JP2011021154A - Heat storage material, heat storage system using the same, and method for suppressing volatilization of hydrate guest substance - Google Patents

Heat storage material, heat storage system using the same, and method for suppressing volatilization of hydrate guest substance Download PDF

Info

Publication number
JP2011021154A
JP2011021154A JP2009169219A JP2009169219A JP2011021154A JP 2011021154 A JP2011021154 A JP 2011021154A JP 2009169219 A JP2009169219 A JP 2009169219A JP 2009169219 A JP2009169219 A JP 2009169219A JP 2011021154 A JP2011021154 A JP 2011021154A
Authority
JP
Japan
Prior art keywords
guest
heat storage
substance
additive
azeotropic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009169219A
Other languages
Japanese (ja)
Inventor
Masasuke Nakajima
雅祐 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2009169219A priority Critical patent/JP2011021154A/en
Publication of JP2011021154A publication Critical patent/JP2011021154A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat storage material suppressed in inflammability because of the capability of suppressing the volatilization of a guest substance, to provide a heat-storage system using the same, and to provide a method for suppressing the volatilization of a hydrate guest substance. <P>SOLUTION: The heat storage material 24, comprising a mixture of the guest substance 22a which forms a hydrate 26 with water 23 as a host substance, is prepared by mixing the guest substance 22a with an additive 22b which forms an azeotropic mixture with the guest substance 22a to form an azeotropic guest substance 22 having a vapor pressure lower than those of the guest substance 22a and the additive 22b and mixing the azeotropic guest substance 22 with water 23. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ネガティブ共沸現象を利用して水和物ゲスト物質の揮発を抑制した蓄熱材及びそれを用いた蓄熱システム、並びに水和物ゲスト物質の揮発抑制方法に関するものである。   The present invention relates to a heat storage material that suppresses volatilization of a hydrate guest substance using a negative azeotropic phenomenon, a heat storage system using the same, and a method for suppressing volatilization of a hydrate guest substance.

従来、深夜電力等で蓄熱槽に充填された蓄熱材を冷却して蓄熱し、これをヒートポンプなどの冷房サイクルの冷熱源として利用する蓄熱システムがある。   2. Description of the Related Art Conventionally, there is a heat storage system that cools a heat storage material filled in a heat storage tank with midnight power or the like to store heat and uses this as a cooling source for a cooling cycle such as a heat pump.

蓄熱システムに用いられる蓄熱材として、水和物を形成する水和物ゲスト物質(以下、単にゲスト物質という)とホスト物質である水とを混合したものが用いられている。水和物は、生成時に熱を発生し、分解時には熱を吸収するため蓄熱材として用いることができる。   As a heat storage material used in the heat storage system, a mixture of a hydrate guest material (hereinafter simply referred to as a guest material) that forms a hydrate and water as a host material is used. Hydrates can be used as a heat storage material because they generate heat during production and absorb heat during decomposition.

蓄熱材に用いられるゲスト物質としては、例えば、シクロペンタン(C510)などの炭化水素を用いることができる。 As the guest substance used for the heat storage material, for example, a hydrocarbon such as cyclopentane (C 5 H 10 ) can be used.

なお、この出願の発明に関連する先行技術文献情報としては、特許文献1,2がある。   As prior art document information related to the invention of this application, there are Patent Documents 1 and 2.

特表2006−515031号公報JP 2006-515031 Gazette 特公平01−047513号公報Japanese Patent Publication No. 01-047513

しかしながら、蓄熱材のゲスト物質として炭化水素などの揮発性を有する物質を用いる場合、炭化水素が一般に油類、燃料ガス類であるため、ゲスト物質は蒸気圧が高く、揮発性と引火性を有している。そのため、このような蓄熱材を用いた蓄熱システムでは、蓄熱槽を密閉構造にして、ゲスト物質が系外に出ないようにする必要がある。   However, when a volatile material such as hydrocarbon is used as the guest material of the heat storage material, since the hydrocarbon is generally oils or fuel gases, the guest material has a high vapor pressure and has volatility and flammability. is doing. Therefore, in a heat storage system using such a heat storage material, it is necessary to make the heat storage tank a sealed structure so that the guest material does not come out of the system.

また、ゲスト物質が引火性を有するため、装置容量を指定数量に対応して制限したり貯蔵設備からの保安距離を保つなど消防法規制に対応させる必要があり、さらには、ゲスト物質の種類によっては、高圧ガス特定設備の取扱いとなってしまう場合もある。したがって、ゲスト物質の揮発を抑制し、引火性を抑制することが望まれている。   In addition, since the guest material is flammable, it is necessary to comply with fire regulations, such as limiting the capacity of the device according to the specified quantity or keeping the safety distance from the storage facility, and depending on the type of guest material May be handled by high-pressure gas specific equipment. Therefore, it is desired to suppress the volatilization of the guest material and suppress the flammability.

