JP2011030110A - 半導体装置およびそれを用いた高周波スイッチ並びに高周波モジュール - Google Patents

半導体装置およびそれを用いた高周波スイッチ並びに高周波モジュール Download PDF

Info

Publication number
JP2011030110A
JP2011030110A JP2009175920A JP2009175920A JP2011030110A JP 2011030110 A JP2011030110 A JP 2011030110A JP 2009175920 A JP2009175920 A JP 2009175920A JP 2009175920 A JP2009175920 A JP 2009175920A JP 2011030110 A JP2011030110 A JP 2011030110A
Authority
JP
Japan
Prior art keywords
semiconductor layer
gate electrode
semiconductor device
terminal
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009175920A
Other languages
English (en)
Inventor
Hiroaki Kono
広明 河野
Masahiko Inamori
正彦 稲森
Shinichi Sonetaka
真一 曽根高
Junji Kaido
淳司 海藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009175920A priority Critical patent/JP2011030110A/ja
Priority to US12/840,789 priority patent/US20110025579A1/en
Publication of JP2011030110A publication Critical patent/JP2011030110A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • H01L29/8124Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate with multiple gate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3036Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
    • H03G3/3042Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers in modulators, frequency-changers, transmitters or power amplifiers

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electronic Switches (AREA)
  • Transceivers (AREA)
  • Transmitters (AREA)

Abstract

【課題】高周波信号の電力レベルを検出する半導体装置であって、低挿入損失および低歪特性を実現する半導体装置を提供する。
【解決手段】本発明の半導体装置は、高周波信号の電力レベルを検出する半導体装置であって、半導体層109と、ソース電極100およびドレイン電極101と、半導体層109とショットキー接触する第1のゲート電極102と、第1のゲート電極102とドレイン電極101との間の半導体層109の上に設けられ、半導体層109とショットキー接触する第2のゲート電極103とを有し、高周波信号がソース電極100に入力されるスイッチFET608と、一端が第1のゲート電極102と電気的に接続され、他端が容量106を介してドレイン電極101と電気的に接続された抵抗105と、抵抗105と容量106との接続点に電気的に接続された電力検出用端子107とを備える。
【選択図】図3

