JP2011026693A - High hardness steel having excellent softening resistance - Google Patents

High hardness steel having excellent softening resistance Download PDF

Info

Publication number
JP2011026693A
JP2011026693A JP2009297072A JP2009297072A JP2011026693A JP 2011026693 A JP2011026693 A JP 2011026693A JP 2009297072 A JP2009297072 A JP 2009297072A JP 2009297072 A JP2009297072 A JP 2009297072A JP 2011026693 A JP2011026693 A JP 2011026693A
Authority
JP
Japan
Prior art keywords
steel
hardness
less
high hardness
tempering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009297072A
Other languages
Japanese (ja)
Other versions
JP5488973B2 (en
Inventor
Kenji Yokoyama
健児 横山
Kunichika Kubota
邦親 久保田
Toshihiro Uehara
利弘 上原
Takehiro Ono
丈博 大野
Katsuhiko Oishi
勝彦 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2009297072A priority Critical patent/JP5488973B2/en
Publication of JP2011026693A publication Critical patent/JP2011026693A/en
Application granted granted Critical
Publication of JP5488973B2 publication Critical patent/JP5488973B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high hardness steel having excellent softening resistance, which maintains high hardness even in the case of a temperature rise to the vicinity of 500°C, by the optimum balance of its composition even if a Cr content is reduced. <P>SOLUTION: The high hardness steel having excellent softening resistance has a composition comprising, by mass, >0.6 to 0.7% C, >0.25 to 2.0% Si, >0.25 to 1.0% Mn, 8.0 to <11.0% Cr, Mo+1/2W: >1.5 to 5.0% and >0.02 to 0.06% N, and the balance Fe with impurities, wherein the relation of C/Cr: >0.056 to 0.085 and C+N: >0.63 to 0.75 is satisfied. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、500℃付近までの温度上昇にも高硬度を維持できる軟化抵抗に優れた高硬度鋼に関するものである。   The present invention relates to a high-hardness steel excellent in softening resistance that can maintain high hardness even when the temperature rises to around 500 ° C.

従来から、比較的高い温度で使用が可能な軸受鋼として、JIS SUS440C鋼、BAS 440M鋼(1.1C−14.5Cr−4Mo−Fe),0.7C−12Cr鋼等が用いられている。これらのマルテンサイトステンレス鋼は、耐熱性、耐食性、耐摩耗性の点でJIS G4805に規定されている高炭素クロム軸受鋼(SUJ)より優れているが、転動疲労特性が劣る欠点がある。
これに対して、本願出願人は特許第3241921号として、転動疲労特性に優れた耐摩耐食軸受鋼を提案した。
Conventionally, JIS SUS440C steel, BAS 440M steel (1.1C-14.5Cr-4Mo-Fe), 0.7C-12Cr steel, and the like have been used as bearing steel that can be used at relatively high temperatures. These martensitic stainless steels are superior to the high carbon chromium bearing steel (SUJ) defined in JIS G4805 in terms of heat resistance, corrosion resistance, and wear resistance, but have a drawback of poor rolling fatigue characteristics.
On the other hand, the applicant of the present application has proposed a wear-resistant and corrosion-resistant bearing steel excellent in rolling fatigue characteristics as Japanese Patent No. 3224121.

特許第3241921号公報Japanese Patent No. 3224121

上述した特許第3241921号は、C、N、Crを高めた軸受鋼である。この特許第3241921号で提案した軸受鋼を更に検討した結果、Cを高めると一次炭化物が晶出し、疲労強度が低下する危険性がある。また、N含有量が比較的高いため、添加が困難となり、製造性に問題があった。
N含有量を高めるためには、Crも高めることが有効であり、特許第3241921号では、12.4%以上の範囲の軸受鋼が提案されている。しかしながら、最近では、合金の低コスト化が求められており、必要最小限のCr添加量とする必要がある。
本発明の目的は、Cr含有量を低減しても組成の最適バランスにより、500℃付近までの温度上昇にも高硬度を維持できる軟化抵抗に優れた高硬度鋼を提供することである。
The above-mentioned Japanese Patent No. 3224121 is a bearing steel in which C, N, and Cr are increased. As a result of further examination of the bearing steel proposed in Japanese Patent No. 3241421, when C is increased, there is a risk that primary carbides crystallize and fatigue strength decreases. Moreover, since N content is comparatively high, addition became difficult and there existed a problem in manufacturability.
In order to increase the N content, it is effective to increase Cr, and Japanese Patent No. 3241922 proposes a bearing steel in a range of 12.4% or more. However, recently, cost reduction of the alloy has been demanded, and it is necessary to make the necessary minimum Cr addition amount.
An object of the present invention is to provide a high-hardness steel excellent in softening resistance that can maintain a high hardness even with a temperature increase up to about 500 ° C. by an optimal balance of the composition even if the Cr content is reduced.

本発明は、上述した課題に鑑みてなされたものである。
すなわち本発明は、質量%で、C:0.6%を超え〜0.7%、Si:0.25%を超え〜2.0%以下、Mn:0.25%を超え〜1.0%以下、Cr:8.0〜11.0%未満、Mo+1/2W:1.5%を超え〜5.0%、N:0.02%を超えて0.06%以下を含有し、残部はFe及び不純物でなり、且つ、C/Cr:0.056を超え〜0.085、C+N:0.63%を超え0.75%の関係を満たす軟化抵抗に優れた高硬度鋼である。
また本発明では、更に質量%で、S:0.1%以下、Ca:0.1%以下、Mg:0.03%以下の一種以上を含有させ、優れた被削性を付与することができる。
The present invention has been made in view of the above-described problems.
That is, the present invention is, by mass%, C: more than 0.6% to 0.7%, Si: more than 0.25% to 2.0% or less, Mn: more than 0.25% to 1.0% %: Cr: 8.0 to less than 11.0%, Mo + 1 / 2W: more than 1.5% to 5.0%, N: more than 0.02% and 0.06% or less, the balance Is a high-hardness steel excellent in softening resistance, which is composed of Fe and impurities and satisfies the relationship of C / Cr: more than 0.056 to 0.085, C + N: more than 0.63% and 0.75%.
Further, in the present invention, it is possible to further contain one or more of S: 0.1% or less, Ca: 0.1% or less, and Mg: 0.03% or less in mass% to give excellent machinability. it can.

