JP2011027301A - Air conditioning control device - Google Patents

Air conditioning control device Download PDF

Info

Publication number
JP2011027301A
JP2011027301A JP2009171974A JP2009171974A JP2011027301A JP 2011027301 A JP2011027301 A JP 2011027301A JP 2009171974 A JP2009171974 A JP 2009171974A JP 2009171974 A JP2009171974 A JP 2009171974A JP 2011027301 A JP2011027301 A JP 2011027301A
Authority
JP
Japan
Prior art keywords
air
value
conditioning control
air conditioning
environment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009171974A
Other languages
Japanese (ja)
Inventor
Kenzo Yonezawa
憲造 米沢
Yasuo Takagi
康夫 高木
Norifumi Mitsumoto
憲史 三ッ本
Nobutaka Nishimura
信孝 西村
Yuichi Hanada
雄一 花田
Naoki Makino
直樹 牧野
Kenichi Yamazaki
謙一 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009171974A priority Critical patent/JP2011027301A/en
Publication of JP2011027301A publication Critical patent/JP2011027301A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioning control device capable of stably performing efficient air conditioning control while considering comfortability of a person in a room. <P>SOLUTION: The air conditioning control device includes: an optimal operation function preparing part 813 for calculating beforehand, by optimizing calculation, an indoor temperature set value, an indoor humidity set value and an air supply temperature set value achieving a minimum energy consumption value within an air conditioning control system at a comfortability indicator value within a predetermined range with respect to each combination of a plurality of outside air temperature values, outside air humidity values and sensible heat load values and for preparing beforehand a function passing through the set values in the all conditions as an optimal operation function with respect to each type of the set values; an environment value acquiring part 822b for acquiring the measured outside air temperature measurement value and outside air humidity measurement value and the sensible heat load value calculated from an indoor temperature measurement value, a supply air temperature measurement value and supply air quantity; and a set value identification part 822c for identifying each set value for air conditioning control based on the values acquired in the environment value acquiring part 822b and the optimal operation function. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、オフィスや住居等の空調を制御する空調制御装置に関する。   The present invention relates to an air conditioning control device that controls air conditioning in an office, a residence, or the like.

オフィスや住居などの建築設備全体で消費されるエネルギーは、空調関連のエネルギーが約半分を占めている。そのため、空調制御に関する省エネルギーの推進が、建築設備全体の省エネルギー化に大きく貢献する。   About half of the energy consumed by all building equipment such as offices and residences is energy related to air conditioning. Therefore, the promotion of energy saving related to air conditioning control greatly contributes to energy saving of the entire building equipment.

これに鑑み、建築設備において最適な省エネルギー化を図った空調運転をする空調システムを利用した技術が特許文献1に記載されている。   In view of this, Patent Document 1 discloses a technique using an air conditioning system that performs an air conditioning operation that achieves optimum energy saving in a building facility.

この特許文献1の技術は、冷温水を生産する熱源機の消費エネルギー、空調コイルで熱交換された空気を送出するファンの消費エネルギー、熱源機からの冷温水を送出するポンプの消費エネルギーを含む空調の所要消費エネルギーが最小になるように、空調コイルのコイル温度目標値と熱源機の冷温水温度目標値を求めることにより、効率よく省エネルギー化された空調運転を行うことができる。   The technique of this patent document 1 includes the energy consumption of the heat source machine that produces cold / hot water, the energy consumption of the fan that sends out the air heat-exchanged by the air conditioning coil, and the energy consumption of the pump that sends the cold / hot water from the heat source machine By obtaining the coil temperature target value of the air conditioning coil and the cold / hot water temperature target value of the heat source machine so that the required energy consumption of air conditioning is minimized, it is possible to efficiently perform the energy saving air conditioning operation.

特開2004−69134号公報JP 2004-69134 A

しかしこの特許文献1に記載された技術を用いて空調制御を行う場合、空調設備内で計測される値に基づいてオンラインで最適化計算を行うようにすると、空調制御装置に多大な負荷がかかり、計測値によっては計算が複雑になり解が求まらず、安定して目標値を算出できない場合があるという問題がった。   However, when performing air conditioning control using the technique described in Patent Document 1, if the optimization calculation is performed online based on the values measured in the air conditioning equipment, a great load is applied to the air conditioning control device. Depending on the measurement value, there is a problem that the calculation is complicated and the solution cannot be obtained, and the target value cannot be calculated stably.

また、このように省エネルギーが推進される一方で、空調制御の対象となる室内では在室者の温熱感覚を満足させるため、いわゆる快適性を確保することが要求されているが、特許文献1に記載の技術では快適性については考慮されていなかった。   In addition, while energy saving is promoted in this way, in order to satisfy the thermal sensation of the occupants in the room that is subject to air conditioning control, it is required to ensure so-called comfort. The described technology did not consider comfort.

そこで本発明は上記事情に鑑みてなされたものであり、在室者の快適性を考慮しつつ、安定して効率の良い空調制御を行うことができる空調制御装置を提供することを目的とする。   Therefore, the present invention has been made in view of the above circumstances, and an object thereof is to provide an air conditioning control device capable of performing stable and efficient air conditioning control in consideration of the comfort of the occupants. .

上記目的を達成するための本発明の空調制御装置は、空調制御対象の室内空間毎に設置された空調機に接続された空調制御装置であり、複数条件の外気の環境を示す値と、複数条件の前記空調制御対象の室内空間毎の空調環境を示す値との組み合わせごとにそれぞれ、所定範囲内の快適性指標値で空調制御の所要動力に関する値が最小となるような空調制御のための設定値を最適化演算で予め算出し、すべての条件における前記設定値を通る関数を、最適運用関数として前記設定値の種類ごとに予め作成する最適運用関数作成部と、計測された、外気の環境を示す計測値および前記空調制御対象の室内空間毎の空調環境を示す計測値を取得する環境値取得部と、前記最適運用関数作成部で作成された最適運用関数に基づいて、前記環境値取得部で取得した外気の環境を示す計測値および前記空調制御対象の室内空間毎の空調環境を示す計測値に対応する前記空調制御のための設定値を特定する設定値特定部と、前記設定値特定部で特定された設定値を、前記空調機に設定させるために送出する設定値送出部とを備えることを特徴とする。   In order to achieve the above object, an air conditioning control device of the present invention is an air conditioning control device connected to an air conditioner installed for each indoor space subject to air conditioning control. For each of the combinations with the value indicating the air-conditioning environment for each indoor space of the air-conditioning control target for the condition, the value for the required power of the air-conditioning control with the comfort index value within the predetermined range is minimized. A set value is calculated in advance by an optimization operation, and a function that passes through the set value under all conditions is created in advance as an optimum operation function for each type of the set value. Based on the environment value acquisition unit that acquires the measurement value indicating the environment and the measurement value indicating the air conditioning environment for each indoor space that is the air conditioning control target, and the environment value based on the optimum operation function created by the optimum operation function creation unit Get A set value specifying unit for specifying a set value for the air conditioning control corresponding to the measured value indicating the environment of the outside air acquired in step 1 and the measured value indicating the air conditioning environment for each indoor space of the air conditioning control target, and the set value specifying And a set value sending unit for sending the set value specified by the unit to set the air conditioner.

また、本発明の他の形態の空調制御装置は、空調制御対象の室内空間毎に設置された空調機と、複数条件の外気の環境を示す値と、複数条件の前記空調制御対象の室内空間毎の空調環境を示す値との組み合わせごとにそれぞれ、所定範囲内の快適性指標値で前記空調制御の所要動力に関する値が最小となるような空調制御のための設定値を最適化演算で予め算出し、すべての条件における前記設定値を通る関数を、最適運用関数として前記設定値の種類ごとに予め作成する最適運用関数作成装置とに接続された空調制御装置であり、計測された、外気の環境を示す計測値および前記空調制御対象の室内空間毎の空調環境を示す計測値を取得する環境値取得部と、前記最適運用関数作成装置で作成された最適運用関数に基づいて、前記環境値取得部で取得した外気の環境を示す計測値および前記空調制御対象の室内空間毎の空調環境を示す計測値に対応する前記空調制御のための設定値を特定する設定値特定部と、前記設定値特定部で特定された設定値を、前記空調機に設定させるために送出する設定値送出部と、を備えることを特徴とする。   An air conditioning control device according to another aspect of the present invention includes an air conditioner installed for each indoor space subject to air conditioning control, a value indicating an environment of outdoor air under a plurality of conditions, and an indoor space subject to the air conditioning control under a plurality of conditions. For each combination with a value indicating each air conditioning environment, a set value for air conditioning control that minimizes a value related to the required power of the air conditioning control with a comfort index value within a predetermined range is previously calculated by optimization calculation. An air conditioning control device connected to an optimum operation function creation device that pre-creates a function that passes through the set values under all conditions as an optimum operation function for each type of the set value, and measures the outside air An environment value acquisition unit that acquires a measured value indicating an environment of the air conditioner and a measured value indicating an air conditioning environment for each indoor space of the air conditioning control target, and the environment based on the optimum operation function created by the optimum operation function creation device Price taking A set value specifying unit for specifying a set value for the air conditioning control corresponding to the measured value indicating the environment of the outside air acquired by the unit and the measured value indicating the air conditioning environment for each indoor space of the air conditioning control target, and the set value A setting value sending unit for sending the setting value specified by the specifying unit to cause the air conditioner to set.