また、ゲスト物質が揮発してしまうと、蓄熱材の組成自体も変化してしまうため、蓄熱材の性能が劣化してしまう場合があるといった問題もある。   Moreover, since the composition of the heat storage material itself changes when the guest material volatilizes, there is a problem that the performance of the heat storage material may deteriorate.

本発明は、上記事情に鑑みなされたものであり、ゲスト物質の揮発を抑制することができ、引火性を抑制することが可能な蓄熱材及びそれを用いた蓄熱システム、並びに水和物ゲスト物質の揮発抑制方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, a heat storage material capable of suppressing volatilization of a guest material and capable of suppressing flammability, a heat storage system using the same, and a hydrate guest material It is an object of the present invention to provide a method for suppressing volatilization.

本発明は上記目的を達成するために創案されたものであり、水和物を形成するゲスト物質とホスト物質である水とを混合した蓄熱材において、前記ゲスト物質に、該ゲスト物質と共沸混合物を形成する添加剤を混合して、前記ゲスト物質および前記添加剤よりも蒸気圧が低い共沸ゲスト物質とし、その共沸ゲスト物質と水とを混合してなる蓄熱材である。   The present invention was devised to achieve the above object, and in a heat storage material in which a guest substance that forms a hydrate and water as a host substance are mixed, the guest substance is azeotroped with the guest substance. It is a heat storage material obtained by mixing an additive that forms a mixture into an azeotropic guest material having a vapor pressure lower than that of the guest material and the additive, and mixing the azeotropic guest material and water.

前記添加剤として、蒸気圧が低く、かつ、前記ゲスト物質と水とからなる水和物の生成を阻害しないものを用いることが望ましい。   As the additive, it is desirable to use an additive having a low vapor pressure and not inhibiting the formation of a hydrate composed of the guest substance and water.

前記共沸ゲスト物質と水とを界面活性剤を用いて分散液としてもよい。   The azeotropic guest substance and water may be used as a dispersion using a surfactant.

前記ゲスト物質がシクロペンタンであってもよい。   The guest material may be cyclopentane.

また、本発明は、前記蓄熱材を蓄熱槽に充填してなり、前記蓄熱材を冷却/加熱することで、前記ゲスト物質と水とからなる水和物を生成/分解する蓄熱システムである。   Moreover, this invention is a heat storage system which produces | generates / decomposes the hydrate which consists of the said guest substance and water by filling the said thermal storage material in the thermal storage tank, and cooling / heating the said thermal storage material.

また、本発明は、水和物を形成するゲスト物質とホスト物質である水とを混合した蓄熱材において前記ゲスト物質の揮発を抑制する水和物ゲスト物質の揮発抑制方法であって、前記ゲスト物質に、該ゲスト物質と共沸混合物を形成する添加剤を混合して、前記ゲスト物質および前記添加剤よりも蒸気圧が低い共沸ゲスト物質とすることで、前記ゲスト物質の揮発を抑制する水和物ゲスト物質の揮発抑制方法である。   The present invention also relates to a method for suppressing volatilization of a hydrate guest substance that suppresses volatilization of the guest substance in a heat storage material in which a guest substance that forms a hydrate and water as a host substance are mixed. By mixing an additive that forms an azeotrope with the guest substance into the substance to make an azeotropic guest substance having a vapor pressure lower than that of the guest substance and the additive, volatilization of the guest substance is suppressed. This is a method for suppressing volatilization of a hydrate guest substance.

本発明によれば、ゲスト物質の揮発を抑制することができ、引火性を抑制することができる。   According to the present invention, the volatilization of the guest material can be suppressed, and the flammability can be suppressed.

(a)は、ゲスト物質と添加剤がネガティブ共沸混合物を形成する場合の気液平衡図であり、(b)は、ゲスト物質と添加剤が共沸混合物を形成しない場合の気液平衡図である。(A) is a vapor-liquid equilibrium diagram when the guest substance and the additive form a negative azeotrope, and (b) is a vapor-liquid equilibrium diagram when the guest substance and the additive do not form an azeotrope. It is. (a)〜(f)は、本発明の一実施の形態に係る蓄熱材を用いた蓄熱システムにおける水和物の生成/分解を説明する図である。(A)-(f) is a figure explaining the production | generation / decomposition | disassembly of the hydrate in the thermal storage system using the thermal storage material which concerns on one embodiment of this invention.

以下、本発明の好適な実施の形態を添付図面にしたがって説明する。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

本実施の形態に係る蓄熱材は、ゲスト物質に、ゲスト物質と共沸混合物を形成する添加剤を混合して、ゲスト物質および添加剤よりも蒸気圧が低い共沸ゲスト物質とし、その共沸ゲスト物質と水とを混合したものである。   In the heat storage material according to the present embodiment, an additive that forms an azeotrope with the guest substance is mixed with the guest substance to obtain an azeotropic guest substance having a vapor pressure lower than that of the guest substance and the additive. It is a mixture of guest material and water.

