JP2011017782A - Antireflective film - Google Patents

Antireflective film Download PDF

Info

Publication number
JP2011017782A
JP2011017782A JP2009160840A JP2009160840A JP2011017782A JP 2011017782 A JP2011017782 A JP 2011017782A JP 2009160840 A JP2009160840 A JP 2009160840A JP 2009160840 A JP2009160840 A JP 2009160840A JP 2011017782 A JP2011017782 A JP 2011017782A
Authority
JP
Japan
Prior art keywords
layer
antireflection film
film
antireflection
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009160840A
Other languages
Japanese (ja)
Inventor
Hiroshi Moroboshi
浩 諸星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2009160840A priority Critical patent/JP2011017782A/en
Publication of JP2011017782A publication Critical patent/JP2011017782A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an antireflective film having high scratch resistance and capable of being formed on an optical glass substrate.SOLUTION: In the antireflective film 10 formed by laminating a plurality of thin films on the substrate 100 comprising an optical glass, a first layer 1 and a third layer 3 from the order of the substrate 100 side among the thin films comprise a SiO/AlOmixture, a second layer 2 and a forth layer 4 from the order of the substrate 100 side comprise a Ti/La multiple oxide, and a fifth layer 5 of the outermost side comprises MgF.

Description

本発明は、光学ガラス基板部品の表面に形成される反射防止膜に関し、特にSiO2/Al2O3混合物と
Ti/La複合酸化物を用いた積層薄膜からなる反射防止膜に関する。
The present invention relates to an antireflection film formed on the surface of an optical glass substrate component, and in particular, a SiO 2 / Al 2 O 3 mixture and
The present invention relates to an antireflection film comprising a laminated thin film using a Ti / La composite oxide.

光学ガラス基板の製造工程においては、ガラス基板表面に反射防止膜を形成する際に、200℃程度に加熱成膜する事によって、形成する反射防止膜の耐摩耗性、耐擦傷性、耐密着性等の膜強度を高めることが行われている。   In the manufacturing process of an optical glass substrate, when an antireflection film is formed on the surface of the glass substrate, the film is heated to about 200 ° C., whereby the antireflection film to be formed has wear resistance, scratch resistance, and adhesion resistance. For example, the film strength is increased.

近年は、より高強度な膜を得る目的で、プラズマを利用した薄膜形成法などの手法で膜強度を高める技術も盛んに研究されている。さらに、高硬度で耐擦傷性に優れた二酸化ケイ素(SiO2)を含む層を保護層として最外層に形成して、高強度の膜を得る技術が広く行われている。 In recent years, for the purpose of obtaining a higher-strength film, a technique for increasing the film strength by a technique such as a thin film formation method using plasma has been actively studied. Further, a technique for obtaining a high-strength film by forming a layer containing silicon dioxide (SiO 2 ) having high hardness and excellent scratch resistance as an outermost layer as a protective layer is widely used.

二酸化ケイ素を使用して高強度の膜を得る技術の例として、特許文献1に記載の多層膜の製造方法を挙げることができる。特許文献1においては、多層膜の最外層が二酸化ケイ素からなる層であり、この最外層に接触する層が屈折率1.8以上の高屈折率層である基材を有する多層膜を製造するにあたって、酸素雰囲気中で二酸化ケイ素を蒸発物として真空蒸着することによって多層膜を製造している。   As an example of a technique for obtaining a high-strength film using silicon dioxide, the method for producing a multilayer film described in Patent Document 1 can be mentioned. In Patent Document 1, a multilayer film having a base material in which an outermost layer of the multilayer film is a layer made of silicon dioxide and a layer in contact with the outermost layer is a high refractive index layer having a refractive index of 1.8 or more is manufactured. At this time, a multilayer film is manufactured by vacuum deposition of silicon dioxide as an evaporant in an oxygen atmosphere.

特開平11−236662号公報Japanese Patent Application Laid-Open No. 11-236662

しかしながら、特許文献1に記載の多層膜の製造方法は、基板がプラスチックに限定された低温加熱状態での製造方法である。また、成膜される表面にハードコートを施すことが必要なため、光学ガラス基板への適用は困難であり、適用した場合でも耐擦傷性が不十分であるという問題がある。   However, the manufacturing method of the multilayer film described in Patent Document 1 is a manufacturing method in a low-temperature heating state in which the substrate is limited to plastic. Further, since it is necessary to apply a hard coat to the surface to be formed, there is a problem that application to an optical glass substrate is difficult, and even when applied, scratch resistance is insufficient.

本発明は、上述したような事情に鑑みてなされたものであって、高い耐擦傷性を有し、かつ光学ガラス基板上に成膜可能な反射防止膜を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and an object thereof is to provide an antireflection film having high scratch resistance and capable of being formed on an optical glass substrate.

本発明の反射防止膜は、光学ガラスからなる基板上に複数の薄膜が積層されて形成された反射防止膜であって、前記薄膜のうち、前記基板側から数えた第1層及び第3層は、SiO2/Al2O3混合物からなり、前記基板側から数えた第2層及び第4層は、Ti/La複合酸化物からなり、最も外側の第5層はMgF2からなることを特徴とする。 The antireflection film of the present invention is an antireflection film formed by laminating a plurality of thin films on a substrate made of optical glass, and among the thin films, the first layer and the third layer counted from the substrate side Is composed of a SiO 2 / Al 2 O 3 mixture, the second and fourth layers counted from the substrate side are composed of a Ti / La composite oxide, and the outermost fifth layer is composed of MgF 2. Features.