本発明の空調制御装置によれば、在室者の快適性を考慮しつつ、安定して効率の良い空調制御を行うことができる。   According to the air conditioning control device of the present invention, stable and efficient air conditioning control can be performed while taking into account the comfort of the occupants.

本発明の一実施形態による空調制御装置としての空調連携制御装置を利用した空調制御システムの構成を示す全体図である。1 is an overall view showing a configuration of an air conditioning control system using an air conditioning cooperation control device as an air conditioning control device according to an embodiment of the present invention. 本発明の一実施形態による空調制御装置としての空調連携制御装置を利用した空調制御システムの構成を示すブロック図である。It is a block diagram which shows the structure of the air-conditioning control system using the air-conditioning cooperation control apparatus as an air-conditioning control apparatus by one Embodiment of this invention. 本発明の一実施形態による空調制御装置としての空調連携制御装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the air-conditioning cooperation control apparatus as an air-conditioning control apparatus by one Embodiment of this invention. 本発明の一実施形態による空調制御装置としての空調連携制御装置の最適運用関数作成部で最適運用関数を作成するときに利用するスプライン補間を説明するための説明図である。It is explanatory drawing for demonstrating the spline interpolation utilized when creating an optimal operation function in the optimal operation function preparation part of the air-conditioning cooperation control apparatus as an air-conditioning control apparatus by one Embodiment of this invention. 本発明の一実施形態による空調制御装置としての空調連携制御装置の最適運用関数作成部で作成された室内温度設定値の最適運用関数の一例を示すグラフである。It is a graph which shows an example of the optimal operation function of the indoor temperature setting value produced in the optimal operation function creation part of the air-conditioning cooperation control apparatus as an air-conditioning control apparatus by one Embodiment of this invention. 本発明の一実施形態による空調制御装置としての空調連携制御装置の最適運用関数作成部で作成された室内湿度設定値の最適運用関数の一例を示すグラフである。It is a graph which shows an example of the optimal operation function of the indoor humidity setting value created in the optimal operation function creation part of the air conditioning cooperation control apparatus as an air conditioning control apparatus by one Embodiment of this invention. 本発明の一実施形態による空調制御装置としての空調連携制御装置の最適運用関数作成部で作成された給気温度設定値の最適運用関数の一例を示すグラフである。It is a graph which shows an example of the optimal operation function of the supply air temperature setting value produced in the optimum operation function creation part of the air-conditioning cooperation control device as an air-conditioning control device by one embodiment of the present invention. 本発明の一実施形態による空調制御装置としての空調連携制御装置の最適運用関数作成部で最適運用関数を作成した時の、消費エネルギー最小値を参考のために縦軸に示した3Dグラフである。It is the 3D graph which showed the energy consumption minimum value on the vertical axis | shaft for reference when the optimal operation function was produced in the optimum operation function creation part of the air-conditioning cooperation control apparatus as an air-conditioning control apparatus by one Embodiment of this invention for reference. . 本発明の一実施形態による空調制御装置としての空調連携制御装置の最適運用関数作成部で最適運用関数を作成した時の、PMV値を参考のために縦軸に示した3Dグラフである。It is the 3D graph which showed the PMV value on the vertical axis | shaft for reference when the optimal operation function was produced in the optimum operation function production part of the air-conditioning cooperation control apparatus as an air-conditioning control apparatus by one Embodiment of this invention.

本発明の空調制御システムの実施形態について、図面を参照して説明する。なお、最近の多くのオフィスビル等は断熱性が良くPCやOA機器が多いため、年間を通して冷房モードであるので、以下の各実施形態においては冷房モードで空調制御を行う場合について説明する。   An embodiment of an air conditioning control system of the present invention will be described with reference to the drawings. Since many recent office buildings have good heat insulation and many PCs and OA devices, they are in the cooling mode throughout the year. Therefore, in the following embodiments, the case where air conditioning control is performed in the cooling mode will be described.

〈一実施形態による空調制御システムの構成〉
本発明の一実施形態による空調制御システム1の全体図を、図1および図2に示す。
<Configuration of air conditioning control system according to one embodiment>
An overall view of an air conditioning control system 1 according to an embodiment of the present invention is shown in FIGS. 1 and 2.

なお、大型ビルの場合、室内が大きいので室内を複数の制御ゾーンに分けて、それぞれの制御ゾーン毎に対応して、複数の空調機を室内の近傍の機械室に設置する。このような場合でも以下では簡略のため各制御ゾーンも室内と呼ぶことにする。   In the case of a large building, since the room is large, the room is divided into a plurality of control zones, and a plurality of air conditioners are installed in a machine room near the room corresponding to each control zone. Even in such a case, hereinafter, each control zone is also referred to as a room for simplicity.

空調制御システム1は空調対象のビルA内の空調を制御するものであり、ビルA内の各室内に設置された空調機10と、各室内の空調機10に近接して設置され空調機10からの給気温度を計測して各空調機10に計測値を送信する給気温度センサ20と、各室内に設置され室温を計測して各空調機10に計測値を送信する室内温度センサ30と、各室内に設置され室内の湿度を計測して各空調機10に計測値を送信する室内湿度センサ40と、各空調機10へ供給する冷水を管理する中央熱源装置50と、空調対象のビルAの外部に設置され外気の温度を計測する外気温度センサ60と、空調対象のビルAの外部に設置され外気の湿度を計測する外気湿度センサ70と、各空調機10で受信された給気温度計測値、室内温度計測値、および室内湿度計測値を受信するとともに、外気温度センサ60で計測された外気温度計測値および外気湿度センサ70で計測された外気湿度計測値を受信して中央熱源装置50及び各空調機10を動作させるための設定値を算出する空調制御装置としての空調連携制御装置80と、空調連携制御装置80で算出された設定値を実現するための操作量を算出して中央熱源装置50及び空調機10に送信するDDC(Direct Digital Controller )90を有する。   The air conditioning control system 1 controls the air conditioning in the building A to be air conditioned. The air conditioner 10 installed in each room in the building A and the air conditioner 10 installed close to the air conditioner 10 in each room. Supply air temperature sensor 20 that measures the supply air temperature from each of the air conditioners and transmits the measured values to each air conditioner 10, and the indoor temperature sensor 30 that is installed in each room and measures the room temperature and transmits the measured values to each air conditioner 10. An indoor humidity sensor 40 that is installed in each room and measures the humidity in the room and transmits the measured value to each air conditioner 10; a central heat source device 50 that manages the cold water supplied to each air conditioner 10; An outside air temperature sensor 60 installed outside the building A for measuring the temperature of the outside air, an outside air humidity sensor 70 installed outside the building A to be air-conditioned for measuring the humidity of the outside air, and the supply received by each air conditioner 10 Air temperature measurement, indoor temperature measurement, and The internal humidity measurement value is received and the outside air temperature measurement value measured by the outside air temperature sensor 60 and the outside air humidity measurement value measured by the outside air humidity sensor 70 are received to operate the central heat source device 50 and each air conditioner 10. The air conditioning cooperation control device 80 as an air conditioning control device for calculating a set value for the operation, and an operation amount for realizing the setting value calculated by the air conditioning cooperation control device 80 are calculated to the central heat source device 50 and the air conditioner 10. A DDC (Direct Digital Controller) 90 for transmission is provided.

