JP2011025125A - Dissolved oxygen concentration control system - Google Patents

Dissolved oxygen concentration control system Download PDF

Info

Publication number
JP2011025125A
JP2011025125A JP2009171847A JP2009171847A JP2011025125A JP 2011025125 A JP2011025125 A JP 2011025125A JP 2009171847 A JP2009171847 A JP 2009171847A JP 2009171847 A JP2009171847 A JP 2009171847A JP 2011025125 A JP2011025125 A JP 2011025125A
Authority
JP
Japan
Prior art keywords
water
oxygen concentration
dissolved oxygen
sensor
deaeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009171847A
Other languages
Japanese (ja)
Inventor
Naoya Kakimoto
直哉 柿本
Masayuki Hamada
雅之 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2009171847A priority Critical patent/JP2011025125A/en
Publication of JP2011025125A publication Critical patent/JP2011025125A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To continuously detect the dissolved oxygen concentration of a closed piping passage. <P>SOLUTION: A dissolved oxygen concentration control system including the closed piping passage 1, and a deaeration passage 4 whose both ends are connected to the close piping passage 1 and which is equipped with a feed water pump 2 and a deaerator 3, includes a sensor 22 which detects the dissolved oxygen concentration of water to be deaerated in the deaeration passage 4, a bypass passage 5 which is connected parallel to the deaerator 3, a flow control valve means 6, 8 which controls the flow of the water to be deaerated to the deaerator 3 and the bypass passage 5, and a controller 9 which controls the operation of the deaerator 3 and controls the flow control valve means 6, 8 so as to make the water to be deaerated flow to the bypass passage 5 when the operation of the deaerator 3 is stopped. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、密閉配管流路の溶存酸素濃度を管理する溶存酸素濃度管理システムに関する。   The present invention relates to a dissolved oxygen concentration management system that manages a dissolved oxygen concentration in a closed pipe flow path.

密閉配管流路と、この密閉配管流路に両端が接続され給水ポンプおよび脱気装置を設けた脱気処理流路とを備える脱気システムは、特許文献1により公知である。   A deaeration system including a sealed piping channel and a degassing processing channel having both ends connected to the sealed piping channel and provided with a water supply pump and a deaeration device is known from Patent Document 1.

この従来の脱気システムにおいて、脱気処理流路に溶存酸素濃度を検出するセンサを設けて、密閉配管流路の溶存酸素濃度を検出することが考えられる。その場合、脱気装置を連続運転するときは、問題無く、溶存酸素濃度を連続的に検出することができるが、省エネを目的として脱気装置の運転を停止する場合には、溶存酸素濃度を連続的に検出することは、困難である。また、溶存酸素濃度を連続的に検出することが困難であるが故に、密閉配管流路の溶存酸素濃度に基づき脱気装置の運転を制御することも困難となる。   In this conventional degassing system, it is conceivable to provide a sensor for detecting the dissolved oxygen concentration in the degassing treatment flow path to detect the dissolved oxygen concentration in the sealed piping flow path. In that case, when continuously operating the deaerator, the dissolved oxygen concentration can be detected continuously without any problem, but when the deaerator is stopped for the purpose of energy saving, the dissolved oxygen concentration should be reduced. It is difficult to detect continuously. In addition, since it is difficult to continuously detect the dissolved oxygen concentration, it is also difficult to control the operation of the deaerator based on the dissolved oxygen concentration in the sealed pipe flow path.

特許第2921422号公報Japanese Patent No. 2912422

この発明が解決しようとする主たる課題は、密閉配管流路の溶存酸素濃度を連続的に検出することであり、副課題は、密閉配管流路の溶存酸素濃度を連続的に報知することであり、密閉配管流路の溶存酸素濃度に基づき脱気装置の運転を制御可能とすることである。   The main problem to be solved by the present invention is to continuously detect the dissolved oxygen concentration in the sealed piping channel, and the sub-task is to continuously notify the dissolved oxygen concentration in the sealed piping channel. The operation of the deaerator is made controllable based on the dissolved oxygen concentration in the closed pipe flow path.

この発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、密閉配管流路と、この密閉配管流路に両端が接続され給水ポンプおよび脱気装置を設けた脱気処理流路とを備える溶存酸素濃度管理システムにおいて、前記脱気処理流路の被脱気水の溶存酸素濃度を検出するセンサと、前記脱気装置と並列に接続されるバイパス流路と、前記脱気装置および前記バイパス流路への被脱気水の流れを制御する流れ制御弁手段と、前記脱気装置の運転を制御するとともに、前記脱気装置の運転停止時に前記バイパス流路へ被脱気水を流すように前記流れ制御弁手段を制御する制御手段とを備えたことを特徴としている。   This invention was made in order to solve the said subject, and invention of Claim 1 provided the water supply pump and the deaeration apparatus by which both ends were connected to the sealed piping flow path, and this sealed piping flow path In a dissolved oxygen concentration management system comprising a deaeration treatment channel, a sensor that detects a dissolved oxygen concentration of degassed water in the deaeration treatment channel, and a bypass channel connected in parallel with the deaeration device; A flow control valve means for controlling the flow of the degassed water to the deaeration device and the bypass flow channel, and the operation of the deaeration device, and the bypass flow channel when the deaeration device is stopped. And a control means for controlling the flow control valve means so as to allow the deaerated water to flow through.

請求項1に記載の発明によれば、前記脱気装置の運転停止時にも前記センサへ被脱気水を流すことができ、前記センサにより前記密閉配管流路の溶存酸素濃度を連続的に検出することができる。   According to the first aspect of the present invention, degassed water can be allowed to flow to the sensor even when the deaeration device is stopped, and the dissolved oxygen concentration in the sealed pipe channel is continuously detected by the sensor. can do.

また、請求項2に記載の発明は、請求項1において、前記センサの出力を報知する報知手段を備え、前記制御手段は、前記センサの検出値を入力して、前記検出値に基づく溶存酸素濃度を前記報知手段にて報知することを特徴としている。   In addition, the invention according to claim 2 is provided with notifying means for notifying the output of the sensor according to claim 1, and the control means inputs the detection value of the sensor and dissolves oxygen based on the detection value. The concentration is notified by the notification means.

請求項2に記載の発明によれば、請求項1に記載の発明による効果に加えて、前記密閉配管流路の溶存酸素濃度を連続的に報知することができるという効果を奏する。   According to invention of Claim 2, in addition to the effect by the invention of Claim 1, there exists an effect that the dissolved oxygen concentration of the said sealed piping flow path can be alert | reported continuously.