本発明の反射防止膜においては、第1層及び第3層を構成する低屈折材料がSiO2の分子構造のすき間をAl2O3(アルミナ)が埋めるように含有されるため、膜密度が高くなり、より第1層及び第3層の硬度が高くなる。また、第2層及び第4層を構成する高屈折率材料がTi/La複合酸化物からなり、特別な成膜方法(例えばイオンアシスト蒸着等)を用いずとも、通常の電子銃蒸着でも高密度の膜となる。これらがMgF2(フッ化マグネシウム)からなる第5層と組み合わされて、全体として高い耐擦傷性を発揮する。 In the antireflection film of the present invention, the low refractive material constituting the first layer and the third layer is contained so that Al 2 O 3 (alumina) fills the gap in the molecular structure of SiO 2. The hardness becomes higher and the hardness of the first layer and the third layer becomes higher. In addition, the high refractive index material constituting the second layer and the fourth layer is made of a Ti / La composite oxide, so that even if a special film forming method (for example, ion-assisted vapor deposition) is not used, the high refractive index material is high even with ordinary electron gun vapor deposition. It becomes a film of density. These are combined with a fifth layer made of MgF 2 (magnesium fluoride) to exhibit high scratch resistance as a whole.

前記反射防止膜の設計波長をλとするとき、前記第1層の光学膜厚は、(0.20〜0.40)×λ/4、前記第2層の光学膜厚は、(0.25〜0.45)×λ/4、前記第3層の光学膜厚は、(0.25〜0.40)×λ/4、前記第4層の光学膜厚は、(1.90〜2.25)×λ/4、前記第5層の光学膜厚は、(1.00〜1.03)×λ/4、にそれぞれ設定されてもよい。この場合、耐擦傷性を保持しつつ、可視域で高い反射防止効果を得ることができる。   When the design wavelength of the antireflection film is λ, the optical thickness of the first layer is (0.20 to 0.40) × λ / 4, and the optical thickness of the second layer is (0.25 to 0.45) × λ. / 4, the optical thickness of the third layer is (0.25 to 0.40) × λ / 4, the optical thickness of the fourth layer is (1.90 to 2.25) × λ / 4, the optical film of the fifth layer The thickness may be set to (1.00 to 1.03) × λ / 4. In this case, it is possible to obtain a high antireflection effect in the visible range while maintaining scratch resistance.

本発明の反射防止膜によれば、高い耐擦傷性を有し、かつ光学ガラス基板上に成膜可能な反射防止膜を提供することができる。   According to the antireflection film of the present invention, an antireflection film having high scratch resistance and capable of being formed on an optical glass substrate can be provided.

本発明の一実施形態の反射防止膜の構成を示す図である。It is a figure which shows the structure of the antireflection film of one Embodiment of this invention. 同反射防止膜の実施例1の層構成を示す表である。It is a table | surface which shows the layer structure of Example 1 of the same antireflection film. 比較例の反射防止膜の層構成を示す表である。It is a table | surface which shows the layer structure of the antireflection film of a comparative example. 実施例1の反射防止膜の反射率特性を示すグラフである。3 is a graph showing the reflectance characteristics of the antireflection film of Example 1. 比較例の反射防止膜の反射率特性を示すグラフである。It is a graph which shows the reflectance characteristic of the antireflection film of a comparative example. 実施例1及び比較例の反射防止膜の表面硬さを示す表である。It is a table | surface which shows the surface hardness of the antireflection film of Example 1 and a comparative example. (a)は同反射防止膜の実施例2の層構成を示す表であり、(b)は実施例2の反射防止膜の反射率特性を示すグラフである。(A) is a table | surface which shows the laminated constitution of Example 2 of the same antireflection film, (b) is a graph which shows the reflectance characteristic of the antireflection film of Example 2. (a)は同反射防止膜の実施例3の層構成を示す表であり、(b)は実施例3の反射防止膜の反射率特性を示すグラフである。(A) is a table | surface which shows the layer structure of Example 3 of the same antireflection film, (b) is a graph which shows the reflectance characteristic of the antireflection film of Example 3. (a)は同反射防止膜の実施例4の層構成を示す表であり、(b)は実施例4の反射防止膜の反射率特性を示すグラフである。(A) is a table | surface which shows the laminated constitution of Example 4 of the same antireflection film, (b) is a graph which shows the reflectance characteristic of the antireflection film of Example 4. (a)は同反射防止膜の実施例5の層構成を示す表であり、(b)は実施例5の反射防止膜の反射率特性を示すグラフである。(A) is a table | surface which shows the laminated constitution of Example 5 of the same antireflection film, (b) is a graph which shows the reflectance characteristic of the antireflection film of Example 5.

本発明の一実施形態について、図1から図10(b)を参照して説明する。図1は、本実施形態の反射防止膜10の構成を示す図である。
本実施形態の反射防止膜10は、光学ガラス基板100の面上に、複数の薄膜が積層されて形成されたものであり、光学ガラス基板100に接触する第1層1と、第1層1上に形成される第2層2と、第2層2上に形成される第3層3と、第3層3上に形成される第4層4と、第4層4上に形成される最外層の第5層5とを備えている。
An embodiment of the present invention will be described with reference to FIGS. 1 to 10B. FIG. 1 is a diagram showing a configuration of the antireflection film 10 of the present embodiment.
The antireflection film 10 of this embodiment is formed by laminating a plurality of thin films on the surface of the optical glass substrate 100, and the first layer 1 and the first layer 1 that are in contact with the optical glass substrate 100. Formed on the second layer 2 formed above, the third layer 3 formed on the second layer 2, the fourth layer 4 formed on the third layer 3, and the fourth layer 4 And an outermost fifth layer 5.