本発明の軟化抵抗に優れた高硬度鋼は、合金元素の添加量を低減しても、例えば、400〜500℃に加熱しても使用時に軟化し難い良好な硬さを維持できることから、樹脂などの成形型、軸受、各種工具用の合金として最適である。   The high hardness steel excellent in softening resistance of the present invention can maintain a good hardness that is difficult to soften during use even if the amount of alloying elements is reduced, for example, even when heated to 400 to 500 ° C. It is most suitable as an alloy for molds, bearings, and various tools.

塩水噴霧試験の結果を示す外観写真である。It is an external appearance photograph which shows the result of a salt spray test. 本発明の高硬度鋼断面の光学顕微鏡写真である。It is an optical microscope photograph of the high hardness steel cross section of this invention. 疲労試験結果を示す図である。It is a figure which shows a fatigue test result.

上述したように、本発明の重要な特徴はCr含有量を低減しても、組成の最適バランスにより、400〜500℃の高温に加熱した場合でも58HRC近辺の良好な硬さを維持できる合金組成にある。以下に詳しく本発明を説明する。なお、特に記載の無い限り、各元素の含有量は質量%で記す。
C:0.6%を超え〜0.7%
Cは、基地の硬さを高め、高温焼戻しによってCrやMoとの炭化物を形成して高硬度鋼の耐磨耗性を確保するための重要な元素であるため必須で含有する。
しかし、Cが0.7%を超えると一次炭化物が晶出し易くなり、疲労強度が低下する。
また、Cが0.5%未満であると、上述のCの添加効果が得られない。そのため、Cの範囲は0.6を超え〜0.7%に限定する。上述の効果を確実に得るための好ましいCの下限は0.62%、上限は0.68%である。
As described above, an important feature of the present invention is that the alloy composition can maintain a good hardness in the vicinity of 58HRC even when it is heated to a high temperature of 400 to 500 ° C., even if the Cr content is reduced, due to the optimum balance of the composition. It is in. The present invention is described in detail below. Unless otherwise specified, the content of each element is expressed in mass%.
C: Over 0.6% to 0.7%
C is an essential element for increasing the hardness of the base and forming carbides with Cr and Mo by high-temperature tempering to ensure the wear resistance of the high-hardness steel.
However, when C exceeds 0.7%, the primary carbide is easily crystallized and the fatigue strength is lowered.
Further, if C is less than 0.5%, the above-mentioned effect of adding C cannot be obtained. Therefore, the range of C exceeds 0.6 and is limited to 0.7%. The preferable lower limit of C for surely obtaining the above effect is 0.62%, and the upper limit is 0.68%.

Si:0.25%を超え〜2.0%以下
Siは、脱酸元素として添加する他、本発明においては高温焼戻しの硬さを高める効果があるので0.25%を超えて2.0%以下の範囲において必須で添加する。Siが0.25%以下の範囲では、前記のSi添加効果が望めず、また、Siを2.0%を超えて添加しても、Siの高温焼戻しの硬さを高める効果の向上は望めず、かえって靭性や熱間加工性を阻害する。そのため、Siは0.25%を超え〜2.0%以下の範囲に規定する。
なお、Siの高温焼戻しの硬さを高める効果を確実に実現できる好ましい下限は0.3%、更に好ましくは0.5%とすれば良く、好ましい上限は1.3%、更に好ましくは1.1%である。
Si: more than 0.25% to 2.0% or less Si is added as a deoxidizing element, and in the present invention, it has an effect of increasing the hardness of high-temperature tempering, so it exceeds 0.25% and exceeds 2.0. It is essential and added in the range of% or less. If Si is in the range of 0.25% or less, the above-mentioned effect of adding Si cannot be expected, and even if Si is added in excess of 2.0%, an improvement in the effect of increasing the hardness of high-temperature tempering of Si can be expected. Instead, it impedes toughness and hot workability. Therefore, Si is specified in the range of more than 0.25% and not more than 2.0%.
In addition, the preferable lower limit which can implement | achieve the effect which raises the hardness of high temperature tempering of Si reliably is 0.3%, More preferably, what is necessary is just 0.5%, and a preferable upper limit is 1.3%, More preferably, 1. 1%.