Description

本発明は、主に移動体通信機器等に用いられる高周波信号の電力レベルを検出する装置に関する。
携帯電話機等の移動体通信機器は、電波利用効率および消費電力の観点から、基地局との距離等に応じて送信電力を制御している。一般に、送信電力の制御は、高周波フロントエンドモジュール(高周波モジュール)に組み込まれる高周波電力増幅器の増幅利得を調整することでなされる。高周波電力増幅器では、出力整合回路のインピーダンスによって出力電力レベルと効率が変化するが、理論的に単一のインピーダンスでは最大出力電力レベルと最大効率とを同時に得る事は出来ない。通常、出力整合回路のインピーダンスは送信電力レベルが最大の時に最大効率が得られるように設計されるため、送信電力レベルが小さい時には効率が低下する。そこで、出力電力レベルを検出し、その電力レベルに応じて出力整合回路のインピーダンスを制御することで、低出力電力レベル時の効率を改善する技術が知られている(例えば特許文献1参照)。
特表2005−528001号公報
図10に上述の技術を適用した高周波モジュールの構成例のブロック図を示す。なお図10では、簡単のため、送受信経路数がそれぞれ1経路の高周波モジュールを例示するが、さらに多くの経路を有する場合であっても、以下に説明する動作原理は同様である。
図10の高周波モジュールは、送信系ベースバンド部200、受信系ベースバンド部201、高周波電力増幅器202、出力整合回路203、電力検出回路204、高周波スイッチ205、アンテナ206、および制御回路207を備える。
この高周波モジュールでは、送信系ベースバンド部200で変調された高周波信号は、高周波電力増幅器202で電力増幅された後、出力整合回路203および高周波スイッチ205を介し、アンテナ206より放射される。また、前述したように、高周波信号の電力レベルは電力検出回路204で検出され、制御回路207により電力レベルに応じて出力整合回路203のインピーダンスが最適化されるため、広い出力電力範囲で高い効率を得ることができる。なお、制御回路207は、高周波信号の電力レベルに応じて出力整合回路203のインピーダンスを可変するための制御信号を発生する。また、高周波スイッチ205は送信経路と受信経路の切り替えに使用される。
出力電力レベルの検出回路(電力検出回路204)には、回路構成が簡単であり、比較的良好な検出感度を実現できることから、ダイオードの整流性を用いた半波整流回路が広く用いられている。図11は半波整流回路を用いた電力検出回路204の回路図を例示したものである。
電力検出回路204は、高周波信号経路つまり入力端子300と出力端子301とをつなぐ高周波信号経路302に装荷されており、電力検出用端子303と、ダイオード304と、抵抗305と、直流カット容量306と、平滑容量307と、接地端子308とを備える。
上記構造の高周波モジュールでは、高周波電力増幅器202で電力増幅された高周波信号が入力端子300より入力され、高周波スイッチ205やアンテナ206などが接続される出力端子301から出力される。この時、ダイオード304は入力された高周波信号の電圧値がダイオード304の立ち上がり電圧よりも高い時は導通状態、低い時は遮断状態となる。したがって、図12Aに例示するような波形の高周波信号が入力された場合、電力検出用端子303には平滑容量307の充放電に合わせて入力信号(入力された高周波信号)を半波整流した検出信号(図12Bの波形の検出信号)が出力され、その時間積分から入力信号の電力レベルを反映した信号が検出される。
なお、直流カット容量306は、高周波信号経路302の直流バイアスと、ダイオード304の直流バイアスとを遮断するために実装される。また、平滑容量307は、必ずしも必要ではないが、電力検出用端子303に出力される検出信号を平滑化するために実装される場合がある。
平滑容量307を実装しない場合の検出信号の波形を図12Cに示す。検出信号の平滑性は損なわれるが、この場合でも平滑容量307が実装された場合と同様に検出信号の時間積分から高周波信号の電力レベルを検出することができる。
ところで、図10及び図11に示した高周波モジュールは次のような問題を有する。すなわち、上記のような構成の電力検出回路204を高周波信号経路302に付加すると、高周波信号の一部が電力検出回路204を介して接地端子308に漏洩するため、挿入損失が悪化するという問題を有する。さらに、ダイオード304の電流−電圧特性の非線形性に起因し、高調波歪が発生するという問題を有する。
そこで本発明は、かかる問題点に鑑み、高周波信号の電力レベルを検出する半導体装置であって、低挿入損失および低歪特性を実現する半導体装置およびそれを用いた高周波スイッチ並びに高周波モジュールを提供することを目的とする。
上述の課題を解決するために、本発明の半導体装置は、高周波信号の電力レベルを検出する半導体装置であって、半導体層と、前記半導体層の上に設けられたソース電極およびドレイン電極と、前記ソース電極と前記ドレイン電極との間の前記半導体層の上に設けられ、前記半導体層とショットキー接触する第1のゲート電極と、前記第1のゲート電極と前記ドレイン電極との間の前記半導体層の上に設けられ、前記半導体層とショットキー接触する第2のゲート電極とを有し、高周波信号が前記ソース電極に入力される第1のFETと、一端が前記第1のゲート電極と電気的に接続され、他端が容量を介して前記ドレイン電極と電気的に接続された抵抗と、前記抵抗と前記容量との接続点に電気的に接続された電力検出用端子とを備えることを特徴とする。
これにより、入力された高周波信号の一部をフィードバックさせて入力信号の電力レベルを検出するため、接地端子への信号漏洩は殆ど発生せず、挿入損失が改善される。また、ダイオードを用いることなく電力レベルを検出することができるので、歪特性が改善される。その結果、高周波信号の電力レベルを検出する半導体装置であって、低挿入損失および低歪特性の半導体装置を実現することができる。
また本発明は、高周波信号の電力レベルを検出する半導体装置であって、半導体層と、前記半導体層の上に設けられたソース電極およびドレイン電極と、前記ソース電極と前記ドレイン電極との間の前記半導体層の上に設けられ、前記半導体層とショットキー接触する第1のゲート電極と、前記第1のゲート電極と前記ドレイン電極との間の前記半導体層の上に設けられ、前記半導体層とショットキー接触する第2のゲート電極とを有し、高周波信号が前記ソース電極に入力される第1のFETと、一端が前記第2のゲート電極と電気的に接続され、他端が容量を介して前記ソース電極と電気的に接続された抵抗と、前記抵抗と前記容量との接続点に電気的に接続された電力検出用端子とを備えることを特徴とする半導体装置とすることもできる。