この5つの層のうち、第1層1及び第3層3は、低屈折率材料としてのSiO2/Al2O3混合物で形成されている。このような混合物としては、例えばメルク社製の商品名サブスタンスL5を好適に採用することができる。SiO2/Al2O3混合物は、例えばサブスタンスL5の場合アルミナが数パーセント含有されているため、その屈折率は波長500ナノメートル(nm)の光に対して1.48と、SiO2のみの場合における波長500nmの光に対して1.46という値よりも若干高いが、反射防止膜を形成する上では大きな問題はない。一方、アルミナが数パーセント含有されているため、SiO2のみで形成される場合と比較して、薄膜の膜質が緻密となり、硬度が高くなる。 Of these five layers, the first layer 1 and the third layer 3 are formed of a SiO 2 / Al 2 O 3 mixture as a low refractive index material. As such a mixture, for example, trade name substance L5 manufactured by Merck & Co., Inc. can be suitably used. In the case of substance L5, for example, the SiO 2 / Al 2 O 3 mixture contains alumina in several percent, so its refractive index is 1.48 for light with a wavelength of 500 nanometers (nm), which is only SiO 2 . Although it is slightly higher than the value of 1.46 for light having a wavelength of 500 nm in this case, there is no major problem in forming the antireflection film. On the other hand, since alumina is contained in several percent, the film quality of the thin film becomes dense and the hardness becomes high compared to the case where it is formed of only SiO 2 .

第2層2及び第4層4は、高屈折率材料として、チタン(Ti)及びランタン(La)を含むTi/La複合酸化物を用いて形成されている。このような混合物としては、例えばメルク社製の商品名サブスタンスH4を好適に採用することができる。Ti/La複合酸化物の屈折率は、サブスタンスH4の場合、波長500nmの光に対して2.1程度である。Ti/La複合酸化物を用いると、電子銃を用いた真空蒸着でも高密度な膜が得られ、成膜された薄膜は高硬度で平滑性が高い。   The second layer 2 and the fourth layer 4 are formed using a Ti / La composite oxide containing titanium (Ti) and lanthanum (La) as a high refractive index material. As such a mixture, for example, a trade name substance H4 manufactured by Merck & Co., Inc. can be suitably used. In the case of substance H4, the refractive index of the Ti / La composite oxide is about 2.1 for light with a wavelength of 500 nm. When Ti / La composite oxide is used, a high-density film can be obtained even by vacuum evaporation using an electron gun, and the formed thin film has high hardness and high smoothness.

最外層の第5層5は、MgF2を用いて形成されている。MgF2からなる薄膜は高い耐擦傷性を有することが知られている。また、MgF2は同時に低屈折率材料としても広く知られており、反射防止膜10全体の反射率特性に大きく寄与する。 The outermost fifth layer 5 is formed using MgF 2 . It is known that a thin film made of MgF 2 has high scratch resistance. MgF 2 is also widely known as a low refractive index material, and greatly contributes to the reflectance characteristics of the entire antireflection film 10.

上述した反射防止膜10の各層1ないし5は、光学ガラス基板100を加熱して行う真空蒸着により好適に積層して形成することが可能である。各層の薄膜を形成する方法としては、真空蒸着のほか、スパッタリング、イオンプレーティング等も適用可能である。   Each of the layers 1 to 5 of the antireflection film 10 described above can be suitably laminated and formed by vacuum vapor deposition performed by heating the optical glass substrate 100. As a method for forming a thin film of each layer, sputtering, ion plating, etc. can be applied in addition to vacuum deposition.

SiO2/Al2O3混合物及びTi/La複合酸化物からなる薄膜の特性を調べるために、これらの薄膜が形成された基板に対して発生させる応力を以下の方法で測定した。
別々のシリコンウエハー上に、真空蒸着によりSiO2/Al2O3混合物の薄膜及びTi/La複合酸化物をそれぞれ厚さ300nmに成膜し、成膜前後におけるシリコンウエハーの反り量を応力測定器(商品名Dektak:(株)アルバック製)を用いて行った。
測定の結果、SiO2/Al2O3混合物からなる薄膜はシリコンウエハーに対して圧縮応力を示し、Ti/La複合酸化物からなる薄膜はシリコンウエハーに対して引張り応力を示した。従って、これらが交互に積層された反射防止膜10は、内部応力が互いに相殺され、膜全体の破壊が起きにくい構成となっている。
In order to investigate the characteristics of the thin film composed of the SiO 2 / Al 2 O 3 mixture and the Ti / La composite oxide, the stress generated on the substrate on which these thin films were formed was measured by the following method.
A thin film of SiO 2 / Al 2 O 3 mixture and a Ti / La composite oxide were formed on separate silicon wafers by vacuum deposition to a thickness of 300 nm, respectively. (Trade name Dektak: made by ULVAC, Inc.).
As a result of the measurement, the thin film made of the SiO 2 / Al 2 O 3 mixture showed compressive stress on the silicon wafer, and the thin film made of Ti / La composite oxide showed tensile stress on the silicon wafer. Therefore, the antireflection film 10 in which these layers are alternately laminated has a structure in which internal stresses are offset each other and the entire film is not easily destroyed.