Mn:0.25%を超え〜1.0%以下
Mnは、添加すると靭性を劣化させることなく鋼の強度を増すことができ、高温焼戻しの硬さも改善される。但し、過度なMnは、加工性、低温靭性を低下させる。Mnが0.25%以下の範囲では、前記のMn添加効果が望めず、また、Mnが1.0%を超えて添加しても、加工硬化し易くなり、加工時に材料の弾性限界点、降伏点、引張り強さ、疲労限界等が増加し、伸び、絞りが減少する。更に1.0%を超える範囲では焼戻し時に脆性が発生するので、Mnの上限を1.0%以下に規定する。鋼の強度を確保して、加工性の低下や焼戻し時の脆化をより確実に抑制できる好ましいMnの下限は0.3%、さらに好ましくは0.6%である。好ましい上限は0.8%である。
Mn: more than 0.25% to 1.0% or less When Mn is added, the strength of the steel can be increased without deteriorating the toughness, and the hardness of high-temperature tempering can be improved. However, excessive Mn reduces workability and low temperature toughness. When Mn is in the range of 0.25% or less, the above Mn addition effect cannot be expected, and even if Mn exceeds 1.0%, it becomes easy to work and harden, and the elastic limit point of the material during processing, Yield point, tensile strength, fatigue limit, etc. increase, elongation and drawing decrease. Furthermore, since brittleness occurs during tempering in the range exceeding 1.0%, the upper limit of Mn is specified to be 1.0% or less. The preferable lower limit of Mn that can ensure the strength of the steel and more reliably suppress deterioration of workability and embrittlement during tempering is 0.3%, more preferably 0.6%. A preferred upper limit is 0.8%.

Cr:8.0〜11.0%未満
Crは、焼入れ性を向上させ、高温焼戻しの硬さを高める効果があるため、8.0%以上を必須で添加する。また、Crは、耐食性を向上させる効果もある一方で、過度のCr添加は加工性、低温靭性に悪影響を及ぼすので、11%未満を上限と規定する。また、Crの増加と共に高温焼戻しの硬さが上昇するとは限らず、適当なCr量において硬さが最高となる。この効果を確実に得るにはCrの下限を9.0%、さらに好ましくは9.5%、上限を10.5%とするのが好ましい。
Cr: less than 8.0 to 11.0% Cr has an effect of improving hardenability and increasing the hardness of high-temperature tempering, so 8.0% or more is essential. Cr also has the effect of improving corrosion resistance, but excessive addition of Cr adversely affects workability and low-temperature toughness, so less than 11% is defined as the upper limit. Moreover, the hardness of high-temperature tempering does not necessarily increase with the increase of Cr, and the hardness becomes the highest at an appropriate amount of Cr. In order to reliably obtain this effect, the lower limit of Cr is preferably 9.0%, more preferably 9.5%, and the upper limit is preferably 10.5%.

Mo+1/2W:1.5を超え〜5.0%
Mo及びWは、固溶強化および/または炭化物の析出硬化により高温焼戻し後の軟化抵抗を向上させ、耐摩耗性、耐熱疲労性を改善するために単独または複合で添加できる。更に、硬質な炭化物を作り、硬さを向上させる。
WはMoの約2倍の原子量であることからMo+1/2Wで規定する(当然、何れか一方のみの添加としても良いし、双方を共添加することもできる)。Mo、Wが少ないと高温焼戻しの硬さの改善が得られなくなるため、下限を1.5%を超える範囲に規定する。但し、添加量が5.0%を超えても上記の効果の向上はあまり望めない。そのため、Mo+1/2Wの上限を5.0%に規定する。好ましくはMo+1/2Wの下限を1.7%、上限を4.0%、さらに好ましくは2.5%未満とすれば良い。
Mo + 1 / 2W: more than 1.5 to 5.0%
Mo and W can be added singly or in combination to improve softening resistance after high-temperature tempering by solid solution strengthening and / or precipitation hardening of carbides, and to improve wear resistance and heat fatigue resistance. Furthermore, a hard carbide is made and the hardness is improved.
Since W has an atomic weight approximately twice that of Mo, it is defined by Mo + 1 / 2W (of course, either one may be added, or both may be added together). When there is little Mo and W, since the improvement of the hardness of high temperature tempering will not be obtained, a minimum is prescribed | regulated to the range exceeding 1.5%. However, even if the addition amount exceeds 5.0%, the improvement of the above effect cannot be expected. Therefore, the upper limit of Mo + 1 / 2W is specified as 5.0%. Preferably, the lower limit of Mo + 1 / 2W is 1.7%, the upper limit is 4.0%, more preferably less than 2.5%.

N:0.02%を超えて0.06%以下
Nは、添加により固溶強化、析出硬化および/または、炭化物の結晶粒を微細化させ硬さを向上させる他、高温焼戻しの硬さやクリープ特性の改善に有効な成分であるが、過度な添加は加工性、低温靭性を低下させるので、上限を0.06%に規定する。一方、Nが過度に少なくなると、固溶強化、析出硬化および/または、結晶粒を微細化させ硬さを向上させる効果が出ないため、Nの下限は、0.02%を超えた範囲に規定する。高温焼戻しの硬さを確保するために、好ましくはNの下限を0.04%、上限を0.05%未満とすれば良い。
N: more than 0.02% and not more than 0.06% N is added to improve the hardness by solid solution strengthening, precipitation hardening and / or carbide grains, and to improve hardness and creep of high temperature tempering Although it is an effective component for improving the characteristics, excessive addition reduces workability and low temperature toughness, so the upper limit is specified to 0.06%. On the other hand, if N is excessively reduced, there is no effect of solid solution strengthening, precipitation hardening and / or improvement of hardness by refining crystal grains, so the lower limit of N is in a range exceeding 0.02%. Stipulate. In order to ensure the hardness of high temperature tempering, the lower limit of N is preferably 0.04% and the upper limit is less than 0.05%.

