そして、本発明によれば、精製したシリカを溶融させるにあたって酸素と水素の混合気を燃焼させて生じた火炎を用いるため、炭素熱還元に比較して炭素材料から持ち込まれる不純物の流入がない。そのため、不純物としての炭素を除去する工程を簡略化することができる。   According to the present invention, since a flame generated by burning a mixture of oxygen and hydrogen is used to melt the purified silica, there is no inflow of impurities brought in from the carbon material as compared with carbothermic reduction. Therefore, the process of removing carbon as an impurity can be simplified.

また、本発明によれば、高純度シリコンの製造にあたり、H2O(水蒸気)のみ発生し、有害ガスを生じさせないため、装置構成がコンパクトになり、設備コストを低く抑えることができる。 In addition, according to the present invention, in producing high-purity silicon, only H 2 O (water vapor) is generated and no harmful gas is generated. Therefore, the apparatus configuration is compact, and the equipment cost can be kept low.

さらに、酸水素の燃焼により容易に高温が得られるため、反応温度の制御が容易となり、また、酸水素の燃焼により水蒸気のみ発生するため、従来酸素を除去するために必要であった不活性ガスの供給が不要となり、運転コストを低く抑えることができる。   Furthermore, since the high temperature can be easily obtained by the combustion of oxyhydrogen, the reaction temperature can be easily controlled, and only the water vapor is generated by the combustion of oxyhydrogen, so that the inert gas conventionally required for removing oxygen is used. This eliminates the need for supply, and the operating cost can be kept low.

上記高純度シリコンの製造方法において、前記還元剤として水素を添加することができる。尚、上記燃焼用の酸素と水素の混合気を得るにあたって酸素と水素を別々に発生させる場合には、還元剤として添加する水素の分を増量して混合気を生成する。   In the method for producing high-purity silicon, hydrogen can be added as the reducing agent. In the case of generating oxygen and hydrogen separately for obtaining the combustion oxygen and hydrogen mixture, the amount of hydrogen added as the reducing agent is increased to generate the mixture.

また、本発明は、高純度シリコンの製造装置であって、精製したシリカに、酸素と水素の混合気を燃焼させて生じた火炎を接触させて溶融させるバーナを備える溶融炉と、該溶融炉に還元剤を添加する還元剤添加装置とを備えることを特徴とする。本発明によれば、上記発明と同様に、炭素材料から持ち込まれる不純物を除去する工程を簡略化し、装置構成がコンパクトになり、設備コスト及び運転コストを低く抑えることができる。   The present invention also relates to a high-purity silicon production apparatus, comprising a melting furnace provided with a burner for bringing a flame generated by burning a mixture of oxygen and hydrogen into purified silica and melting it, and the melting furnace And a reducing agent addition device for adding a reducing agent to the liquid crystal. According to the present invention, similarly to the above-described invention, the process of removing impurities brought in from the carbon material can be simplified, the apparatus configuration can be made compact, and the equipment cost and operation cost can be kept low.

上記高純度シリコンの製造装置に、さらに、前記溶融炉で溶融還元されたシリコンを一方向凝固させる仕上炉を備えることができる。   The high-purity silicon manufacturing apparatus may further include a finishing furnace that unidirectionally solidifies the silicon melted and reduced in the melting furnace.

以上のように、本発明によれば、所定のシリコン純度を維持しながら、低い製造コストで、安定運転を確保しながら高純度シリコンを製造することができる。   As described above, according to the present invention, high-purity silicon can be manufactured while ensuring stable operation at a low manufacturing cost while maintaining a predetermined silicon purity.

本発明にかかる高純度シリコンの製造装置の一実施の形態を示すフローチャートである。It is a flowchart which shows one Embodiment of the manufacturing apparatus of the high purity silicon concerning this invention.

次に、本発明を実施するための形態について図面を参照しながら説明する。   Next, modes for carrying out the present invention will be described with reference to the drawings.