本実施形態においては、上述のような特性を持つSiO2/Al2O3混合物からなる薄膜(以下、「SiO2/Al2O3薄膜」と称する。)及びTi/La複合酸化物からなる薄膜(以下、「Ti/La薄膜」と称する。)をそれぞれ第1層1及び第3層3、及び第2層2及び第4層4に配置することで、内部応力を互いに相殺させている。さらに、最外層の第5層に高い耐擦傷性を有するMgF2からなる薄膜を配置してさらに強度が高められている。 In this embodiment, a thin film made of a SiO 2 / Al 2 O 3 mixture having the above-described characteristics (hereinafter referred to as “SiO 2 / Al 2 O 3 thin film”) and a Ti / La composite oxide. By disposing thin films (hereinafter referred to as “Ti / La thin films”) in the first layer 1 and the third layer 3, and the second layer 2 and the fourth layer 4, respectively, the internal stresses cancel each other. . Furthermore, the strength is further enhanced by disposing a thin film made of MgF 2 having high scratch resistance on the fifth outermost layer.

反射防止効果を最適化するために、屈折率nと物理的膜厚dとの積で表される反射防止膜10の各層の光学膜厚は、それぞれ所定の範囲に設定されている。
具体的には反射防止膜10の設計波長をλとするとき、第1層1の光学膜厚は、(0.20〜0.40)×λ/4、第2層2の光学膜厚は、(0.25〜0.45)×λ/4、第3層3の光学膜厚は、(0.25〜0.40)×λ/4、第4層4の光学膜厚は、(1.90〜2.25)×λ/4、第5層5の光学膜厚は、(1.00〜1.03)×λ/4の範囲内にそれぞれ設定されている。このようにすることで、440nmから650nmの波長域においては、0.35%以下という好適な平均反射率を実現できる。
In order to optimize the antireflection effect, the optical film thickness of each layer of the antireflection film 10 represented by the product of the refractive index n and the physical film thickness d is set within a predetermined range.
Specifically, when the design wavelength of the antireflection film 10 is λ, the optical thickness of the first layer 1 is (0.20 to 0.40) × λ / 4, and the optical thickness of the second layer 2 is (0.25 to 0.45) × λ / 4, the optical thickness of the third layer 3 is (0.25 to 0.40) × λ / 4, and the optical thickness of the fourth layer 4 is (1.90 to 2.25) × λ / 4, the fifth layer 5 is set in the range of (1.00 to 1.03) × λ / 4. In this way, a suitable average reflectance of 0.35% or less can be realized in the wavelength range of 440 nm to 650 nm.

続いて、本実施形態の反射防止膜について、実施例を用いてさらに説明する。
(実施例1)
図2は、実施例1の反射防止膜の層構成を示す表である。第1層1及び第3層3を形成するSiO2/Al2O3薄膜の材料としては、上述のサブスタンスL5を用いた。一方、第2層2及び第4層4を形成するTi/La薄膜の材料としては、上述のサブスタンスH4を用いた。第5層はMgF2を用いて形成した。設計波長λは500nmとし、各層の光学膜厚を、λ/4に図2に記載の係数を乗じた値に設定した。
Subsequently, the antireflection film of the present embodiment will be further described using examples.
Example 1
FIG. 2 is a table showing the layer structure of the antireflection film of Example 1. As the material of the SiO 2 / Al 2 O 3 thin film forming the first layer 1 and the third layer 3, the substance L5 described above was used. On the other hand, the substance H4 described above was used as the material of the Ti / La thin film forming the second layer 2 and the fourth layer 4. The fifth layer was formed using a MgF 2. The design wavelength λ was 500 nm, and the optical film thickness of each layer was set to a value obtained by multiplying λ / 4 by the coefficient shown in FIG.

光学ガラス基板100としては、商品名S−BSL7(屈折率1.51633、株式会社オハラ製)を使用し、これを300℃に加熱して、第1層1から第5層5を、順番に電子銃蒸着を用いて、それぞれ上記の光学膜厚となるように成膜した。   As the optical glass substrate 100, the product name S-BSL7 (refractive index 1.51633, manufactured by OHARA INC.) Is used, and this is heated to 300 ° C., and the first layer 1 to the fifth layer 5 are sequentially changed. Using electron gun vapor deposition, each film was formed to have the optical film thickness described above.

(比較例)
実施例1の反射防止膜と比較するため、一般的な5層構成の反射防止膜を作製した。
光学ガラス基板としては、実施例1と同一のS−BSL7を使用した。第1層及び第3層の材料としてメルク社製の二酸化チタン(TiO2)を使用し、第2層及び第4層の材料としてメルク社製のアルミナ(Al2O3)を使用した。第5層は実施例1と同様にMgF2を用いて形成した。
設計波長λは実施例1と同様500nmとし、各層の光学膜厚を、λ/4に図3に記載の係数を乗じた値に設定して、真空蒸着法により各層を成膜して比較例の反射防止膜を得た。
(Comparative example)
For comparison with the antireflection film of Example 1, a general antireflection film having a five-layer structure was prepared.
The same S-BSL7 as in Example 1 was used as the optical glass substrate. Merck titanium dioxide (TiO 2 ) was used as the material for the first and third layers, and alumina (Al 2 O 3 ) from Merck was used as the material for the second and fourth layers. The fifth layer was formed using MgF 2 in the same manner as in Example 1.
The design wavelength λ is set to 500 nm as in Example 1, and the optical film thickness of each layer is set to a value obtained by multiplying λ / 4 by the coefficient shown in FIG. An antireflection film was obtained.