各空調機10は、給気温度センサ20、室内温度センサ30、および室内湿度センサ40から取得した計測値を空調連携制御装置80へ送信する。また各空調機10には、給気風量を計測する風量センサ11が接続されており、この風量センサ11で計測された計測値も取得して空調連携制御装置80に送信する。また各空調機10は、中央熱源装置50から供給された冷水を利用して、ビルA外から取り込んだ外気の潜熱を冷却・除湿するとともに、空調制御対象の室内から取り込んだ環気のOA機器、人体等から発せられた顕熱を冷却し、各室内に送風する。   Each air conditioner 10 transmits the measurement values acquired from the supply air temperature sensor 20, the indoor temperature sensor 30, and the indoor humidity sensor 40 to the air conditioning cooperation control device 80. Each air conditioner 10 is connected to an air volume sensor 11 for measuring the supply air volume, and the measurement value measured by the air volume sensor 11 is also acquired and transmitted to the air conditioning linkage control device 80. Each air conditioner 10 uses the cold water supplied from the central heat source device 50 to cool and dehumidify the latent heat of the outside air taken from outside the building A, and at the same time, the OA equipment of the ambient air taken from the room subject to air conditioning control. The sensible heat emitted from the human body is cooled and blown into each room.

中央熱源装置50は、冷水を生成する冷凍機51と、冷凍機51を冷却して温度が上昇した水を、再利用するため空気で冷却する冷却塔52と、冷凍機51と各空調機10または冷却塔52との間で冷水を搬送する送水ポンプ53とを有する。地域冷暖房(DHC:District Heating and Cooling)を利用する場合は、この中央熱源装置50はビル内に設置されず、冷水は外部から供給される。   The central heat source device 50 includes a refrigerator 51 that generates cold water, a cooling tower 52 that cools the refrigerator 51 with air in order to reuse the water whose temperature has been increased, the refrigerator 51, and each air conditioner 10. Or it has the water supply pump 53 which conveys cold water between the cooling towers 52. When using District Heating and Cooling (DHC), the central heat source device 50 is not installed in the building, and cold water is supplied from the outside.

空調連携制御装置80は、図2に示すように、オフライン処理部81と、オンライン処理部82とを有する。   The air conditioning cooperation control device 80 includes an offline processing unit 81 and an online processing unit 82, as shown in FIG.

オフライン処理部81は各種センサや空調機10と切り離されたオフライン状態で動作するものであり、空調システムモデル記憶部811と、最適化演算部812と、最適運用関数作成部813とを有する。   The offline processing unit 81 operates in an offline state separated from various sensors and the air conditioner 10, and includes an air conditioning system model storage unit 811, an optimization calculation unit 812, and an optimum operation function creation unit 813.

空調システムモデル記憶部811には、当該空調制御システム1内の装置の構成に関する情報が記憶されている。本実施形態においては、各空調機10に対応した給気温度センサ20、室内温度センサ30、および室内湿度センサ40の識別情報等が記憶されている。   The air conditioning system model storage unit 811 stores information related to the configuration of the devices in the air conditioning control system 1. In the present embodiment, identification information and the like of the supply air temperature sensor 20, the indoor temperature sensor 30, and the indoor humidity sensor 40 corresponding to each air conditioner 10 are stored.

最適化演算部812は、複数の条件の外気温度値と、外気湿度値と、顕熱を冷却するために空調制御システム1内で消費されるエネルギー値である顕熱負荷値との組み合わせごとにそれぞれ、所定範囲内の快適性指標値で空調制御システム1内の所要動力に関する値が最小となるような空調制御のための設定値を算出する。本実施形態においては、空調制御システム1内の所要動力に関する値としての消費エネルギー値が最小となるような、室内温度設定値、室内湿度設定値、および給気温度設定値を算出するものとする。   The optimization calculation unit 812 is configured for each combination of an outdoor air temperature value, an outdoor air humidity value, and an sensible heat load value that is an energy value consumed in the air conditioning control system 1 to cool the sensible heat. A set value for air-conditioning control is calculated such that a value relating to required power in the air-conditioning control system 1 is minimized with a comfort index value within a predetermined range. In the present embodiment, the indoor temperature set value, the indoor humidity set value, and the supply air temperature set value are calculated so that the consumed energy value as a value related to the required power in the air conditioning control system 1 is minimized. .

最適運用関数作成部813は、室内温度設定値、室内湿度設定値、給気温度設定値ごとに、最適化演算部812で算出されたすべての設定値を通る関数を最適運用関数として作成する。   The optimum operation function creating unit 813 creates, as an optimum operation function, a function that passes through all the set values calculated by the optimization calculating unit 812 for each room temperature set value, room humidity set value, and supply air temperature set value.

オンライン処理部82は各種センサや空調機10と接続され、これらからリアルタイムで取得される情報に基づいて動作するものであり、顕熱負荷算出部821と、運用関数演算部822とを有する。   The online processing unit 82 is connected to various sensors and the air conditioner 10 and operates based on information acquired in real time from these sensors, and includes a sensible heat load calculation unit 821 and an operation function calculation unit 822.

顕熱負荷算出部821は、給気温度センサ20から取得される給気温度計測値と、室内温度センサ30から取得される室内温度計測値と、風量センサ11から取得される給気風量値とに基づいて空調制御対象の室内の顕熱負荷値を算出する。   The sensible heat load calculation unit 821 is a supply air temperature measurement value acquired from the supply air temperature sensor 20, an indoor temperature measurement value acquired from the indoor temperature sensor 30, and an intake air flow value acquired from the air flow sensor 11. Based on the above, the sensible heat load value in the room subject to air conditioning control is calculated.

運用関数演算部822は、オフライン処理部81の最適運用関数作成部813で作成された最適運用関数を取得する関数取得部822aと、顕熱負荷算出部821で算出された顕熱負荷値および外気温度センサ60で計測された外気温度計測値、外気湿度センサ70で計測された外気湿度計測値を取得する環境値取得部822bと、環境値取得部822bで取得した顕熱負荷値、外気温度計測値、外気湿度計測値に基づいて、関数取得部822aで取得した最適運用関数から、最適な室内温度設定値、室内湿度設定値、および給気温度設定値を特定する設定値特定部822cと、設定値特定部822cで特定された室内温度設定値、室内湿度設定値、および給気温度設定値をDDC90に送信する設定値送信部822dとを有する。   The operation function calculation unit 822 includes a function acquisition unit 822a that acquires the optimum operation function created by the optimum operation function creation unit 813 of the offline processing unit 81, and a sensible heat load value and outside air calculated by the sensible heat load calculation unit 821. An ambient temperature measurement value measured by the temperature sensor 60, an environmental value acquisition unit 822b for acquiring an outdoor air humidity measurement value measured by the outdoor air humidity sensor 70, a sensible heat load value acquired by the environmental value acquisition unit 822b, and an outdoor air temperature measurement A setting value specifying unit 822c that specifies an optimal indoor temperature setting value, indoor humidity setting value, and supply air temperature setting value from the optimum operation function acquired by the function acquisition unit 822a based on the measured value and the outside air humidity measurement value; A set value transmitting unit 822d that transmits the indoor temperature set value, the indoor humidity set value, and the supply air temperature set value specified by the set value specifying unit 822c to the DDC 90.

〈一実施形態による空調制御システムの動作〉
本実施形態の空調制御システム1において、空調制御対象の室内の環境、および外気の環境に応じて最適な設定値を空調機10に設定するときの動作について説明する。空調連携制御装置80には、図1に示すように複数の空調機10を接続することが可能であるが、ここでは説明を簡略化するため、図2に示すように1つの空調機10が接続され1つの室内の空調を制御する場合について説明する。また、本実施形態においては図2に示すように中央熱源装置50をビル内に有さず、DHC(District Heating and Cooling:地域冷暖房)により空調制御を行う場合について説明する。
<Operation of Air Conditioning Control System According to One Embodiment>
In the air conditioning control system 1 of the present embodiment, an operation when an optimal set value is set in the air conditioner 10 according to the indoor environment to be air-conditioned and the environment of the outside air will be described. A plurality of air conditioners 10 can be connected to the air conditioning cooperation control device 80 as shown in FIG. 1, but in order to simplify the description here, one air conditioner 10 is provided as shown in FIG. A case of controlling the air conditioning of one connected room will be described. Further, in the present embodiment, a case will be described in which the central heat source apparatus 50 is not provided in the building as shown in FIG. 2 and air conditioning control is performed by DHC (District Heating and Cooling).

