JP2011027374A - Expansion valve - Google Patents

Expansion valve Download PDF

Info

Publication number
JP2011027374A
JP2011027374A JP2009176033A JP2009176033A JP2011027374A JP 2011027374 A JP2011027374 A JP 2011027374A JP 2009176033 A JP2009176033 A JP 2009176033A JP 2009176033 A JP2009176033 A JP 2009176033A JP 2011027374 A JP2011027374 A JP 2011027374A
Authority
JP
Japan
Prior art keywords
refrigerant
expansion valve
working fluid
temperature
power element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009176033A
Other languages
Japanese (ja)
Inventor
Akira Matsuda
亮 松田
Akinori Nanbu
晶紀 南部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2009176033A priority Critical patent/JP2011027374A/en
Publication of JP2011027374A publication Critical patent/JP2011027374A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Temperature-Responsive Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an expansion valve using a refrigerant least influencing global warming as working fluid of a power element, and achieving desired temperature and pressure characteristics. <P>SOLUTION: The working fluid prepared by mixing an artificial refrigerant having a global warming potential (GWP) of 150 or less and a natural refrigerant is sealed in a temperature sensitive chamber 20a of the power element 20 of the expansion valve. The artificial refrigerant is selected from HFC-152a, HFC-41 and trifluoromethane iodide, and the natural refrigerant is selected from butane (R600), isobutane (R600a), propane (R290), carbon dioxide (R744) and ammonia (R717). Further an inert gas is mixed in the working fluid with a prescribed mixing ratio, thus the desired temperature and pressure characteristics are easily achieved. The bad influence on the environment is reduced even when the working fluid in the power element can not be recovered at disposal of the expansion valve. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、エアコン装置等の冷凍サイクルに用いられる温度式の膨張弁に関する。   The present invention relates to a temperature type expansion valve used in a refrigeration cycle such as an air conditioner.

周知のように、エアコン装置等の冷凍サイクルにおいては、圧縮機から吐出され凝縮器で凝縮された高温高圧の冷媒が膨張弁を通じて蒸発器に送られ、その後再び圧縮機に戻るようになっている。膨張弁は、圧縮機からの高温高圧の冷媒が通過する際に当該冷媒を断熱膨張させるオリフィスと、当該オリフィスの開度を変更する弁体とを備えており、弁体によって流量制御された冷媒が蒸発器に送り込まれる。   As is well known, in a refrigeration cycle such as an air conditioner, high-temperature and high-pressure refrigerant discharged from a compressor and condensed in a condenser is sent to an evaporator through an expansion valve, and then returns to the compressor again. . The expansion valve includes an orifice that adiabatically expands the refrigerant when the high-temperature and high-pressure refrigerant from the compressor passes, and a valve body that changes the opening of the orifice, and the flow rate of which is controlled by the valve body Is fed into the evaporator.

膨張弁は、蒸発器から圧縮機へ向かう低圧媒体の冷媒通路内に配置された弁体駆動部材(感温ロッド)と、この弁体駆動部材を介して弁体を駆動するパワーエレメントとを備えている。パワーエレメントの感温室には、冷凍サイクルを流れる冷媒と同じ又は類似した種類の純度の高い冷媒ガスと不活性ガスが適切な混合比(圧力比)で充填され、作動流体とされている。弁体駆動部材が感知した低圧冷媒の温度はパワーエレメントの感温室に伝達され、感温室内の作動流体が弁体駆動部材を介して弁体を駆動してオリフィスを開閉する。膨張弁の開弁特性は作動流体の温度−圧力の特性に依存し、その特性曲線の傾きは、温度変化の際に生じる圧力変動の大きさを示すから、開弁の応答特性を定める重要なファクターである。   The expansion valve includes a valve body drive member (temperature-sensitive rod) disposed in the refrigerant passage of the low-pressure medium from the evaporator to the compressor, and a power element that drives the valve body through the valve body drive member. ing. The power element's sensation chamber is filled with an appropriate mixture ratio (pressure ratio) of high-purity refrigerant gas and inert gas of the same or similar type as the refrigerant flowing in the refrigeration cycle, and used as a working fluid. The temperature of the low-pressure refrigerant sensed by the valve element driving member is transmitted to the temperature sensing chamber of the power element, and the working fluid in the temperature sensing chamber drives the valve element via the valve element driving member to open and close the orifice. The valve opening characteristics of the expansion valve depend on the temperature-pressure characteristics of the working fluid, and the slope of the characteristic curve indicates the magnitude of pressure fluctuation that occurs when the temperature changes. Is a factor.