上記実施例1及び比較例について、反射率及び表面硬さを検討した結果を以下に示す。
図4及び図5は、それぞれ実施例1及び比較例の400nmから700nmの波長領域における反射率を示すグラフである。実施例1及び比較例の平均反射率は、それぞれ0.28%、0.37%であり、反射防止膜としては問題ない性能が確保されていた。
なお、反射防止膜が形成された基板の変形を干渉計で測定したところ、いずれについても変形は生じていなかった。また、基板上の反射防止膜を顕微鏡によって観察したところ、いずれについても膜の破壊は確認されなかった。
About the said Example 1 and a comparative example, the result of having examined the reflectance and surface hardness is shown below.
4 and 5 are graphs showing the reflectance in the wavelength region of 400 nm to 700 nm of Example 1 and Comparative Example, respectively. The average reflectances of Example 1 and Comparative Example were 0.28% and 0.37%, respectively, and the performance with no problem as an antireflection film was ensured.
In addition, when the deformation | transformation of the board | substrate with which the antireflection film was formed was measured with the interferometer, the deformation | transformation did not arise in all. Further, when the antireflection film on the substrate was observed with a microscope, no film breakage was observed in any of them.

図6は、実施例1及び比較例の表面硬さを示す表である。表面硬さの指標としては、硬さ(Hardness)及びヤング率(Modulus)を用い、いずれもナノインデンター(MTSシステムズ社製、NanoIndenter XP)を用いて計測した。
実施例1の反射防止膜の硬さは9.49ギガパスカル(GPa)、ヤング率は119.5GPaであった。一方比較例の反射防止膜の硬さは8.29GPa、ヤング率は97.74GPaであり、いずれも実施例1の反射防止膜が勝っていた。したがって、実施例1の反射防止膜は比較例の反射防止膜より高い硬度を有し、耐擦傷性が高いことが確認された。
FIG. 6 is a table showing the surface hardness of Example 1 and Comparative Example. As an index of surface hardness, hardness (Hardness) and Young's modulus (Modulus) were used, both of which were measured using a nanoindenter (Mano Systems, NanoIndenter XP).
The antireflection film of Example 1 had a hardness of 9.49 gigapascals (GPa) and a Young's modulus of 119.5 GPa. On the other hand, the antireflection film of the comparative example had a hardness of 8.29 GPa and a Young's modulus of 97.74 GPa, both of which were superior to the antireflection film of Example 1. Therefore, it was confirmed that the antireflection film of Example 1 had a higher hardness than the antireflection film of the comparative example and had high scratch resistance.

以上のように、本実施形態の反射防止膜によれば、良好な反射防止性能を確保しつつ、高い耐擦傷性を有する反射防止膜を提供することができる。   As described above, according to the antireflection film of this embodiment, it is possible to provide an antireflection film having high scratch resistance while ensuring good antireflection performance.

続いて、実施例1と異なる膜厚構成の反射防止膜について、実施例2から5を用いて説明する。
(実施例2)
図7(a)に実施例2の反射防止膜の層構成を示す。設計波長及び各層を構成する材料は実施例1と同一であり、各層の光学膜厚は、λ/4に図7(a)記載の係数を乗じた値となるように設定した。
光学ガラス基板100としては、商品名S−BAL35(屈折率1.58913、株式会社オハラ製)を使用し、真空蒸着によって成膜を行った。
図7(b)は実施例2の反射防止膜の、400nmから700nmの波長領域における反射率を示すグラフである。平均反射率は、0.28%であり、良好な反射防止性能が確保されていた。
Subsequently, an antireflection film having a film thickness different from that of Example 1 will be described using Examples 2 to 5.
(Example 2)
FIG. 7A shows the layer structure of the antireflection film of Example 2. The design wavelength and the material constituting each layer were the same as in Example 1. The optical film thickness of each layer was set to be a value obtained by multiplying λ / 4 by the coefficient shown in FIG. 7A.
As the optical glass substrate 100, a product name S-BAL35 (refractive index: 1.58913, manufactured by OHARA INC.) Was used, and film formation was performed by vacuum deposition.
FIG. 7B is a graph showing the reflectivity of the antireflection film of Example 2 in the wavelength region of 400 nm to 700 nm. The average reflectance was 0.28%, and good antireflection performance was ensured.

(実施例3)
図8(a)に実施例3の反射防止膜の層構成を示す。設計波長及び各層を構成する材料は実施例1と同一であり、各層の光学膜厚は、λ/4に図8(a)記載の係数を乗じた値となるように設定した。
光学ガラス基板100としては、商品名S−LAL14(屈折率1.69680、株式会社オハラ製)を使用し、真空蒸着によって成膜を行った。
図8(b)は実施例3の反射防止膜の、400nmから700nmの波長領域における反射率を示すグラフである。平均反射率は、0.21%であり、良好な反射防止性能が確保されていた。
(Example 3)
FIG. 8A shows the layer structure of the antireflection film of Example 3. The design wavelength and the material constituting each layer were the same as in Example 1, and the optical film thickness of each layer was set to be a value obtained by multiplying λ / 4 by the coefficient shown in FIG.
As the optical glass substrate 100, a product name S-LAL14 (refractive index 1.696680, manufactured by OHARA INC.) Was used, and film formation was performed by vacuum deposition.
FIG. 8B is a graph showing the reflectivity of the antireflection film of Example 3 in the wavelength region of 400 nm to 700 nm. The average reflectance was 0.21%, and good antireflection performance was ensured.