図1は、本発明にかかる高純度シリコンの製造装置(以下、「製造装置」という)の一実施の形態を示し、この製造装置1は、大別して、溶融室2内に配置された溶融炉3と、溶融炉3の上方に位置するバーナ4と、バーナ4に供給する酸水素OHを製造する酸水素製造装置6と、溶融炉3内で溶融したシリカに還元剤として添加する水素ガスH2を製造する水素製造装置7と、溶融炉3から排出された高純度シリコンPSを底部9aから鉛直下方に一方向凝固させる仕上炉9等で構成される。 FIG. 1 shows an embodiment of a high purity silicon manufacturing apparatus (hereinafter referred to as “manufacturing apparatus”) according to the present invention. This manufacturing apparatus 1 is roughly divided into a melting furnace disposed in a melting chamber 2. 3, a burner 4 located above the melting furnace 3, an oxyhydrogen production apparatus 6 for producing oxyhydrogen OH supplied to the burner 4, and a hydrogen gas H added as a reducing agent to the silica melted in the melting furnace 3 2 and a finishing furnace 9 that solidifies the high-purity silicon PS discharged from the melting furnace 3 unidirectionally downward from the bottom 9a.

溶融炉3は、供給シュート10から供給された精製したシリカRSを溶融させるために備えられ、溶融炉3の上方に配置されたバーナ4の火炎によって溶融炉3の内部のシリカRSが加熱されて溶融する。   The melting furnace 3 is provided for melting the purified silica RS supplied from the supply chute 10, and the silica RS inside the melting furnace 3 is heated by the flame of the burner 4 disposed above the melting furnace 3. Melt.

バーナ4は、酸水素製造装置6で製造した酸水素OHをバーナ先端から加熱炉3に向けて噴射し、噴射した酸水素OHを燃焼させて生じた高温の火炎を溶融炉3の内部のシリカRSに接触させてシリカRSを溶融させるために備えられる。尚、本実施の形態ではバーナ4は、1本配置されているが、バーナ4の設置本数は、1本又は2本以上から適宜選択することができる。   The burner 4 injects the oxyhydrogen OH produced by the oxyhydrogen production apparatus 6 from the tip of the burner toward the heating furnace 3, and burns the injected oxyhydrogen OH to produce a high-temperature flame inside the melting furnace 3. It is provided to melt the silica RS in contact with the RS. In the present embodiment, one burner 4 is arranged. However, the number of burners 4 to be installed can be appropriately selected from one or two or more.

酸水素製造装置6は、バーナ4に供給する酸水素OHを発生させるために設けられ、酸水素製造装置6で製造した酸水素OHは、配管6aを介してバーナ4に供給される。   The oxyhydrogen production apparatus 6 is provided to generate oxyhydrogen OH to be supplied to the burner 4, and the oxyhydrogen OH produced by the oxyhydrogen production apparatus 6 is supplied to the burner 4 through a pipe 6a.

水素製造装置7は、溶融炉3に還元剤として添加する水素ガスを製造するために備えられ、製造された水素ガスは供給管7aを介して溶融炉3内のシリカRSに添加される。   The hydrogen production apparatus 7 is provided for producing hydrogen gas to be added as a reducing agent to the melting furnace 3, and the produced hydrogen gas is added to the silica RS in the melting furnace 3 through the supply pipe 7a.

仕上炉9は、溶融炉3の下方に配置され、溶融炉3において溶融し、水素ガスによって還元され、溶融炉3の底部から抜き出された高純度シリコンPSを凝固させるために備えられる。仕上炉9の高純度シリコンPSは、底部9aから鉛直下方に一方向凝固して排出される。   The finishing furnace 9 is disposed below the melting furnace 3, and is provided to solidify the high-purity silicon PS that is melted in the melting furnace 3, reduced by hydrogen gas, and extracted from the bottom of the melting furnace 3. The high-purity silicon PS in the finishing furnace 9 is solidified in one direction downward from the bottom 9a and discharged.

次に、上記構成を有する製造装置1の動作について、図1を参照しながら説明する。   Next, the operation of the manufacturing apparatus 1 having the above configuration will be described with reference to FIG.

まず、シリカRSを供給シュート10を介して溶融炉3に供給する。次に、酸水素製造装置6で製造した酸水素OHを配管6aを介してバーナ4に供給し、バーナ先端から溶融炉3に向けて噴射して燃焼させる。この燃焼によって発生する高温の火炎によりシリカRSが溶融する。一方、酸水素OHの燃焼により生じた水蒸気Sは、排気部2aから溶融室2の外部に排出される。   First, silica RS is supplied to the melting furnace 3 via the supply chute 10. Next, the oxyhydrogen OH produced by the oxyhydrogen production device 6 is supplied to the burner 4 through the pipe 6a, and is injected from the tip of the burner toward the melting furnace 3 to be burned. Silica RS is melted by the high-temperature flame generated by this combustion. On the other hand, the water vapor S generated by the combustion of the oxyhydrogen OH is discharged from the exhaust part 2 a to the outside of the melting chamber 2.