ところで、カーエアコン等の冷凍サイクルを廃棄する場合には、サイクルを循環するシステム冷媒の回収は容易であるが、膨張弁のパワーエレメントの感温室は密閉容器に形成されており、膨張弁の廃棄時にこの密閉容器内の封入ガスを回収することは困難である。したがって、結果的に、膨張弁の封入ガスは大気へ放出される場合が多い。   By the way, when discarding a refrigeration cycle such as a car air conditioner, it is easy to recover the system refrigerant circulating through the cycle, but the temperature sensing chamber of the power element of the expansion valve is formed in a sealed container, and the expansion valve is discarded. Sometimes it is difficult to recover the sealed gas in this sealed container. Therefore, as a result, the gas enclosed in the expansion valve is often released to the atmosphere.

フロン134a等の地球温暖化係数(GWP)の高い冷媒は地球大気の温暖化の原因物質であるとの見方から、近年、欧州冷媒規制等で環境への配慮が求められており、使用できなくなってきている。膨張弁の封入ガスについても、回収が困難であれば、地球温暖化係数(GWP)の低い物質とすることが求められている。   In view of the fact that refrigerants with a high global warming potential (GWP) such as Freon 134a are the causative substances of global warming, in recent years environmental considerations have been required by European refrigerant regulations, etc., making them unusable. It is coming. If the recovery gas of the expansion valve sealing gas is difficult, it is required to use a substance having a low global warming potential (GWP).

特開2001−201212号公報JP 2001-20122 A

しかしながら、地球温暖化係数(GWP)が低い等、地球温暖化への影響が少ない冷媒ガスは、単一の物質から成る場合、膨張弁の開弁特性として任意の特性を得ることが困難な場合がある。
この発明の目的は、パワーエレメントの作動流体として、地球温暖化への影響が少ない冷媒を用いるとともに、所望の温度−圧力特性を得られるようにした膨張弁を提供することにある。
However, when the refrigerant gas that has little influence on global warming, such as a low global warming potential (GWP), is made of a single substance, it is difficult to obtain any characteristic as the valve opening characteristic of the expansion valve. There is.
An object of the present invention is to provide an expansion valve that uses a refrigerant that has little influence on global warming as a working fluid of a power element and that can obtain a desired temperature-pressure characteristic.

本発明による膨張弁は、蒸発器からの低圧冷媒の温度を感知して弁開度を制御するパワーエレメントを備えた膨張弁であって、前記パワーエレメントの感温室内に、地球温暖化係数(GWP)が150以下の人工冷媒又は自然冷媒を2種類以上混合して成る作動流体を封入したことを特徴としている。また、本発明による他の膨張弁は、蒸発器からの低圧冷媒の温度を感知して弁開度を制御するパワーエレメントを備えた膨張弁であって、前記パワーエレメントの感温室内に、地球温暖化係数(GWP)が150以下の人工冷媒と自然冷媒とを混合して成る作動流体を封入したことを特徴としている。前記人工冷媒は、例えば、HFC−152a、HFC−41及びヨウ化トリフルオロメタンから選ぶことができる。また、前記自然冷媒は、例えば、ブタン(R600)、イソブタン(R600a)、プロパン(R290)、二酸化炭素(R744)及びアンモニア(R717)から選ぶことができる。   The expansion valve according to the present invention is an expansion valve including a power element that senses the temperature of the low-pressure refrigerant from the evaporator and controls the valve opening degree, and has a global warming potential ( GWP) is characterized by enclosing a working fluid formed by mixing two or more types of artificial refrigerant or natural refrigerant having a GWP of 150 or less. Further, another expansion valve according to the present invention is an expansion valve including a power element that senses the temperature of the low-pressure refrigerant from the evaporator and controls the valve opening degree. It is characterized by enclosing a working fluid formed by mixing an artificial refrigerant having a global warming potential (GWP) of 150 or less and a natural refrigerant. The artificial refrigerant can be selected from, for example, HFC-152a, HFC-41, and iodinated trifluoromethane. The natural refrigerant can be selected from, for example, butane (R600), isobutane (R600a), propane (R290), carbon dioxide (R744), and ammonia (R717).