これにより、入力された高周波信号の一部をフィードフォワードさせて入力信号の電力レベルを検出するため、接地端子への信号漏洩は殆ど発生せず、挿入損失が改善される。また、ダイオードを用いることなく電力レベルを検出することができるので、歪特性が改善される。その結果、高周波信号の電力レベルを検出する半導体装置であって、低挿入損失および低歪特性の半導体装置を実現することができる。
また本発明は、前記半導体装置と、前記ソース電極と電気的に接続され、高周波信号が入力される第1の端子と、第2のFETを介して前記ドレイン電極と電気的に接続され、高周波信号が出力される第2の端子と、前記第1のFETと前記第2のFETとの接続点に電気的に接続され、高周波信号が入力され、前記第1の端子に入力された高周波信号が出力される第3の端子とを備えることを特徴とする高周波スイッチとすることもできる。
また本発明は、前記高周波スイッチと、出力整合回路を介して前記第1の端子と電気的に接続され、増幅した高周波信号を前記第1の端子に供給する増幅器と、前記第2の端子と電気的に接続され、高周波信号を送受信するアンテナと、前記電力検出用端子の電位に基づいて前記出力整合回路のインピーダンスを制御する制御回路とを備えることを特徴とする高周波モジュールとすることもできる。
これにより、高周波モジュールにおいて低挿入損失および低歪特性を実現することができる。また、高周波スイッチが入力信号の電力レベルを検出する機能を有するため、高周波モジュールにおいて電力検出回路を別途具備する場合と比べチップの小型化とコストの低減とを実現することができる。
本発明によれば、挿入損失が小さく、かつ歪特性に優れた高周波信号の電力検出回路およびそれを用いた高周波スイッチ並びに高周波モジュールを提供することができる。
本発明の実施の形態に係る高周波モジュールの構成を例示するブロック図である。 実施例1に係る高周波スイッチの構成を例示する回路図である。 実施例1に係る電力検出回路の構成を示す断面図である。 電力検出回路に入力される入力信号の波形を例示する図である。 電力検出回路の電力検出用端子に出力される出力信号の波形を例示する図である。 従来技術に係る高周波モジュールと実施例1に係る高周波スイッチを用いた高周波モジュールの挿入損失を表す図である。 実施例2に係る電力検出回路の構成を示す断面図である。 実施例3に係る電力検出回路の構成を示す断面図である。 従来技術に係る高周波スイッチならびに実施例1および3に係る高周波スイッチの2次高調波歪を表す図である。 従来技術に係る高周波スイッチならびに実施例1および3に係る高周波スイッチの3次高調波歪を表す図である。 実施例4に係る電力検出回路の構成を示す断面図である。 従来の高周波モジュールの構成を例示するブロック図である。 従来の電力検出回路を例示する回路図である。 電力検出回路に入力される入力信号の波形を例示する図である。 電力検出回路の電力検出用端子に出力される検出信号の波形を例示する図である。 平滑容量を実装しない場合に電力検出回路の電力検出用端子に出力される検出信号の波形を例示する図である。
以下、本発明を実施するための最良の形態に関するいくつかの例について、図面を参照しながら説明する。
なお、図面において、実質的に同一の構成、動作、および効果を表す要素については、同一の符号を付す。また、以下において記述される数値は、すべて本発明を具体的に説明するために例示するものであり、本発明は例示された数値に制限されない。さらに、構成要素間の接続関係は、本発明を具体的に説明するために例示するものであり、本発明の機能を実現する接続関係はこれに限定されない。またさらに、特に限定されるものではないが、本発明はSOI(Silicocn On Insulator)半導体基板や砒化ガリウムを始めとする化合物半導体基板上に形成された高周波信号の電力レベルを検出する装置において、とりわけ好適である。またさらに、本発明を構成するFETは、HEMT(High Electron Mobility Transistor)や、MESFET(MEtal Semiconductor FET)、およびJFET(Junction FET)など、ゲート電極とソース電極との間あるいはゲート電極とドレイン電極との間に整流性を有するFETであれば、その種類は特に限定されない。さらにまた、FETのソース電極およびドレイン電極は同一の構造および機能である場合が殆どであり、明確に区別されないことも多いが、以下の説明では便宜上、信号が入力される電極をソース電極、出力される電極をドレイン電極と表記する。
一般に、高周波モジュールでは送信時と受信時の別、あるいは通信中の周波数帯域や通信方式に応じて信号経路を選択するための高周波スイッチを備える場合が多い。本実施の形態の高周波モジュールは、高周波スイッチに入力信号の電力レベルを検出する機能を付加することを要旨とする。
図1は本実施の形態に係る高周波モジュールの構成を例示するブロック図である。なお、簡単のため、図1では送受信経路数がそれぞれ1経路の高周波モジュールを例示するが、さらに多くの経路を有するものであっても、その構成図は同様である。
この高周波モジュールは、送信系ベースバンド部200、受信系ベースバンド部201、高周波電力増幅器202、出力整合回路203、電力検出回路606を有する高周波スイッチ610、アンテナ206、および制御回路207を備える。
高周波スイッチ610は、出力整合回路203からの高周波信号が入力される入力端子600と、電力検出回路606からの検出信号を制御回路207に出力するための電力検出用端子603と、アンテナ206で受信した高周波信号を受信系ベースバンド部201に出力するための出力端子602と、入力端子600の高周波信号をアンテナ206に出力し、かつアンテナ206からの高周波信号を受け取るための入出力端子601とを有する。
高周波スイッチ610は、高周波信号の送受信を切替えるスイッチの機能を有し、送信時には入力端子600と入出力端子601とを電気的に接続し、受信時には出力端子602と入出力端子601とを電気的に接続する。
受信系ベースバンド部201は、出力端子602と電気的に接続される。
高周波電力増幅器202は、出力整合回路203を介して入力端子600と電気的に接続され、送信系ベースバンド部200から出力された高周波信号を増幅し、増幅した高周波信号を入力端子600に供給する。
アンテナ206は、入出力端子601と電気的に接続され、高周波信号を送受信する。