本発明において、上述した各元素の含有量を調整した上で、C,N,Crのバランスを適正化する必要がある。
C/Cr:0.056を超え〜0.085
C含有量に対し、Cr含有量が多くなって、C/Crが0.056以下となるとHRC58以上の高硬度とし難くなる。一方、Cr含有量に対して、C含有量が多くなってC/Crが0.085を超えると、一次炭化物が晶出し易くなったり、炭化物が粗大になり易くなって疲労強度を低下させる心配がある。そのため、CとCrのバランスを、C/Crで0.056を超えて0.085の範囲に限定する。
C+N:0.63%を超え0.75%
CとNの含有量の総和が0.63%未満であると、HRC58以上の高硬度とし難くなる。一方、CとNの含有量の総和が0.75%を超えると、粗大な炭化物が形成し易くなり、疲労強度を低下させたり、残留オーステナイトが増加し易くなって、経年変化の心配がある。そのため、CとNの総和は0.63%を超え0.75%の範囲に限定する。
In the present invention, it is necessary to optimize the balance of C, N, and Cr after adjusting the content of each element described above.
C / Cr: more than 0.056 to 0.085
When the Cr content increases with respect to the C content and the C / Cr is 0.056 or less, it becomes difficult to achieve a high hardness of HRC58 or higher. On the other hand, if the C content increases with respect to the Cr content and the C / Cr exceeds 0.085, the primary carbide is likely to be crystallized or the carbide tends to become coarse and the fatigue strength may be reduced. There is. Therefore, the balance of C and Cr is limited to a range of 0.085 exceeding 0.056 in C / Cr.
C + N: more than 0.63% and 0.75%
When the total content of C and N is less than 0.63%, it becomes difficult to achieve a high hardness of HRC58 or higher. On the other hand, if the total content of C and N exceeds 0.75%, coarse carbides are likely to be formed, fatigue strength is reduced, and retained austenite is likely to increase, which may cause aging. . Therefore, the sum total of C and N is limited to a range exceeding 0.63% and 0.75%.

本発明では、上記の必須元素に加えて、更に質量%で、S:0.1%以下、Ca:0.1%以下、Mg:0.03%以下の一種以上を含有させても良い。
必須で添加するMn等との硫化物を形成し、被削性を改善するSは、0.1%以下の範囲で含有しても良く、特にSは、微量添加すると、Mn等との硫化物を形成し、被削性を改善するため、必要に応じて添加できる。一方でSを多量に添加すると、熱間加工性、耐溶接高温割れ性、耐食性に悪影響を及ぼすため、0.1%以下と規定する。被削性の改善に好ましくは、Sの下限を0.03%、上限を0.08%とすれば良い。
また、Sと同様に、被削性を改善するCa及びMgについても、Ca:0.1%以下、Mg:0.03%以下の範囲で添加することができる。
S,Ca,Mgについては、複合添加も可能である。
本発明では、上述した元素の他は、Fe及び製造上不可避的に混入する元素は当然含有する。
In the present invention, in addition to the above essential elements, one or more of S: 0.1% or less, Ca: 0.1% or less, and Mg: 0.03% or less may be further contained in mass%.
S that improves the machinability by forming a sulfide with Mn or the like that is essential may be contained in a range of 0.1% or less. In particular, when S is added in a small amount, it is sulfided with Mn and the like. In order to form an object and improve machinability, it can be added as necessary. On the other hand, when a large amount of S is added, it adversely affects hot workability, weld hot cracking resistance, and corrosion resistance. For improving machinability, the lower limit of S is preferably 0.03% and the upper limit is 0.08%.
Similarly to S, Ca and Mg that improve machinability can also be added within a range of Ca: 0.1% or less and Mg: 0.03% or less.
For S, Ca and Mg, combined addition is also possible.
In the present invention, in addition to the above-described elements, naturally, Fe and elements inevitably mixed in production are contained.

以下の実施例で本発明を更に詳しく説明する。
本発明と比較例の10kg鋼塊を真空溶解で作製し、高硬度鋼を得た。作製した高硬度鋼の化学組成を表1に示す。
表中のNo.1〜11は本発明の高硬度鋼、No.21〜27は比較鋼であり、比較鋼のうち、No.23は代表的な一般軸受鋼のSUJ2相当鋼、No.24は高温軸受に用いられるM50相当鋼、No.25は耐食用軸受に用いられるSUS440C相当鋼、No.26は代表的高硬度・高耐磨耗材料のSKD11相当鋼、No.27は代表的高速度工具鋼のSKH51相当鋼である。
また、併せて、本発明の高硬度鋼(No.12)の量産規模の溶解を行った。溶解は、3ton溶解(大気溶解)で作製した。
The following examples further illustrate the present invention.
The 10 kg steel ingots of the present invention and comparative examples were produced by vacuum melting to obtain high hardness steel. Table 1 shows the chemical composition of the produced high hardness steel.
No. in the table. 1 to 11 are high hardness steels of the present invention, No. 1 to No. 11. Nos. 21 to 27 are comparative steels. No. 23 is a typical general bearing steel SUJ2 equivalent steel, No. 23. No. 24 is M50 equivalent steel used for high temperature bearings, No. 24. No. 25 is a SUS440C equivalent steel used for corrosion resistant bearings, No. 25. No. 26 is a typical high hardness and high wear resistant material SKD11 equivalent steel, No. 26. 27 is a typical high-speed tool steel SKH51 equivalent steel.
In addition, mass production scale melting of the high hardness steel (No. 12) of the present invention was performed. Dissolution was made by 3ton dissolution (atmospheric dissolution).

