JP2011023170A - Method for manufacturing electrode of fuel cell - Google Patents

Method for manufacturing electrode of fuel cell Download PDF

Info

Publication number
JP2011023170A
JP2011023170A JP2009165860A JP2009165860A JP2011023170A JP 2011023170 A JP2011023170 A JP 2011023170A JP 2009165860 A JP2009165860 A JP 2009165860A JP 2009165860 A JP2009165860 A JP 2009165860A JP 2011023170 A JP2011023170 A JP 2011023170A
Authority
JP
Japan
Prior art keywords
impregnation
catalyst layer
ionic liquid
fuel cell
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009165860A
Other languages
Japanese (ja)
Inventor
Nobuaki Oguri
延章 大栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2009165860A priority Critical patent/JP2011023170A/en
Publication of JP2011023170A publication Critical patent/JP2011023170A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an electrode of a fuel cell having high proton conductivity. <P>SOLUTION: An impregnating period is set up to be a designated time, an amount of impregnated ionic liquid is measured when impregnating it by changing atmospheric temperature in impregnation, and conditions for making a catalyst layer impregnate the ionic liquid by setting atmospheric temperature in impregnation so as to make an amount of impregnated ionic liquid be 10-50% of pore volume of the catalyst layer. It is preferable that the impregnating time is set up to be 3-150 hours while the atmospheric temperature in impregnation is set up to be 50-200°C. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、触媒層にイオン液体が含浸した燃料電池用電極の製造方法に関する。   The present invention relates to a method for producing a fuel cell electrode having a catalyst layer impregnated with an ionic liquid.

燃料電池は、水素と酸素との結合エネルギーを直接電気エネルギーに変換する発電装置である。かかる燃料電池の基本構成は、一般的には、電解質膜を一対の電極、すなわちアノードおよびカソードにより挟持されてなるものである。電極は、電極触媒および電解質を含み、外部から供給される反応ガスを拡散させるために多孔質構造をなしている。   A fuel cell is a power generator that directly converts the combined energy of hydrogen and oxygen into electrical energy. The basic configuration of such a fuel cell is generally such that an electrolyte membrane is sandwiched between a pair of electrodes, that is, an anode and a cathode. The electrode includes an electrode catalyst and an electrolyte, and has a porous structure for diffusing a reaction gas supplied from the outside.

近年、イオン液体を電解質とする燃料電池が注目されている。イオン液体を電解質として用いることで、100℃以上の高温かつ無加湿で運転が可能となる。   In recent years, fuel cells using an ionic liquid as an electrolyte have attracted attention. By using an ionic liquid as an electrolyte, it becomes possible to operate at a high temperature of 100 ° C. or higher and without humidification.

例えば、下記特許文献1には、プロトン伝導性を有する電解質膜、電解質膜の一方の表面に形成された燃料極、および他方の表面に形成された空気極からなる膜電極複合体と、燃料極に液体燃料を供給するための液体燃料室と、燃料極および液体燃料室それぞれに接するように設けられた透過層とを備え、燃料極は燃料極触媒層と、電極触媒及びイオン液体などのプロトン伝導性を有する電解質成分とで構成される燃料極導電層と、を有する燃料電池が開示されている。   For example, in Patent Document 1 below, a membrane electrode assembly including an electrolyte membrane having proton conductivity, a fuel electrode formed on one surface of the electrolyte membrane, and an air electrode formed on the other surface, and a fuel electrode A liquid fuel chamber for supplying liquid fuel to the fuel electrode, and a permeable layer provided in contact with each of the fuel electrode and the liquid fuel chamber. The fuel electrode is a fuel electrode catalyst layer, and a proton such as an electrode catalyst and an ionic liquid. A fuel cell having a fuel electrode conductive layer composed of an electrolyte component having conductivity is disclosed.

また、下記特許文献2には、低分子ゲル化剤と、イオン液体と、揮発性物質と、を混合する工程(I)と、前記工程(I)で得られる混合物を触媒と触媒担体とを含む層に塗布する、あるいは触媒、触媒担体および前記工程(I)で得られる混合物を混合したものを電解質膜およびガス拡散層のいずれか一方または両方に塗布する工程(II)と、揮発性物質を揮発させる工程(III)と、を含む燃料電池用触媒電極の製造方法が開示されている。   Patent Document 2 listed below includes a step (I) of mixing a low-molecular gelling agent, an ionic liquid, and a volatile substance, and a mixture obtained in the step (I) comprising a catalyst and a catalyst carrier. A step (II) of applying a mixture of the catalyst, the catalyst carrier and the mixture obtained in the step (I) to one or both of the electrolyte membrane and the gas diffusion layer, and a volatile substance. And a process (III) for volatilizing the fuel cell, and a method for producing a catalyst electrode for a fuel cell is disclosed.

特開2008−218098号公報JP 2008-218098 A 特開2008−177134号公報JP 2008-177134 A

電解質としてイオン液体を用いた燃料電池において、高い発電効率を得るためには、電極中の触媒層に高いプロトン導電率を保ったまま、プロトンネットワークを形成する必要がある。   In a fuel cell using an ionic liquid as an electrolyte, in order to obtain high power generation efficiency, it is necessary to form a proton network while maintaining high proton conductivity in the catalyst layer in the electrode.

しかしながら、引用文献1には、イオン液体の含浸量を制御していないため、触媒層にイオン液体が含浸されすぎて、触媒層の細孔を塞いでしまったり、イオン液体の含浸量が十分でなく、プロトン導電性が十分得られないことがあった。   However, since the reference 1 does not control the impregnation amount of the ionic liquid, the catalyst layer is excessively impregnated with the ionic liquid, and the pores of the catalyst layer are blocked, or the impregnation amount of the ionic liquid is sufficient. In some cases, sufficient proton conductivity was not obtained.

また、上記特許文献2のように、イオン液体を触媒層に固定化する方法では、作業工程が増加し、製造コストが嵩む問題があった。また、イオン液体を固定化してしまうことにより、イオン液体本来の高いプロトン導電性が失われ、発電効率が低下することがあった。   In addition, as in Patent Document 2, the method of immobilizing the ionic liquid on the catalyst layer has a problem in that the number of work steps increases and the manufacturing cost increases. Moreover, by immobilizing the ionic liquid, the high proton conductivity inherent in the ionic liquid is lost, and the power generation efficiency may be reduced.

したがって、本発明の目的は、高いプロトン導電率を有する燃料電池用電極の製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for producing a fuel cell electrode having high proton conductivity.

本発明者は、触媒層にイオン液体を含浸する際、含浸時の雰囲気温度を高めることで、所定時間におけるイオン液体の含浸量が増加する傾向にあることを見出した。   The present inventor has found that when the catalyst layer is impregnated with the ionic liquid, the amount of impregnation of the ionic liquid in a predetermined time tends to increase by increasing the ambient temperature during the impregnation.

すなわち、本発明の燃料電池用電極の製造方法は、ガス拡散層と触媒層を備え、前記触媒層にイオン液体が含浸された燃料電池用電極の製造方法であって、前記触媒層にイオン液体を含浸させるときの条件を設定する際に、含浸時間を所定時間に定め、含浸時の雰囲気温度を変えて含浸させたときのイオン液体の含浸量を測定し、該イオン液体の含浸量が前記触媒層の気孔容積の10〜50%となるように、含浸時の雰囲気温度を設定することを特徴とする。
本発明の燃料電池用電極の製造方法は、前記触媒層として、体積当たりの気孔容積が30〜80%であるものを用いることが好ましい。
本発明の燃料電池用電極の製造方法は、含浸時の雰囲気温度を50〜200℃の間で設定することが好ましい。
本発明の燃料電池用電極の製造方法は、含浸時間を3〜150時間の間で設定することが好ましい。
That is, the method for producing a fuel cell electrode of the present invention is a method for producing a fuel cell electrode comprising a gas diffusion layer and a catalyst layer, wherein the catalyst layer is impregnated with an ionic liquid, wherein the catalyst layer has an ionic liquid. When setting the conditions for impregnating, the impregnation time is set to a predetermined time, and the amount of impregnation of the ionic liquid when the impregnation is performed by changing the atmospheric temperature during the impregnation is measured. The atmospheric temperature at the time of impregnation is set so as to be 10 to 50% of the pore volume of the catalyst layer.
In the method for producing a fuel cell electrode of the present invention, it is preferable to use a catalyst layer having a pore volume per volume of 30 to 80%.
In the method for producing an electrode for a fuel cell of the present invention, it is preferable to set the atmospheric temperature during impregnation between 50 to 200 ° C.
In the method for producing an electrode for a fuel cell of the present invention, the impregnation time is preferably set between 3 and 150 hours.

本発明によれば、触媒層にイオン液体を含浸させるときの条件を設定する際に、含浸時間を所定時間に定め、含浸時の雰囲気温度を変えて含浸させたときのイオン液体の含浸量を測定して、該測定結果に基づいて含浸温度を設定するので、触媒層に所望の含浸量でイオン液体を含浸できる。そして、イオン液体の含浸量が触媒層の気孔容積の10〜50%となるように、含浸時の雰囲気温度を設定するので、燃料電池特性を得る上で最適な三相界面量を触媒層内に形成することができ、燃料電池の発電特性を向上できる。
また、触媒層として、体積当たりの気孔容積が30〜80%であるものを用いることで、ガス拡散性、電子導電性をより良好にできる。
また、含浸時の雰囲気温度を50〜200℃の間で設定することで、触媒層の劣化を抑制しつつ、より短時間で、所望の含浸量でイオン液体を触媒層に含浸できる。
また、含浸時間を3〜150時間の間で設定することで、生産性良く燃料電池用電極を製造できる。
According to the present invention, when setting the conditions for impregnating the catalyst layer with the ionic liquid, the impregnation time is set to a predetermined time, and the amount of impregnation of the ionic liquid when the impregnation is performed by changing the ambient temperature during the impregnation is set. Since the impregnation temperature is set based on the measurement result, the catalyst layer can be impregnated with the ionic liquid in a desired amount. The atmosphere temperature at the time of impregnation is set so that the impregnation amount of the ionic liquid is 10 to 50% of the pore volume of the catalyst layer. Therefore, the optimum three-phase interfacial amount is obtained in the catalyst layer for obtaining fuel cell characteristics. The power generation characteristics of the fuel cell can be improved.
Further, by using a catalyst layer having a pore volume per volume of 30 to 80%, gas diffusibility and electronic conductivity can be improved.
Moreover, by setting the atmospheric temperature at the time of impregnation between 50 to 200 ° C., the catalyst layer can be impregnated with a desired amount of impregnation in a shorter time while suppressing deterioration of the catalyst layer.
Moreover, the fuel cell electrode can be manufactured with high productivity by setting the impregnation time between 3 and 150 hours.

燃料電池の概略構成図である。It is a schematic block diagram of a fuel cell. 含浸雰囲気温度と、イオン液体の含浸量との関係を示す図表である。It is a graph which shows the relationship between an impregnation atmosphere temperature and the amount of impregnations of an ionic liquid.

以下、燃料電池用電極を備えた、燃料電池について、図1を用いて説明する。   Hereinafter, the fuel cell provided with the electrode for fuel cells is demonstrated using FIG.

この燃料電池1は、電解質膜10の一方の面に、アノード電極11が配置され、他方の面に、カソード電極12が配置されている。   In the fuel cell 1, an anode electrode 11 is disposed on one surface of an electrolyte membrane 10, and a cathode electrode 12 is disposed on the other surface.

アノード電極11及びカソード電極12は、触媒層21とガス拡散層22とで主に構成されている。   The anode electrode 11 and the cathode electrode 12 are mainly composed of a catalyst layer 21 and a gas diffusion layer 22.

ガス拡散層22は、カーボンペーパー、カーボンクロス、カーボンフェルトなどの導電性繊維からなる織布、不織布、抄紙体等の多孔質性を有するシート状物で構成されている。   The gas diffusion layer 22 is composed of a porous sheet such as a woven fabric, a nonwoven fabric, or a papermaking body made of conductive fibers such as carbon paper, carbon cloth, and carbon felt.

触媒層21は、カーボンブラック、カーボンナノチューブ、活性炭、酸化物半導体等の触媒担体に、白金、白金系合金等の触媒金属を担持させた触媒と、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオエチレン・エチレン共重合体(ECTFE)、フッ化カーボンなどの有機バインダーとで主に構成された多孔質構造体であって、気孔容積中にイオン液体が含浸している。   The catalyst layer 21 includes a catalyst in which a catalyst metal such as platinum or a platinum-based alloy is supported on a catalyst carrier such as carbon black, carbon nanotube, activated carbon, or oxide semiconductor, polytetrafluoroethylene (PTFE), tetrafluoroethylene Perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene It is a porous structure mainly composed of (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), and an organic binder such as carbon fluoride, and the pore volume is impregnated with an ionic liquid.

イオン液体は、1)高いプロトン導電性を有する、2)−30℃〜300℃の温度域で液体状を維持する、3)400℃以上の高温でも物性変化が少なく、耐熱性が高い、4)蒸気圧が低い等の特性を有する。イオン液体としては、カチオン成分とアニオン成分から構成されるものであれば特に限定はない。カチオン成分としては、イミダゾリウム、ピリジウム、アンモニウム、ピロリジニウム、ルチジニウム、トリアゾニウム、インドリウム、ピラゾリウム、カルバゾリウム化合物等を挙げることができる。アニオン成分としては、カルボン酸、スルホン酸、スルホン酸化合物、無機酸等を挙げることができる。具体的には、イオン液体としては、ジエチルメチルアンモニウム・トリフルオロメタンスルホネート、ジエチルメチルアンモニウム・ビス(トリフルオロメタンスルホニル)アミド、ジメチルエチルアンモニウム・トリフルオロメタンスルホネート、ジメチルエチルアンモニウム・ビス(トリフルオロメタンスルホニル)アミド等が好ましい例として挙げられる。   The ionic liquid has 1) high proton conductivity, 2) maintains a liquid state in a temperature range of −30 ° C. to 300 ° C., 3) little changes in physical properties at high temperatures of 400 ° C. or higher, and high heat resistance. ) It has characteristics such as low vapor pressure. The ionic liquid is not particularly limited as long as it is composed of a cation component and an anion component. Examples of the cation component include imidazolium, pyridium, ammonium, pyrrolidinium, lutidinium, triazonium, indolium, pyrazolium, carbazolium compounds, and the like. Examples of the anionic component include carboxylic acid, sulfonic acid, sulfonic acid compound, and inorganic acid. Specific examples of ionic liquids include diethylmethylammonium / trifluoromethanesulfonate, diethylmethylammonium / bis (trifluoromethanesulfonyl) amide, dimethylethylammonium / trifluoromethanesulfonate, dimethylethylammonium / bis (trifluoromethanesulfonyl) amide, and the like. Is a preferred example.

電解質膜10は、多孔質であり、耐熱性が高く、化学的耐久性に優れた多孔質膜であれば特に限定はない。これらの多孔質膜に、上述したイオン液体を含浸する。   The electrolyte membrane 10 is not particularly limited as long as it is porous, has high heat resistance, and is excellent in chemical durability. These porous membranes are impregnated with the ionic liquid described above.

次に、本発明の燃料電極用電極の製造方法を含めた燃料電池の製造方法について説明する。   Next, a fuel cell manufacturing method including the fuel electrode manufacturing method of the present invention will be described.

触媒と、有機バインダーとを混合し、触媒層ペーストを調製する。必要に応じて、アセトン、イソブチルアルコール、イソプロピルアルコール、イソペンチルアルコール、エチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテル、キシレン、スチレン、トルエン、エタノール、メタノール、メチルエチルケトン等の溶剤を加えて、ペースト粘度を調整してもよい。   A catalyst and an organic binder are mixed to prepare a catalyst layer paste. As needed, acetone, isobutyl alcohol, isopropyl alcohol, isopentyl alcohol, ethyl ether, ethylene glycol monoethyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether, ethylene glycol monomethyl ether, xylene, styrene, toluene, ethanol The paste viscosity may be adjusted by adding a solvent such as methanol or methyl ethyl ketone.

得られた触媒層ペーストを、ガス拡散層に塗布して、ガス拡散層上に触媒層を形成する。触媒層ペーストの塗布方法としては、特に限定はなく、スクリーン印刷法、ロールコート法、スプレー法等が挙げられる。   The obtained catalyst layer paste is applied to the gas diffusion layer to form a catalyst layer on the gas diffusion layer. The method for applying the catalyst layer paste is not particularly limited, and examples thereof include a screen printing method, a roll coating method, and a spray method.

触媒層の膜厚は5〜300μmが好ましく、10〜40μmがより好ましい。触媒層膜厚は薄ければ薄いほど好ましいが、触媒層の膜厚が5μm未満であると、大面積で電極を作製した際に面内に均一に触媒を分散できないことがあり、電子導電性が低下す可能性がある。また、膜厚が300μmを超えると、セル抵抗が高くなり、IR損失が増加する可能性がある。   The thickness of the catalyst layer is preferably 5 to 300 μm, more preferably 10 to 40 μm. The thinner the catalyst layer is, the better. However, if the catalyst layer is less than 5 μm, the catalyst may not be uniformly dispersed in the surface when an electrode is produced in a large area. May be reduced. On the other hand, if the film thickness exceeds 300 μm, the cell resistance increases and the IR loss may increase.

触媒層の体積当たりの気孔容積は、30〜80%が好ましく、55〜75%がより好ましい。前記気孔容積が30%未満であると、触媒の凝集によりガス拡散が阻害される傾向にある。また、前記気孔容積が80%を超えると、触媒同士の密着性が低く、電子導電性が失われる傾向にある。触媒層の気孔容積を調整するには有機バインダーと触媒との質量比を調整し、選定した有機バインダーのガラス転移温度にあわせて、プレス温度やプレス圧を調整すればよい。   The pore volume per volume of the catalyst layer is preferably 30 to 80%, more preferably 55 to 75%. If the pore volume is less than 30%, gas diffusion tends to be hindered due to aggregation of the catalyst. On the other hand, when the pore volume exceeds 80%, the adhesion between the catalysts is low and the electronic conductivity tends to be lost. In order to adjust the pore volume of the catalyst layer, the mass ratio between the organic binder and the catalyst is adjusted, and the press temperature and the press pressure may be adjusted in accordance with the glass transition temperature of the selected organic binder.

次に、触媒層にイオン液体を含浸させる。   Next, the catalyst layer is impregnated with an ionic liquid.

本発明では、触媒層にイオン液体を含浸させるときの条件を設定する際に、含浸時間を所定時間に定め、含浸時の雰囲気温度を変えて含浸させたときのイオン液体の含浸量を測定し、含浸時の雰囲気温度を設定する。   In the present invention, when setting the conditions for impregnating the catalyst layer with the ionic liquid, the impregnation time is set to a predetermined time, and the impregnation amount of the ionic liquid when the impregnation is performed by changing the atmospheric temperature during the impregnation is measured. Set the ambient temperature during impregnation.

含浸時の雰囲気温度は、イオン液体の含浸量が、触媒層中の気孔容積の10〜50%となるように設定する。イオン液体の含浸量は、触媒層中の気孔容積の15〜45%となるように設定することが好ましい。イオン液体の含浸量が、触媒層の気孔容積の10%未満であると、良好なプロトンネットワークが形成されない傾向にある。また、イオン液体の含浸量が、触媒層の気孔容積の50%を超えると、含浸したイオン液体によって触媒層内のガス流路が閉塞され、反応ガスの拡散が阻害される傾向にある。   The atmospheric temperature during the impregnation is set so that the impregnation amount of the ionic liquid is 10 to 50% of the pore volume in the catalyst layer. The impregnation amount of the ionic liquid is preferably set so as to be 15 to 45% of the pore volume in the catalyst layer. When the impregnation amount of the ionic liquid is less than 10% of the pore volume of the catalyst layer, a good proton network tends not to be formed. Further, when the impregnated amount of the ionic liquid exceeds 50% of the pore volume of the catalyst layer, the impregnated ionic liquid closes the gas flow path in the catalyst layer and tends to inhibit the diffusion of the reaction gas.

具体的には、含浸時の雰囲気温度は、50〜200℃の間で設定することが好ましく、100〜150℃の間で設定することが特に好ましい。含浸時の雰囲気温度が50℃未満であると、イオン液体の含浸量が所望量に達するのに長時間を要するので、生産性が劣る傾向にある。また、雰囲気温度が200℃を超えると、触媒の劣化(シンタリングなど)が起きて電池特性が低下する傾向にある。   Specifically, the ambient temperature during impregnation is preferably set between 50 and 200 ° C, and particularly preferably set between 100 and 150 ° C. If the atmospheric temperature during the impregnation is less than 50 ° C., it takes a long time for the impregnation amount of the ionic liquid to reach the desired amount, and thus the productivity tends to be inferior. On the other hand, when the ambient temperature exceeds 200 ° C., catalyst deterioration (sintering or the like) occurs and battery characteristics tend to deteriorate.

また、含浸時間は、触媒層の組成やイオン液体の組成により異なるが、3〜150時間の間で設定することが好ましく、3〜100時間がより好ましい。含浸時間を短時間にするには、含浸時の雰囲気温度を上げる必要があるが、前述したように雰囲気温度を高めると触媒が劣化することがあるので、下限値は3時間が好ましい。また、150時間を超えると、生産性が劣るので、上限値は150時間が好ましい。   The impregnation time varies depending on the composition of the catalyst layer and the composition of the ionic liquid, but is preferably set between 3 and 150 hours, more preferably 3 to 100 hours. In order to shorten the impregnation time, it is necessary to increase the ambient temperature at the time of impregnation. However, as described above, if the ambient temperature is increased, the catalyst may deteriorate, so the lower limit is preferably 3 hours. Moreover, since productivity will be inferior when it exceeds 150 hours, the upper limit is preferably 150 hours.

一例を挙げると、触媒層として、体積当たりの気孔容積が30〜80%であるものを用い、雰囲気温度を70〜150℃(好ましくは70〜120℃)に維持し、3〜100時間イオン液体を含浸させることで、触媒層の気孔容積の10〜50%にイオン液体を含浸させることができる。なお、イオン液体の含浸量は、表面に付着した未含浸のイオン液体を取り除き、含浸前後の触媒層の質量変化から測定できる。   As an example, a catalyst layer having a pore volume per volume of 30 to 80% is used, the atmospheric temperature is maintained at 70 to 150 ° C. (preferably 70 to 120 ° C.), and the ionic liquid is used for 3 to 100 hours. By impregnating the ionic liquid, 10 to 50% of the pore volume of the catalyst layer can be impregnated. The impregnation amount of the ionic liquid can be measured from the change in mass of the catalyst layer before and after the impregnation after removing the unimpregnated ionic liquid adhering to the surface.

イオン液体の含浸方法としては、特に限定はない。例えば、イオン液体を触媒層表面に塗布する方法、触媒層をイオン液体中に浸漬させる方法等が挙げられる。なかでも、イオン液体の塗布量により、イオン液体の含浸量を規定できるので、イオン液体を触媒層表面に塗布する方法がより好ましい。   The impregnation method of the ionic liquid is not particularly limited. Examples thereof include a method of applying an ionic liquid to the surface of the catalyst layer, a method of immersing the catalyst layer in the ionic liquid, and the like. Especially, since the impregnation amount of an ionic liquid can be prescribed | regulated by the application amount of an ionic liquid, the method of apply | coating an ionic liquid to a catalyst layer surface is more preferable.

このようにすることで、イオン液体が、触媒層の気孔容積の10〜50%となるように含浸された電極を製造できるので、燃料電池特性を得る上で最適な三相界面量を触媒層に形成することができる。このため、電極における反応活性が向上し、燃料電池の発電性能を良好にできる。   By doing so, an electrode impregnated with ionic liquid so as to be 10 to 50% of the pore volume of the catalyst layer can be manufactured, so that an optimum three-phase interface amount for obtaining fuel cell characteristics can be obtained. Can be formed. For this reason, the reaction activity in the electrode is improved, and the power generation performance of the fuel cell can be improved.

そして、この電極の触媒層側の面を、イオン液体を含浸した多孔質膜(電解質膜10)に対向するように、該多孔質膜の両面に配置することで、燃料電池が得られる。   And the fuel cell is obtained by arrange | positioning the surface by the side of the catalyst layer of this electrode on both surfaces of this porous membrane so that the porous membrane (electrolyte membrane 10) impregnated with the ionic liquid may be opposed.

(実施例1)
カーボンブラックに白金を担持した触媒と、ポリテトラフルオロエチレン(PTFE)ディスパージョンとを、カーボンブラック:PTFEの質量比で1:1の割合で混合して、触媒層ペーストを得た。この触媒層ペーストを、カーボンペーパーに塗布して、体積当たりの気孔容積が70%の触媒層を得た。
この触媒層の表面に、イオン液体(ジエチルメチルアンモニウム・トリフルオロメタンスルホネート)を1mL/cm塗布し、含浸雰囲気温度を50〜200℃とし、100時間含浸を行った。含浸工程終了の触媒層中のイオン液体含浸量を表面に付着した未含浸のイオン液体を取り除き、含浸前後の触媒層の質量変化から調べた。
結果を図2に記す。図2に示すように、含浸時の雰囲気温度を高めることで、イオン液体の含浸量が増加した。そして、含浸時の雰囲気温度を70〜120℃にした場合、気孔容積の10〜50%にイオン液体が含浸されていた。
Example 1
A catalyst having platinum supported on carbon black and a polytetrafluoroethylene (PTFE) dispersion were mixed at a mass ratio of carbon black: PTFE of 1: 1 to obtain a catalyst layer paste. This catalyst layer paste was applied to carbon paper to obtain a catalyst layer having a pore volume per volume of 70%.
On the surface of this catalyst layer, 1 mL / cm 2 of ionic liquid (diethylmethylammonium trifluoromethanesulfonate) was applied, the impregnation atmosphere temperature was 50 to 200 ° C., and impregnation was performed for 100 hours. The amount of impregnated ionic liquid in the catalyst layer after the impregnation step was examined by removing the unimpregnated ionic liquid adhering to the surface from the mass change of the catalyst layer before and after the impregnation.
The results are shown in FIG. As shown in FIG. 2, the amount of impregnation of the ionic liquid increased by increasing the ambient temperature during the impregnation. And when the atmospheric temperature at the time of impregnation was 70-120 degreeC, 10-50% of pore volume was impregnated with the ionic liquid.

(実施例2)
カーボンブラック担体に白金を担時した触媒と、ポリテトラフルオロエチレン(PTFE)ディスパージョンとを、カーボンブラック:PTFEの質量比で1:1の割合で混合して、触媒層ペーストを得た。この触媒層ペーストを、カーボンペーパーに塗布して、体積当たりの気孔容積が70%の触媒層を得た。得られた触媒層の表面に、イオン液体(ジエチルメチルアンモニウム・トリフルオロメタンスルホネート)を1mL/cm塗布し、雰囲気温度を100℃で、100時間含浸させて、電極を製造した。この電極は、触媒層の気孔容積の45%がイオン液体で含浸されていた。
このようにして製造した電極を、イオン液体を含浸したSiCとPTFEを混合した多孔質膜(厚さ100μm、気孔率55%)の両側に配置し、燃料電池を得た。
(Example 2)
A catalyst in which platinum was supported on a carbon black carrier and a polytetrafluoroethylene (PTFE) dispersion were mixed at a mass ratio of carbon black: PTFE of 1: 1 to obtain a catalyst layer paste. This catalyst layer paste was applied to carbon paper to obtain a catalyst layer having a pore volume per volume of 70%. On the surface of the obtained catalyst layer, 1 mL / cm 2 of ionic liquid (diethylmethylammonium trifluoromethanesulfonate) was applied and impregnated at 100 ° C. for 100 hours to produce an electrode. In this electrode, 45% of the pore volume of the catalyst layer was impregnated with the ionic liquid.
The electrodes thus produced were arranged on both sides of a porous membrane (thickness: 100 μm, porosity: 55%) in which SiC and PTFE impregnated with an ionic liquid were mixed to obtain a fuel cell.

Claims (4)

ガス拡散層と触媒層を備え、前記触媒層にイオン液体が含浸された燃料電池用電極の製造方法であって、
前記触媒層にイオン液体を含浸させるときの条件を設定する際に、含浸時間を所定時間に定め、含浸時の雰囲気温度を変えて含浸させたときのイオン液体の含浸量を測定し、該イオン液体の含浸量が前記触媒層の気孔容積の10〜50%となるように、含浸時の雰囲気温度を設定することを特徴とする燃料電池用電極の製造方法。
A method for producing a fuel cell electrode comprising a gas diffusion layer and a catalyst layer, wherein the catalyst layer is impregnated with an ionic liquid,
When setting the conditions for impregnating the catalyst layer with the ionic liquid, the impregnation time is set to a predetermined time, and the amount of impregnation of the ionic liquid when the impregnation is performed by changing the ambient temperature during the impregnation is measured. A method for producing an electrode for a fuel cell, characterized in that an ambient temperature at the time of impregnation is set so that an impregnation amount of a liquid is 10 to 50% of a pore volume of the catalyst layer.
前記触媒層として、体積当たりの気孔容積が30〜80%であるものを用いる、請求項1に記載の燃料電池用電極の製造方法。   The method for producing a fuel cell electrode according to claim 1, wherein the catalyst layer has a pore volume per volume of 30 to 80%. 含浸時の雰囲気温度を50〜200℃の間で設定する、請求項1又は2記載の燃料電池用電極の製造方法。   The manufacturing method of the electrode for fuel cells of Claim 1 or 2 which sets the atmospheric temperature at the time of an impregnation between 50-200 degreeC. 含浸時間を3〜150時間の間で設定する、請求項1〜3のいずれか1つに記載の燃料電池用電極の製造方法。   The method for producing a fuel cell electrode according to any one of claims 1 to 3, wherein the impregnation time is set between 3 and 150 hours.
JP2009165860A 2009-07-14 2009-07-14 Method for manufacturing electrode of fuel cell Pending JP2011023170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009165860A JP2011023170A (en) 2009-07-14 2009-07-14 Method for manufacturing electrode of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009165860A JP2011023170A (en) 2009-07-14 2009-07-14 Method for manufacturing electrode of fuel cell

Publications (1)

Publication Number Publication Date
JP2011023170A true JP2011023170A (en) 2011-02-03

Family

ID=43633071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009165860A Pending JP2011023170A (en) 2009-07-14 2009-07-14 Method for manufacturing electrode of fuel cell

Country Status (1)

Country Link
JP (1) JP2011023170A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110197906A (en) * 2018-02-27 2019-09-03 通用汽车环球科技运作有限责任公司 With the catalyst activity of ion liquid addictive enhancing PEM fuel cell electrode
JP7475008B2 (en) 2020-12-03 2024-04-26 株式会社デンソー Proton conductors and fuel cells

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62272462A (en) * 1986-05-20 1987-11-26 Hitachi Ltd Electrode for fuel cell
JPH07201334A (en) * 1993-12-29 1995-08-04 Mitsubishi Electric Corp Electrode for fuel cell and manufacture of the electrode
WO2007126153A1 (en) * 2006-04-27 2007-11-08 University Of Yamanashi Method for manufacturing gas diffusion electrode, gas diffusion electrode, and membrane electrode assembly comprising the gas diffusion electrode
JP2008053089A (en) * 2006-08-25 2008-03-06 Univ Of Yamanashi Gas diffusion composition and manufacturing method of same, gas diffusion electrode, membrane electrode assembly, and electrochemical device using this
JP2008177134A (en) * 2007-01-22 2008-07-31 Shinshu Univ Catalyst electrode for fuel cell, and its manufacturing method
JP2008177135A (en) * 2007-01-22 2008-07-31 Nissan Motor Co Ltd Catalyst electrode for fuel cell and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62272462A (en) * 1986-05-20 1987-11-26 Hitachi Ltd Electrode for fuel cell
JPH07201334A (en) * 1993-12-29 1995-08-04 Mitsubishi Electric Corp Electrode for fuel cell and manufacture of the electrode
WO2007126153A1 (en) * 2006-04-27 2007-11-08 University Of Yamanashi Method for manufacturing gas diffusion electrode, gas diffusion electrode, and membrane electrode assembly comprising the gas diffusion electrode
JP2008053089A (en) * 2006-08-25 2008-03-06 Univ Of Yamanashi Gas diffusion composition and manufacturing method of same, gas diffusion electrode, membrane electrode assembly, and electrochemical device using this
JP2008177134A (en) * 2007-01-22 2008-07-31 Shinshu Univ Catalyst electrode for fuel cell, and its manufacturing method
JP2008177135A (en) * 2007-01-22 2008-07-31 Nissan Motor Co Ltd Catalyst electrode for fuel cell and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110197906A (en) * 2018-02-27 2019-09-03 通用汽车环球科技运作有限责任公司 With the catalyst activity of ion liquid addictive enhancing PEM fuel cell electrode
JP7475008B2 (en) 2020-12-03 2024-04-26 株式会社デンソー Proton conductors and fuel cells

Similar Documents

Publication Publication Date Title
CN110148759B (en) Preparation method of high-current-density-oriented proton exchange membrane fuel cell gas diffusion layer
JP4144686B2 (en) Method for producing polymer electrolyte fuel cell
EP2277217B1 (en) Polymer coating of pem fuel cell catalyst layers
JP2005514747A (en) Gas diffusion supports for fuel cells
JPH0652871A (en) Solid highpolymer fuel cell
JP2022553451A (en) Gas diffusion layer, manufacturing method thereof, membrane electrode assembly, and fuel cell
JP2017514269A (en) Catalyst layer for fuel cell and method for producing such catalyst layer
JP2007095582A (en) Manufacturing method of membrane electrode assembly
JP5079195B2 (en) Gas diffusion electrode for fuel cell and manufacturing method thereof
JP6070564B2 (en) Catalyst particles, catalyst ink, production method thereof, and production method of each of fuel cell electrode catalyst layer, membrane electrode assembly, and solid polymer fuel cell
JP2002343369A (en) Manufacturing method of electrode for fuel cell, and fuel cell
JP2002056851A (en) Method of manufacturing gas diffusion electrode for polymer electrolyte fuel cell
US8940460B2 (en) Catalyst ink preparation for fuel cell electrode fabrication
JP2006344517A (en) Manufacturing method of fuel cell
JP2010129309A (en) Gas diffusion layer for fuel cell, and manufacturing method thereof
JP2016181488A (en) Electrode for fuel cell, membrane-electrode composite for fuel cell, and fuel cell
US20160172692A1 (en) Diffusion medium for use in fuel cell, fuel cell and method of making the diffusion medium
JP5354982B2 (en) Direct oxidation fuel cell
JP5023591B2 (en) Membrane / electrode assembly for fuel cells
JP5339261B2 (en) Fuel cell
JP2011023170A (en) Method for manufacturing electrode of fuel cell
JP2016085839A (en) Catalyst electrode layer, membrane-electrode assembly, and fuel cell
JP2007311269A (en) Diffusion layer for fuel cell, its manufacturing method, membrane-electrode assembly for fuel cell, and fuel cell
JP5843682B2 (en) Diffusion layer structure of fuel cell
JP5989344B2 (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131112