さらに、請求項3に記載の発明は、請求項1または請求項2において、前記制御手段は
、前記センサの検出値が第一設定値以上か、または前記脱気装置の運転停止時から設定時間が経過すると前記脱気装置を運転し、前記検出値が前記第一設定値より低い第二設定値以下となると前記脱気装置の運転を停止することを特徴としている。
Further, the invention according to claim 3 is the control device according to claim 1 or 2, wherein the control means is configured such that the detected value of the sensor is not less than a first set value or the set time has elapsed since the deaerator was stopped. When the time elapses, the deaeration device is operated, and the operation of the deaeration device is stopped when the detected value is equal to or lower than a second set value lower than the first set value.

請求項3に記載の発明によれば、請求項1または請求項2に記載の発明による効果に加えて、前記密閉配管流路の溶存酸素濃度を適確に検出して、前記脱気装置の運転を制御し、前記密閉配管流路の溶存酸素濃度を適確に管理することができるという効果を奏する。   According to the third aspect of the present invention, in addition to the effect of the first or second aspect of the invention, the dissolved oxygen concentration in the sealed pipe flow path is accurately detected, and the deaeration device There is an effect that the operation can be controlled and the dissolved oxygen concentration in the sealed pipe flow path can be managed appropriately.

この発明によれば、前記密閉配管流路の溶存酸素濃度を連続的に検出することが可能な溶存酸素濃度管理システムを提供することができる。   According to this invention, the dissolved oxygen concentration management system which can detect the dissolved oxygen concentration of the said sealed piping flow path continuously can be provided.

この発明に係る溶存酸素濃度管理システムの実施例1の構成を示す概略的な説明図である。It is a schematic explanatory drawing which shows the structure of Example 1 of the dissolved oxygen concentration management system which concerns on this invention. 同実施例1の制御手順の要部を説明するフローチャート図である。It is a flowchart figure explaining the principal part of the control procedure of the Example 1. FIG.

つぎに、この発明の溶存酸素濃度管理システムの実施の形態について説明する。この発明の実施の形態は、密閉配管流路の溶存酸素濃度を管理する溶存酸素濃度管理システムに好適に実施される。   Next, an embodiment of the dissolved oxygen concentration management system of the present invention will be described. The embodiment of the present invention is suitably implemented in a dissolved oxygen concentration management system that manages the dissolved oxygen concentration in a sealed pipe flow path.

この実施の形態を具体的に説明する。この実施の形態は、密閉配管流路と、この密閉配管流路に両端が接続され、給水ポンプ(循環ポンプと称することもできる。)および脱気装置を設けた脱気処理流路とを備える溶存酸素濃度管理システムである。   This embodiment will be specifically described. This embodiment includes a sealed pipe flow path, and a deaeration process flow path having both ends connected to the closed pipe flow path and provided with a water supply pump (also referred to as a circulation pump) and a deaeration device. It is a dissolved oxygen concentration management system.

この実施の形態においては、さらに、前記脱気処理流路の被脱気水の溶存酸素濃度(以下、DOと称する。)を検出するセンサと、前記脱気装置と並列に接続されるバイパス流路と、前記脱気装置および前記バイパス流路への被脱気水の流れを制御する流れ制御弁手段と、前記脱気装置の運転を制御するとともに、前記脱気装置の運転時に前記脱気装置へ被脱気水を流すとともに、前記脱気装置の運転停止時に前記バイパス流路へ被脱気水を流すように前記流れ制御弁手段を制御する制御手段とを備えている。   In this embodiment, a sensor for detecting the dissolved oxygen concentration (hereinafter referred to as DO) of the degassed water in the degassing treatment channel and a bypass flow connected in parallel with the degassing device. A flow control valve means for controlling the flow of water to be deaerated to the deaeration device and the bypass flow path, and controlling the operation of the deaeration device, and the deaeration during operation of the deaeration device And a control means for controlling the flow control valve means to flow the deaerated water to the apparatus and to flow the deaerated water to the bypass flow path when the deaerator is stopped.

この実施の形態の溶存酸素濃度管理システムにおいては、前記脱気装置の運転中は、前記密閉配管流路からの被脱気水が前記脱気装置に供給され、前記脱気装置の運転停止(以下、単に停止という。)中は、前記脱気装置への被脱気水の供給が停止され、前記バイパス流路へ被脱気水が供給される。このバイパス流路への被脱気水の流れを形成するのは、前記脱気装置停止時においても前記密閉配管流路から前記センサのDO検出部への被脱気水の流れを形成するためである。こうして、前記センサは、被脱気水のDOを連続的に検出する。なお、前記脱気装置停止時にバイパス流路に被脱気水を流さなくても前記センサによりDOの検出は可能であるが、被脱気水の流れが停止した状態での検出であるので、前記密閉配管流路の水のDOを測定していることにならない。なお、前記脱気装置の運転中にバイパス流路に僅かな量の被脱気水を流すように構成することもできる。   In the dissolved oxygen concentration management system according to this embodiment, during operation of the deaeration device, degassed water from the sealed piping flow path is supplied to the deaeration device, and the deaeration device is stopped ( Hereinafter, simply referred to as “stop”), the supply of the deaerated water to the deaerator is stopped, and the deaerated water is supplied to the bypass channel. The flow of the deaerated water to the bypass flow path is to form the flow of the deaerated water from the sealed pipe flow path to the DO detection part of the sensor even when the deaerator is stopped. It is. Thus, the sensor continuously detects DO to be deaerated water. Although it is possible to detect DO by the sensor without flowing deaerated water through the bypass flow path when the deaerator is stopped, it is a detection in a state where the flow of deaerated water is stopped. It does not mean that the DO of water in the sealed pipe flow path is being measured. In addition, it can also comprise so that a small amount of to-be-deaerated water may flow into a bypass flow path during the driving | operation of the said deaeration apparatus.

前記センサのDOの連続検出値は、この実施の形態おいては、好ましくは、つぎの3つの態様で利用される。第一の態様は、前記センサの出力を報知する報知手段を備え、前記制御手段は、前記センサの検出値を入力して、前記検出値に基づく溶存酸素濃度を前記報知手段にて報知する態様である。この第一の態様では、前記検出値は、前記制御手段により、溶存酸素濃度に変換して、前記報知手段にて報知する。   The continuous detection value of DO of the sensor is preferably used in the following three modes in this embodiment. A 1st aspect is provided with the alerting | reporting means which alert | reports the output of the said sensor, The said control means inputs the detection value of the said sensor, and alert | reports the dissolved oxygen concentration based on the said detected value in the said alerting | reporting means. It is. In the first aspect, the detected value is converted into a dissolved oxygen concentration by the control means and notified by the notification means.