(実施例4)
図9(a)に実施例4の反射防止膜の層構成を示す。設計波長及び各層を構成する材料は実施例1と同一であり、各層の光学膜厚は、λ/4に図9(a)記載の係数を乗じた値となるように設定した。
光学ガラス基板100としては、商品名S−TIH11(屈折率1.78472、株式会社オハラ製)を使用し、真空蒸着によって成膜を行った。
図9(b)は実施例2の反射防止膜の、400nmから700nmの波長領域における反射率を示すグラフである。平均反射率は、0.29%であり、良好な反射防止性能が確保されていた。
Example 4
FIG. 9A shows the layer structure of the antireflection film of Example 4. The design wavelength and the material constituting each layer were the same as those in Example 1, and the optical film thickness of each layer was set to be a value obtained by multiplying λ / 4 by the coefficient shown in FIG.
As the optical glass substrate 100, a product name S-TIH11 (refractive index: 1.78472, manufactured by OHARA INC.) Was used, and film formation was performed by vacuum deposition.
FIG. 9B is a graph showing the reflectance in the wavelength region from 400 nm to 700 nm of the antireflection film of Example 2. The average reflectance was 0.29%, and good antireflection performance was ensured.

(実施例5)
図10(a)に実施例2の反射防止膜の層構成を示す。設計波長及び各層を構成する材料は実施例1と同一であり、各層の光学膜厚は、λ/4に図10(a)記載の係数を乗じた値となるように設定した。
光学ガラス基板100としては、商品名S−LAH58(屈折率1.883、株式会社オハラ製)を使用し、真空蒸着によって成膜を行った。
図10(b)は実施例2の反射防止膜の、400nmから700nmの波長領域における反射率を示すグラフである。平均反射率は、0.28%であり、良好な反射防止性能が確保されていた。
(Example 5)
FIG. 10A shows the layer structure of the antireflection film of Example 2. The design wavelength and the material constituting each layer were the same as those in Example 1, and the optical film thickness of each layer was set to be a value obtained by multiplying λ / 4 by the coefficient shown in FIG.
As the optical glass substrate 100, a product name S-LAH58 (refractive index: 1.883, manufactured by OHARA INC.) Was used, and film formation was performed by vacuum deposition.
FIG. 10B is a graph showing the reflectivity of the antireflection film of Example 2 in the wavelength region of 400 nm to 700 nm. The average reflectance was 0.28%, and good antireflection performance was ensured.

以上のように、本発明の反射防止膜は、真空蒸着法によっても問題なくガラス基板上に形成することができるので、特別な装置変更等を行わずとも、高い耐擦傷性を有した膜を製造することができる。
また、各層の光学膜厚が所定の範囲に設定されているので、反射防止性能を損なうことなく優れた反射率特性を得ることができる。
As described above, since the antireflection film of the present invention can be formed on a glass substrate without any problem even by a vacuum deposition method, a film having high scratch resistance can be formed without any special device change. Can be manufactured.
Moreover, since the optical film thickness of each layer is set within a predetermined range, excellent reflectance characteristics can be obtained without impairing the antireflection performance.

1 第1層
2 第2層
3 第3層
4 第4層
5 第5層
10 反射防止膜
100 光学ガラス基板
DESCRIPTION OF SYMBOLS 1 1st layer 2 2nd layer 3 3rd layer 4 4th layer 5 5th layer 10 Antireflection film 100 Optical glass substrate

Claims (2)

光学ガラスからなる基板上に複数の薄膜が積層されて形成された反射防止膜であって、
前記薄膜のうち、前記基板側から数えた第1層及び第3層は、SiO2/Al2O3混合物からなり、
前記基板側から数えた第2層及び第4層は、Ti/La複合酸化物からなり、
最も外側の第5層はMgF2からなることを特徴とする反射防止膜。
An antireflection film formed by laminating a plurality of thin films on a substrate made of optical glass,
Of the thin film, the first layer and the third layer counted from the substrate side are composed of a SiO 2 / Al 2 O 3 mixture,
The second layer and the fourth layer counted from the substrate side are made of a Ti / La composite oxide,
The outermost fifth layer antireflection film, which consists of MgF 2.
前記反射防止膜の設計波長をλとするとき、
前記第1層の光学膜厚は、(0.20〜0.40)×λ/4、
前記第2層の光学膜厚は、(0.25〜0.45)×λ/4、
前記第3層の光学膜厚は、(0.25〜0.40)×λ/4、
前記第4層の光学膜厚は、(1.90〜2.25)×λ/4、
前記第5層の光学膜厚は、(1.00〜1.03)×λ/4、
にそれぞれ設定されている事を特徴とする請求項1に記載の反射防止膜。
When the design wavelength of the antireflection film is λ,
The optical thickness of the first layer is (0.20-0.40) × λ / 4,
The optical thickness of the second layer is (0.25 to 0.45) × λ / 4,
The optical thickness of the third layer is (0.25-0.40) × λ / 4,
The optical thickness of the fourth layer is (1.90-2.25) × λ / 4,
The optical thickness of the fifth layer is (1.00 to 1.03) × λ / 4,
The antireflection film according to claim 1, wherein the antireflection film is set as follows.
JP2009160840A 2009-07-07 2009-07-07 Antireflective film Withdrawn JP2011017782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009160840A JP2011017782A (en) 2009-07-07 2009-07-07 Antireflective film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009160840A JP2011017782A (en) 2009-07-07 2009-07-07 Antireflective film