なお、前記作動流体は、前記人工冷媒及び/又は自然冷媒に加えて不活性ガスを所定の混合比で混合して成るものとすることができる。   The working fluid may be formed by mixing an inert gas at a predetermined mixing ratio in addition to the artificial refrigerant and / or natural refrigerant.

この発明による膨張弁は、地球温暖化への影響が少ない複数種類の冷媒がパワーエレメントに封入されることになるので、単一の冷媒では得られにくい所望の温度−圧力特性が得られるとともに、廃棄時において回収できなくても環境への悪影響を低減することができる。   In the expansion valve according to the present invention, since a plurality of types of refrigerants having little influence on global warming are sealed in the power element, desired temperature-pressure characteristics that are difficult to obtain with a single refrigerant are obtained, Even if it cannot be recovered at the time of disposal, adverse effects on the environment can be reduced.

本発明による膨張弁の一例を示す断面図である。It is sectional drawing which shows an example of the expansion valve by this invention. 本発明による膨張弁の温度−圧力特性の一例を示す特性曲線図である。It is a characteristic curve figure which shows an example of the temperature-pressure characteristic of the expansion valve by this invention.

以下、添付した図面に基づいて、本発明による膨張弁の実施例を説明する。図1は本発明による膨張弁の一例を示す断面図、図2は本発明による膨張弁の温度−圧力特性の一例を示す特性曲線図である。   Hereinafter, embodiments of an expansion valve according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a sectional view showing an example of an expansion valve according to the present invention, and FIG. 2 is a characteristic curve diagram showing an example of temperature-pressure characteristics of the expansion valve according to the present invention.

図1に示す膨張弁において、角柱状の弁本体10には、圧縮機11の吐出側からの高温高圧の冷媒が流れる第1の冷媒通路14と、蒸発器15からの低圧冷媒が流れる第2の冷媒通路19とが相互に独立して形成されている。第1の冷媒通路14の一端は蒸発器15の入口に連結され、蒸発器15の出口は第2の冷媒通路19を介して圧縮機11に連結され、圧縮機11は、凝縮器12及びレシーバ13を介して第1の冷媒通路14の他端に連結されている。第1の冷媒通路14に連通する弁室24にはオリフィス16に接離する球形の弁体18が配置されている。弁体18は支持部材26に支持され、バイアスバネである付勢手段17によってオリフィス16側に付勢されている。なお、弁室24はプラグ25で封止されている。弁本体10には第2の冷媒通路19に隣接してダイヤフラム22を有したパワーエレメント部20が固定されている。パワーエレメント部20は、蒸発器15に供給される冷媒の量を調整するためのもので、弁体駆動部材23を介して弁体18を駆動する。ダイヤフラム22で仕切られたパワーエレメント部20の上方の感温室20aは気密にされており、後述する作動流体が封入されている。   In the expansion valve shown in FIG. 1, the prismatic valve body 10 has a first refrigerant passage 14 through which high-temperature and high-pressure refrigerant from the discharge side of the compressor 11 flows, and second low-pressure refrigerant from the evaporator 15. The refrigerant passages 19 are formed independently of each other. One end of the first refrigerant passage 14 is connected to the inlet of the evaporator 15, the outlet of the evaporator 15 is connected to the compressor 11 via the second refrigerant passage 19, and the compressor 11 includes the condenser 12 and the receiver. 13 is connected to the other end of the first refrigerant passage 14 via 13. A spherical valve element 18 that contacts and separates from the orifice 16 is disposed in the valve chamber 24 that communicates with the first refrigerant passage 14. The valve body 18 is supported by a support member 26 and is urged toward the orifice 16 by an urging means 17 that is a bias spring. The valve chamber 24 is sealed with a plug 25. A power element portion 20 having a diaphragm 22 is fixed to the valve body 10 adjacent to the second refrigerant passage 19. The power element unit 20 is for adjusting the amount of refrigerant supplied to the evaporator 15, and drives the valve body 18 via the valve body driving member 23. The temperature-sensitive greenhouse 20a above the power element section 20 partitioned by the diaphragm 22 is hermetically sealed, and a working fluid described later is enclosed.