この第一の態様によれば、システムの管理者やメンテナンス員は、前記密閉配管流路を流れる水のDO値を前記脱気装置の運転、停止に関係なく前記報知手段により正確に知ることができ、システムの管理やメンテナンスに活用することができる。   According to this first aspect, the system administrator and the maintenance staff can accurately know the DO value of the water flowing through the sealed piping channel by the notification means regardless of whether the deaerator is operated or stopped. It can be used for system management and maintenance.

第二の態様は、前記制御手段により、前記センサの検出値が第一設定値以上か、または、前記脱気装置の運転停止時から設定時間が経過すると前記脱気装置を運転し、前記検出値が前記第一設定値より低い第二設定値以下となると前記脱気装置の運転を停止する態様である。   In a second aspect, the detection means operates the deaerator when the detected value of the sensor is equal to or greater than the first set value, or when a set time elapses from when the deaerator is stopped. This is a mode in which the operation of the deaeration device is stopped when the value becomes equal to or less than a second set value lower than the first set value.

この第二の態様おいては、前記制御手段は、前記センサの検出値が第一設定値以上となると、前記密閉配管流路内の水のDOが高くなった(悪化した)と判定して、前記脱気装置の運転をする。そして、前記検出値が前記第一設定値より低い第二設定値以下となると前記脱気装置の運転を停止する。こうして、前記センサの検出値に基づき、自動的に、かつ前記密閉配管流路内の水のDOが所定値に収まるように、前記脱気装置の運転を制御することができる。   In this second aspect, the control means determines that the DO of water in the sealed pipe flow path has increased (deteriorated) when the detection value of the sensor is equal to or higher than the first set value. The deaerator is operated. Then, when the detected value is equal to or lower than the second set value lower than the first set value, the operation of the deaerator is stopped. Thus, based on the detection value of the sensor, the operation of the deaeration device can be controlled automatically and so that the DO of water in the sealed pipe flow path falls within a predetermined value.

また、前記制御手段は、前記脱気装置の運転停止時から設定時間が経過すると前記脱気装置を運転する。長期に亘り、前記脱気装置が停止されると、前記脱気装置内で酸素の再溶存が発生し、DOが上昇するが、前記設定時間経過ごとに前記脱気装置が運転されるので、DOの過度の上昇を防止できる。この脱気装置の運転は、前記検出値が前記第一設定値より低い第二設定値以下となると停止される。   Further, the control means operates the deaeration device when a set time has elapsed since the operation of the deaeration device was stopped. When the deaeration device is stopped for a long time, re-dissolution of oxygen occurs in the deaeration device and DO rises, but the deaeration device is operated every time the set time elapses. An excessive increase in DO can be prevented. The operation of the deaerator is stopped when the detected value is equal to or lower than a second set value that is lower than the first set value.

第三の態様は、前記第一の態様の制御と前記第二の態様の制御とを組合せて行うものである。   The third aspect is a combination of the control of the first aspect and the control of the second aspect.

この発明の実施の形態は、前記第一〜第三の実施の形態に限定されるものではなく、前記センサの検出値データを記憶手段に記憶しておき、必要なときに他の管理装置へ前記検出値データを送信して前記管理装置で利用する形態のものを含む。   The embodiment of the present invention is not limited to the first to third embodiments, but the detection value data of the sensor is stored in the storage means, and when necessary, to another management device The detection value data is transmitted and used in the management device.

ここで、この発明の実施の形態の溶存酸素濃度管理システムを構成する構成要素を説明する。前記密閉配管流路は、例えば半導体製造装置の冷却水循環回路とするが、これに限定されるものではない。   Here, the component which comprises the dissolved oxygen concentration management system of embodiment of this invention is demonstrated. The sealed pipe flow path is, for example, a cooling water circulation circuit of a semiconductor manufacturing apparatus, but is not limited thereto.

前記給水ポンプは、前記密閉配管流路を循環する水の一部を吸引して、前記脱気装置へおよび前記バイパス流路へ供給し、前記密閉配管流路へ戻すことができるポンプであれば良く、種類を問わない。   The water supply pump is a pump that sucks a part of the water circulating in the sealed pipe flow path, supplies the water to the deaeration device and the bypass flow path, and returns it to the sealed pipe flow path Good, no matter what kind.

前記脱気装置は、好ましくは、低DO(たとえば、20μg/L程度)の脱気水を生成する膜脱気装置とするが、これに限定されるものではなく、脱気膜を用いた膜脱気装置以外の脱気装置とすることができる。前記低DO脱気装置としては、特開平5−103908号公報に示される脱気装置を採用することができる。膜脱気装置を用いる場合、真空脱気のための水封式真空ポンプとこの水封式真空ポンプの封水を冷却するためのチラーを備えて前記脱気装置を構成することができる。前記脱気装置は、1台だけでなく、互いに並列接続される複数台の脱気装置により構成することができる。   The deaeration device is preferably a membrane deaeration device that generates low DO (eg, about 20 μg / L) deaeration water, but is not limited thereto, and a membrane using a deaeration membrane It can be set as deaeration apparatuses other than a deaeration apparatus. As the low DO deaerator, a deaerator disclosed in JP-A-5-103908 can be employed. When the membrane deaerator is used, the deaerator can be configured by including a water-sealed vacuum pump for vacuum deaeration and a chiller for cooling the sealed water of the water-sealed vacuum pump. The deaeration device can be composed of not only one unit but also a plurality of deaeration devices connected in parallel to each other.

前記センサは、特定の種類のセンサに限定されないが、前記のような低DO値を検出でき、好ましくは、センサの通水量を小流量(200〜300cc/min)でDOが検出可能なものとする。そして、好ましくは、前記センサのサンプリング水を前記脱気処理流路外へ排水しないように前記給水ポンプと並列に検出流路を構成する。   The sensor is not limited to a specific type of sensor, but can detect a low DO value as described above, and preferably can detect DO at a small flow rate (200 to 300 cc / min). To do. Preferably, a detection flow path is configured in parallel with the water supply pump so as not to drain the sampling water of the sensor outside the deaeration process flow path.