作製した高硬度鋼のうち、本発明鋼No.1〜11及び比較鋼No.21〜27を均質化焼鈍した後、1150℃で熱間鍛造し、15mm(T)×15mm(W)×1000mm(L)の高硬度鋼の鍛造材を得た。
その後、780℃で3時間の焼鈍を行った。更に、焼鈍した高硬度鋼から15mm(T)×15mm(W)×15mm(L)の硬度測定用試験片を作製した。
この試験片を大気炉内で表2に示した焼入れ条件で加熱保持し、油冷または空冷にて焼入れを行った。一部の本発明鋼と比較鋼は、−80℃のエタノール中に1時間冷却保持するサブゼロ処理を焼入れと同時に行った。焼入れまたはサブゼロ処理後に試験片の両面を平行研磨し、500℃付近で焼戻しを行なった。焼戻し条件は表2に示し、焼戻し後に常温環境下でロックウェル硬さCスケールにて硬さを測定した。その結果を表2に示す。
Among the produced high hardness steels, the present invention steel No. 1-11 and comparative steel No.1. After homogenizing and annealing Nos. 21 to 27, hot forging was performed at 1150 ° C. to obtain a forged material of high hardness steel of 15 mm (T) × 15 mm (W) × 1000 mm (L).
Thereafter, annealing was performed at 780 ° C. for 3 hours. Further, a test piece for hardness measurement of 15 mm (T) × 15 mm (W) × 15 mm (L) was produced from the annealed high hardness steel.
This test piece was heated and held in the atmospheric furnace under the quenching conditions shown in Table 2, and quenched by oil cooling or air cooling. Some steels of the present invention and comparative steels were subjected to sub-zero treatment that was cooled and held in ethanol at −80 ° C. for 1 hour simultaneously with quenching. After quenching or sub-zero treatment, both surfaces of the test piece were parallel polished and tempered at around 500 ° C. Tempering conditions are shown in Table 2, and after tempering, the hardness was measured on a Rockwell hardness C scale in a normal temperature environment. The results are shown in Table 2.

量産規模溶解を実施したNo.12については、均質化焼鈍した後、1200〜1250℃で熱間鍛造を行い、続いて1100〜1150℃で熱間圧延を行い、φ14mmの高硬度鋼の圧延材を得た。
その後、780℃で3時間の焼鈍を行った。更に、焼鈍した高硬度鋼からφ14mm×15mm(L)の硬度測定用試験片を作製した。
この試験片を大気炉内で表2に示した焼入れ条件で加熱保持し、空冷にて焼入れを行った。一部は、−80℃のエタノール中に1時間冷却保持するサブゼロ処理を焼入れと同時に行った。焼入れまたはサブゼロ処理後に試験片の両面を平行研磨し、高温の軟化抵抗を評価するため、500℃付近で高温焼戻しを行なった。焼戻し条件は表2に示し、焼戻し後に常温環境下でロックウェル硬さCスケールにて硬さを測定した。その結果を表2に併せて示す。
No. which carried out mass production scale dissolution. No. 12, after homogenization annealing, hot forging was performed at 1200 to 1250 ° C., followed by hot rolling at 1100 to 1150 ° C. to obtain a rolled material of φ14 mm high-hardness steel.
Thereafter, annealing was performed at 780 ° C. for 3 hours. Furthermore, a test piece for hardness measurement of φ14 mm × 15 mm (L) was produced from the annealed high hardness steel.
This test piece was heated and held in an atmospheric furnace under the quenching conditions shown in Table 2, and quenched by air cooling. A part was subjected to sub-zero treatment in -80 ° C ethanol for 1 hour while being quenched. In order to evaluate high-temperature softening resistance, both surfaces of the test piece were subjected to high-temperature tempering at around 500 ° C. after quenching or sub-zero treatment. Tempering conditions are shown in Table 2, and after tempering, the hardness was measured on a Rockwell hardness C scale in a normal temperature environment. The results are also shown in Table 2.

表2に示すように、本発明の高硬度鋼は、500℃程度での焼戻し後の硬さが58HRC以上になっていることが分かる。
一方、比較鋼No.21及びNo.22は58HRC以上の硬さを得ることができず、SUJ2相当鋼のNo.23では、500℃の焼戻しにより58HRCを大きく下回っていることが分かる。なお、SUJ2相当鋼のNo.23においては、180℃の焼戻しにより、63HRCが得られたが、500℃の高温焼戻しでは47HRC以下に硬さが低下していることから、SUJ2相当鋼は高温での適用には不向きであることが分かる。
以上のことから、本発明の高硬度鋼は、高い軟化抵抗を有することが分かる。
As shown in Table 2, it can be seen that the high hardness steel of the present invention has a hardness after tempering at about 500 ° C. of 58 HRC or more.
On the other hand, Comparative Steel No. 21 and no. No. 22 could not obtain a hardness of 58HRC or higher, and No. 22 of SUJ2 equivalent steel. It can be seen that No. 23 is much lower than 58HRC by tempering at 500 ° C. In addition, SUJ2 equivalent steel No. In No. 23, 63 HRC was obtained by tempering at 180 ° C., but the hardness decreased to 47 HRC or less at high temperature tempering at 500 ° C., so that SUJ2 equivalent steel is not suitable for application at high temperature. I understand.
From the above, it can be seen that the high hardness steel of the present invention has a high softening resistance.