制御回路207は、電力検出用端子603と電気的に接続され、検出信号つまり電力検出用端子603の電位に基づいて出力整合回路203のインピーダンスを制御する。
電力検出回路606は、高周波信号の電力検出機能を有する本発明の半導体装置の一例であり、高周波スイッチ610に内包される。電力検出回路606は、送信される高周波信号の電力レベルを該高周波信号の一部をフィードバック又はフィードフォワードさせて検出し、電力検出用端子603の電位により示す。
以上のように本実施の形態の高周波モジュールでは、高周波スイッチ610に内包される電力検出回路606は高周波信号の一部をフィードバック又はフィードフォワードさせて電力レベルを検波するため、電力検出回路を介した接地端子への信号漏洩は殆ど発生しない。その結果、挿入損失が小さい高周波モジュールを実現することができる。
また、本実施の形態の高周波モジュールでは、高周波スイッチ610に内包される電力検出回路606はダイオードを用いることなく電力レベルを検出する。その結果、歪特性に優れた高周波モジュールを実現することができる。
また、本実施の形態に係る高周波モジュールにおいて、高周波スイッチ610に内包される電力検出回路606は小型である。その結果、電力検出回路606を別途付加する場合に比べ、チップの小型化と、それに伴うコスト削減の付帯的効果も得られる。
図2は本実施例に係る高周波スイッチ610の構成を例示する回路図である。図3は高周波スイッチ610に内含される電力検出回路606の構成を示す断面図である。
高周波スイッチ610は、電力検出回路606と、入力端子600と、入出力端子601と、出力端子602と、電力検出用端子603と、高周波スイッチ610の制御回路(図外)に接続された制御端子604と、複数の電位固定用抵抗605と、スイッチFET607とによって構成される。
電力検出回路606は、高周波信号の電力レベルを検出する半導体装置であって、スイッチFET608、抵抗105、容量106、電力検出用端子107、および高周波スイッチ制御端子108を備える。電力検出回路606は電力増幅された高周波信号が通過する高周波信号経路、つまり入力端子600と入出力端子601との間の高周波信号経路に装荷される。
スイッチFET608は、本発明の第1のFETの一例であり、ソース電極100、ドレイン電極101、第1のゲート電極102、第2のゲート電極103、および半導体基板104を備える。半導体基板104は、例えば半導体層109および絶縁性半導体層110で構成される。
ソース電極100およびドレイン電極101は、半導体層109の上に設けられる。
第1のゲート電極102は、ソース電極100とドレイン電極101との間の半導体層109の上に設けられ、半導体層109とショットキー接触する。
第2のゲート電極103は、第1のゲート電極102とドレイン電極101との間の半導体層109の上に設けられ、半導体層109とショットキー接触する。
抵抗105の一端は第1のゲート電極102と電気的に接続され、他端は容量106を介してドレイン電極101と電気的に接続される。
電力検出用端子107は、抵抗105と容量106との接続点に電気的に接続され、さらに電力検出用端子603に電気的に接続される。
高周波スイッチ制御端子108は、第2のゲート電極103に電気的に接続され、さらに電位固定用抵抗605を介して制御端子604に電気的に接続される。
入力端子600は本発明の第1の端子の一例であり、ソース電極100と電気的に接続され、入力端子600には出力整合回路203からの高周波信号が入力される。
出力端子602は本発明の第2の端子の一例であり、スイッチFET607を介してドレイン電極101と電気的に接続され、出力端子602からは入出力端子601に入力された高周波信号が出力される。スイッチFET607は、本発明の第2のFETの一例である。
入出力端子601は、本発明の第3の端子の一例であり、スイッチFET607とスイッチFET608との接続点に電気的に接続され、入力端子600に入力された高周波信号が出力され、アンテナ206により受信した高周波信号が入力される。
図2では、簡単のため入力端子数が1、出力端子数が2の送信側のスイッチFET608にデュアルゲートのFETを用い、受信側のスイッチFET607にシングルゲートのFETを用いた高周波スイッチ610が例示されている。
なお、電位固定用抵抗605の結線は一般的な結線方法を例示したものであり、本実施例の結線方法はこれに限定されない。また、特に限定されないが、例えば高周波スイッチ610がマルチモード対応の高周波モジュールに用いられ入力端子を複数有する場合、複数の入力端子とアンテナ206に接続された入出力端子601との間に電力検出回路606がそれぞれ装荷されてもよい。複数の入力端子を有する場合であっても、電力レベルを検出する必要が無い高周波信号経路が存在する場合は、電力レベルの検出が必要な高周波信号経路にのみ電力検出回路606が設けられればよいことは言うまでも無い。
図3の電力検出回路606において、高周波電力増幅器202で増幅された高周波信号はスイッチFET608のソース電極100から入力され、半導体層109を通過し、ドレイン電極101より出力される。ドレイン電極101から出力された高周波信号は大部分が後段に接続されたアンテナ206から放射されるが、一部は容量106を介し、第1のゲート電極102へとフィードバックされる。フィードバックされる高周波信号(フィードバック信号)の電力レベルおよび位相は、抵抗105の抵抗値、容量106の容量値およびそれらを接続する信号経路の経路長によって調整可能である。
また、第1のゲート電極102の直下の半導体層109を通過する高周波信号とフィードバック信号との電圧振幅差および位相差に応じ、第1のゲート電極102および半導体層109により形成されるショットキーダイオードに電位差が生じ、半波整流によるダイオード検波が可能となる。
さらに、抵抗105は半導体層109からの信号漏洩の防止、容量106は半導体層109と電力検出用端子107との間の直流電圧および直流電流の遮断のために具備されるが、上述の通り、フィードバック信号の電力レベルおよび位相の調整機能も兼ねる。
さらにまた、高周波スイッチ制御端子108に制御信号を印加することで、第2のゲート電極103直下の空乏層幅が制御され、通常の高周波スイッチと同様にソース電極100とドレイン電極101との間の導通と遮断を制御することが出来る。
なお、電力検出用端子107の直流電位はソース電極100の直流電位よりも高くされてもよい。つまり第1のゲート電極102には、半波整流に適した直流電圧が適宜印加されてもよく、特に限定されないが、例えば第1のゲート電極102により形成されるショットキーダイオードの立ち上がり電圧以下の正電圧が印加されてもよい。