Publications (1)

Publication Number Publication Date
JP2011017782A true JP2011017782A (en) 2011-01-27

Family

ID=43595643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009160840A Withdrawn JP2011017782A (en) 2009-07-07 2009-07-07 Antireflective film

Country Status (1)

Country Link
JP (1) JP2011017782A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013140330A (en) * 2011-12-29 2013-07-18 Visera Technologies Co Ltd Microlens structure and fabrication method thereof
WO2014182639A1 (en) * 2013-05-07 2014-11-13 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US20140376094A1 (en) * 2013-05-07 2014-12-25 Corning Incorporated Low-Color Scratch-Resistant Articles with a Multilayer Optical Film
WO2015076914A1 (en) * 2013-09-13 2015-05-28 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US9110230B2 (en) 2013-05-07 2015-08-18 Corning Incorporated Scratch-resistant articles with retained optical properties
WO2015146016A1 (en) * 2014-03-24 2015-10-01 富士フイルム株式会社 Process for producing lens with antireflection function
US9335444B2 (en) 2014-05-12 2016-05-10 Corning Incorporated Durable and scratch-resistant anti-reflective articles
US9684097B2 (en) 2013-05-07 2017-06-20 Corning Incorporated Scratch-resistant articles with retained optical properties
US9703011B2 (en) 2013-05-07 2017-07-11 Corning Incorporated Scratch-resistant articles with a gradient layer
US9790593B2 (en) 2014-08-01 2017-10-17 Corning Incorporated Scratch-resistant materials and articles including the same
KR20180052701A (en) * 2015-09-14 2018-05-18 코닝 인코포레이티드 High light transmittance and anti-scratch anti-reflection products
WO2019208426A1 (en) * 2018-04-27 2019-10-31 コニカミノルタ株式会社 Optical thin film, optical member, and method for manufacturing optical thin film
US10948629B2 (en) 2018-08-17 2021-03-16 Corning Incorporated Inorganic oxide articles with thin, durable anti-reflective structures
US11267973B2 (en) 2014-05-12 2022-03-08 Corning Incorporated Durable anti-reflective articles