本実施形態の空調制御システム1では、空調機10への設定値の設定処理を実行するにあたり、予め空調連携制御装置80のオフライン処理部81において各種センサや空調機10と切り離されたオフライン状態で最適運用関数を作成しておく。   In the air-conditioning control system 1 of the present embodiment, when executing the setting processing of the set value for the air conditioner 10, the offline processing unit 81 of the air-conditioning cooperation control device 80 is in an offline state separated from various sensors and the air conditioner 10 in advance. Create an optimal operation function.

このオフライン処理部81の空調システムモデル記憶部811には、予め当該空調制御システム1内の装置の構成、例えば空調機10や各種センサの識別情報等に関する情報が記憶されている。   In the air conditioning system model storage unit 811 of the offline processing unit 81, information related to the configuration of the apparatus in the air conditioning control system 1, such as identification information of the air conditioner 10 and various sensors, is stored in advance.

オフライン処理部81の最適化演算部812では、複数の条件の外気温度値と、外気湿度値と、顕熱を冷却するために空調機10が消費するエネルギー値である顕熱負荷値との組み合わせごとに、所定範囲内の快適性指数値で空調制御システム1内の所要動力に関する値が最小となるような空調制御のための設定値が算出される。   In the optimization calculation unit 812 of the offline processing unit 81, a combination of an outside air temperature value, an outside air humidity value, and an sensible heat load value that is an energy value consumed by the air conditioner 10 to cool the sensible heat. Every time, a setting value for air conditioning control is calculated such that a value relating to required power in the air conditioning control system 1 is minimized with a comfort index value within a predetermined range.

本実施形態においては、この複数の条件の外気温度値、外気湿度値、および顕熱負荷値の組み合わせとして、下記表1に示すように12通りの外気温度値、6通りの外気湿度値、6通りの顕熱負荷値をメッシュ状に組み合わせた432通りの組み合わせが用いられる。

Figure 2011027301
In the present embodiment, as combinations of the outside air temperature value, the outside air humidity value, and the sensible heat load value of the plurality of conditions, as shown in Table 1 below, 12 kinds of outside air temperature values, 6 kinds of outside air humidity values, 6 432 combinations of mesh sensible heat load values are used.
Figure 2011027301

また本実施形態においては、この空調制御システム1内の所要動力に関する値として消費エネルギー値を用い、空調制御システム1内の全消費エネルギー値を最小化する作動流体(空気、水、冷媒)の熱力学的な平衡状態を探索することで空調制御のための設定値が算出される。この空調制御システム1内の全消費エネルギー値は、下記式(1)で表される。   In the present embodiment, the energy of the working fluid (air, water, refrigerant) that minimizes the total energy consumption value in the air conditioning control system 1 using the energy consumption value as a value relating to the required power in the air conditioning control system 1. A set value for air-conditioning control is calculated by searching for a dynamic equilibrium state. The total energy consumption value in the air conditioning control system 1 is expressed by the following formula (1).

〔数1〕
全消費エネルギー値=冷水消費エネルギー+ポンプ消費エネルギー+送風機消費エネルギー・・・(1)
この空調制御システム内の全消費エネルギー値を最小化する作動流体の熱力学的な平衡状態の探索については、特開2008−232507号公報、特開2008−256258号公報に記載のアルゴリズムを用いることができる。
[Equation 1]
Total energy consumption = Cold water consumption energy + Pump consumption energy + Blower consumption energy (1)
For the search of the thermodynamic equilibrium state of the working fluid that minimizes the total energy consumption value in the air conditioning control system, use the algorithms described in JP 2008-232507 A and JP 2008-256258 A. Can do.

また、本実施形態において快適性指数値はPMVが用いられる。ここで各設定値の算出に利用されるPMVについて説明する。   In this embodiment, PMV is used as the comfort index value. Here, PMV used for calculation of each set value will be described.

PMVとは、暑さ、寒さに対する人間の温熱感覚に影響を与える変数として(a)空気温度、(b)相対湿度、(c)平均輻射温度、(d)気流速度、(e)活動量(人体の内部発熱量)、(f)着衣量の6つを用いて求められる快適性指標である。   PMV is a variable that affects human thermal sensation against heat and cold. (A) Air temperature, (b) Relative humidity, (c) Average radiation temperature, (d) Air velocity, (e) Activity ( It is a comfort index determined using six of the internal heat generation amount of the human body) and (f) the amount of clothes.

人の発熱量は対流による放射量、輻射による放熱量、人からの蒸発熱量、呼吸による放熱量および蓄熱量の合計で、これらの熱平衡式が成立している場合は、人体が熱的に中立であり、暑くも寒くもない快適状態である。逆に熱平衡式がくずれた場合に人体は暑さ寒さを感じる。   The amount of heat generated by a person is the sum of the amount of radiation generated by convection, the amount of heat released by radiation, the amount of heat evaporated from the person, the amount of heat released by breathing, and the amount of stored heat.If these thermal balance equations hold, the human body is thermally neutral. It is a comfortable state that is neither hot nor cold. Conversely, when the thermal balance equation breaks down, the human body feels hot and cold.

デンマーク工科大学のFanger教授は1967年に快適方程式の導出を発表し、これを出発点として人体の熱負荷と人間の温冷感を、欧米人の多数の被験者のアンケートから統計分析して結び付け、PMV(Predicted Mean Vote:予測平均回答)を提案した。これは近年ISO規格にも取り上げられ最近よく用いられるようになった。   In 1967, Prof. Fanger of the Danish Institute of Technology announced the derivation of the comfort equation, and using this as a starting point, the thermal load of the human body and the thermal sensation of humans were statistically analyzed from questionnaires of a large number of European and American subjects, PMV (Predicted Mean Vote) was proposed. In recent years, this has been taken up by the ISO standard and has recently been used frequently.

温冷感の指標となるPMVは、次の7段階評価尺度による数値として表す。   PMV, which is an index of thermal sensation, is expressed as a numerical value based on the following seven-level evaluation scale.

+3:暑い
+2:暖かい
+1:やや暖かい
0:どちらでもない、快適
−1:やや涼しい
−2:涼しい
−3:寒い
なお、人間の快適なPMV値の範囲は−0.5〜+0.5であり、本実施形態においても所定範囲として−0.5〜+0.5の範囲の内側を用いる。
+3: Hot +2: Warm +1: Slightly warm 0: None, comfortable -1: Slightly cool -2: Cool -3: Cold Note that the range of comfortable human PMV values is -0.5 to +0.5 In the present embodiment, the inside of the range of −0.5 to +0.5 is used as the predetermined range.

上記の6つの変数のうち、作業強度を表す活動量は通常、代謝量metの単位を用い、着衣量はcloの単位を用いる。   Of the above six variables, the amount of activity representing work intensity usually uses the unit of metabolic rate met, and the amount of clothing uses the unit of clo.

単位met(メット)は、代謝量を表し、熱的に快適な状態における安静時代謝を基準とし、1metは下記式(2)で表される。   The unit met (met) represents the amount of metabolism, and 1 met is represented by the following formula (2) with reference to resting metabolism in a thermally comfortable state.

〔数2〕
1met = 58.2 W/m = 50 kcal/m・h (2)
また、単位clo(クロ)は、衣服の熱絶縁性を表し、1clo とは気温 21℃,相対湿度 50%,気流 5cm/s以下の室内で、体表面からの放熱量が1metの代謝と平衡するような着衣状態での値であり、通常の熱抵抗値に換算すると下記式(3)で表される。
[Equation 2]
1met = 58.2 W / m 2 = 50 kcal / m 2 · h (2)
In addition, the unit clo (cloth) represents the thermal insulation of clothes, and 1clo is a room temperature of 21 ° C, relative humidity of 50%, airflow of 5cm / s or less, and the amount of heat released from the body surface is balanced with metabolism of 1met. It is a value in such a clothing state, and is expressed by the following formula (3) when converted into a normal thermal resistance value.