前記流れ制御弁手段(切換手段と称することもできる。)は、好ましくは、前記密閉配管流路の被脱気水を前記脱気装置側と前記バイパス流路側とに選択的に切換える弁によって構成する。この弁としては、複数の弁により構成してもよいし、単一の三方切換弁によって構成してもよい。なお、前記脱気装置の運転時に前記バイパス流路に被脱気水の一部を流す場合は、前記バイパス流路に設ける弁を開度が調整可能な弁とすることができる。   The flow control valve means (also referred to as switching means) is preferably constituted by a valve that selectively switches the degassed water in the sealed pipe flow path between the deaerator side and the bypass flow path side. To do. This valve may be composed of a plurality of valves or a single three-way switching valve. When a part of the deaerated water is allowed to flow through the bypass channel during operation of the deaeration device, the valve provided in the bypass channel can be a valve whose opening degree can be adjusted.

前記報知手段は、好ましくは、表示器とするが、前記検出DO値を紙などにプリントアウトする印刷手段や音声による報知手段とすることができる。   The notification means is preferably a display, but can be a printing means for printing out the detected DO value on paper or the like, or a voice notification means.

つぎに、この発明の実施1の溶存酸素濃度管理システムについて図面に基づいて詳細に説明する。図1は、同実施例1の構成を示す概略的な説明図であり、図2は、同実施例1の制御手順の要部を説明するフローチャート図である。   Next, the dissolved oxygen concentration management system according to the first embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic explanatory diagram illustrating a configuration of the first embodiment, and FIG. 2 is a flowchart illustrating a main part of a control procedure of the first embodiment.

この実施の実施1の溶存酸素濃度管理システムは、密閉配管流路(流路は、ラインと称することができる。)1と、給水ポンプ2および脱気装置3を設けた脱気処理流路4と、前記脱気装置3と並列接続されるバイパス流路5とを主要部として備えている。前記脱気処理流路4は、その両端が前記密閉配管流路1と接続されている。前記密閉配管流路1には、半導体製造装置(図示省略)の冷却水が循環されている。   The dissolved oxygen concentration management system according to the first embodiment of the present invention includes a sealed piping channel (a channel can be referred to as a line) 1, a deaeration treatment channel 4 provided with a feed water pump 2 and a deaeration device 3. And a bypass passage 5 connected in parallel with the deaeration device 3 as a main part. The deaeration channel 4 is connected to the sealed pipe channel 1 at both ends. Cooling water of a semiconductor manufacturing apparatus (not shown) is circulated in the sealed pipe flow path 1.

前記脱気処理流路4には、被脱気水の溶存酸素濃度(以下、DOと称する。)を検出するセンサ5と、被脱気水の流れを、前記脱気装置3と前記バイパス流路5とに選択的に切換える流れ制御弁手段としての入口側第一電磁開閉弁(以下、単に入口側第一電磁弁という。)6,出口側第一電磁開閉弁(以下、単に出口側第一電磁弁という。)7および第二電磁開閉弁(以下、単に第二電磁弁という。)8とを備えている。そして、前記脱気装置3の運転を制御するとともに、前記脱気装置3の運転時に前記脱気装置3へ被脱気水を流し、前記脱気装置3の停止時に前記バイパス流路5へ被脱気水を流すように前記各開閉弁7,8,9等を制御する制御手段としての制御器9を備えている。   In the deaeration treatment channel 4, a sensor 5 that detects a dissolved oxygen concentration (hereinafter referred to as DO) of the deaerated water, and a flow of the deaerated water are connected to the deaerator 3 and the bypass flow. An inlet-side first electromagnetic on-off valve (hereinafter simply referred to as an inlet-side first electromagnetic valve) 6, an outlet-side first electromagnetic on-off valve (hereinafter simply referred to as an outlet-side first electromagnetic on-off valve) as a flow control valve means for selectively switching to the path 5 And a second electromagnetic on-off valve (hereinafter simply referred to as a second electromagnetic valve) 8. Then, the operation of the deaeration device 3 is controlled, the deaerated water is allowed to flow to the deaeration device 3 during the operation of the deaeration device 3, and the bypass channel 5 is covered when the deaeration device 3 is stopped. A controller 9 is provided as a control means for controlling the on-off valves 7, 8, 9, etc. so that deaerated water flows.

前記脱気処理流路4は、被脱気水の入口10から入口側前記第一電磁弁6までの間の流路を往管11と称し、脱気水または被脱気水および脱気水の出口12から出口側第一電磁弁7までの間を復管14と称する。また、前記入口側第一電磁弁6と前記出口側第一電磁弁7との間の脱気装置側の流路を脱気側管15と称する。   In the deaeration treatment channel 4, a channel from the inlet 10 to the first electromagnetic valve 6 on the inlet side is referred to as an outgoing pipe 11, and the deaerated water or the deaerated water and the deaerated water are used. Between the outlet 12 and the outlet-side first electromagnetic valve 7 is referred to as a return pipe 14. A flow path on the deaerator side between the inlet side first electromagnetic valve 6 and the outlet side first electromagnetic valve 7 is referred to as a deaeration side pipe 15.

前記往管11の前記入口10の近傍には、第一手動開閉弁(以下、単に第一手動弁という。)16と第三電磁開閉弁(以下、単に第三電磁弁という。)17とを被脱気水の流れ方向に沿ってこの順に設けている。前記復管14の前記出口12の近傍には、第二手動開閉弁(以下、単に第二手動弁という。)18と第四電磁開閉弁(以下、単に第四電磁弁という。)19とを被脱気水の反流れ方向に沿ってこの順に設けている。前記第一手動弁16および前記第二手動弁18は、前記脱気装置3などの点検、修理時に、前記脱気処理流路4を前記密閉配管流路1から切り離すための弁である。   A first manual on-off valve (hereinafter simply referred to as a first manual valve) 16 and a third electromagnetic on-off valve (hereinafter simply referred to as a third electromagnetic valve) 17 are provided in the vicinity of the inlet 10 of the outgoing pipe 11. It is provided in this order along the flow direction of the deaerated water. In the vicinity of the outlet 12 of the return pipe 14, a second manual on-off valve (hereinafter simply referred to as a second manual valve) 18 and a fourth electromagnetic on-off valve (hereinafter simply referred to as a fourth electromagnetic valve) 19 are provided. It is provided in this order along the counter-flow direction of the deaerated water. The first manual valve 16 and the second manual valve 18 are valves for separating the degassing process flow path 4 from the sealed piping flow path 1 when the degassing device 3 and the like are inspected and repaired.

そして、前記給水ポンプ2と並列に被脱気水のDOを検出(測定)するための第一検出流路21を設けている。この第一検出流路21には、被脱気水のDOを検出する第一DOセンサ22と、流量調整機能を備えた第一流量センサ23と、前記給水ポンプ2の上流側からの被脱気水の流れを阻止する第一逆止弁24とを設けている。前記第一DOセンサ22は、小流量(200〜300cc/min)でDOが検出可能なものを用いており、前記第一流量センサ23の流量調整機能により、DO検出を可能としている。この流量調整機能は、流量センサの機能によらず、センサとは別の流量調整手段によって行うことできる。   A first detection channel 21 for detecting (measuring) DO of deaerated water is provided in parallel with the water supply pump 2. The first detection flow path 21 includes a first DO sensor 22 that detects DO of deaerated water, a first flow sensor 23 having a flow rate adjustment function, and a desorption from the upstream side of the water supply pump 2. A first check valve 24 for blocking the flow of steam is provided. The first DO sensor 22 uses a sensor capable of detecting DO at a small flow rate (200 to 300 cc / min), and enables the DO detection by the flow rate adjusting function of the first flow rate sensor 23. This flow rate adjusting function can be performed by a flow rate adjusting unit different from the sensor, regardless of the function of the flow rate sensor.

前記脱気側管15の前記脱気装置3の上流側には、流入する被脱気水の圧力を減圧するための第一減圧弁25を設け、下流側には、流量調整機能を有する第二流量センサ26と、前記バイパス流路5を流通した被脱気水の流入を阻止する第二逆止弁27とを設けている。   A first pressure reducing valve 25 is provided on the upstream side of the deaeration device 3 of the deaeration side pipe 15 to reduce the pressure of the inflowing deaerated water, and a downstream having a flow rate adjusting function is provided. A two-flow sensor 26 and a second check valve 27 for preventing the inflow of deaerated water flowing through the bypass flow path 5 are provided.

前記脱気装置3は、20μg/L程度の低DOの脱気水を生成する膜脱気装置とし、膜脱気部(図示省略)と、水封式真空ポンプ28と、水封式真空ポンプ28の封水を冷却するチラー29とを備えている。   The degassing device 3 is a membrane degassing device that generates low DO degassed water of about 20 μg / L, a membrane degassing unit (not shown), a water ring vacuum pump 28, and a water ring vacuum pump. And a chiller 29 for cooling the 28 sealed water.

前記バイパス流路5には、第二減圧弁30と、前記脱気装置3側からの脱気水の流入を阻止する第三逆止弁31とを備えている。   The bypass flow path 5 includes a second pressure reducing valve 30 and a third check valve 31 that prevents inflow of deaerated water from the deaerator 3 side.

さらに、この実施例1では、前記脱気装置3にて脱気処理された脱気水のDOを検出するための第二検出流路32を、前記復管14と前記往管11の前記ポンプ2の上流側とを接続するように設けている。この第二検出流路32には、脱気水のDOを検出する第二DOセンサ33と、流量調整機能を備えた第三流量センサ34と、前記往管11側からの被脱気水の流れを阻止する第四逆止弁35とを設けている。前記第二DOセンサ33は、前記第一DOセンサ22と同様の小流量でDOを検出するセンサである。前記第二検出流路32を流れる脱気水により、前記第一DOセンサ22の被脱気水のDO検出に影響を与えないように構成している。   Further, in the first embodiment, the second detection flow path 32 for detecting DO of the deaerated water deaerated by the deaerator 3 is used as the pump for the return pipe 14 and the forward pipe 11. 2 is connected to the upstream side. The second detection flow path 32 includes a second DO sensor 33 that detects DO of deaerated water, a third flow sensor 34 having a flow rate adjusting function, and water to be deaerated from the outgoing pipe 11 side. A fourth check valve 35 for blocking the flow is provided. The second DO sensor 33 is a sensor that detects DO with a small flow rate similar to that of the first DO sensor 22. The deaerated water flowing through the second detection flow path 32 is configured not to affect the DO detection of the deaerated water of the first DO sensor 22.

前記制御器9は、マイクロプロセッサ,記憶手段等を含んで構成され、前記第一DOセンサ22,前記第二DOセンサ33,第一〜第三流量センサ23,26,34等の信号を入力して、予め記憶した制御手順に基づき、前記脱気装置3,前記給水ポンプ2,前記第一〜第四電磁弁6,8,9,17,19および表示器36を制御する。   The controller 9 includes a microprocessor, storage means, and the like, and inputs signals from the first DO sensor 22, the second DO sensor 33, the first to third flow rate sensors 23, 26, 34, and the like. Based on the control procedure stored in advance, the deaeration device 3, the feed water pump 2, the first to fourth electromagnetic valves 6, 8, 9, 17, 19 and the display 36 are controlled.

前記制御器9の制御手順は、被脱気水のDOを連続的に報知するDO連続報知手順と、前記密閉配管流路1内の水のDO値が所定値に自動的に収まるように、前記脱気装置3の運転を制御する自動DO制御手順とを含んでいる。   The control procedure of the controller 9 is such that the DO continuous notification procedure for continuously reporting DO of deaerated water and the DO value of water in the sealed pipe flow path 1 automatically fall within a predetermined value. And an automatic DO control procedure for controlling the operation of the deaeration device 3.

前記DO連続報知手順は、この実施例1では、前記第一DOセンサ22および前記第二DOセンサ33の検出値に基づいて、被脱気水のDO,脱気水のDOをそれぞれ前記報知器36にて報知する手順として構成されている。   In the first embodiment, the DO continuous notification procedure is based on the detection values of the first DO sensor 22 and the second DO sensor 33, and the DO of deaerated water and the DO of degassed water are respectively notified by the alarm device. It is comprised as the procedure notified by 36.

また、自動DO制御手順は、前記第一センサ22の検出値が第一設定値DO1を超える(以上でもよい)か、または、前記脱気装置3の運転停止時から設定時間T1が経過すると前記脱気装置3を運転し、前記検出値が前記第一設定値DO1より低い第二設定値DO2未満(以下でもよい)となると前記脱気装置の運転を停止するように構成されている。この実施例1の制御手順は、図2に示される。   Further, the automatic DO control procedure is performed when the detected value of the first sensor 22 exceeds the first set value DO1 (or more) or when the set time T1 elapses from when the deaerator 3 is stopped. The deaeration device 3 is operated, and the operation of the deaeration device is stopped when the detected value becomes less than the second set value DO2 (which may be below) lower than the first set value DO1. The control procedure of the first embodiment is shown in FIG.