次に、被削性改善元素を添加した本発明の高硬度鋼のうち、No.3〜8の高硬度鋼について、被削性試験を行なった。被削性改善効果を確認するため、被削性改善元素を無添加としたNo.9についても、同様に被削性試験を行なった。
被削性試験は、焼鈍ままの素材から15mm(T)×15mm(W)×22mm(L)の寸法の試験片を切り出し、切り出した被削性試験片にドリルで孔開け加工を行って、ドリルの磨耗量にて評価を実施した。評価は、ドリルの最外周部をAと表記し、4/D部をBと表記して、試験結果を表4に示す。なお、試験条件は以下のとおりである。
ドリル径:φ4.0mmストレートシャンクドリル
切削深さ:20mm
切削速度:30m/min
送り速度:0.05mm/rev
ステップフィード:10mm
切削液:水溶性
Next, among the high hardness steels of the present invention to which the machinability improving element is added, No. A machinability test was performed on 3 to 8 high hardness steels. In order to confirm the machinability improving effect, no. Similarly, the machinability test was conducted for No. 9 as well.
In the machinability test, a test piece having a size of 15 mm (T) × 15 mm (W) × 22 mm (L) was cut out from the raw material as annealed, and the cut machinability test piece was drilled with a drill, Evaluation was performed based on the amount of wear of the drill. In the evaluation, the outermost peripheral part of the drill is expressed as A, the 4 / D part is expressed as B, and the test results are shown in Table 4. The test conditions are as follows.
Drill diameter: φ4.0mm straight shank drill Cutting depth: 20mm
Cutting speed: 30 m / min
Feeding speed: 0.05mm / rev
Step feed: 10mm
Cutting fluid: Water-soluble

表3に示すように、被削性改善元素を添加した本発明の高硬度鋼は、被削性改善元素を無添加としたNo.9の高硬度鋼よりも被削性が向上しているのがわかる。中でも適量のSとCaを複合添加したNo.7の高硬度鋼が最も被削性が良いことが分かる。   As shown in Table 3, the high-hardness steel of the present invention to which the machinability improving element was added is No. 1 with no machinability improving element added. It can be seen that the machinability is improved as compared with 9 high hardness steel. Among them, No. 1 in which an appropriate amount of S and Ca was added in combination. It can be seen that the 7 hard steel has the best machinability.

続いて、本発明の高硬度鋼と比較鋼について耐食性を調査した。
耐食性の調査は、本発明の高硬度鋼No.1と比較鋼No.25(SUS440C相当鋼)、No.26(SKD11相当鋼)、No.27(SKD51相当鋼)について行なった。試験片はそれぞれ、No.1が1050℃×30分、空冷の焼入れと、520℃×1時間の焼戻しを2回行い、No.25が1050℃×30分、空冷の焼入れと−80℃のサブゼロ処理、180℃×1時間の焼戻しを行い、No.26が1025℃×30分、空冷の焼入れと、520℃×1時間の焼戻しを行い、No.27が1200℃×30分、空冷の焼入れと、560℃×1時間の焼戻しを2回行った。その後、1cmの立方体に加工したものを用いた。
試験は、JIS Z 2371号に規定された塩水噴霧試験により耐食性の比較を行った。試験条件は、試験温度35℃、試験湿度95%〜98%、5%塩水を使用し、噴霧圧力1kgf/cm、塩水噴霧量1ml/hrで10時間試験を継続した。試験後の結果を図1に示す。図1の結果から、本発明の高硬度鋼は、耐食性軸受に用いられるSUS440C相当鋼(No.25)に近い耐食性を有することが分かる。
Subsequently, the corrosion resistance of the high hardness steel and the comparative steel of the present invention was investigated.
The investigation of the corrosion resistance was conducted according to the high hardness steel No. 1 of the present invention. 1 and comparative steel no. 25 (SUS440C equivalent steel), no. 26 (SKD11 equivalent steel), No. 27 (SKD51 equivalent steel). Each test piece is No. No. 1 performed 1050 ° C. × 30 minutes, air-cooled quenching and 520 ° C. × 1 hour tempering twice. No. 25 is 1050 ° C. × 30 minutes, air-cooled quenching and −80 ° C. subzero treatment, 180 ° C. × 1 hour tempering, No. 26 performs 1025 ° C. × 30 minutes, air-cooled quenching and 520 ° C. × 1 hour tempering. 27, 1200 ° C. × 30 minutes, air-cooled quenching and 560 ° C. × 1 hour tempering were performed twice. Then, what was processed into a 1 cm cube was used.
In the test, the corrosion resistance was compared by a salt spray test specified in JIS Z 2371. The test conditions were a test temperature of 35 ° C., a test humidity of 95% to 98%, and 5% salt water, and the test was continued for 10 hours at a spray pressure of 1 kgf / cm 2 and a salt spray amount of 1 ml / hr. The result after the test is shown in FIG. From the results of FIG. 1, it can be seen that the high hardness steel of the present invention has corrosion resistance close to that of SUS440C equivalent steel (No. 25) used for corrosion resistant bearings.