〔数3〕
1clo = 0.155 m・℃/W = 0.18 m・h・℃/kcal (3)
そして、下記式(4)を用いて快適な範囲内(−0.5<PMV<+0.5)で冷房時はより暑い方向の側に、暖房時はより寒い方向の側にPMV目標値を設定することで空調負荷の軽減を図ることができ、省エネルギーを達成できる。

Figure 2011027301
[Equation 3]
1clo = 0.155 m 2 · ° C / W = 0.18 m 2 · h · ° C / kcal (3)
The following formula (4) is used to set the PMV target value within a comfortable range (−0.5 <PMV <+0.5) on the hotter side during cooling and on the colder side during heating. By setting, the air-conditioning load can be reduced and energy saving can be achieved.
Figure 2011027301

ここで、M:活動量[kcal/h]
A:人体表面積[m
L:人体熱負荷[kcal/mh](Fangerの快適方程式より算定)
上述したように、最適化演算部812では、表1に示す外気温度値、外気湿度値、顕熱負荷値の各組み合わせにおいて、PMV値が例えば−0.5〜+0.5の範囲で空調制御システム1内の全消費エネルギー値が最小となるような空調制御のための設定値が2次計画法(QP)を用いて算出される。
Where M: activity [kcal / h]
A: Human body surface area [m 2 ]
L: Human body heat load [kcal / m 2 h] (calculated from Fanger's comfort equation)
As described above, in the optimization calculation unit 812, the air conditioning control is performed in the range where the PMV value is, for example, −0.5 to +0.5 in each combination of the outside air temperature value, the outside air humidity value, and the sensible heat load value shown in Table 1. A setting value for air conditioning control that minimizes the total energy consumption value in the system 1 is calculated using quadratic programming (QP).

次に、最適運用関数作成部813において、室内温度設定値、室内湿度設定値、給気温度設定値ごとに、最適化演算部812で算出されたすべての組み合わせ条件における設定値を通る関数である最適運用関数が作成される。この関数が作成されることにより、上記表1の432通りの条件間の任意の条件における設定値が補間される。補間の方法の1つであるスプライン補間方法を用いた最適運用関数の作成について説明する。   Next, the optimum operation function creation unit 813 is a function that passes the set values in all the combination conditions calculated by the optimization calculation unit 812 for each of the room temperature set value, the room humidity set value, and the supply air temperature set value. An optimal operation function is created. By creating this function, the set values in any condition among the 432 conditions in Table 1 are interpolated. The creation of an optimal operation function using a spline interpolation method, which is one of interpolation methods, will be described.

補間とは、与えられた複数の点をすべて通る曲線において、ある x値に対してその曲線上の y値を求める計算のことである。その計算を行うには、曲線の方程式が必要となる。xが一次元の場合について簡単に説明する(n次元の場合もほぼ同様)。   Interpolation is a calculation to find the y value on a curve for a given x value in a curve that passes through all of the given points. To perform the calculation, a curve equation is required. The case where x is one-dimensional will be briefly described (substantially the same when n-dimensional).

与えられた点をすべて通る曲線の方程式は、簡単な考察から(点の数 − 1)次の多項式で表すことができることがわかる。大量の点を曲線で結ぶ方法として、2点ずつ順次線で結び、それぞれ(点の数 − 1)個の多項式によって表し、これらにより曲線を描くという方法を用いる。   From a simple consideration, it can be seen that the equation of the curve that passes through all the given points can be expressed as a (number of points – 1) polynomial. As a method of connecting a large number of points with a curve, a method is used in which two points are connected with a sequential line, each represented by a (number of points minus 1) polynomial, and a curve is drawn with these.

2点間を結ぶ線の多項式は、さきほどの曲線は(点の数 − 1)次の多項式で表すことができるという理論から、1次式になる。しかし、描かれる曲線は直線ではなく、滑らかな線である必要がある。描かれる曲線は、なめらかで急に折れ曲がったりしないものであることが望ましいので、高次の式で表さなくてはいけない。2点間だと式は2つしかできないので、それを行うには不可能に見える。   The polynomial of the line connecting the two points is a linear expression based on the theory that the previous curve can be expressed by the (number of points-1) degree polynomial. However, the drawn curve must be a smooth line, not a straight line. It is desirable that the curve to be drawn is smooth and does not bend suddenly, so it must be expressed by a higher order expression. There are only two expressions between two points, so it seems impossible to do that.

そこで、前後の点を考慮に入れて2点間を結ぶ曲線を描く。例えば、図4に示すように実際に曲線を描くときに適用する2点間をrとすると、この2点間rを結ぶ曲線の方程式を、前後の点も含めた区間R内の複数の点を使用して生成した多項式で表す。この多項式を最適運用関数とする。この複数の点が4点であれば、3次の多項式、6点であれば5次の多項式を求めることができる。   Therefore, a curve connecting the two points is drawn taking into account the points before and after. For example, as shown in FIG. 4, when r between two points to be applied when actually drawing a curve, r is a plurality of points in the section R including the preceding and following points. This is expressed as a polynomial generated using. Let this polynomial be the optimal operational function. If the plurality of points are 4 points, a cubic polynomial can be obtained, and if the points are 6 points, a quintic polynomial can be obtained.

これらの2点間rの前後の点は式を生成する段階にのみ使用し、実際に曲線を描くときにはその2点間にのみ適用することでなめらかな曲線を描くことができ、各区間が適切に補間される。   The points before and after r between these two points are used only in the stage of generating the formula, and when actually drawing a curve, applying only between the two points makes it possible to draw a smooth curve, Is interpolated.

この補間の方法に基づいたスプライン補間方法を利用し、上記表1の条件により算出された空調制御のための設定値が最適運用関数の曲線で結ばれ補間され、曲線で示された一例として3Dグラフ化したものを、図5〜7に示す。尚、グラフ中の細かなメッシュはスプライン補間による曲面形状を見やすくするために付加したものであり、最適化演算部812によりオフラインで算出された設定値を示すものではない。   Using the spline interpolation method based on this interpolation method, the setting values for air conditioning control calculated according to the conditions in Table 1 above are connected and interpolated by the curve of the optimum operation function, and 3D is shown as an example shown by the curve. The graphs are shown in FIGS. A fine mesh in the graph is added to make it easy to see the curved surface shape by spline interpolation, and does not indicate a setting value calculated off-line by the optimization calculation unit 812.

図5は、顕熱負荷値を表1の6通りのうちの19.916kwに固定し、外気温度値、外気湿度値を変数としたときの消費エネルギー値が最小となるような室内温度設定値を示す最適運用関数のグラフであり、図6は同様の変数において消費エネルギー値が最小となるような室内湿度設定値を示す最適運用関数のグラフであり、図7は同様の変数において消費エネルギー値が最小となるような給気温度設定値を示す最適運用関数のグラフである。   Fig. 5 shows the indoor temperature setting value that minimizes the energy consumption when the sensible heat load value is fixed at 19.916kw out of the six values in Table 1 and the outside air temperature value and outside air humidity value are used as variables. FIG. 6 is a graph of the optimum operation function showing the indoor humidity setting value that minimizes the energy consumption value in the same variable, and FIG. 7 is a graph of the optimum operation function showing the energy consumption value in the same variable. It is a graph of the optimal operation function which shows the supply air temperature setting value which becomes the minimum.

また参考として、上記表1に示した外気温度値および外気湿度値の条件における最小の消費エネルギー値が、スプライン曲線で補間されたグラフを図8に示す。この図8は突出した部分がなくなめらかな曲面状のグラフになっており、オフライン処理部81の最適化演算部812の最適化探索がうまく行われたことがわかる。   For reference, FIG. 8 shows a graph in which the minimum energy consumption value under the conditions of the outside air temperature value and the outside air humidity value shown in Table 1 is interpolated with a spline curve. FIG. 8 is a smooth curved graph with no protruding portion, and it can be seen that the optimization search of the optimization calculation unit 812 of the offline processing unit 81 has been successfully performed.

また、上記表1に示した外気温度値および外気湿度値の条件において、図8の最小の消費エネルギー値で空調制御を行ったときのPMV値が、スプライン曲線で補間された曲線を図9に示す。この図9により、すべての条件においてPMVが−0.5〜+0.5に収まっていることがわかる。   Further, FIG. 9 shows a curve obtained by interpolating the PMV value when the air-conditioning control is performed with the minimum energy consumption value of FIG. 8 with the spline curve under the conditions of the outside air temperature value and the outside air humidity value shown in Table 1 above. Show. From FIG. 9, it can be seen that PMV is within −0.5 to +0.5 under all conditions.

このようにしてオフライン処理部81において各設定値の最適運用関数が作成された状態で、オンライン処理部82において最適な設定値を空調機10に設定するときの動作について説明する。   The operation when the optimum setting value is set in the air conditioner 10 in the online processing unit 82 in a state where the optimum operation function of each setting value is created in the offline processing unit 81 will be described.

まず、オンライン処理部82の運用関数演算部822の関数取得部822aにおいて、オフライン処理部81の最適運用関数作成部813で作成された、各設定値の最適運用関数が取得される(S1)。   First, in the function acquisition unit 822a of the operation function calculation unit 822 of the online processing unit 82, the optimum operation function of each set value created by the optimum operation function creation unit 813 of the offline processing unit 81 is obtained (S1).

次に、オンライン処理部82の顕熱負荷算出部821において、給気温度センサ20から給気温度計測値が取得され、室内温度センサ30から室内温度計測値が取得され、風量センサ11から給気風量計測値が取得される(S2)。そして、取得された給気温度設定値、室内温度計測値、および給気風量値に基づいて、空調制御対象の室内の顕熱負荷値が算出される(S3)。   Next, in the sensible heat load calculation unit 821 of the online processing unit 82, the supply air temperature measurement value is acquired from the supply air temperature sensor 20, the indoor temperature measurement value is acquired from the indoor temperature sensor 30, and the supply air from the air volume sensor 11. An airflow measurement value is acquired (S2). Then, the sensible heat load value in the air-conditioning control target room is calculated based on the acquired supply air temperature setting value, indoor temperature measurement value, and supply air volume value (S3).

本実施形態において顕熱負荷値は、下記の式(5)により算出される。

Figure 2011027301
In the present embodiment, the sensible heat load value is calculated by the following equation (5).
Figure 2011027301

ここで、VAVは Variable Air Volumeの略であり、本実施形態では給気が変風量方式により行われる。   Here, VAV is an abbreviation for Variable Air Volume, and in this embodiment, air supply is performed by a variable air volume method.

この顕熱負荷値はオンライン状態で各種センサから取得した計測値に基づいて算出されているので、空調対象の室内の人数、OA機器数や、窓の位置(東西南北)による日射量の違いから、それぞれ異なってくる顕熱負荷がリアルタイムで反映される。   Since this sensible heat load value is calculated based on the measured values obtained from various sensors in the online state, the difference in the amount of solar radiation depending on the number of people in the air-conditioned room, the number of OA devices, and the window position (east, west, north, south) Different sensible heat loads are reflected in real time.

次に、運用関数演算部822の環境値取得部822bにおいて、顕熱負荷算出部821で算出された顕熱負荷値が取得されるとともに、外気温度センサ60で計測された外気温度計測値、および外気湿度センサ70で計測された外気湿度計測値が取得される(S4)。   Next, in the environmental value acquisition unit 822b of the operation function calculation unit 822, the sensible heat load value calculated by the sensible heat load calculation unit 821 is acquired, the outside air temperature measurement value measured by the outside air temperature sensor 60, and An outside air humidity measurement value measured by the outside air humidity sensor 70 is acquired (S4).

次に、設定値特定部822cにおいて、環境値取得部822bで取得された顕熱負荷値、外気温度計測値、および外気湿度計測値に基づいて、関数取得部822aで取得された最適運用関数により、最適な室内温度設定値、室内湿度設定値、および給気温度設定値が特定される(S5)。   Next, in the set value specifying unit 822c, based on the sensible heat load value, the outside air temperature measurement value, and the outside air humidity measurement value acquired by the environment value acquisition unit 822b, the optimum operation function acquired by the function acquisition unit 822a is used. The optimum indoor temperature setting value, indoor humidity setting value, and supply air temperature setting value are specified (S5).

なお、室内湿度センサ40から室内湿度計測値が取得され、室内湿度の制御を行うためにDDC90に送信される。   The indoor humidity measurement value is acquired from the indoor humidity sensor 40 and transmitted to the DDC 90 in order to control the indoor humidity.

そして、特定された室内温度設定値、室内湿度設定値、および給気温度設定値が、設定値送信部822dによりDDC90に送信され(S6)、DDC90によりこれらの設定値で空調機10が動作するように操作量が算出され空調機10に送信される。   Then, the specified indoor temperature set value, indoor humidity set value, and supply air temperature set value are transmitted to the DDC 90 by the set value transmitting unit 822d (S6), and the air conditioner 10 operates with these set values by the DDC 90. Thus, the operation amount is calculated and transmitted to the air conditioner 10.

以上の本実施形態によれば、複数の環境条件において、望ましい快適性指数値の範囲内で空調機の動力が最小となるように最適化計算された空調機の設定値に基づいて、最適運用関数を予めオフラインで作成しておき、この最適運用関数を利用して外気環境および空調制御対象の室内の環境に応じた設定値を特定するため、外気環境や室内環境が変化する度に負荷の高い最適化計算をする必要がなく、安定して効率の良い空調制御を行うことができる。   According to the above-described embodiment, the optimum operation is performed based on the setting value of the air conditioner that is optimized and calculated so that the power of the air conditioner is minimized within the range of the desired comfort index value in a plurality of environmental conditions. Since the function is created offline in advance and the set value corresponding to the outside air environment and the indoor environment subject to air conditioning control is specified using this optimum operation function, the load is changed every time the outside air environment or the indoor environment changes. There is no need for high optimization calculations, and stable and efficient air conditioning control can be performed.

また本実施形態においては、最適化演算部812では2次計画法(QP)を用いることにしたが、この方法に限定されるものではなく、例えば非線形最小二乗法、非線形計画法を利用して最適化演算してもよい。また、この最適運用関数を作成する方法として重回帰分析により多項式で近似し最適運用関数を求めておくこともできるが、冷房期間だけでなく、外気冷房や暖房などを行う期間も含め年間を通して対応するには、精度に限界がある場合もある。   In the present embodiment, the optimization calculation unit 812 uses quadratic programming (QP). However, the present invention is not limited to this method. For example, a nonlinear least square method or nonlinear programming is used. An optimization operation may be performed. In addition, as a method of creating this optimal operation function, it is possible to obtain an optimal operation function by approximating it with a polynomial by multiple regression analysis, but it is available throughout the year including not only the cooling period but also the period of outside air cooling and heating etc. In some cases, accuracy may be limited.

なお、上記の実施形態においては、図2にように空調制御対象のビル内に中央熱源装置を有さない場合について説明したが、図1に示すように各ビルに中央熱源装置50の冷凍機51と冷却塔52を有していてもよい。この場合、最適化演算部812で空調機の設定値が算出される際の空調制御システム内の全消費エネルギー値には、下記式(6)で表される値が用いられる。   In the above embodiment, the case where the central heat source device is not provided in the air conditioning control target building as shown in FIG. 2 has been described. However, as shown in FIG. 1, the refrigerator of the central heat source device 50 in each building. 51 and a cooling tower 52 may be provided. In this case, a value represented by the following equation (6) is used as the total energy consumption value in the air conditioning control system when the optimization calculator 812 calculates the set value of the air conditioner.

〔数6〕
全消費エネルギー値=冷却塔消費エネルギー+冷凍機消費エネルギー+冷水消費エネルギー+ポンプ消費エネルギー+送風機消費エネルギー・・・(6)
またビル内に中央熱源装置を有する場合には、空調制御のための設定値として室内温度設定値、室内湿度設定値、および給気温度設定値以外に、中央熱源装置で生成される冷水の温度設定値や流量設定値等が特定されDDCに出力されるようにしてもよい。
[Equation 6]
Total energy consumption = Cooling tower energy consumption + Refrigerator energy consumption + Cold water energy consumption + Pump energy consumption + Blower energy consumption (6)
When the building has a central heat source device, the temperature of the cold water generated by the central heat source device is set in addition to the indoor temperature setting value, indoor humidity setting value, and supply air temperature setting value as the setting values for air conditioning control. A set value, a flow rate set value, or the like may be specified and output to the DDC.

また本実施形態においては、運用関数演算部の設定値特定部において特定する設定値が室内温度設定値、室内湿度設定値、および給気温度設定値である場合について説明したが、これには限定されず、空調制御対象の室内に設けられたCO2センサ(図示せず)の計測値に基づいて外気導入量設定値を特定し、この特定された外気導入量設定値に基づいて空調機に外気を導入するためのダンパ開度を制御するようにしてもよい。この場合、オフライン処理部においても予めCO2濃度と外気導入量とに関する最適運用関数を作成しておくようにする。 In the present embodiment, the case has been described in which the set values specified by the set value specifying unit of the operation function calculating unit are the indoor temperature set value, the indoor humidity set value, and the supply air temperature set value. The outside air introduction amount set value is specified based on the measured value of a CO 2 sensor (not shown) provided in the air conditioning control target room, and the air conditioner is set based on the specified outside air introduction amount setting value. The damper opening for introducing the outside air may be controlled. In this case, an optimum operation function relating to the CO 2 concentration and the outside air introduction amount is also created in advance in the offline processing unit.

また、本実施形態においてはオフライン処理部の最適化演算部において設定値を算出する際に消費エネルギー値が最小となるような設定値を算出したが、これには限定されず、所要動力の運転に要するコストが最小となるような設定値を算出したり、所要動力の運転により発生するCO2量が最小となるような設定値を算出するようにしてもよく、ビルオーナー等の要望に応じてこれらを変更してもよい。 Further, in the present embodiment, the setting value is calculated so that the energy consumption value is minimized when the setting value is calculated in the optimization calculation unit of the offline processing unit. Depending on the demands of the building owner, etc., it may be possible to calculate a setting value that minimizes the cost required for the operation, or a setting value that minimizes the amount of CO 2 generated by the operation of the required power. These may be changed.

また本実施形態においては、各室内温度センサ30および各室内湿度センサ40で計測された計測値は空調機10を介して空調連携制御装置80に送信される場合について説明したが、これには限定されず、各センサから直接空調連携制御装置80に送信されるようにしてもよい。   In the present embodiment, the case where the measured values measured by the indoor temperature sensors 30 and the indoor humidity sensors 40 are transmitted to the air conditioning cooperation control device 80 via the air conditioner 10 has been described. Instead, it may be transmitted directly from each sensor to the air conditioning cooperation control device 80.

また本実施形態においては、人間の温熱感覚の快適性指標としてPMVを用いたが、これには限定されず、標準有効温度や新有効温度を用いて空調制御を行うようにしてもよい。   In this embodiment, PMV is used as a comfort index for human thermal sensation. However, the present invention is not limited to this, and air conditioning control may be performed using a standard effective temperature or a new effective temperature.

なお、本願発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変形して実施できるものである。   In addition, this invention is not limited to the said embodiment, In the range which does not deviate from the summary, it can change and implement variously.

1…空調制御システム
10…空調機
11…風量センサ
20…給気温度センサ
30…室内温度センサ
40…室内湿度センサ
50…中央熱源装置
51…冷凍機
52…冷却塔
53…送水ポンプ
60…外気温度センサ
70…外気湿度センサ
80…空調連携制御装置
81…オフライン処理部
82…オンライン処理部
90…DDC
811…空調システムモデル記憶部
812…最適化演算部
813…最適運用関数作成部
821…顕熱負荷算出部
822…運用関数演算部
822a…関数取得部
822b…環境値取得部
822c…設定値特定部
822d…設定値送信部
DESCRIPTION OF SYMBOLS 1 ... Air conditioning control system 10 ... Air conditioner 11 ... Air flow sensor 20 ... Supply air temperature sensor 30 ... Indoor temperature sensor 40 ... Indoor humidity sensor 50 ... Central heat source apparatus 51 ... Refrigerator 52 ... Cooling tower 53 ... Water supply pump 60 ... Outside air temperature Sensor 70 ... Outside air humidity sensor 80 ... Air conditioning cooperation control device 81 ... Offline processing unit 82 ... Online processing unit 90 ... DDC
811 ... Air conditioning system model storage unit 812 ... Optimization calculation unit 813 ... Optimal operation function creation unit 821 ... Sensible heat load calculation unit 822 ... Operation function calculation unit 822a ... Function acquisition unit 822b ... Environment value acquisition unit 822c ... Setting value identification unit 822d: Setting value transmission unit

Claims (6)

空調制御対象の室内空間毎に設置された空調機に接続された空調制御装置において、
複数条件の外気の環境を示す値と、複数条件の前記空調制御対象の室内空間毎の空調環境を示す値との組み合わせごとにそれぞれ、所定範囲内の快適性指標値で空調制御の所要動力に関する値が最小となるような空調制御のための設定値を最適化演算で予め算出し、すべての条件における前記設定値を通る関数を、最適運用関数として前記設定値の種類ごとに予め作成する最適運用関数作成部と、
計測された、外気の環境を示す計測値および前記空調制御対象の室内空間毎の空調環境を示す計測値を取得する環境値取得部と、
前記最適運用関数作成部で作成された最適運用関数に基づいて、前記環境値取得部で取得した外気の環境を示す計測値および前記空調制御対象の室内空間毎の空調環境を示す計測値に対応する前記空調制御のための設定値を特定する設定値特定部と、
前記設定値特定部で特定された設定値を、前記空調機に設定させるために送出する設定値送出部と、
を備えることを特徴とする空調制御装置。
In the air conditioning control device connected to the air conditioner installed for each indoor space subject to air conditioning control,
Each of the combinations of a value indicating the environment of the outdoor air of a plurality of conditions and a value indicating the air conditioning environment of each indoor space of the air conditioning control target of the plurality of conditions relates to the required power of the air conditioning control with a comfort index value within a predetermined range. Optimum setting value for air-conditioning control that minimizes the value is calculated in advance by optimization calculation, and a function that passes through the setting value under all conditions is created in advance as an optimum operation function for each type of the setting value. Operational function creation part,
An environmental value acquisition unit that acquires a measured value indicating an ambient air environment and a measured value indicating an air-conditioning environment for each indoor space of the air-conditioning control target;
Based on the optimum operation function created by the optimum operation function creation unit, it corresponds to the measurement value indicating the outside air environment acquired by the environment value acquisition unit and the measurement value indicating the air-conditioning environment for each indoor space to be air-conditioned. A set value specifying unit for specifying a set value for the air conditioning control,
A set value sending unit for sending the set value specified by the set value specifying unit to cause the air conditioner to set;
An air-conditioning control device comprising:
空調制御対象の室内空間毎に設置された空調機と、
複数条件の外気の環境を示す値と、複数条件の前記空調制御対象の室内空間毎の空調環境を示す値との組み合わせごとにそれぞれ、所定範囲内の快適性指標値で前記空調制御の所要動力に関する値が最小となるような空調制御のための設定値を最適化演算で予め算出し、すべての条件における前記設定値を通る関数を、最適運用関数として前記設定値の種類ごとに予め作成する最適運用関数作成装置と
に接続された空調制御装置において、
計測された、外気の環境を示す計測値および前記空調制御対象の室内空間毎の空調環境を示す計測値を取得する環境値取得部と、
前記最適運用関数作成装置で作成された最適運用関数に基づいて、前記環境値取得部で取得した外気の環境を示す計測値および前記空調制御対象の室内空間毎の空調環境を示す計測値に対応する前記空調制御のための設定値を特定する設定値特定部と、
前記設定値特定部で特定された設定値を、前記空調機に設定させるために送出する設定値送出部と、
を備えることを特徴とする空調制御装置。
An air conditioner installed for each indoor space subject to air conditioning control;
The required power of the air conditioning control with a comfort index value within a predetermined range for each combination of a value indicating the environment of the outdoor air of a plurality of conditions and a value indicating the air conditioning environment of each indoor space of the air conditioning control target of the plurality of conditions A setting value for air conditioning control that minimizes the value for the air conditioning control is calculated in advance by optimization calculation, and a function that passes through the setting value in all conditions is created in advance as an optimum operation function for each type of the setting value. In the air conditioning control device connected to the optimum operation function creation device,
An environmental value acquisition unit that acquires a measured value indicating an ambient air environment and a measured value indicating an air-conditioning environment for each indoor space of the air-conditioning control target;
Based on the optimum operation function created by the optimum operation function creation device, it corresponds to the measurement value indicating the outside air environment acquired by the environment value acquisition unit and the measurement value indicating the air-conditioning environment for each indoor space to be air-conditioned. A set value specifying unit for specifying a set value for the air conditioning control,
A set value sending unit for sending the set value specified by the set value specifying unit to cause the air conditioner to set;
An air-conditioning control device comprising:
前記空調制御の所要動力に関する値は、空調制御の所要動力の運転による消費エネルギー値、空調制御の所要動力の運転に要するコスト、または、空調制御の所要動力の運転により発生するCO2量のいずれかである
ことを特徴とする請求項1または2に記載の空調制御装置。
The value related to the power required for the air conditioning control is any of the energy consumption value due to the operation of the power required for the air conditioning control, the cost required for the operation of the power required for the air conditioning control, or the amount of CO 2 generated by the operation of the power required for the air conditioning control. The air-conditioning control apparatus according to claim 1 or 2, wherein
前記外気の環境を示す値は、外気温度値および外気湿度値であり、
前記空調制御対象の室内空間毎のを示す値は、顕熱負荷値であり、
前記設定値の種類には、空調制御対象の室内の室内温度設定値、室内湿度設定値、または給気温度設定値を少なくとも含む
ことを特徴とする請求項1〜3いずれか1項に記載の空調制御装置。
The values indicating the environment of the outside air are an outside air temperature value and an outside air humidity value,
The value indicating each indoor space of the air conditioning control target is a sensible heat load value,
The type of the set value includes at least an indoor temperature set value, an indoor humidity set value, or an air supply temperature set value in a room subject to air conditioning control. Air conditioning control device.
空調制御に利用するために前記空調機に供給する冷温水を生成する中央熱源装置にさらに接続され、
前記空調制御の所要動力に関する値としてさらに、前記冷温水の温度設定値または前記空調機に供給する流量設定値を含む
ことを特徴とする請求項4に記載の空調制御装置。
It is further connected to a central heat source device that generates cold / hot water to be supplied to the air conditioner for use in air conditioning control,
The air conditioning control device according to claim 4, further comprising a temperature setting value of the cold / hot water or a flow rate setting value supplied to the air conditioner as a value relating to the required power of the air conditioning control.
前記最適運用関数は、スプライン補間方法により作成される
ことを特徴とする請求項1〜5いずれか1項に記載の空調制御装置。
The air conditioning control device according to claim 1, wherein the optimum operation function is created by a spline interpolation method.
JP2009171974A 2009-07-23 2009-07-23 Air conditioning control device Pending JP2011027301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009171974A JP2011027301A (en) 2009-07-23 2009-07-23 Air conditioning control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009171974A JP2011027301A (en) 2009-07-23 2009-07-23 Air conditioning control device

Publications (1)

Publication Number Publication Date
JP2011027301A true JP2011027301A (en) 2011-02-10

Family

ID=43636253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009171974A Pending JP2011027301A (en) 2009-07-23 2009-07-23 Air conditioning control device

Country Status (1)

Country Link
JP (1) JP2011027301A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013228121A (en) * 2012-04-24 2013-11-07 Hitachi Ltd Device for controlling air conditioning facility
WO2014136330A1 (en) 2013-03-04 2014-09-12 株式会社東芝 Air-conditioning control device and storage medium
JP2018031534A (en) * 2016-08-25 2018-03-01 高砂熱学工業株式会社 Control device of air conditioning system, control method, control program, and air conditioning system
CN108332349A (en) * 2017-09-30 2018-07-27 广东美的制冷设备有限公司 Air conditioner and its control method and device
JP2019120446A (en) * 2017-12-28 2019-07-22 ミノリソリューションズ株式会社 Air conditioner centralized control device
US10393396B2 (en) 2014-02-10 2019-08-27 Kabushiki Kaisha Toshiba Thermal load estimating device and air conditioning control system
CN112460723A (en) * 2020-10-29 2021-03-09 东洋工业(广东)有限公司 Air environment simulation automatic adjusting method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0428944A (en) * 1990-05-23 1992-01-31 Kubota Corp Air conditioning system
JPH06266848A (en) * 1993-03-11 1994-09-22 Sony Tektronix Corp Method for finding out tangent of measured characteristic curve
JPH0829005A (en) * 1994-07-20 1996-02-02 Tokyo Gas Co Ltd Air-conditioner using absorptive refrigerating machine
JP2004060978A (en) * 2002-07-29 2004-02-26 Yamatake Corp Air-conditioning control support device, air-conditioning control device, air-conditioning control support system, and air-conditioning control system
JP2004286284A (en) * 2003-03-20 2004-10-14 Osaka Gas Co Ltd Control system and control method of utility consumption facility
JP2007285579A (en) * 2006-04-14 2007-11-01 Toshiba Corp Air conditioning control device
JP2008075978A (en) * 2006-09-21 2008-04-03 Shinko Kogyo Co Ltd Air-conditioning control system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0428944A (en) * 1990-05-23 1992-01-31 Kubota Corp Air conditioning system
JPH06266848A (en) * 1993-03-11 1994-09-22 Sony Tektronix Corp Method for finding out tangent of measured characteristic curve
JPH0829005A (en) * 1994-07-20 1996-02-02 Tokyo Gas Co Ltd Air-conditioner using absorptive refrigerating machine
JP2004060978A (en) * 2002-07-29 2004-02-26 Yamatake Corp Air-conditioning control support device, air-conditioning control device, air-conditioning control support system, and air-conditioning control system
JP2004286284A (en) * 2003-03-20 2004-10-14 Osaka Gas Co Ltd Control system and control method of utility consumption facility
JP2007285579A (en) * 2006-04-14 2007-11-01 Toshiba Corp Air conditioning control device
JP2008075978A (en) * 2006-09-21 2008-04-03 Shinko Kogyo Co Ltd Air-conditioning control system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013228121A (en) * 2012-04-24 2013-11-07 Hitachi Ltd Device for controlling air conditioning facility
WO2014136330A1 (en) 2013-03-04 2014-09-12 株式会社東芝 Air-conditioning control device and storage medium
JP2014169833A (en) * 2013-03-04 2014-09-18 Toshiba Corp Air conditioning control device, and control program
US10393396B2 (en) 2014-02-10 2019-08-27 Kabushiki Kaisha Toshiba Thermal load estimating device and air conditioning control system
JP2018031534A (en) * 2016-08-25 2018-03-01 高砂熱学工業株式会社 Control device of air conditioning system, control method, control program, and air conditioning system
JP2021177122A (en) * 2016-08-25 2021-11-11 高砂熱学工業株式会社 Control device, control method and control program for air conditioning system and air conditioning system
JP7204842B2 (en) 2016-08-25 2023-01-16 高砂熱学工業株式会社 Air-conditioning system controller, control method, control program, and air-conditioning system
CN108332349A (en) * 2017-09-30 2018-07-27 广东美的制冷设备有限公司 Air conditioner and its control method and device
JP2019120446A (en) * 2017-12-28 2019-07-22 ミノリソリューションズ株式会社 Air conditioner centralized control device
CN112460723A (en) * 2020-10-29 2021-03-09 东洋工业(广东)有限公司 Air environment simulation automatic adjusting method

Similar Documents

Publication Publication Date Title
KR101162582B1 (en) Device and method for humidity estimation
JP5132334B2 (en) Air conditioning control device and air conditioning control system using the same
KR100867365B1 (en) Air conditioning controller
US7854389B2 (en) Application of microsystems for comfort control
JP5175643B2 (en) Air conditioning control system and air conditioning control device
JP2011027301A (en) Air conditioning control device
JP6005304B2 (en) Ventilation control device and ventilation control method
JPWO2014203311A1 (en) Air conditioning system control apparatus and air conditioning system control method
WO2021199381A1 (en) Air conditioning system and method for controlling air conditioner
WO2019235109A1 (en) Air-conditioning control device, air-conditioning control method, and air-conditioning control system
JP4836967B2 (en) Air conditioning control support screen generation device, air conditioning control support screen generation method, and air conditioning monitoring system
JP2017026196A (en) Air conditioning control device, air conditioning control method and air conditioning control program
JP6280456B2 (en) Air conditioning system and air conditioning control method
JP2007120889A (en) Air conditioning control device
JP2013164260A (en) Air conditioning control device, air conditioning control method, and program for air conditioning control
CN106765901A (en) The control method of convertible frequency air-conditioner
KR102362252B1 (en) air conditioning control system and method for thermal comfort control and energy saving
JP5284528B2 (en) Air conditioning control device, air conditioning system, air conditioning control method, air conditioning control program
JPH07229643A (en) Air conditioner controller
JP7282447B2 (en) Air-conditioning system, air-conditioning control device, air-conditioning method and program
CN106524424A (en) Variable frequency air conditioner control method
CN106524425A (en) Variable frequency air conditioner control method
CN106642551A (en) Control method of variable-frequency air conditioner
WO2021240604A1 (en) Air conditioning control device, air conditioning system, air conditioning method, and program
WO2022044079A1 (en) Air conditioning system and method for controlling air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121002