ここで、この実施例1の溶存酸素濃度管理システムの動作を図2に基づき説明する。予め、前記第一手動弁16および前記第二手動弁18を開いておく。図2を参照して、処理ステップS1(以下、処理ステップSNは、単にSNと称する。)では、自動運転スイッチ(図示省略)の操作を受付け、前記制御器9の内臓タイマの第一設定時間T1および第二設定時間T2の計時を開始する。   Here, the operation of the dissolved oxygen concentration management system of the first embodiment will be described with reference to FIG. The first manual valve 16 and the second manual valve 18 are opened in advance. Referring to FIG. 2, in processing step S <b> 1 (hereinafter, processing step SN is simply referred to as SN), an operation of an automatic operation switch (not shown) is accepted, and a first set time of a built-in timer of the controller 9. Time measurement of T1 and the second set time T2 is started.

S2では、前記第三電磁弁17および前記第四電磁弁19を開くとともに、前記第二電磁弁8,を開き、前記第一電磁弁6,7を閉じることによる前記バイパス流路5への通水処理(以下、第一バイパス通水処理という。)を行う。   In S2, the third solenoid valve 17 and the fourth solenoid valve 19 are opened, the second solenoid valve 8 is opened, and the first solenoid valves 6 and 7 are closed. Water treatment (hereinafter referred to as first bypass water treatment) is performed.

この第一バイパス通水処理により、前記密閉配管流路1の冷却水は、前記給水ポンプ2により吸引され、前記入口10から前記往管11内へ流入した後、前記バイパス流路5を流れて前記出口12から前記密閉配管流路1へ流出する。前記給水ポンプ2により吸引された冷却水(被脱気水)の一部が、サンプル水として前記第一検出流路21へ供給され、被脱気水が前記第一DOセンサ22に流れるとともに、前記第二検出流路32へも被脱気水の一部が供給され、前記第二DOセンサ33にも被脱気水が流れる。   By this first bypass water flow treatment, the cooling water in the sealed pipe flow path 1 is sucked by the water supply pump 2 and flows into the outgoing pipe 11 from the inlet 10 and then flows through the bypass flow path 5. It flows out from the outlet 12 to the sealed piping flow path 1. A part of the cooling water (degassed water) sucked by the water supply pump 2 is supplied to the first detection flow path 21 as sample water, and the degassed water flows to the first DO sensor 22, A part of the deaerated water is also supplied to the second detection flow path 32, and the deaerated water flows also to the second DO sensor 33.

ついで、S3において、前記第二設定時間T2の計時が終了したかどうかを判定する。この第二設定時間T2は、前記第一DOセンサ22および前記第二DOセンサ33の作動が安定するに要する時間に設定されている。時間T2が経過すると、S3でYESが判定され、S4へ移行して、前記第一DOセンサ22および前記第二DOセンサ33による検出DOを前記表示器36にて表示する。   Next, in S3, it is determined whether or not the time measurement of the second set time T2 has ended. The second set time T2 is set to a time required for the operations of the first DO sensor 22 and the second DO sensor 33 to be stabilized. When the time T2 has elapsed, YES is determined in S3, the process proceeds to S4, and the detected DO by the first DO sensor 22 and the second DO sensor 33 is displayed on the display 36.

こうして、前記脱気装置3の運転停止中は、前記バイパス流路5を被脱気水が流れることで、前記第一DOセンサ22において被脱気水の流れが形成される。こうして、被脱気水,すなわち前記密閉配管流路1の冷却水のDOを前記第一DOセンサ22により前記脱気装置3の運転停止中も検出して、管理者等へ知らせることができる。   Thus, when the deaeration device 3 is stopped, the deaerated water flows through the bypass flow path 5, so that the deaerated water flow is formed in the first DO sensor 22. In this way, the deaerated water, that is, the DO of the cooling water in the sealed piping channel 1 can be detected by the first DO sensor 22 even when the deaeration device 3 is stopped, and can be notified to the manager or the like.

S5では、前記第一センサ22の検出値が第一設定値DO1を超えた状態が第三設定時間T3継続したという第一条件と、前記第一設定時間T1の計時が終了という第二条件のいずれかが満たされたかどうかを判定する。第一条件および第二条件のいずれも満たされない場合は、NOが判定されて、S4へ戻る。   In S5, the first condition that the detection value of the first sensor 22 exceeds the first set value DO1 continues for the third set time T3, and the second condition that the time measurement of the first set time T1 ends. Determine if any are satisfied. If neither the first condition nor the second condition is satisfied, NO is determined and the process returns to S4.

S5で、第一条件および第二条件のいずれかが満たされ、YESが判定されると、S6へ移行して前記脱気装置3の運転(前記水封式真空ポンプ28および前記チラー29の運転を含む)を開始する。同時に第四設定時間T4の計時を開始する。この第四設定時間T4は、前記脱気装置3の運転開始から前記脱気装置3内の真空度が所定の値に低下し、封水温度が所定の値に低下するに要する時間に設定されている。   In S5, when either the first condition or the second condition is satisfied and YES is determined, the process proceeds to S6 and the operation of the deaerator 3 (the operation of the water-sealed vacuum pump 28 and the chiller 29) is performed. Including). At the same time, timing of the fourth set time T4 is started. The fourth set time T4 is set to a time required for the degree of vacuum in the deaeration device 3 to decrease to a predetermined value and the sealing water temperature to decrease to a predetermined value from the start of operation of the deaeration device 3. ing.

第一条件が満たされるとは、前記密閉配管流路1の冷却水の水質の劣化,すなわちDOが上昇したことを意味し、第二条件が満たされるとは、前記第一設定時間T1の間、一度も前記脱気装置3が運転されなかったことを意味する。   Satisfying the first condition means deterioration of the cooling water quality of the closed pipe flow path 1, that is, DO has risen, and satisfying the second condition means that during the first set time T1. This means that the deaeration device 3 has never been operated.