ゲスト物質としては、炭化水素などの揮発性を有する物質を用いる。本実施の形態では、ゲスト物質としてシクロペンタンを用いた。   As the guest material, a volatile material such as a hydrocarbon is used. In this embodiment mode, cyclopentane is used as the guest material.

添加剤としては、引火性がなく、かつ、ゲスト物質と水とからなる水和物の生成を阻害しないものを用いる。また、添加剤としては、単体での蒸気圧がなるべく低いものを用いることが望ましい。   As the additive, an additive that is not flammable and does not inhibit the formation of a hydrate composed of a guest substance and water is used. Moreover, it is desirable to use an additive having a vapor pressure as low as possible as a single substance.

上述のように、炭化水素などの揮発性を有する物質からなるゲスト物質は蒸気圧が高く、揮発し易いという特性を有する。また、炭化水素は引火性を有しており、揮発したゲスト物質が引火するおそれもあるため、ゲスト物質の揮発をできるだけ抑制することが望まれている。   As described above, a guest substance made of a volatile substance such as a hydrocarbon has a characteristic that it has a high vapor pressure and easily volatilizes. In addition, hydrocarbons are flammable, and the volatilized guest material may be flammable. Therefore, it is desired to suppress the volatilization of the guest material as much as possible.

本発明者は、ゲスト物質の揮発を抑制すべく鋭意検討した結果、ゲスト物質に、ゲスト物質とネガティブ共沸混合物を形成する添加剤を混合して(溶解させて)共沸ゲスト物質とすることで、共沸ゲスト物質の蒸気圧を低下させ、ゲスト物質の揮発を抑制できることを見出した。   As a result of intensive studies to suppress the volatilization of the guest material, the present inventor mixed (dissolved) the guest material with an additive that forms a negative azeotrope with the guest material to obtain an azeotropic guest material. Thus, it has been found that the vapor pressure of the azeotropic guest material can be reduced and volatilization of the guest material can be suppressed.

なお、本明細書では、2つの物質を混合した混合物の蒸気圧が、混合しない状態の2つの物質単体での蒸気圧よりも低くなる現象をネガティブ共沸という。つまり、ネガティブ共沸とは、2つの物質を混合した混合物(ネガティブ共沸混合物)の沸点が、混合しない状態の2つの物質の沸点よりも高くなる(ある組成比(混合比)において極大共沸点をとる)現象をいう。他方、混合物の蒸気圧が混合しない状態の2つの物質単体での蒸気圧よりも高くなる(あるいは沸点が低くなる)現象をポジティブ共沸という。   In the present specification, a phenomenon in which the vapor pressure of a mixture obtained by mixing two substances becomes lower than the vapor pressure of the two substances alone in a state where they are not mixed is referred to as negative azeotropy. In other words, negative azeotropy means that the boiling point of a mixture of two substances (negative azeotrope) is higher than the boiling point of two substances that are not mixed (maximum azeotropic point at a certain composition ratio (mixing ratio)). Is a phenomenon. On the other hand, the phenomenon in which the vapor pressure of the mixture is higher than the vapor pressure of the two substances alone in a state where they are not mixed (or the boiling point is lowered) is called positive azeotropy.

図1(a)にゲスト物質と添加剤がネガティブ共沸混合物を形成する場合の気液平衡図を、図1(b)にゲスト物質と添加剤が共沸混合物を形成しない場合の気液平衡図を示す。   FIG. 1 (a) shows a vapor-liquid equilibrium diagram when the guest substance and additive form a negative azeotrope, and FIG. 1 (b) shows a gas-liquid equilibrium when the guest substance and additive do not form an azeotrope. The figure is shown.

図1(a),(b)は、縦軸を圧力(蒸気圧)、横軸をゲスト物質と添加剤の組成比とした気液平衡図であり、液相線は液体の状態での蒸気圧、気相線は気相から液相になる圧力を示している。また、横軸の組成比については、0がゲスト物質のみ、1が添加剤のみを意味することとする。つまり、組成比が増加すると、ゲスト物質と添加剤との混合物における添加剤の割合が増加する(ゲスト物質の割合が減少する)こととする。   1A and 1B are gas-liquid equilibrium diagrams in which the vertical axis represents pressure (vapor pressure) and the horizontal axis represents the composition ratio of the guest substance and the additive, and the liquidus is the vapor in the liquid state. The pressure and gas phase line indicate the pressure from the gas phase to the liquid phase. As for the composition ratio on the horizontal axis, 0 means only the guest material and 1 means only the additive. That is, when the composition ratio increases, the ratio of the additive in the mixture of the guest substance and the additive increases (the ratio of the guest substance decreases).

まず、ゲスト物質と添加剤が共沸混合物を形成しない場合について検討すると、図1(b)に示すように、気液平衡図は、混合物における添加剤の割合が増加するにしたがい、混合物の蒸気圧が一方向に低下する。したがって、添加剤として蒸気圧pxが低いものを用いても、混合物の蒸気圧をゲスト物質単体での蒸気圧pgの数分の一程度まで低下させるためには、混合物における添加剤の割合を大きく(添加物リッチに)しなければならないこととなる。 First, considering the case where the guest substance and the additive do not form an azeotrope, as shown in FIG. 1 (b), the vapor-liquid equilibrium diagram shows that the vapor of the mixture increases as the proportion of the additive in the mixture increases. The pressure drops in one direction. Thus, also be used as vapor pressure p x is less as an additive, in order to lower the vapor pressure of the mixture to a fraction of about one vapor pressure p g of the guest material alone, the proportion of the additive in the mixture Must be increased (enriched with additives).

混合物における添加剤の割合が多くなると、当然ながら混合物におけるゲスト物質の割合が少なくなり、蓄熱材全体におけるゲスト物質の絶対量が少なくなる。蓄熱材全体におけるゲスト物質の絶対量が少なくなると、結果的に、水の一部が余って水和物の形成に用いられなくなり、効率よく水和物を形成することが困難となる。 When the ratio of the additive in the mixture increases, the ratio of the guest substance in the mixture naturally decreases, and the absolute amount of the guest substance in the entire heat storage material decreases. If the absolute amount of the guest substance in the entire heat storage material is reduced, as a result, a part of the water is not used for forming the hydrate, and it becomes difficult to form the hydrate efficiently.

さらには、水に対して多量のゲスト物質を混合すると、後述する界面活性剤によりゲスト物質と水とを分散液とする際に、うまく分散化できなくなる。   Furthermore, when a large amount of guest substance is mixed with water, it becomes impossible to disperse well when the guest substance and water are dispersed with a surfactant described later.

つまり、ゲスト物質と共沸混合物を形成しない添加剤を用いる場合、混合物の蒸気圧を低下させるには混合物の組成を添加剤リッチとする必要があるが、混合物の組成を添加剤リッチとすると、結果的に蓄熱材全体におけるゲスト物質の絶対量が少なくなって蓄熱材の性能が悪化し、分散化もうまくいかなくなる。したがって、ゲスト物質と共沸混合物を形成しない添加剤を用いることは、現実的ではない。   That is, when using an additive that does not form an azeotrope with the guest material, the composition of the mixture needs to be rich in the additive in order to reduce the vapor pressure of the mixture, but if the composition of the mixture is rich in the additive, As a result, the absolute amount of the guest substance in the entire heat storage material is reduced, the performance of the heat storage material is deteriorated, and the dispersion is not successful. Therefore, it is not practical to use an additive that does not form an azeotrope with the guest material.

また、図1(b)では、気相線と液相線が一致しない場合の気液平衡図を示しているが、このような場合、ゲスト物質の蒸気圧をある圧力に抑える液組成(図示実線矢印)と、蒸発ガス組成(図示点線矢印)が異なり、蒸発ガスは当初の組成比と比較してゲスト物質リッチとなる。つまり、気相におけるゲスト物質の分圧が増えることとなり、引火のおそれがある。   FIG. 1B shows a vapor-liquid equilibrium diagram in the case where the gas phase line and the liquidus line do not coincide with each other. The evaporative gas composition (dotted arrow in the figure) is different from the solid line arrow), and the evaporative gas becomes richer in the guest material than the original composition ratio. That is, the partial pressure of the guest substance in the gas phase increases, and there is a risk of ignition.

これに対して、ゲスト物質と添加剤がネガティブ共沸混合物を形成する場合、図1(a)に示すように、ゲスト物質と添加剤を混合した共沸ゲスト物質の気液平衡図は下に凸の状態となり、共沸ゲスト物質の蒸気圧は所定の組成比の範囲で、それぞれ単独の物質(ゲスト物質および添加剤)の蒸気圧よりも低下する。   On the other hand, when the guest material and the additive form a negative azeotrope, the vapor-liquid equilibrium diagram of the azeotropic guest material obtained by mixing the guest material and the additive is as shown in FIG. It becomes a convex state, and the vapor pressure of the azeotropic guest substance is lower than the vapor pressure of each of the single substances (guest substance and additive) within a predetermined composition ratio range.

つまり、ゲスト物質と添加剤とでネガティブ共沸混合物である共沸ゲスト物質を形成すると、ゲスト物質が比較的リッチな組成で共沸ゲスト物質の蒸気圧を下げることが可能となる。したがって、添加剤の添加量を抑制し、蓄熱材の性能を悪化させることなく、共沸ゲスト物質の揮発を抑制することが可能となる。   That is, when an azeotropic guest material that is a negative azeotrope is formed by the guest material and the additive, the vapor pressure of the azeotropic guest material can be lowered with a relatively rich composition of the guest material. Therefore, it is possible to suppress the volatilization of the azeotropic guest substance without reducing the additive amount and degrading the performance of the heat storage material.

また、ゲスト物質と添加剤とがネガティブ共沸混合物を形成する場合、共沸混合物の蒸発となるので、共沸ゲスト物質の蒸発ガスは、引火成分であるゲスト物質単体ではなく、ゲスト物質と添加剤との共沸混合比の混合ガスとなり、液相組成と気相組成が同一となる。よって、気相線と液相線が一致しない場合のように、気相におけるゲスト物質の分圧が高くなることがない。   In addition, when a guest substance and an additive form a negative azeotrope, the azeotrope is evaporated, so the azeotrope of the azeotrope guest substance is not added to the guest substance, which is a flammable component, but to the guest substance. It becomes a mixed gas having an azeotropic mixing ratio with the agent, and the liquid phase composition and the gas phase composition are the same. Therefore, the partial pressure of the guest substance in the gas phase does not increase as in the case where the gas phase line and the liquid phase line do not match.

このように、ゲスト物質と添加剤とでネガティブ共沸混合物である共沸ゲスト物質を形成することで、共沸ゲスト物質の揮発自体を抑制でき、さらには気相におけるゲスト物質の分圧も低下させることできるため、引火性を抑制することが可能となる。なお、本実施の形態では、添加剤として引火性を有さないものを用いているため、引火性はゲスト物質単体の蒸気のみによって引き起こされることとなる。   In this way, by forming an azeotropic guest material that is a negative azeotrope with the guest material and the additive, volatilization of the azeotropic guest material itself can be suppressed, and the partial pressure of the guest material in the gas phase is also reduced. Therefore, flammability can be suppressed. In this embodiment, since the additive does not have flammability, the flammability is caused only by the vapor of the guest substance alone.

添加剤としては、共沸ゲスト物質の揮発をより抑制するため、極小点Aの蒸気圧をなるべく低くできるものを用いることが望ましい。また、添加剤としては、極小点Aの組成比をなるべく小さく(極小点Aにおけるゲスト物質の組成をなるべく大きく)できるものを用いることが望ましい。これにより、少量の添加剤で共沸ゲスト物質の蒸気圧を低下させることが可能となり、添加剤の添加量をより抑制することが可能となる。   As the additive, in order to further suppress volatilization of the azeotropic guest substance, it is desirable to use an additive that can reduce the vapor pressure at the minimum point A as much as possible. Further, it is desirable to use an additive that can make the composition ratio of the minimum point A as small as possible (the composition of the guest substance at the minimum point A as large as possible). As a result, the vapor pressure of the azeotropic guest substance can be reduced with a small amount of additive, and the amount of additive added can be further suppressed.

本実施の形態に係る蓄熱材は、上述の共沸ゲスト物質をホスト物質である水に混合してなるが、水と共沸ゲスト物質の混合比は、水和物を生成する当量比からその20%までとすればよい。   The heat storage material according to the present embodiment is formed by mixing the above azeotrope guest substance with water as a host substance, and the mixing ratio of water and the azeotrope guest substance is based on the equivalent ratio for generating hydrates It may be up to 20%.

また、水と共沸ゲスト物質とを界面活性剤を用いて分散液にしてもよい。分散液とすることで、共沸ゲスト物質が水中に分散されて直接空気に触れなくなり、共沸ゲスト物質の揮発をより抑制することが可能となる。   Further, water and an azeotropic guest substance may be made into a dispersion using a surfactant. By using the dispersion liquid, the azeotropic guest material is dispersed in water and does not come into direct contact with air, and volatilization of the azeotropic guest material can be further suppressed.

次に、本実施の形態に係る蓄熱材を用いた蓄熱システムについて説明する。   Next, a heat storage system using the heat storage material according to the present embodiment will be described.

図2(a)〜(f)に示すように、蓄熱システム21は、共沸ゲスト物質22と水23とを混合した蓄熱材24を蓄熱槽25に充填してなり、蓄熱材24を冷却/加熱することで、ゲスト物質22aと水23とからなる水和物26を生成/分解するものである。蓄熱材24を冷却/加熱するための熱交換器は、蓄熱槽25の内部に設けてもよいし、蓄熱槽25の外部に設けてもよく、その構造については限定されない。   As shown in FIGS. 2A to 2F, the heat storage system 21 is formed by filling a heat storage tank 25 with a heat storage material 24 in which an azeotropic guest material 22 and water 23 are mixed. By heating, a hydrate 26 composed of the guest substance 22a and water 23 is generated / decomposed. The heat exchanger for cooling / heating the heat storage material 24 may be provided inside the heat storage tank 25 or may be provided outside the heat storage tank 25, and the structure thereof is not limited.

蓄熱槽25に蓄熱材24を充填する際には、図2(a)に示すように、まず、ゲスト物質22aと添加剤22bを混合して共沸ゲスト物質22とし、この共沸ゲスト物質22と水23とを蓄熱槽25に充填する。なお、図2(a)〜(f)では、図の簡略化のために、蓄熱槽25の下方から上方にかけて水23、水和物26、共沸ゲスト物質22が層状に分離されるよう記載しているが、比重によってはその上下関係が入れ替わる場合もあるし、蓄熱材24を分散液とした場合には層分離しない。   When the heat storage material 25 is filled in the heat storage tank 25, as shown in FIG. 2A, first, the guest material 22a and the additive 22b are mixed to form an azeotropic guest material 22, and the azeotropic guest material 22 is mixed. And water 23 are filled in the heat storage tank 25. In addition, in FIG. 2 (a)-(f), it describes so that the water 23, the hydrate 26, and the azeotropic guest substance 22 might be isolate | separated into layers from the downward direction of the thermal storage tank 25 for the simplification of a figure. However, depending on the specific gravity, the vertical relationship may be switched, and when the heat storage material 24 is used as a dispersion, the layers are not separated.

蓄熱槽25に冷熱を供給すると、図2(b)に示すように、水23と共沸ゲスト物質22に含まれるゲスト物質22aとが水和物26を形成する。共沸ゲスト物質22に含まれる添加剤22bは、水和物生成阻害効果を有さないので、水和物26の生成が進行し、図2(c)に示すような状態となる。   When cold heat is supplied to the heat storage tank 25, the water 23 and the guest material 22a contained in the azeotropic guest material 22 form a hydrate 26 as shown in FIG. Since the additive 22b contained in the azeotropic guest material 22 does not have a hydrate formation inhibitory effect, the formation of the hydrate 26 proceeds and the state shown in FIG.

共沸ゲスト物質22は、ゲスト物質22aがなくなる(ゲスト物質22aが水和物26の生成に用いられる)に従い、添加剤22b単体に近づいていく。添加剤22b単体の蒸気圧が高ければ、ゲスト物質22aが少なくなるにしたがい共沸ゲスト物質22の蒸気圧が高くなるが、添加剤22b自体が引火性を有さないため安全性は保持される。なお、図2(a)〜(f)では、ハッチングの色が薄くなるにしたがい、共沸ゲスト物質22が添加剤22b単体に近づいている(共沸ゲスト物質22においてゲスト物質22aが減少している)ことを表している。   The azeotropic guest material 22 approaches the additive 22b alone as the guest material 22a disappears (the guest material 22a is used to generate the hydrate 26). If the vapor pressure of the additive 22b alone is high, the vapor pressure of the azeotropic guest material 22 increases as the guest material 22a decreases, but safety is maintained because the additive 22b itself does not have flammability. . 2A to 2F, as the hatching color becomes lighter, the azeotropic guest material 22 approaches the additive 22b alone (the guest material 22a decreases in the azeotropic guest material 22). It represents.

図2(d)に示すように、この状態で蓄熱槽25に温熱を供給すると、図2(e)に示すように、水和物26が分解して、水23とゲスト物質22aとに分かれる。このとき、水和物26の周囲にはほとんど添加剤22bだけになった共沸ゲスト物質22が存在するので、ゲスト物質22aは速やかに共沸ゲスト物質22と混合溶解し、図2(f)の状態、すなわち図2(a)の状態に戻る。   As shown in FIG. 2 (d), when heat is supplied to the heat storage tank 25 in this state, the hydrate 26 is decomposed and separated into water 23 and the guest substance 22a as shown in FIG. 2 (e). . At this time, since the azeotropic guest material 22 containing almost only the additive 22b exists around the hydrate 26, the guest material 22a quickly mixes and dissolves with the azeotropic guest material 22, and FIG. Return to the state of FIG. 2, that is, the state of FIG.

このように、水和物26が分解して生じたゲスト物質22aは速やかに共沸ゲスト物質22と混合溶解するので、ゲスト物質22a単体の蒸気圧はほとんど立たず、共沸ゲスト物質22の、共沸組成ガスの低い蒸気圧だけが存在することとなる。   Thus, since the guest material 22a generated by the decomposition of the hydrate 26 is quickly mixed and dissolved with the azeotropic guest material 22, the vapor pressure of the guest material 22a alone hardly stands, and the azeotropic guest material 22 Only the low vapor pressure of the azeotropic composition gas will be present.

以上説明したように、本実施の形態に係る蓄熱材24では、ゲスト物質22aに、ゲスト物質22aと共沸混合物を形成する添加剤22bを混合して、ゲスト物質22aおよび添加剤22bよりも蒸気圧が低い共沸ゲスト物質22とし、その共沸ゲスト物質22と水23とを混合している。   As described above, in the heat storage material 24 according to the present embodiment, the guest material 22a is mixed with the additive 22b that forms an azeotrope with the guest material 22a, and the guest material 22a and the additive 22b are vaporized. An azeotropic guest material 22 having a low pressure is used, and the azeotropic guest material 22 and water 23 are mixed.

ゲスト物質22aに添加剤22bを混合してネガティブ共沸混合物である共沸ゲスト物質22とすることで、添加剤22bを大量に添加することなく共沸ゲスト物質22の蒸気圧を低下させることが可能となり、蓄熱材24の性能を悪化させることなくゲスト物質22aの揮発を抑制することが可能となる。   By mixing the additive 22b with the guest material 22a to obtain an azeotropic guest material 22 that is a negative azeotrope, the vapor pressure of the azeotropic guest material 22 can be reduced without adding a large amount of the additive 22b. It becomes possible, and it becomes possible to suppress volatilization of the guest substance 22a without deteriorating the performance of the heat storage material 24.

さらに、蓄熱材24によれば、ゲスト物質22aの揮発を抑制でき、かつ、気相におけるゲスト物質22aの分圧を低くできるため、引火性を抑制できる。   Furthermore, according to the heat storage material 24, volatilization of the guest substance 22a can be suppressed, and the partial pressure of the guest substance 22a in the gas phase can be lowered, so that flammability can be suppressed.

また、蓄熱材24によれば、ゲスト物質22aの揮発を抑制できるため、蓄熱材24の組成が変化して蓄熱材24の性能が悪化することを抑制できる。   Moreover, according to the heat storage material 24, since volatilization of the guest substance 22a can be suppressed, it can suppress that the composition of the heat storage material 24 changes and the performance of the heat storage material 24 deteriorates.

また、蓄熱材24では、添加剤22bとして引火性を有さないものを用いているため、たとえ添加剤22b単体の蒸気圧が高く、水和物26の生成により共沸ゲスト物質22がほぼ添加剤22bのみとなって、共沸ゲスト物質22の蒸気圧が高くなった場合であっても、引火性を抑制することが可能となる。さらには、添加剤22bとして、ゲスト物質22aと水23とからなる水和物26の生成を阻害しないものを用いているため、蓄熱材24の性能が悪化することがない。   Further, in the heat storage material 24, since the additive 22b does not have flammability, the vapor pressure of the additive 22b alone is high, and the azeotropic guest substance 22 is almost added by the formation of the hydrate 26. Even when only the agent 22b is used and the vapor pressure of the azeotropic guest material 22 is increased, the flammability can be suppressed. Furthermore, since what does not inhibit the production | generation of the hydrate 26 which consists of the guest substance 22a and the water 23 is used as the additive 22b, the performance of the heat storage material 24 does not deteriorate.

21 蓄熱システム
22 共沸ゲスト物質
22a ゲスト物質
22b 添加剤
23 水
24 蓄熱材
25 蓄熱槽
26 水和物
21 Heat Storage System 22 Azeotropic Guest Material 22a Guest Material 22b Additive 23 Water 24 Heat Storage Material 25 Heat Storage Tank 26 Hydrate

Claims (6)

水和物を形成するゲスト物質とホスト物質である水とを混合した蓄熱材において、前記ゲスト物質に、該ゲスト物質と共沸混合物を形成する添加剤を混合して、前記ゲスト物質および前記添加剤よりも蒸気圧が低い共沸ゲスト物質とし、その共沸ゲスト物質と水とを混合してなることを特徴とする蓄熱材。   In a heat storage material in which a guest substance that forms a hydrate and water that is a host substance are mixed, an additive that forms an azeotrope with the guest substance is mixed with the guest substance, and the guest substance and the addition A heat storage material comprising an azeotropic guest material having a vapor pressure lower than that of the agent, and a mixture of the azeotropic guest material and water. 前記添加剤として、蒸気圧が低く、かつ、前記ゲスト物質と水とからなる水和物の生成を阻害しないものを用いる請求項1記載の蓄熱材。   The heat storage material according to claim 1, wherein the additive has a low vapor pressure and does not inhibit generation of a hydrate composed of the guest substance and water. 前記共沸ゲスト物質と水とを界面活性剤を用いて分散液とした請求項1または2記載の蓄熱材。   The heat storage material according to claim 1 or 2, wherein the azeotropic guest substance and water are used as a dispersion using a surfactant. 前記ゲスト物質がシクロペンタンである請求項1〜3いずれかに記載の蓄熱材。   The heat storage material according to claim 1, wherein the guest substance is cyclopentane. 請求項1〜4いずれかに記載の蓄熱材を蓄熱槽に充填してなり、前記蓄熱材を冷却/加熱することで、前記ゲスト物質と水とからなる水和物を生成/分解することを特徴とする蓄熱システム。   A heat storage tank is filled with the heat storage material according to claim 1, and the heat storage material is cooled / heated to generate / decompose a hydrate composed of the guest substance and water. Characteristic heat storage system. 水和物を形成するゲスト物質とホスト物質である水とを混合した蓄熱材において前記ゲスト物質の揮発を抑制する水和物ゲスト物質の揮発抑制方法であって、 前記ゲスト物質に、該ゲスト物質と共沸混合物を形成する添加剤を混合して、前記ゲスト物質および前記添加剤よりも蒸気圧が低い共沸ゲスト物質とすることで、前記ゲスト物質の揮発を抑制することを特徴とする水和物ゲスト物質の揮発抑制方法。   A method for suppressing volatilization of a hydrate guest substance that suppresses volatilization of the guest substance in a heat storage material in which a guest substance that forms a hydrate and water that is a host substance are mixed, the guest substance comprising: And an additive that forms an azeotrope with the guest material and an azeotropic guest material having a vapor pressure lower than that of the additive to suppress volatilization of the guest material. Method for suppressing volatilization of Japanese guest materials.
JP2009169219A 2009-07-17 2009-07-17 Heat storage material, heat storage system using the same, and method for suppressing volatilization of hydrate guest substance Pending JP2011021154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009169219A JP2011021154A (en) 2009-07-17 2009-07-17 Heat storage material, heat storage system using the same, and method for suppressing volatilization of hydrate guest substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009169219A JP2011021154A (en) 2009-07-17 2009-07-17 Heat storage material, heat storage system using the same, and method for suppressing volatilization of hydrate guest substance

Publications (1)

Publication Number Publication Date
JP2011021154A true JP2011021154A (en) 2011-02-03

Family

ID=43631492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009169219A Pending JP2011021154A (en) 2009-07-17 2009-07-17 Heat storage material, heat storage system using the same, and method for suppressing volatilization of hydrate guest substance

Country Status (1)

Country Link
JP (1) JP2011021154A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09503204A (en) * 1993-09-24 1997-03-31 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー Composition containing two hydrofluorocarbons
JPH10168000A (en) * 1996-11-26 1998-06-23 Matsushita Electric Ind Co Ltd Medium for producing clathrate and heat energy storage device containing the same
JPH10506889A (en) * 1994-09-29 1998-07-07 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー Octafluorobutane composition
JP2006515031A (en) * 2003-03-04 2006-05-18 オブライアン、ロバート・ネビル Method for producing liquid evaporation retarder solution
JP2006290990A (en) * 2005-04-08 2006-10-26 National Institute Of Advanced Industrial & Technology Mixture, heat medium, and heat pump and heat-utilizing apparatus using the same heat medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09503204A (en) * 1993-09-24 1997-03-31 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー Composition containing two hydrofluorocarbons
JPH10506889A (en) * 1994-09-29 1998-07-07 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー Octafluorobutane composition
JPH10168000A (en) * 1996-11-26 1998-06-23 Matsushita Electric Ind Co Ltd Medium for producing clathrate and heat energy storage device containing the same
JP2006515031A (en) * 2003-03-04 2006-05-18 オブライアン、ロバート・ネビル Method for producing liquid evaporation retarder solution
JP2006290990A (en) * 2005-04-08 2006-10-26 National Institute Of Advanced Industrial & Technology Mixture, heat medium, and heat pump and heat-utilizing apparatus using the same heat medium

Similar Documents

Publication Publication Date Title
JP5903998B2 (en) Boiling cooler medium and method of use thereof
CN102762685A (en) Heat transfer compositions
Ni et al. Performance evaluation of water mist with bromofluoropropene in suppressing gasoline pool fires
JP2011025201A (en) Method for absorbing carbon dioxide, and method for manufacturing clathrate hydrate using the same absorption method
Chen et al. Performance evaluation of water mist with mixed surfactant additives based on absorption property
Wang et al. A theoretical and experimental study of extinguishing compressed air foam on an n-heptane storage tank fire with variable fuel thickness
JP2010171173A (en) Vapor mist insulation type electric apparatus
BR112014022988B1 (en) FLAME SUPPRESSOR MIXTURE
JPWO2009107240A1 (en) Cladding hydrate having latent heat storage performance, manufacturing method and manufacturing apparatus thereof, latent heat storage medium, method of increasing latent heat storage amount of clathrate hydrate, and processing device for increasing latent heat storage amount of clathrate hydrate
US11384319B2 (en) Cleaner composition, cleaning aerosol, and method for cleaning contaminated part
JP2010121791A (en) Ebullient cooling apparatus
JP2011021154A (en) Heat storage material, heat storage system using the same, and method for suppressing volatilization of hydrate guest substance
KR100218063B1 (en) Novel clathrate forming medium and its use in thermal energy storage systems and processes for thermal storage and transfer
Man et al. Surfactant-containing water mist suppression pool fire experimental analysis
JP2011184585A (en) Propellant composition
Kong et al. Assessing the mixed foam stability of different foam extinguishing agents under room temperature and thermal radiation: An experimental study
KR20070011069A (en) Digestive and digestion nethod
EP3472256A1 (en) Non-flammable or low-flammability cooling mixtures, characterised by low relative volatility for two-phase heat-exchange systems
KR102133321B1 (en) Low carbon eco-friendly foaming agent composition
CN105854217A (en) Fire extinguishing agent with liquid storage state
Nessakh et al. Efficiency of two working fluids constituted of a deep eutectic solvent and water in absorption heat transformer
JP5034441B2 (en) Method for producing latent heat storage medium, latent heat storage medium
WO2018124968A1 (en) Water-based fire extinguisher formulation
JP2012021087A (en) Heat storage material and heat storage apparatus
JP2007277443A (en) Heat storage agent and heat storage solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140513