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9128218B2 (en) 2011-12-29 2015-09-08 Visera Technologies Company Limited Microlens structure and fabrication method thereof
JP2013140330A (en) * 2011-12-29 2013-07-18 Visera Technologies Co Ltd Microlens structure and fabrication method thereof
EP3502754A1 (en) * 2013-05-07 2019-06-26 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
CN108585479A (en) * 2013-05-07 2018-09-28 康宁股份有限公司 Mar-proof product with gradient layer
US11714213B2 (en) 2013-05-07 2023-08-01 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US9079802B2 (en) 2013-05-07 2015-07-14 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
WO2014182639A1 (en) * 2013-05-07 2014-11-13 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US20140335330A1 (en) * 2013-05-07 2014-11-13 Corning Incorporated Low-Color Scratch-Resistant Articles with a Multilayer Optical Film
US11667565B2 (en) 2013-05-07 2023-06-06 Corning Incorporated Scratch-resistant laminates with retained optical properties
US11231526B2 (en) 2013-05-07 2022-01-25 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US10444408B2 (en) 2013-05-07 2019-10-15 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US9359261B2 (en) * 2013-05-07 2016-06-07 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US9366784B2 (en) * 2013-05-07 2016-06-14 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US9703011B2 (en) 2013-05-07 2017-07-11 Corning Incorporated Scratch-resistant articles with a gradient layer
JP2016528518A (en) * 2013-05-07 2016-09-15 コーニング インコーポレイテッド Low color scratch-resistant article having a multilayer optical film
US20140376094A1 (en) * 2013-05-07 2014-12-25 Corning Incorporated Low-Color Scratch-Resistant Articles with a Multilayer Optical Film
US9684097B2 (en) 2013-05-07 2017-06-20 Corning Incorporated Scratch-resistant articles with retained optical properties
US9110230B2 (en) 2013-05-07 2015-08-18 Corning Incorporated Scratch-resistant articles with retained optical properties
CN108732657A (en) * 2013-05-07 2018-11-02 康宁股份有限公司 Light scratch-resistant product with multi-layer optical film
JP2016531330A (en) * 2013-09-13 2016-10-06 コーニング インコーポレイテッド Low color scratch-resistant article having a multilayer optical film
KR102465289B1 (en) * 2013-09-13 2022-11-09 코닝 인코포레이티드 Low-Color Scratch-Resistant Articles With a Multilayer Optical Film
CN112051630B (en) * 2013-09-13 2023-05-09 康宁股份有限公司 Light colored scratch resistant article with multilayer optical film
TWI627069B (en) * 2013-09-13 2018-06-21 康寧公司 Low-color scratch-resistant articles with a multilayer optical film
JP7025399B2 (en) 2013-09-13 2022-02-24 コーニング インコーポレイテッド Low-colored scratch-resistant article with multilayer optical film
KR20210136170A (en) * 2013-09-13 2021-11-16 코닝 인코포레이티드 Low-Color Scratch-Resistant Articles With a Multilayer Optical Film
KR102324780B1 (en) * 2013-09-13 2021-11-11 코닝 인코포레이티드 Low-Color Scratch-Resistant Articles With a Multilayer Optical Film
WO2015076914A1 (en) * 2013-09-13 2015-05-28 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
CN112051630A (en) * 2013-09-13 2020-12-08 康宁股份有限公司 Light colored scratch resistant articles with multilayer optical films
CN105723250A (en) * 2013-09-13 2016-06-29 康宁股份有限公司 Low-color scratch-resistant articles with a multilayer optical film
KR20200091484A (en) * 2013-09-13 2020-07-30 코닝 인코포레이티드 Low-Color Scratch-Resistant Articles With a Multilayer Optical Film
JP2020038399A (en) * 2013-09-13 2020-03-12 コーニング インコーポレイテッド Low-color scratch-resistant articles with multilayer optical film
US10196302B2 (en) 2014-03-24 2019-02-05 Fujifilm Corporation Method for manufacturing antireflection function-equipped lens
WO2015146016A1 (en) * 2014-03-24 2015-10-01 富士フイルム株式会社 Process for producing lens with antireflection function
JP2015184403A (en) * 2014-03-24 2015-10-22 富士フイルム株式会社 Process for producing lens with antireflection function
CN107076874A (en) * 2014-05-12 2017-08-18 康宁股份有限公司 Antireflection product with durability and scratch-resistant
US9335444B2 (en) 2014-05-12 2016-05-10 Corning Incorporated Durable and scratch-resistant anti-reflective articles
US10436945B2 (en) 2014-05-12 2019-10-08 Corning Incorporated Durable and scratch-resistant anti-reflective articles
US11267973B2 (en) 2014-05-12 2022-03-08 Corning Incorporated Durable anti-reflective articles
CN107076874B (en) * 2014-05-12 2018-07-24 康宁股份有限公司 Antireflection product with durability and scratch-resistant
US9726786B2 (en) 2014-05-12 2017-08-08 Corning Incorporated Durable and scratch-resistant anti-reflective articles
US10995404B2 (en) 2014-08-01 2021-05-04 Corning Incorporated Scratch-resistant materials and articles including the same
US9790593B2 (en) 2014-08-01 2017-10-17 Corning Incorporated Scratch-resistant materials and articles including the same
US10837103B2 (en) 2014-08-01 2020-11-17 Corning Incorporated Scratch-resistant materials and articles including the same
US11002885B2 (en) 2015-09-14 2021-05-11 Corning Incorporated Scratch-resistant anti-reflective articles
KR20180052701A (en) * 2015-09-14 2018-05-18 코닝 인코포레이티드 High light transmittance and anti-scratch anti-reflection products
US11698475B2 (en) 2015-09-14 2023-07-11 Corning Incorporated Scratch-resistant anti-reflective articles
KR102591067B1 (en) 2015-09-14 2023-10-18 코닝 인코포레이티드 Anti-reflective product with high light transmittance and scratch resistance
JPWO2019208426A1 (en) * 2018-04-27 2021-05-27 コニカミノルタ株式会社 Manufacturing method of optical thin film, optical member and optical thin film
WO2019208426A1 (en) * 2018-04-27 2019-10-31 コニカミノルタ株式会社 Optical thin film, optical member, and method for manufacturing optical thin film
US11567237B2 (en) 2018-08-17 2023-01-31 Corning Incorporated Inorganic oxide articles with thin, durable anti-reflective structures
US10948629B2 (en) 2018-08-17 2021-03-16 Corning Incorporated Inorganic oxide articles with thin, durable anti-reflective structures
US11906699B2 (en) 2018-08-17 2024-02-20 Corning Incorporated Inorganic oxide articles with thin, durable anti reflective structures

Similar Documents

Publication Publication Date Title
JP2011017782A (en) Antireflective film
JP2009128820A (en) Plastic lens having multilayer antireflection layer and method of manufacturing the same
US10429549B2 (en) Optical element comprising a reflective coating
JP2002055213A (en) High reflectance mirror
JP4793259B2 (en) Reflector
CN108351450B (en) Gold-tinted multilayer coating and reflector comprising said coating
WO2018174049A1 (en) Lens with water repellent anti-reflection film and method for producing same
US20060245056A1 (en) Thin-film structure with counteracting layer
WO2014171149A1 (en) Transparent conductive material and method for manufacturing same
JP2008260978A (en) Method for forming reflection film
JP2023182732A (en) Optical coating having nano-laminate for improved durability
JP2013182091A (en) Antireflection film and method for forming the same
JPWO2008133136A1 (en) Reflector
JP2006215081A (en) Optical article and manufacturing method
JP7216471B2 (en) Plastic lens for in-vehicle lens and manufacturing method thereof
JP2005232565A (en) Method of producing thin film
JP2010271404A (en) Antireflection film
CN113966409A (en) Optical member with antireflection film and method for producing same
JP2007041194A (en) Antireflection film and optical film
JP2012247512A (en) Antireflection film of plastic optical component and method for producing antireflection film of plastic optical component
WO2023054420A1 (en) Optical laminate and anti-reflection film
JP2007520734A (en) Optical structure that reduces reflection of optically transparent substrates
WO2019181421A1 (en) Glass substrate with layered films and window glass
WO2013031562A1 (en) Heat-ray reflecting member
WO2020137195A1 (en) Dielectric multilayer film, production method therefor and image display device equipped with same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20121002