以下に、本実施例に係る高周波スイッチ610により得られる効果をシミュレーションにより検証した結果を例示する。なお、シミュレーションに用いた回路は図2に例示した回路であり、スイッチFET607及び608のゲート幅は3mm、入力電力は20dBm、入力周波数は2GHzである。
初めに、半波整流動作の検証結果を示す。図4A及び図4Bは本実施例に係る高周波スイッチ610における半波整流動作のシミュレーション結果を例示する図であり、図4Aは入力端子600への入力信号の波形を示し、図4Bは電力検出用端子603からの出力信号の波形を示している。
第1のゲート電極102により形成されるショットキーダイオードは、印加電圧に応じて導通状態および遮断状態のいずれかとなり、図4Bに例示するように、電力検出用端子107には半波整流された電圧波形の信号が検出信号として出力される。この検出信号の時間積分より電力レベルを反映した信号の検出が可能となる。
次に、従来技術に係る高周波モジュール(図10の高周波モジュール)と本実施例に係る高周波スイッチ610を用いた高周波モジュール(図1の高周波モジュール)の挿入損失を比較した結果を図5に例示する。
本実施例に係る高周波スイッチ610を用いた高周波モジュールでは、図5に例示するように、従来技術に係る高周波モジュールに比べ、挿入損失が改善している。本実施例に係る電力検出回路606では、高周波信号の一部をフィードバックさせて電力レベルを検波するため、電力検出回路を介した接地端子への信号漏洩は殆ど発生せず、従来技術に係る高周波モジュールに比べ、挿入損失が改善される。
本実施例では、実施例1と異なる点を中心に説明する。その他の構成、動作、および効果は、実施例1と同等であるので、説明を省略する。
図6は本実施例に係る高周波スイッチ610に内含される電力検出回路606の別の構成を示す断面図である。
本実施例に係る電力検出回路606は、スイッチFET608、抵抗105、容量106、電力検出用端子107、および高周波スイッチ制御端子108を備える。スイッチFET608は、ソース電極100、ドレイン電極101、第1のゲート電極102、第2のゲート電極103、および半導体基板104を備える。半導体基板104は、例えば半導体層109と、絶縁性半導体層110で構成される。
抵抗105の一端は第2のゲート電極103と電気的に接続され、他端は容量106を介してソース電極100と電気的に接続される。
実施例1に係る電力検出回路では高周波信号の一部がフィードバックされ、その信号により電力レベルが検出されるのに対し、本実施例に係る電力検出回路606では入力信号がフィードフォワードされて電力レベルの検出が行われる。
図6の電力検出回路606において、高周波電力増幅器202で増幅された高周波信号は大部分がソース電極100から入力され、半導体層109を通過し、ドレイン電極101より出力される。一方、高周波電力増幅器202で増幅された高周波信号の一部は容量106を介し、第2のゲート電極103へとフィードフォワードされる。フィードフォワードされる高周波信号(フィードフォワード信号)の電力レベルおよび位相は、抵抗105の抵抗値、容量106の容量値およびそれらを接続する信号経路の経路長によって調整可能である。第2のゲート電極103の直下の半導体層109を通過する高周波信号と、フィードフォワード信号との電圧振幅差および位相差に応じ、第2のゲート電極103および半導体層109により形成されるショットキーダイオードに電位差が生じ、半波整流によるダイオード検波が可能となる。
また、高周波スイッチ制御端子108に制御信号を印加することで、第2のゲート電極103直下の空乏層幅が制御され、通常の高周波スイッチと同様にソース電極100とドレイン電極101との間の導通と遮断を制御することが出来る。
本実施例に係る高周波スイッチ610を用いた高周波モジュールでは、実施例1に係る高周波スイッチを用いた高周波モジュールと同様に、接地端子への信号漏洩は抑えられるため、挿入損失が改善される。
本実施例に係る高周波スイッチ610を用いた高周波モジュールにより得られる効果は実施例1に係る高周波スイッチを用いた高周波モジュールと同様であるが、実施例1と実施例2の構成を適宜選択することで、素子レイアウトや信号の位相調整などの回路設計自由度を高めることができる。
実施例3では、実施例1と異なる点を中心に説明する。その他の構成、動作、および効果は、実施例1と同等であるので、説明を省略する。
図7は本実施例に係る高周波スイッチ610に内包される電力検出回路606の別の構成を示す断面図である。
本実施例に係る電力検出回路606は、スイッチFET608、抵抗105、容量106、電力検出用端子107、高周波スイッチ制御端子108および位相器1000を備える。スイッチFET608は、ソース電極100、ドレイン電極101、第1のゲート電極102、第2のゲート電極103、および半導体基板104を備える。半導体基板104は、例えば半導体層109と、絶縁性半導体層110で構成される。
位相器1000は、第1のゲート電極102とドレイン電極101との間に挿入され、抵抗105および容量106と直列に接続される。
図7の電力検出回路606では、フィードバック信号の位相が制御される。すなわち、図7の電力検出回路606では、実施例1に係る電力検出回路と同様に、ドレイン電極101から出力された高周波信号の一部は、第1のゲート電極102にフィードバックされる。この時、第1のゲート電極102および半導体層109により形成されるショットキーダイオードの電流−電圧特性の非線形性に起因し、フィードバック信号の高調波が発生する。図7の電力検出回路606では、フィードバック信号の位相を適当に制御し、上述の高調波成分の位相を、第1のゲート電極102直下の半導体層109を透過する高周波信号成分と概ね逆相にすることで、高調波信号成分を互いに補償する。すなわち、図7の電力検出回路606はフィードバック補償による歪特性改善の機能を付加する構成を持つ。
以下に本実施例に係る高周波スイッチ610により得られる効果をシミュレーションにより検証した結果を例示する。なお、シミュレーションに用いた回路は図2に例示した回路であり、スイッチFET607および608のゲート幅は3mm、入力電力は20dBm、入力周波数は2GHzである。
図8A及び図8Bは本実施例に係る高周波スイッチ610における半波整流動作のシミュレーション結果を例示する図である。図8Aは従来技術に係る高周波スイッチならびに実施例1および3に係る高周波スイッチの2次高調波歪を表す図であり、図8Bは従来技術に係る高周波スイッチならびに実施例1および3に係る高周波スイッチの3次高調波歪を表す図である。
図8Bに例示するように、本実施例に係る高周波スイッチ610では、従来技術および実施例1に係る高周波スイッチに比べ、位相器1000によりフィードバック信号の位相を最適化することで、2次高調波歪が改善している。
なお、図8A及び図8Bの例では2次高調波歪の改善量が最大となるように位相に調整した結果を例示しているが、位相によっては3次高調波歪を改善することも可能である。
また、図7ではドレイン電極101と容量106との間に位相器1000を設けているが、容量106と抵抗105との間や抵抗105と第1のゲート電極102との間に位相器1000が設けられても良い。
また、本実施例に係る高周波スイッチ610ではフィードバック信号の位相調整を行うことが可能であれば位相器1000の種類は特に限定されない。例えば、位相制御用の煩雑な回路を設けずに、信号線路の線路長により位相が調整されてもよい。
さらに、本実施例に係る高周波スイッチ610は実施例2に係る高周波スイッチと組み合わせられてもよい。その場合、位相器1000は図6において、第2のゲート電極103とソース電極100との間に挿入され、抵抗105および容量106と直列に接続されれば良い。具体的には、位相器1000は図6において、ソース電極100と容量106との間、容量106と抵抗105との間または抵抗105と第2のゲート電極103との間に挿入されれば良い。
本実施例では、実施例1と異なる点を中心に説明する。その他の構成、動作、および効果は、実施例1と同等であるので、説明を省略する。
図9は本実施例に係る高周波スイッチ610に内包される電力検出回路606の別の構成を示す断面図である。
本実施例に係る電力検出回路606は、スイッチFET608、抵抗105、容量106、電力検出用端子107、および高周波スイッチ制御端子108を備える。スイッチFET608は、ソース電極100、ドレイン電極101、第1のゲート電極102、第2のゲート電極103、半導体基板104および第3のゲート電極1200を備える。半導体基板104は、例えば半導体層109と、絶縁性半導体層110で構成される。
第3のゲート電極1200は、ソース電極100と第1のゲート電極102との間の半導体層109の上に設けられ、半導体層109とショットキー接触する。第3のゲート電極1200および第2のゲート電極103は、共通の高周波スイッチ制御端子108に電気的に接続される。
高周波スイッチ610を構成するFETには、挿入損失、歪特性、アイソレーション、およびチップサイズの観点から、ソース電極とドレイン電極との間に複数のゲート電極を有するマルチゲートFETが用いられる場合も多い。本実施例に係る電力検出回路606は、このようなマルチゲートFETが適用された構成である。
本実施例に係る電力検出回路606の基本的な動作原理および効果は実施例1に係る電力検出回路と同様であるが、ソース電極100とドレイン電極101との間の導通・遮断は、第2のゲート電極103および第3のゲート電極1200に制御信号を入力することにより制御される。
なお、第2のゲート電極103には、実施例1に係る電力検出回路と同様に、半波整流に適した直流電圧が適宜印加されてもよく、特に限定されないが、例えば第1のゲート電極102により形成されるショットキーダイオードの立ち上がり電圧以下の正電圧が印加されてもよい。一般に、マルチゲートFETではそのゲート電極間の電位が不定となるが、この電位の不安定性は動作安定性の低下や歪特性の劣化を招く場合がある。一方、本実施例に係る電力検出回路606においては、第2のゲート電極103に直流電圧を印加することで、前述の電位不安定性を改善する付帯的効果も期待できる。
また、図9に例示した構成では第2のゲート電極103と第3のゲート電極1200とは直接結線されているが、電位固定用抵抗を介して結線されてもよい。
また、電位不安定性改善の付帯的効果は得られないが、第3のゲート電極1200および第1のゲート電極102でソース電極100とドレイン電極101との間の導通・遮断を制御し、第2のゲート電極103にフィードバック信号が印加されてもよい。
さらに、本実施例に係る電力検出回路606は、高周波スイッチ610を構成するFETとしてゲート電極の本数が3本のマルチゲートFETを有するとしたが、ゲート電極の本数は特に3本に限定されない。例えば、ドレイン電極101と第2のゲート電極103との間の半導体層109の上に、半導体層109とショットキー接触する第4のゲート電極がさらに設けられてもよい。
さらにまた、本実施例に係る高周波スイッチ610は実施例2に係る高周波スイッチと組み合わせられてもよい。その場合、第3のゲート電極1200は図6において、ドレイン電極101と第2のゲート電極103との間の半導体層109の上に設けられ、半導体層109とショットキー接触する。このとき、ソース電極100と第1のゲート電極102との間の半導体層109の上に、半導体層109とショットキー接触する第4のゲート電極がさらに設けられてもよい。
以上、本発明の半導体装置について、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の要旨を逸脱しない範囲内で当業者が思いつく各種変形を施したものも本発明の範囲内に含まれる。また、発明の趣旨を逸脱しない範囲で、複数の実施例における各構成要素を任意に組み合わせてもよい。
本発明は、半導体装置およびそれを用いた高周波スイッチ並びに高周波モジュールに適応でき、特に移動体通信機器等に適応できる。
100 ソース電極
101 ドレイン電極
102 第1のゲート電極
103 第2のゲート電極
104 半導体基板
105、305 抵抗
106 容量
107、303、603 電力検出用端子
108 高周波スイッチ制御端子
109 半導体層
110 絶縁性半導体層
200 送信系ベースバンド部
201 受信系ベースバンド部
202 高周波電力増幅器
203 出力整合回路
204 電力検出回路
205 高周波スイッチ
206 アンテナ
207 制御回路
300、600 入力端子
301 出力端子
302 高周波信号経路
304 ダイオード
306 直流カット容量
307 平滑容量
308 接地端子
601 入出力端子
602 出力端子
604 制御端子
605 電位固定用抵抗
606 電力検出回路
607 スイッチFET
608 スイッチFET
610 高周波スイッチ
1000 位相器
1200 第3のゲート電極