パワーエレメント部20の感温室20aから延出している小管21については、感温室20aからの脱気及び感温室20aへの作動流体の注入に使用された後に、端部が密封される。パワーエレメント部20の下方の室20bには、弁本体10内において弁体18から第2の冷媒通路19を貫通して延びる感温・伝達部材たる弁体駆動部材(感温ロッド)23の延出端が配置され、ダイヤフラム22に当接している。弁体駆動部材23は熱容量の大きな材料で形成されていて、第2の冷媒通路19を流れる蒸発器15の出口からの冷媒蒸気の温度をパワーエレメント部20の感温室20a内の作動流体に伝達し、この温度に対応した圧力の作動ガスを発生させる。下方の室20bは弁体駆動部材23の周囲の隙間を介して第2の冷媒通路19に連通している。   About the small tube 21 extended from the sensitive room 20a of the power element part 20, after being used for the deaeration from the sensitive room 20a and the injection | pouring of the working fluid to the sensitive room 20a, an edge part is sealed. In the chamber 20 b below the power element portion 20, an extension of a valve body driving member (temperature sensing rod) 23 that is a temperature sensing / transmission member extending from the valve body 18 through the second refrigerant passage 19 in the valve body 10. The leading end is disposed and is in contact with the diaphragm 22. The valve body driving member 23 is made of a material having a large heat capacity, and transmits the temperature of the refrigerant vapor from the outlet of the evaporator 15 flowing through the second refrigerant passage 19 to the working fluid in the temperature sensitive room 20a of the power element unit 20. Then, a working gas having a pressure corresponding to this temperature is generated. The lower chamber 20 b communicates with the second refrigerant passage 19 through a gap around the valve body driving member 23.

パワーエレメント部20のダイヤフラム22は、感温室20a内の作動流体の作動ガスの圧力と下方の室20b内の蒸発器15の出口における冷媒蒸気の圧力との差にしたがって付勢手段17の付勢力の影響の下で弁体駆動部材23により弁体18を駆動し、オリフィス16の開度(即ち、蒸発器の入口への液体状の冷媒の流入量)を調整する。   The diaphragm 22 of the power element unit 20 has a biasing force of the biasing means 17 according to the difference between the pressure of the working gas of the working fluid in the sensitive room 20a and the pressure of the refrigerant vapor at the outlet of the evaporator 15 in the lower chamber 20b. The valve body 18 is driven by the valve body driving member 23 under the influence of the above, and the opening degree of the orifice 16 (that is, the amount of liquid refrigerant flowing into the inlet of the evaporator) is adjusted.

この膨張弁は、冷凍サイクルの蒸発器15出口の冷媒の温度に対応して蒸発器15に供給される冷媒の量を自動的に制御する。即ち、蒸発器15から圧縮機11に至る第2の冷媒通路19を流れる冷媒の温度が、例えば負荷の増大によって上昇すると、第2の冷媒通路19内に配置された弁体駆動部材23からパワーエレメント20のダイヤフラム22に熱が伝達されて、パワーエレメント部20の感温室20a内の作動流体(気体)の圧力が上昇する。感温室20a内の上昇した圧力は、ダイヤフラム22を介して弁体駆動部材23を下降させるので、弁体18はオリフィス16を開く方向に移動する。蒸発器15に供給される冷媒の流量が増加することで、蒸発器15から吐出されて第2の冷媒通路19内を流れる冷媒の温度が下降する方向に制御される。   This expansion valve automatically controls the amount of refrigerant supplied to the evaporator 15 in accordance with the temperature of the refrigerant at the outlet of the evaporator 15 in the refrigeration cycle. That is, when the temperature of the refrigerant flowing through the second refrigerant passage 19 extending from the evaporator 15 to the compressor 11 rises due to, for example, an increase in load, the valve body driving member 23 disposed in the second refrigerant passage 19 generates power. Heat is transmitted to the diaphragm 22 of the element 20, and the pressure of the working fluid (gas) in the sensitive room 20 a of the power element unit 20 increases. The increased pressure in the sensation greenhouse 20a lowers the valve body driving member 23 via the diaphragm 22, so that the valve body 18 moves in the direction to open the orifice 16. By increasing the flow rate of the refrigerant supplied to the evaporator 15, the temperature of the refrigerant discharged from the evaporator 15 and flowing in the second refrigerant passage 19 is controlled to decrease.

本発明による膨張弁の温度−圧力特性の一例が図2に示されている。図2の横軸は冷媒の温度であり、縦軸は冷媒の圧力である。図中、[S]はシステム冷媒(本実施例ではHFC−134a)の飽和蒸気圧曲線、[A]は地球温暖化係数GWPが150以下の人工冷媒(本実施例ではHFC−152a)の飽和蒸気圧曲線、[B]は自然冷媒(本実施例ではR600)の飽和蒸気圧曲線、[C]は人工冷媒Aと自然冷媒Bと不活性ガス(本実施例ではヘリウム)とを所定の混合比(本実施例では2:2:1)で混合して成る混合流体の飽和蒸気圧曲線である。人工冷媒と自然冷媒と不活性ガスの混合比を変えることで、人工冷媒による特性と自然冷媒による特性の間の任意の温度−圧力特性を示す作動流体を得ることができる。そして、不活性ガスを所定の混合比で封入することにより、より広い範囲内で特性を定めることができる。このように、感温室に封入する冷媒と不活性ガスの種類と混合比を適宜選択することによって任意の飽和圧力特性を得ることができる。すなわち、冷凍システムで要求される特性に最も近い特性曲線を示す冷媒と不活性ガスの組み合わせが、膨張弁のパワーエレメントに用いる作動流体として選ばれる。   An example of the temperature-pressure characteristic of an expansion valve according to the present invention is shown in FIG. The horizontal axis in FIG. 2 is the refrigerant temperature, and the vertical axis is the refrigerant pressure. In the figure, [S] is the saturation vapor pressure curve of the system refrigerant (HFC-134a in this embodiment), and [A] is the saturation of the artificial refrigerant (HFC-152a in this embodiment) having a global warming potential GWP of 150 or less. Vapor pressure curve, [B] is a saturated vapor pressure curve of natural refrigerant (R600 in this embodiment), [C] is a predetermined mixture of artificial refrigerant A, natural refrigerant B and inert gas (helium in this embodiment). It is a saturated vapor pressure curve of the fluid mixture which mixes by ratio (this example 2: 2: 1). By changing the mixing ratio of the artificial refrigerant, the natural refrigerant, and the inert gas, it is possible to obtain a working fluid that exhibits an arbitrary temperature-pressure characteristic between the characteristic of the artificial refrigerant and the characteristic of the natural refrigerant. Then, by sealing the inert gas at a predetermined mixing ratio, the characteristics can be determined within a wider range. Thus, arbitrary saturation pressure characteristics can be obtained by appropriately selecting the kind and mixing ratio of the refrigerant and the inert gas sealed in the temperature sensitive greenhouse. That is, a combination of a refrigerant and an inert gas that exhibits a characteristic curve closest to the characteristics required for the refrigeration system is selected as the working fluid used for the power element of the expansion valve.

地球温暖化係数GWPが150以下の人工冷媒としては、例えば、HFC−152a、HFC−41、ヨウ化トリフルオロメタン等から選ぶことができる。また、自然冷媒としては、例えば、ブタン(R600)、イソブタン(R600a)、プロパン(R290)、二酸化炭素(R744)、アンモニア(R717)等から選ぶことができる。また、不活性ガスとしては、例えば、ヘリウムや窒素等から選ぶことができる。   The artificial refrigerant having a global warming potential GWP of 150 or less can be selected from, for example, HFC-152a, HFC-41, and trifluoromethane iodide. The natural refrigerant can be selected from, for example, butane (R600), isobutane (R600a), propane (R290), carbon dioxide (R744), ammonia (R717), and the like. Moreover, as an inert gas, it can select from helium, nitrogen, etc., for example.

上記のような地球温暖化係数GWPが150以下の人工冷媒と自然冷媒とを混合して成る作動流体に代えて、地球温暖化係数GWPが150以下の複数の人工冷媒を混合した冷媒を用いて任意の特性を得ることもできる。地球温暖化係数GWPが150以下の人工冷媒としては、例えば上に例示したものから選択することができる。また、この混合冷媒に、更に上に例示した不活性ガスを混合して任意の温度−圧力特性を得ることもできる。   Instead of the working fluid formed by mixing an artificial refrigerant having a global warming potential GWP of 150 or less and a natural refrigerant as described above, a refrigerant in which a plurality of artificial refrigerants having a global warming coefficient GWP of 150 or less is mixed is used. Arbitrary characteristics can also be obtained. The artificial refrigerant having a global warming potential GWP of 150 or less can be selected from those exemplified above, for example. Further, an arbitrary temperature-pressure characteristic can be obtained by further mixing the inert gas exemplified above with this mixed refrigerant.

更に、上記のような、地球温暖化係数GWPが150以下の人工冷媒と自然冷媒とを混合して成る作動流体や、地球温暖化係数GWPが150以下の複数の人工冷媒を混合して成る作動流体に代えて、地球温暖化係数GWPが150以下の複数の自然冷媒を混合して成る作動流体を用いて任意の特性を得ることもできる。自然冷媒としては、例えば、上に例示した中から2種類以上を選択することができる。また、この混合冷媒に更に不活性ガスを混合して任意の温度−圧力特性を得ることもできる。   Further, the above-described working fluid obtained by mixing an artificial refrigerant having a global warming potential GWP of 150 or less and a natural refrigerant, or an operation obtained by mixing a plurality of artificial refrigerants having a global warming coefficient GWP of 150 or less. Arbitrary characteristics can be obtained by using a working fluid formed by mixing a plurality of natural refrigerants having a global warming potential GWP of 150 or less instead of the fluid. As the natural refrigerant, for example, two or more types can be selected from the examples exemplified above. Moreover, an inert gas can be further mixed with this mixed refrigerant to obtain an arbitrary temperature-pressure characteristic.

以上説明したように、地球温暖化係数GWPが150以下の人工冷媒や自然冷媒であっても、これらを複数種類混合し、更に不活性ガスを追加充填するなどして、任意の温度−圧力特性を得ることが可能となるので、冷凍システムに要求される温度−圧力特性を持つ作動流体を得ることが可能となる。また、膨張弁のパワーエレメントの感温室に封入する作動流体を、システム冷媒やそれに近い冷媒とは異なるものとすることができるので、膨張弁の廃棄の際に、作動流体を回収できなくても、環境への悪影響を軽減することができる   As described above, even if it is an artificial refrigerant or natural refrigerant having a global warming potential GWP of 150 or less, an arbitrary temperature-pressure characteristic can be obtained by mixing a plurality of these refrigerants and further filling with an inert gas. Therefore, it is possible to obtain a working fluid having temperature-pressure characteristics required for a refrigeration system. In addition, since the working fluid sealed in the temperature sensitive chamber of the expansion valve power element can be different from the system refrigerant or refrigerant close to it, even if the working fluid cannot be recovered when the expansion valve is discarded , Can reduce the negative impact on the environment

1 膨張弁 10 弁本体
11 圧縮機 12 凝縮器
13 レシーバ 14 第1の冷媒通路
15 蒸発器 16 オリフィス
17 付勢手段 18 弁体
19 第2の冷媒通路 20 パワーエレメント部
20a 感温室 20b 室
21 小管 22 ダイヤフラム
22 弁体駆動部材(感温ロッド) 24 弁室
25 プラグ 26 支持部材
DESCRIPTION OF SYMBOLS 1 Expansion valve 10 Valve main body 11 Compressor 12 Condenser 13 Receiver 14 1st refrigerant path 15 Evaporator 16 Orifice 17 Energizing means 18 Valve body 19 2nd refrigerant path 20 Power element part 20a Greenhouse 20b Chamber 21 Small pipe 22 Diaphragm 22 Valve body drive member (temperature sensing rod) 24 Valve chamber 25 Plug 26 Support member

Claims (5)

蒸発器からの低圧冷媒の温度を感知して弁開度を制御するパワーエレメントを備えた膨張弁であって、前記パワーエレメントの感温室内に、地球温暖化係数(GWP)が150以下の人工冷媒又は自然冷媒を2種類以上混合して成る作動流体を封入したことを特徴とする膨張弁。   An expansion valve having a power element that senses the temperature of a low-pressure refrigerant from an evaporator and controls the valve opening degree, and has a global warming potential (GWP) of 150 or less in a temperature-sensitive greenhouse of the power element. An expansion valve comprising a working fluid formed by mixing two or more kinds of refrigerants or natural refrigerants. 蒸発器からの低圧冷媒の温度を感知して弁開度を制御するパワーエレメントを備えた膨張弁であって、前記パワーエレメントの感温室内に、地球温暖化係数(GWP)が150以下の人工冷媒と自然冷媒を混合して成る作動流体を封入したことを特徴とする膨張弁。   An expansion valve having a power element that senses the temperature of a low-pressure refrigerant from an evaporator and controls the valve opening degree, and has a global warming potential (GWP) of 150 or less in a temperature-sensitive greenhouse of the power element. An expansion valve comprising a working fluid formed by mixing a refrigerant and a natural refrigerant. 前記人工冷媒は、HFC−152a、HFC−41及びヨウ化トリフルオロメタンから選ばれることを特徴とする請求項1又は2記載の膨張弁。   The expansion valve according to claim 1 or 2, wherein the artificial refrigerant is selected from HFC-152a, HFC-41, and iodinated trifluoromethane. 前記自然冷媒は、ブタン(R600)、イソブタン(R600a)、プロパン(R290)、二酸化炭素(R744)及びアンモニア(R717)から選ばれることを特徴とする請求項1乃至3のいずれかに記載の膨張弁。   The expansion according to any one of claims 1 to 3, wherein the natural refrigerant is selected from butane (R600), isobutane (R600a), propane (R290), carbon dioxide (R744), and ammonia (R717). valve. 前記作動流体は、不活性ガスを所定の混合比で混合して成るものであることを特徴とする請求項1乃至4のいずれかに記載の膨張弁。   The expansion valve according to any one of claims 1 to 4, wherein the working fluid is formed by mixing an inert gas at a predetermined mixing ratio.
JP2009176033A 2009-07-29 2009-07-29 Expansion valve Pending JP2011027374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009176033A JP2011027374A (en) 2009-07-29 2009-07-29 Expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009176033A JP2011027374A (en) 2009-07-29 2009-07-29 Expansion valve

Publications (1)

Publication Number Publication Date
JP2011027374A true JP2011027374A (en) 2011-02-10

Family

ID=43636319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009176033A Pending JP2011027374A (en) 2009-07-29 2009-07-29 Expansion valve

Country Status (1)

Country Link
JP (1) JP2011027374A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102914103A (en) * 2011-08-02 2013-02-06 株式会社鹭宫制作所 Temperature expansion valve
CN102914104A (en) * 2011-08-02 2013-02-06 株式会社鹭宫制作所 Temperature expansion valve
JP6924541B1 (en) * 2020-11-17 2021-08-25 株式会社せばた集団 Thermal medium
CN114106777A (en) * 2021-11-18 2022-03-01 湖北瑞能华辉能源管理有限公司 High-temperature energy-saving environment-friendly heat pump working medium and application thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526541A (en) * 1991-05-14 1993-02-02 T G K:Kk Expansion valve
JPH0926234A (en) * 1995-07-10 1997-01-28 Mitsubishi Heavy Ind Ltd Thermostatic automatic expansion valve
JP2000220917A (en) * 1999-01-28 2000-08-08 Tgk Co Ltd Supercooling degree control type expansion valve
JP2000310352A (en) * 1999-04-27 2000-11-07 Denso Corp Temperature type expansion valve and its manufacture
JP2001201212A (en) * 2000-01-18 2001-07-27 Fuji Koki Corp Temperature expansion valve
JP2002310539A (en) * 2001-04-09 2002-10-23 Tgk Co Ltd Expansion valve
JP2005015633A (en) * 2003-06-26 2005-01-20 Matsushita Electric Ind Co Ltd Mixed refrigerant and refrigerating cycle apparatus using the same
JP2007178013A (en) * 2005-12-27 2007-07-12 Fuji Koki Corp Expansion valve
JP2007315663A (en) * 2006-05-25 2007-12-06 Sanden Corp Refrigeration system
JP2009008369A (en) * 2007-05-28 2009-01-15 Tgk Co Ltd Refrigerating cycle
JP2009074018A (en) * 2007-02-27 2009-04-09 Nippon Oil Corp Refrigerator oil and working fluid composition for refrigerator