上記シリカRSの溶融と同時に、水素製造装置7から配管7aを介して溶融炉3に水素ガスを吹き込み、溶融したシリカRSを還元し、還元によって高純度シリコンPSの溶融物を得る。尚、還元剤としての上記水素ガスは、配管7aからではなく、酸水素OHとともに配管6aを介して添加することもできる。   Simultaneously with the melting of the silica RS, hydrogen gas is blown into the melting furnace 3 from the hydrogen production device 7 through the pipe 7a, the fused silica RS is reduced, and a high-purity silicon PS melt is obtained by reduction. In addition, the said hydrogen gas as a reducing agent can also be added through the piping 6a with oxyhydrogen OH instead of from the piping 7a.

上述のようにして得られた溶融状態の高純度シリコンPSを、溶融炉3の底部から仕上炉9に供給し、仕上炉9において凝固させる。仕上炉9の底部9aから高純度シリコンPSを徐々に排出しながら鉛直下方に一方向凝固させ、製品として固体状態の高純度シリコンPSが得られる。   The molten high-purity silicon PS obtained as described above is supplied from the bottom of the melting furnace 3 to the finishing furnace 9 and solidified in the finishing furnace 9. While the high purity silicon PS is gradually discharged from the bottom portion 9a of the finishing furnace 9, it is solidified unidirectionally downward, and a solid high purity silicon PS is obtained as a product.

尚、本発明では、シリカRSを溶融させるにあたって酸水素OHを燃焼させて生じた火炎を用いるため、従来の炭素熱還元に比較して炭素材料からの不純物の流入がない。そのため、炭素材料から持ち込まれる不純物を除去する工程を簡略化することができる。また、その他の金属不純物の除去については、大気中の酸素雰囲気でシリカRSを加熱することで、ガス化させて除去したり、塩素ガスを導入して塩化揮発法によって非鉄金属を塩化物ガスとして除去することができる。   In the present invention, since a flame generated by burning oxyhydrogen OH is used to melt the silica RS, there is no inflow of impurities from the carbon material as compared with the conventional carbothermal reduction. Therefore, the process of removing impurities brought in from the carbon material can be simplified. As for the removal of other metal impurities, the silica RS is heated in an oxygen atmosphere in the atmosphere to be gasified and removed, or chlorine gas is introduced and nonferrous metal is converted into chloride gas by the chlorination volatilization method. Can be removed.

尚、上記実施の形態においては、溶融したシリカRSを還元するにあたって水素ガスを用いる場合を例示したが、この他に、亜鉛ガス等を還元剤として用いることもできる。   In the above embodiment, the case where hydrogen gas is used to reduce the fused silica RS is exemplified, but in addition to this, zinc gas or the like can also be used as a reducing agent.

また、上記実施の形態においては、仕上炉9の底部9aから高純度シリコンPSを徐々に排出しながら一方向凝固させたが、るつぼを用いて溶融凝固させることもできる。   In the above embodiment, the high-purity silicon PS is solidified in one direction while gradually discharging from the bottom 9a of the finishing furnace 9, but it can be melted and solidified using a crucible.

また、排気部2aから排出された高温の水蒸気Sを用いて発電することもでき、発電によって得られた電力を酸水素製造装置6、水素製造装置7等で用いることもできる。   Moreover, it is also possible to generate electric power using the high-temperature steam S discharged from the exhaust part 2a, and the electric power obtained by the electric power generation can be used in the oxyhydrogen production apparatus 6, the hydrogen production apparatus 7 and the like.

1 高純度シリコンの製造装置
2 溶融室
2a 排気部
3 溶融炉
4 バーナ
6 酸水素製造装置
6a 配管
7 水素製造装置
7a 配管
9 仕上炉
9a 底部
10 供給シュート
DESCRIPTION OF SYMBOLS 1 High-purity silicon production apparatus 2 Melting chamber 2a Exhaust part 3 Melting furnace 4 Burner 6 Oxyhydrogen production apparatus 6a Pipe 7 Hydrogen production apparatus 7a Pipe 9 Finishing furnace 9a Bottom 10 Supply chute

Claims (5)

精製したシリカに、酸素と水素の混合気を燃焼させて生じた火炎を接触させて該シリカを溶融させながら、還元剤を添加して該溶融物を還元することを特徴とする高純度シリコンの製造方法。   A high-purity silicon characterized by adding a reducing agent to reduce the melt while bringing purified silica into contact with a flame generated by burning a mixture of oxygen and hydrogen and melting the silica. Production method. 前記還元剤として水素を添加することを特徴とする請求項1に記載の高純度シリコンの製造方法。   2. The method for producing high-purity silicon according to claim 1, wherein hydrogen is added as the reducing agent. 前記酸素と水素は、水を電気分解して得られたものであることを特徴とする請求項1又は2に記載の高純度シリコンの製造方法。   The method for producing high-purity silicon according to claim 1 or 2, wherein the oxygen and hydrogen are obtained by electrolyzing water. 精製したシリカに、酸素と水素の混合気を燃焼させて生じた火炎を接触させて溶融させるバーナを備える溶融炉と、
該溶融炉に還元剤を添加する還元剤添加装置とを備えることを特徴とする高純度シリコンの製造装置。
A melting furnace provided with a burner that contacts and melts a flame generated by burning a mixture of oxygen and hydrogen with purified silica; and
An apparatus for producing high-purity silicon, comprising: a reducing agent addition device for adding a reducing agent to the melting furnace.
前記溶融炉で溶融還元されたシリコンを一方向凝固させる仕上炉を備えることを特徴とする請求項4に記載の高純度シリコンの製造装置。   The apparatus for producing high-purity silicon according to claim 4, further comprising a finishing furnace for unidirectionally solidifying silicon melted and reduced in the melting furnace.
JP2009180555A 2009-08-03 2009-08-03 Method and apparatus for producing high-purity silicon Withdrawn JP2011032134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009180555A JP2011032134A (en) 2009-08-03 2009-08-03 Method and apparatus for producing high-purity silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009180555A JP2011032134A (en) 2009-08-03 2009-08-03 Method and apparatus for producing high-purity silicon

Publications (1)

Publication Number Publication Date
JP2011032134A true JP2011032134A (en) 2011-02-17

Family

ID=43761582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009180555A Withdrawn JP2011032134A (en) 2009-08-03 2009-08-03 Method and apparatus for producing high-purity silicon

Country Status (1)

Country Link
JP (1) JP2011032134A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112313172A (en) * 2018-06-15 2021-02-02 太阳能硅有限公司 Method for producing elemental silicon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112313172A (en) * 2018-06-15 2021-02-02 太阳能硅有限公司 Method for producing elemental silicon

Similar Documents

Publication Publication Date Title
JP5657687B2 (en) Method for purifying metallic silicon
WO2006081661A1 (en) Coal gasification process and apparatus
JP3780166B2 (en) Method and apparatus for producing amorphous silica from silicon and silicon-containing materials
KR101157784B1 (en) System for producing zinc oxide
JPWO2008035799A1 (en) Method for purifying silicon, silicon, and solar cell
TWI403461B (en) Method and apparatus for improving yield and yield of metallurgical silicon
RU2451057C2 (en) Method of and device for energy generation
JP5935605B2 (en) Steelworks operating method and carbon dioxide gas decomposition apparatus
KR20160123376A (en) Method and apparatus for separation of offgas in the combustion of particular metals
JPWO2013190945A1 (en) Method for producing metallic silicon and porous carbon
JP2010523454A (en) Method and reactor for producing high purity silicon
JP2011032134A (en) Method and apparatus for producing high-purity silicon
JP2010100508A (en) Production method of high purity silicon
US9005570B2 (en) Method for treating a carbon dioxide-containing waste gas from an electrofusion process
JP2011068519A (en) Method for producing silicon tetrachloride
JP2011098861A (en) Method and apparatus for producing solar cell silicon
JP2010052960A (en) Method for production of high-purity silicon, production apparatus, and high-purity silicon
KR101287874B1 (en) Method for removing impurities in silicon and apparatus thereof
JP2007055891A (en) Method for manufacturing polycrystalline silicon
JP2011121848A (en) Method for producing high purity silicon
JP2016540897A (en) A system that uses residual heat to carry out electrochemical reactions
JP4986471B2 (en) Silicon slag refining method
CN105940765A (en) Method for operating an electric arc furnace, and electric arc furnace
CN101311660A (en) Polycrystalline silicon reducing furnace water cooled electrode
JP7095885B2 (en) Silicon manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20121106