Claims (11)

  1. 高周波信号の電力レベルを検出する半導体装置であって、
    半導体層と、前記半導体層の上に設けられたソース電極およびドレイン電極と、前記ソース電極と前記ドレイン電極との間の前記半導体層の上に設けられ、前記半導体層とショットキー接触する第1のゲート電極と、前記第1のゲート電極と前記ドレイン電極との間の前記半導体層の上に設けられ、前記半導体層とショットキー接触する第2のゲート電極とを有し、高周波信号が前記ソース電極に入力される第1のFETと、
    一端が前記第1のゲート電極と電気的に接続され、他端が容量を介して前記ドレイン電極と電気的に接続された抵抗と、
    前記抵抗と前記容量との接続点に電気的に接続された電力検出用端子とを備える
    半導体装置。
  2. 前記半導体装置は、さらに、
    前記第1のゲート電極と前記ドレイン電極との間に挿入され、前記抵抗および前記容量と直列に接続された位相器を備える
    請求項1に記載の半導体装置。
  3. 前記半導体装置は、さらに、
    前記ソース電極と前記第1のゲート電極との間の前記半導体層の上に設けられ、前記半導体層とショットキー接触する第3のゲート電極を備える
    請求項1又は2に記載の半導体装置。
  4. 前記半導体装置は、さらに、
    前記ドレイン電極と前記第2のゲート電極との間の前記半導体層の上に設けられ、前記半導体層とショットキー接触する第4のゲート電極を備える
    請求項3に記載の半導体装置。
  5. 高周波信号の電力レベルを検出する半導体装置であって、
    半導体層と、前記半導体層の上に設けられたソース電極およびドレイン電極と、前記ソース電極と前記ドレイン電極との間の前記半導体層の上に設けられ、前記半導体層とショットキー接触する第1のゲート電極と、前記第1のゲート電極と前記ドレイン電極との間の前記半導体層の上に設けられ、前記半導体層とショットキー接触する第2のゲート電極とを有し、高周波信号が前記ソース電極に入力される第1のFETと、
    一端が前記第2のゲート電極と電気的に接続され、他端が容量を介して前記ソース電極と電気的に接続された抵抗と、
    前記抵抗と前記容量との接続点に電気的に接続された電力検出用端子とを備える
    半導体装置。
  6. 前記半導体装置は、さらに、
    前記第2のゲート電極と前記ソース電極との間に挿入され、前記抵抗および前記容量と直列に接続された位相器を備える
    請求項5に記載の半導体装置。
  7. 前記半導体装置は、さらに、
    前記ドレイン電極と前記第2のゲート電極との間の前記半導体層の上に設けられ、前記半導体層とショットキー接触する第3のゲート電極を備える
    請求項5又は6に記載の半導体装置。
  8. 前記半導体装置は、さらに、
    前記ソース電極と前記第1のゲート電極との間の前記半導体層の上に設けられ、前記半導体層とショットキー接触する第4のゲート電極を備える
    請求項7に記載の半導体装置。
  9. 前記電力検出用端子の直流電位が前記ソース電極の直流電位よりも高い
    請求項1〜8のいずれか1項に記載の半導体装置。
  10. 請求項1〜9のいずれか1項に記載の半導体装置と、
    前記ソース電極と電気的に接続され、高周波信号が入力される第1の端子と、
    第2のFETを介して前記ドレイン電極と電気的に接続され、高周波信号が出力される第2の端子と、
    前記第1のFETと前記第2のFETとの接続点に電気的に接続され、高周波信号が入力され、前記第1の端子に入力された高周波信号が出力される第3の端子とを備える
    高周波スイッチ。
  11. 請求項10に記載の高周波スイッチと、
    出力整合回路を介して前記第1の端子と電気的に接続され、増幅した高周波信号を前記第1の端子に供給する増幅器と、
    前記第2の端子と電気的に接続され、高周波信号を送受信するアンテナと、
    前記電力検出用端子の電位に基づいて前記出力整合回路のインピーダンスを制御する制御回路とを備える
    高周波モジュール。
JP2009175920A 2009-07-28 2009-07-28 半導体装置およびそれを用いた高周波スイッチ並びに高周波モジュール Pending JP2011030110A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009175920A JP2011030110A (ja) 2009-07-28 2009-07-28 半導体装置およびそれを用いた高周波スイッチ並びに高周波モジュール
US12/840,789 US20110025579A1 (en) 2009-07-28 2010-07-21 Semiconductor device, and radio frequency switch and radio frequency module using the semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009175920A JP2011030110A (ja) 2009-07-28 2009-07-28 半導体装置およびそれを用いた高周波スイッチ並びに高周波モジュール