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526541A (en) * 1991-05-14 1993-02-02 T G K:Kk Expansion valve
JPH0926234A (en) * 1995-07-10 1997-01-28 Mitsubishi Heavy Ind Ltd Thermostatic automatic expansion valve
JP2000220917A (en) * 1999-01-28 2000-08-08 Tgk Co Ltd Supercooling degree control type expansion valve
JP2000310352A (en) * 1999-04-27 2000-11-07 Denso Corp Temperature type expansion valve and its manufacture
JP2001201212A (en) * 2000-01-18 2001-07-27 Fuji Koki Corp Temperature expansion valve
JP2002310539A (en) * 2001-04-09 2002-10-23 Tgk Co Ltd Expansion valve
JP2005015633A (en) * 2003-06-26 2005-01-20 Matsushita Electric Ind Co Ltd Mixed refrigerant and refrigerating cycle apparatus using the same
JP2007178013A (en) * 2005-12-27 2007-07-12 Fuji Koki Corp Expansion valve
JP2007315663A (en) * 2006-05-25 2007-12-06 Sanden Corp Refrigeration system
JP2009074018A (en) * 2007-02-27 2009-04-09 Nippon Oil Corp Refrigerator oil and working fluid composition for refrigerator
JP2009008369A (en) * 2007-05-28 2009-01-15 Tgk Co Ltd Refrigerating cycle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102914103A (en) * 2011-08-02 2013-02-06 株式会社鹭宫制作所 Temperature expansion valve
CN102914104A (en) * 2011-08-02 2013-02-06 株式会社鹭宫制作所 Temperature expansion valve
JP2013032874A (en) * 2011-08-02 2013-02-14 Saginomiya Seisakusho Inc Temperature expansion valve
CN102914104B (en) * 2011-08-02 2014-12-24 株式会社鹭宫制作所 Temperature expansion valve
JP6924541B1 (en) * 2020-11-17 2021-08-25 株式会社せばた集団 Thermal medium
WO2022107185A1 (en) * 2020-11-17 2022-05-27 株式会社せばた集団 Heat medium
CN114106777A (en) * 2021-11-18 2022-03-01 湖北瑞能华辉能源管理有限公司 High-temperature energy-saving environment-friendly heat pump working medium and application thereof
CN114106777B (en) * 2021-11-18 2024-01-16 湖北瑞能华辉能源管理有限公司 High-temperature energy-saving environment-friendly heat pump working medium and application thereof

Similar Documents

Publication Publication Date Title
JP3644970B2 (en) Valve assembly apparatus, refrigeration apparatus, and operation method of refrigeration apparatus
JPWO2009154149A1 (en) Non-azeotropic refrigerant mixture and refrigeration cycle equipment
JP2011027374A (en) Expansion valve
EP1179716B1 (en) Thermal expansion valve
JP3995828B2 (en) Temperature expansion valve
JP2008020141A (en) Pressure control valve
KR960018427A (en) Refrigeration cycle
JP2008517244A (en) Valves used in cooling systems
JP5770157B2 (en) Refrigeration equipment
JP2001147048A (en) Superheat extent controller for refrigeration circuit
JP5141489B2 (en) Thermal expansion valve
JP2010032159A (en) Refrigerating cycle device
JP2006077998A (en) Refrigerating cycle device, and control method
JP2006234207A (en) Refrigerating cycle pressure reducing device
JP5780872B2 (en) Temperature expansion valve
WO2021205540A1 (en) Refrigeration cycle device
JP2005106314A (en) Refrigeration unit
JP2008051499A (en) Refrigerating cycle device, and refrigerating cycle
JP2008164239A (en) Pressure regulation valve
JP3557632B2 (en) Expansion valve for refrigerant
JP5963669B2 (en) Refrigeration equipment
JP5728324B2 (en) Temperature expansion valve
JP2004354042A (en) Safety valve device of refrigerating cycle
JP2004360936A (en) Refrigerating cycle
JP7105903B2 (en) refrigeration cycle equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140128