次に、金属組織観察と疲労強度の測定を行なった。
また、本発明No.12の焼鈍材から、φ14mm×10mm(L)の金属組織観察用試験片を切り出して焼入れと焼戻しを行なった。熱処理条件は、表2中に示した、1050℃×30分、空冷の焼入れを行い、さらに−80℃のサブゼロ処理の後、500℃×1時間の焼戻しの処理を行った。
焼戻し後の金属組織観察用試験片を適当な大きさに切り出し、フェノール樹脂に埋込んで素材表面を鏡面に仕上げ、金属組織観察面をピクリン酸にて腐食を行い、光学顕微鏡にて組織観察を行なった。図2に本発明のNo.12のミクロ写真を示す。
図2より、粗大な1次炭化物が観察されず、高い疲労強度が期待できる金属組織となっていることを確認したため、回転曲げ疲労試験を行い、疲労強度を測定した。
疲労強度測定は、上記と同様、比較鋼No.25(SUS440C相当鋼)、No.26(SKD11相当鋼)、No.27(SKD51相当鋼)についても行なった。図3に疲労強度を示す。なお、図中に示した矢印は破断しなかったことを示す。
図2及び図3から、本発明の高硬度鋼は、1次炭化物が少ない均一な金属組織を有し、高い疲労強度を有するものであることを確認した。
Next, the metal structure was observed and the fatigue strength was measured.
In addition, the present invention No. From the 12 annealed materials, φ14 mm × 10 mm (L) specimens for metallographic observation were cut out and quenched and tempered. As for the heat treatment conditions, 1050 ° C. × 30 minutes air-cooled quenching shown in Table 2 was performed, and after -80 ° C. sub-zero treatment, 500 ° C. × 1 hour tempering treatment was performed.
Cut the specimen for metallographic observation after tempering to an appropriate size, embed it in phenolic resin, finish the material surface to a mirror surface, corrode the metallographic observation surface with picric acid, and observe the structure with an optical microscope I did it. FIG. 12 micrographs are shown.
Since it was confirmed from FIG. 2 that a coarse primary carbide was not observed and the metal structure was expected to have high fatigue strength, a rotating bending fatigue test was performed to measure the fatigue strength.
In the same manner as described above, the fatigue strength measurement was performed using the comparative steel No. 25 (SUS440C equivalent steel), no. 26 (SKD11 equivalent steel), No. 27 (steel equivalent to SKD51) was also performed. FIG. 3 shows the fatigue strength. In addition, the arrow shown in the figure shows that it did not fracture.
2 and 3, it was confirmed that the high hardness steel of the present invention has a uniform metal structure with a small amount of primary carbides and has a high fatigue strength.

次に、使用環境を想定して高温硬度を測定した。
高温高度の測定は、本発明の高硬度鋼No.12と耐熱軸受に用いられる比較鋼No.24(M50相当鋼)について行なった。
焼鈍後の本発明のNo.12をφ10mm×5mm(L)の高温硬度測定用試験片に加工し、1050℃×30分、空冷の焼入れを行い、さらに−80℃のサブゼロ処理を行った。その後、500℃×1時間の焼戻しを行った。
また、焼鈍後の比較鋼M50のNo.24をφ10mm×5mm(L)の高温硬度測定用試験片に加工し、1115℃×15分、空冷の焼入れを行い、その後、545℃×2時間の焼戻しを3回行った。これら試験片の表面を鏡面に仕上げ、Ar雰囲気内で表4に示した温度で保持し、保持温度でビッカース硬さ測定した。その結果を表4に示す。
比較鋼M50のNo.24は代表的な耐熱軸受鋼であり、本発明の高硬度鋼No.12は、比較鋼No.24に匹敵する高温硬度を有していることが分かる。
Next, the high temperature hardness was measured assuming the use environment.
The measurement of the high temperature altitude was performed using the high hardness steel No. 1 of the present invention. No. 12 and comparative steel No. used in heat resistant bearings. 24 (M50 equivalent steel).
No. of the present invention after annealing. 12 was processed into a test piece for measuring high temperature hardness of φ10 mm × 5 mm (L), subjected to air cooling at 1050 ° C. for 30 minutes, and further subjected to subzero treatment at −80 ° C. Thereafter, tempering was performed at 500 ° C. for 1 hour.
Moreover, No. of comparative steel M50 after annealing. 24 was processed into a test piece for measuring high-temperature hardness of φ10 mm × 5 mm (L), subjected to air-cooling quenching at 1115 ° C. × 15 minutes, and then tempered at 545 ° C. × 2 hours three times. The surface of these test pieces was finished to a mirror surface, held at the temperature shown in Table 4 in an Ar atmosphere, and Vickers hardness was measured at the holding temperature. The results are shown in Table 4.
No. of comparative steel M50. Reference numeral 24 is a typical heat-resistant bearing steel. No. 12 is a comparative steel No. 12. It can be seen that it has a high temperature hardness comparable to 24.

以上の結果から、本発明の高硬度鋼は高温焼戻し後の硬さが58HRC以上の高硬度を有し、疲労強度も高く、且つ、SUS440C相当の耐食性と、M50相当の高温硬度と軟化抵抗を兼備することが分かる。
このことから、高い硬度、高い耐食性、高い疲労強度、高い高温硬度、優れた軟化抵抗が必要とされる用途に最適である。特に軸受鋼として好適である。
From the above results, the high hardness steel of the present invention has a hardness after high temperature tempering of 58 HRC or higher, high fatigue strength, corrosion resistance equivalent to SUS440C, high temperature hardness equivalent to M50 and softening resistance. It turns out that it combines.
This makes it ideal for applications that require high hardness, high corrosion resistance, high fatigue strength, high high temperature hardness, and excellent softening resistance. Particularly suitable as bearing steel.

本発明の軟化抵抗に優れた高硬度鋼は、高温加熱時に高硬度が不可欠な用途に適用できる。同時に、高価な合金の使用量を抑えることができるので、これまで高価な合金を使用していた従来のものに比べて経済的で広い範囲での応用を期待することができる。   The high hardness steel excellent in softening resistance of the present invention can be applied to uses where high hardness is indispensable during high temperature heating. At the same time, since the amount of expensive alloy used can be suppressed, it can be expected to be economical and applicable in a wide range as compared with the conventional one using an expensive alloy.