Publications (1)

Publication Number Publication Date
JP2011030110A true JP2011030110A (ja) 2011-02-10

Family

ID=43526503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009175920A Pending JP2011030110A (ja) 2009-07-28 2009-07-28 半導体装置およびそれを用いた高周波スイッチ並びに高周波モジュール

Country Status (2)

Country Link
US (1) US20110025579A1 (ja)
JP (1) JP2011030110A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110797338A (zh) * 2019-12-09 2020-02-14 苏州华太电子技术有限公司 带匹配的射频功率芯片管芯结构及射频功率放大器
CN115001470A (zh) * 2022-06-02 2022-09-02 深圳市泰高技术有限公司 射频开关芯片、射频开关及电子设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130127782A (ko) * 2012-05-15 2013-11-25 삼성전기주식회사 스위칭 회로 및 이를 포함하는 무선통신 시스템

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5130641B2 (ja) * 2006-03-31 2013-01-30 サンケン電気株式会社 複合半導体装置
US7190935B2 (en) * 2001-09-14 2007-03-13 Rf Micro Devices, Inc. Amplifier power detection circuitry
JP4559772B2 (ja) * 2004-05-31 2010-10-13 パナソニック株式会社 スイッチ回路
JP4272142B2 (ja) * 2004-12-07 2009-06-03 株式会社ルネサステクノロジ スイッチング素子並びにそれを用いたアンテナスイッチ回路及び高周波モジュール
JP5036233B2 (ja) * 2006-07-06 2012-09-26 シャープ株式会社 半導体スイッチング素子および半導体回路装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110797338A (zh) * 2019-12-09 2020-02-14 苏州华太电子技术有限公司 带匹配的射频功率芯片管芯结构及射频功率放大器
CN115001470A (zh) * 2022-06-02 2022-09-02 深圳市泰高技术有限公司 射频开关芯片、射频开关及电子设备
CN115001470B (zh) * 2022-06-02 2023-07-21 深圳市泰高技术有限公司 射频开关芯片、射频开关及电子设备

Also Published As

Publication number Publication date
US20110025579A1 (en) 2011-02-03

Similar Documents

Publication Publication Date Title
US10110169B2 (en) Apparatus and methods for envelope tracking systems with automatic mode selection
JP5814547B2 (ja) 高周波スイッチ
TWI675551B (zh) 經本體偏壓的切換裝置
US8587377B2 (en) Apparatus and methods for biasing a power amplifier
US8159283B2 (en) High frequency switch circuit comprising a transistor on the high frequency path
US20110221519A1 (en) Semiconductor integrated circuit and high frequency module using the same
US20120112832A1 (en) Radio frequency switch and radio frequency module
US20060009164A1 (en) Radio frequency switching circuit
CN104011998A (zh) 用于功率放大器的装置和方法
US11482975B2 (en) Power amplifiers with adaptive bias for envelope tracking applications
KR20120066053A (ko) 도허티 증폭기
US9590674B2 (en) Semiconductor devices with switchable ground-body connection
US9838068B2 (en) Transmitter/receiver apparatus, transmitter apparatus and transmitting/receiving method
US11855595B2 (en) Composite cascode power amplifiers for envelope tracking applications
US20110294444A1 (en) Switching device, radio frequency signal switch, and radio frequency signal amplification module
JP2011030110A (ja) 半導体装置およびそれを用いた高周波スイッチ並びに高周波モジュール
JP5481461B2 (ja) スイッチ
JP2012004777A (ja) 高周波増幅器
JP5114226B2 (ja) 半導体スイッチ回路
WO2023238483A1 (ja) 増幅回路及び増幅方法
JP2008017170A (ja) 半導体スイッチ回路並びに通信機器
JP5584112B2 (ja) 利得可変型増幅器
CN110649920A (zh) 开关电路
JP2006033539A (ja) 高周波信号スイッチ回路
JP2006005811A (ja) 高周波集積回路