S7で、時間T4の計時が終了すると、S8へ移行して、脱気通水処理を行う。この脱気通水処理は、まず、前記第一電磁弁6,7を開き、第五設定時間T5の計時を開始する。ついで、第五設定時間T5の計時終了後、前記第二電磁弁8を閉じ、前記第一設定時間T1をリセットする。このように、脱気通水処理に先立って前記脱気装置3の運転を行うようにしているので、DOの高い処理水が前記密閉配管流路1へ供給されることが防止される。   When the timing of time T4 is completed in S7, the process proceeds to S8 to perform a deaeration water passing process. In this deaeration water flow treatment, first, the first electromagnetic valves 6 and 7 are opened, and the time measurement of the fifth set time T5 is started. Next, after the time measurement of the fifth set time T5 is completed, the second electromagnetic valve 8 is closed and the first set time T1 is reset. Thus, since the operation of the deaeration device 3 is performed prior to the deaeration water flow treatment, it is possible to prevent the treated water having a high DO from being supplied to the sealed pipe flow path 1.

このS8の脱気通水処理により、前記密閉配管流路1の冷却水は、前記給水ポンプ2により吸引され、前記入口10から前記往管11内へ流入した後、前記脱気側管15を通して前記脱気装置3へ供給されて脱気が行われる。   By this degassing water flow treatment of S8, the cooling water of the sealed pipe flow path 1 is sucked by the water supply pump 2, flows into the forward pipe 11 from the inlet 10, and then passes through the degassing side pipe 15. The deaeration is performed by supplying the deaeration device 3.

この脱気通水処理時、前記給水ポンプ2により吸引された冷却水(被脱気水)の一部が、サンプル水として前記第一検出流路21へ供給され、被脱気水が前記第一DOセンサ22に流れる。こうして、前記脱気装置3の運転時においても被脱気水が前記第一DOセンサ22に流れるので、被脱気水のDOが正確に検出され、前記表示器36にて報知される。前記第二検出流路32へは、脱気処理された脱気水の一部が供給され、前記第二DOセ
ンサ33に脱気水が流れれて、脱気水のDOが検出され、前記表示器36にて報知される。この脱気通水処理において、前記第一センサ22の検出値に基づきDO<DO1が判定されると、第三設定時間T3がリセットされる。
During this deaeration water flow treatment, a part of the cooling water (degassed water) sucked by the water supply pump 2 is supplied to the first detection channel 21 as sample water, and the degassed water is the first degassed water. One DO sensor 22 flows. Thus, since the deaerated water flows to the first DO sensor 22 even when the deaerator 3 is in operation, the DO of the deaerated water is accurately detected and notified by the display 36. A part of the deaerated water that has been deaerated is supplied to the second detection flow path 32, the deaerated water flows through the second DO sensor 33, and DO of the deaerated water is detected. Notification is made on the display 36. In this deaeration water passing process, if it is determined that DO <DO1 based on the detection value of the first sensor 22, the third set time T3 is reset.

ついで、S9へ移行して、S8の脱気通水処理により、前記第一センサ22の検出値に基づきDO<DO2が第六設定時間T6継続して満たされるかどうかを判定する。YESが判定,すなわち脱気処理が不要と判定して、脱気通水処理を終了して、S10の第二バイパス通水処理を行う。   Next, the process proceeds to S9, and it is determined whether DO <DO2 is continuously satisfied by the sixth set time T6 based on the detection value of the first sensor 22 by the deaeration water passing process of S8. If YES is determined, that is, it is determined that the deaeration process is unnecessary, the deaeration water passing process is terminated, and the second bypass water passing process of S10 is performed.

この第二バイパス通水処理は、前記脱気装置3側への通水を遮断して、前記バイパス流路5への通水を行う点で共通しているが、具体的な制御において、若干異なる。S10では、まず前記第二電磁弁8を開き、第五設定時間T5をリセットする。ついで、第七設定時間T7遅れで、前記第一電磁弁6,7を閉じるとともに、前記脱気装置3を停止する。この第二バイパス通水処理において、前記第一センサ22の検出値に基づきDO>DO2が判定されると、第六設定時間T6,第七設定時間T7がリセットされる。   This second bypass water flow treatment is common in that water flow to the deaeration device 3 is blocked and water flow to the bypass flow path 5 is performed. Different. In S10, first, the second electromagnetic valve 8 is opened, and the fifth set time T5 is reset. Next, the first solenoid valves 6 and 7 are closed and the deaeration device 3 is stopped with a delay of the seventh set time T7. In the second bypass water flow treatment, when DO> DO2 is determined based on the detection value of the first sensor 22, the sixth set time T6 and the seventh set time T7 are reset.

そして、S11において、自動運転OFFが判定されると、S12へ移行して、自動運転の終了処理を行う。S12では、前記第三電磁弁17および前記第四電磁弁19を閉じ、前記給水ポンプ2を停止し、前記脱気装置3を停止するなどの処理を行う。S11で、自動運転OFFが判定されないと、S4へ戻り、前述のDOの連続報知処理と自動DO制御処理が継続して行われる。   Then, when it is determined in S11 that automatic driving is OFF, the process proceeds to S12, and an automatic driving end process is performed. In S12, the third electromagnetic valve 17 and the fourth electromagnetic valve 19 are closed, the feed water pump 2 is stopped, and the deaeration device 3 is stopped. If automatic operation OFF is not determined in S11, the process returns to S4, and the continuous DO notification process and the automatic DO control process described above are continuously performed.

この実施例1によれば、システムの管理者やメンテナンス員は、前記密閉配管流路1を流れる水のDO値を前記脱気装置3の運転、停止に関係なく前記表示器36により正確に知ることができ、システムの管理やメンテナンスに活用することができる。   According to the first embodiment, the system administrator and the maintenance staff know the DO value of the water flowing through the sealed piping passage 1 accurately by the display 36 regardless of whether the deaerator 3 is operated or stopped. It can be used for system management and maintenance.

また、この実施例1によれば、前記第一DOセンサ22により、被脱気水のDOを連続的に検出することができるので、前記第一DOセンサ22の検出値に基づき、前記脱気装置3の運転を適確に制御して、前記密閉配管流路1内の水のDOを所定範囲の値に収めることができる。   Further, according to the first embodiment, since the first DO sensor 22 can continuously detect DO of the water to be deaerated, the deaeration is performed based on the detection value of the first DO sensor 22. By appropriately controlling the operation of the apparatus 3, the water DO in the sealed pipe flow path 1 can be kept within a predetermined range.

さらに、長期に亘り、前記脱気装置3の運転が停止されると、前記脱気装置3内のDOが上昇するが、この実施例1によれば、前記第一設定時間T1経過ごとに前記脱気装置3が運転されるので、DO値の過度の上昇を防止できる。   Further, when the operation of the deaeration device 3 is stopped for a long time, the DO in the deaeration device 3 rises. According to the first embodiment, the first set time T1 elapses. Since the deaeration device 3 is operated, an excessive increase in the DO value can be prevented.

この発明は、前記実施例1に限定されるものではない。例えば、前記実施例1では、前記第二検出流路32を設けているが、必要に応じて前記第二検出流路32を設けない構成の溶存酸素濃度管理システムとすることができる。   The present invention is not limited to the first embodiment. For example, although the second detection flow path 32 is provided in the first embodiment, a dissolved oxygen concentration management system having a configuration in which the second detection flow path 32 is not provided as necessary can be provided.

1 密閉配管流路
2 給水ポンプ
3 脱気装置
4 脱気処理流路
5 バイパス流路
6 入口側第一電磁弁(流れ制御弁手段)
8 第二電磁弁(流れ制御弁手段)
9 制御器(制御手段)
22 第一DOセンサ(センサ)
DESCRIPTION OF SYMBOLS 1 Sealed piping flow path 2 Water supply pump 3 Deaeration apparatus 4 Deaeration process flow path 5 Bypass flow path 6 Inlet side 1st solenoid valve (flow control valve means)
8 Second solenoid valve (flow control valve means)
9 Controller (control means)
22 First DO sensor (sensor)

Claims (3)

密閉配管流路と、この密閉配管流路に両端が接続され給水ポンプおよび脱気装置を設けた脱気処理流路とを備える溶存酸素濃度管理システムにおいて、
前記脱気処理流路の被脱気水の溶存酸素濃度を検出するセンサと、
前記脱気装置と並列に接続されるバイパス流路と、
前記脱気装置および前記バイパス流路への被脱気水の流れを制御する流れ制御弁手段と、
前記脱気装置の運転を制御するとともに、前記脱気装置の運転停止時に前記バイパス流路へ被脱気水を流すように前記流れ制御弁手段を制御する制御手段とを備えた
ことを特徴とする溶存酸素濃度管理システム。
In a dissolved oxygen concentration management system comprising a sealed pipe flow path and a deaeration treatment flow path having both ends connected to the closed pipe flow path and provided with a water supply pump and a deaeration device,
A sensor for detecting the dissolved oxygen concentration of the degassed water in the degassing treatment channel;
A bypass flow path connected in parallel with the deaeration device;
Flow control valve means for controlling the flow of degassed water to the deaeration device and the bypass channel;
And a control means for controlling the flow control valve means to control the operation of the deaeration device and to flow the deaerated water to the bypass channel when the operation of the deaeration device is stopped. Dissolved oxygen concentration management system.
前記センサの出力を報知する報知手段を備え、
前記制御手段は、前記センサの検出値を入力して、前記検出値に基づく溶存酸素濃度を前記報知手段にて報知することを特徴とする請求項1に記載の溶存酸素濃度管理システム。
Informing means for informing the output of the sensor,
2. The dissolved oxygen concentration management system according to claim 1, wherein the control unit inputs a detection value of the sensor and notifies the dissolved oxygen concentration based on the detection value by the notification unit.
前記制御手段は、前記センサの検出値が第一設定値以上か、または前記脱気装置の運転停止時から設定時間が経過すると前記脱気装置を運転し、前記検出値が前記第一設定値より低い第二設定値以下となると前記脱気装置の運転を停止することを特徴とする請求項1または請求項2に記載の溶存酸素濃度管理システム。   The control means operates the deaerator when a detection value of the sensor is equal to or greater than a first set value or when a set time elapses after the deaerator is stopped, and the detected value is the first set value. 3. The dissolved oxygen concentration management system according to claim 1, wherein the operation of the deaeration device is stopped when a lower second set value is reached. 4.
JP2009171847A 2009-07-23 2009-07-23 Dissolved oxygen concentration control system Pending JP2011025125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009171847A JP2011025125A (en) 2009-07-23 2009-07-23 Dissolved oxygen concentration control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009171847A JP2011025125A (en) 2009-07-23 2009-07-23 Dissolved oxygen concentration control system

Publications (1)

Publication Number Publication Date
JP2011025125A true JP2011025125A (en) 2011-02-10

Family

ID=43634518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009171847A Pending JP2011025125A (en) 2009-07-23 2009-07-23 Dissolved oxygen concentration control system

Country Status (1)

Country Link
JP (1) JP2011025125A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015058544A (en) * 2013-09-17 2015-03-30 セイコーエプソン株式会社 Liquid injection device and liquid supply method
JP2016137449A (en) * 2015-01-28 2016-08-04 株式会社島津製作所 Deaerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015058544A (en) * 2013-09-17 2015-03-30 セイコーエプソン株式会社 Liquid injection device and liquid supply method
JP2016137449A (en) * 2015-01-28 2016-08-04 株式会社島津製作所 Deaerator

Similar Documents

Publication Publication Date Title
JP6687362B2 (en) Heating cylinder
JP2007280802A5 (en)
JP2010131578A (en) System for improving water quality
KR20210048149A (en) Water purifier
JP2010029757A (en) Membrane filtration system, and operating method of membrane filtration system
JP2018012136A (en) Metal mold cooling device
JP2011025125A (en) Dissolved oxygen concentration control system
JP2009228991A (en) Boiler system and operating method of boiler system
JP6542496B1 (en) Liquid distribution system, processing line and liquid distribution method
CN107032450A (en) A kind of adjustable water purifier of waste water ratio and its adjusting method
JP2008237972A (en) Membrane filtration system
JP5138940B2 (en) Heat source apparatus, drain treatment method thereof, and drain treatment program thereof
CN206858220U (en) A kind of adjustable water purifier of waste water ratio
JP6581807B2 (en) Filtration device and control method of filtration device
JP2001276520A (en) Water purifying device
JP2011177689A (en) Water treatment system and treatment liquid discharge method
CN204115323U (en) A kind of UV device cooling system
JPH04371218A (en) Liquid supply system for membrane separation equipment
JP4484575B2 (en) Water quality instrument system
JP2021142460A (en) Ballast water treatment device
JP4629860B2 (en) Electrolyzed water generator
JP2021156019A (en) Bathroom faucet system
JP3655009B2 (en) Boiler feed pipe corrosion prevention film forming device
JPH0671108A (en) Controlling apparatus for operation of degasing apparatus in water supplying system of building
JP2016014501A (en) Water heater