Claims (2)

質量%で、C:0.6%を超え〜0.7%、Si:0.25%を超え〜2.0%以下、Mn:0.25%を超え〜1.0%以下、Cr:8.0〜11.0%未満、Mo+1/2W:1.5%を超え〜5.0%、N:0.02%を超えて0.06%以下を含有し、残部はFe及び不純物でなり、且つ、C/Cr:0.056を超え〜0.085、C+N:0.63%を超え0.75%の関係を満たすことを特徴とする軟化抵抗に優れた高硬度鋼。   In mass%, C: more than 0.6% to 0.7%, Si: more than 0.25% to 2.0% or less, Mn: more than 0.25% to 1.0% or less, Cr: 8.0 to less than 11.0%, Mo + 1 / 2W: more than 1.5% to 5.0%, N: more than 0.02% and 0.06% or less, with the balance being Fe and impurities And C / Cr: more than 0.056 to 0.085, and C + N: more than 0.63% and satisfying the relationship of 0.75%, a high hardness steel excellent in softening resistance. 更に質量%で、S:0.1%以下、Ca:0.1%以下、Mg:0.03%以下の一種以上を含有する請求項1に記載の軟化抵抗に優れた高硬度鋼。   The high-hardness steel excellent in softening resistance according to claim 1, further comprising one or more of S: 0.1% or less, Ca: 0.1% or less, and Mg: 0.03% or less in mass%.
JP2009297072A 2009-07-03 2009-12-28 High hardness steel with excellent softening resistance Expired - Fee Related JP5488973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009297072A JP5488973B2 (en) 2009-07-03 2009-12-28 High hardness steel with excellent softening resistance

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009159022 2009-07-03
JP2009159022 2009-07-03
JP2009297072A JP5488973B2 (en) 2009-07-03 2009-12-28 High hardness steel with excellent softening resistance

Publications (2)

Publication Number Publication Date
JP2011026693A true JP2011026693A (en) 2011-02-10
JP5488973B2 JP5488973B2 (en) 2014-05-14

Family

ID=43635752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009297072A Expired - Fee Related JP5488973B2 (en) 2009-07-03 2009-12-28 High hardness steel with excellent softening resistance

Country Status (1)

Country Link
JP (1) JP5488973B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021045143A1 (en) * 2019-09-06 2021-03-11 日立金属株式会社 Steel for knives, steel for martensitic knives, knife, and production method for steel for martensitic knives

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60243249A (en) * 1984-05-16 1985-12-03 Hitachi Metals Ltd Steel for bearing having high resistance to temper softening
JPH07233442A (en) * 1994-02-21 1995-09-05 Hitachi Metals Ltd Wear resistant and corrosion resistant bearing steel excellent in rolling fatigue property
JPH09316601A (en) * 1996-03-28 1997-12-09 Sanyo Special Steel Co Ltd Cold tool steel suitable for surface treatment, die and tool for the same
JP2001279393A (en) * 2000-03-30 2001-10-10 Nippon Koshuha Steel Co Ltd Bearing steel excellent in grindability

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60243249A (en) * 1984-05-16 1985-12-03 Hitachi Metals Ltd Steel for bearing having high resistance to temper softening
JPH07233442A (en) * 1994-02-21 1995-09-05 Hitachi Metals Ltd Wear resistant and corrosion resistant bearing steel excellent in rolling fatigue property
JPH09316601A (en) * 1996-03-28 1997-12-09 Sanyo Special Steel Co Ltd Cold tool steel suitable for surface treatment, die and tool for the same
JP2001279393A (en) * 2000-03-30 2001-10-10 Nippon Koshuha Steel Co Ltd Bearing steel excellent in grindability

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021045143A1 (en) * 2019-09-06 2021-03-11 日立金属株式会社 Steel for knives, steel for martensitic knives, knife, and production method for steel for martensitic knives
CN114341384A (en) * 2019-09-06 2022-04-12 日立金属株式会社 Steel for cutting tool, steel for martensitic cutting tool, and method for producing steel for martensitic cutting tool

Also Published As

Publication number Publication date
JP5488973B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
JP4379804B2 (en) High nitrogen austenitic stainless steel
KR101488120B1 (en) Steel for carburizing, carburized steel component, and method for producing same
JP5927868B2 (en) Carburizing steel excellent in cold forgeability and method for producing the same
JP2002256397A (en) High hardness martensitic stainless steel having excellent corrosion resistance
CN108291285B (en) Steel, carburized steel part, and method for producing carburized steel part
JP5307729B2 (en) Lead free free cutting steel
JP6468366B2 (en) Steel, carburized steel parts, and method of manufacturing carburized steel parts
JP3614113B2 (en) Steel material for bearing element parts with excellent machinability
JP6433341B2 (en) Age-hardening bainite non-tempered steel
JP5392207B2 (en) Induction hardening steel and crankshaft manufactured using the same
JP2007063658A (en) Martensitic stainless steel
JP7404792B2 (en) Martensitic stainless steel parts and their manufacturing method
JP2005023375A (en) High hardness steel having excellent cold workability, heat resistance and wear resistance
JP5472063B2 (en) Free-cutting steel for cold forging
JP5316425B2 (en) Alloy for surface coating treatment and sliding member
JP2011089189A (en) Alloy steel for machine structural use
JP7205112B2 (en) carbonitriding steel
JP5488973B2 (en) High hardness steel with excellent softening resistance
JP5768734B2 (en) Rolled steel for cold forging and nitriding
JP2001192731A (en) Method for producing high strength shaft parts
JP6265048B2 (en) Case-hardened steel
JP7464822B2 (en) Steel for bearing raceways and bearing raceways
JP2003013179A (en) Round steel bar for bearing element parts superior in hot workability
JP2000129393A (en) Martensitic/bainitic non-heat treated steel excellent in machinability, and its manufacture
JP7163770B2 (en) Rolling bearing component and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140213

R150 Certificate of patent or registration of utility model

Ref document number: 5488973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees