JP2011017049A - Boride-based cermet powder for thermal spraying - Google Patents

Boride-based cermet powder for thermal spraying Download PDF

Info

Publication number
JP2011017049A
JP2011017049A JP2009162052A JP2009162052A JP2011017049A JP 2011017049 A JP2011017049 A JP 2011017049A JP 2009162052 A JP2009162052 A JP 2009162052A JP 2009162052 A JP2009162052 A JP 2009162052A JP 2011017049 A JP2011017049 A JP 2011017049A
Authority
JP
Japan
Prior art keywords
resistance
powder
thermal
boride
thermal spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009162052A
Other languages
Japanese (ja)
Inventor
Tatsuo Shimatani
竜男 島谷
Tatsuya Takahashi
辰也 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2009162052A priority Critical patent/JP2011017049A/en
Publication of JP2011017049A publication Critical patent/JP2011017049A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide boride-based cermet powder for thermal spraying for forming a thermal-sprayed coating film capable of sufficiently enhancing not only the hardness, the wear resistance, the thermal shock resistance, the oxidation resistance, and the heat resistance, but also the molten metal corrosion resistance, and the acid resistance.SOLUTION: The boride-based cermet powder for thermal spraying consists of compound powder composition containing, by mass, 5.0-8.0% B, 15.0-30.0% Ni, 5.0-12.0% Cr, 5.0-12.0% W, and the balance Mo with inevitable impurities.

Description

本発明は、サーメット溶射被膜を形成するための硼化物系サーメット溶射用粉末に関する。   The present invention relates to a boride cermet spray powder for forming a cermet spray coating.

近年、産業の発展に伴って、産業用機械などの高性能化、高精度化、多様化およびエネルギーコストの低廉化が進むにつれて、溶射材料に金属とセラミックスを成分とする複合材料(サーメット)を用いて形成するサーメット溶射被膜(以下、単に「溶射被膜」ともいう。)に対する要求性能はますます厳しくなり、以前にも増して優れた性能が必要とされている。   In recent years, with the development of the industry, as the performance of high-performance industrial machines, high precision, diversification, and energy costs have been reduced, composite materials (cermets) composed of metal and ceramics as thermal spray materials have been developed. The required performance of a cermet sprayed coating (hereinafter also simply referred to as “sprayed coating”) formed by use becomes stricter, and more excellent performance is required than before.

従来、サーメット溶射被膜の形成には、その使用温度に応じて、種々のサーメット材料が使用されている。常温から500℃程度までの温度範囲では、タングステンカーバイド・コバルト(WC−Co)系やタングステンカーバイド・ニッケル(WC−Ni)系の材料が、また、これより高い900℃までの高温域では、クロムカーバイド・ニッケルクロム(Cr32−NiCr)系やクロムカーバイド・ニッケル(Cr32−Ni)系の材料が用いられており、これらの材料により形成された溶射被膜は、それぞれ目的に応じた硬度と、耐熱性、耐摩耗性などの特性を有している。 Conventionally, various cermet materials are used for forming a cermet sprayed coating depending on the use temperature. In the temperature range from room temperature to about 500 ° C., tungsten carbide / cobalt (WC—Co) and tungsten carbide / nickel (WC—Ni) materials are used, and in the higher temperature range up to 900 ° C., chromium Carbide-nickel-chromium (Cr 3 C 2 —NiCr) and chromium carbide-nickel (Cr 3 C 2 —Ni) -based materials are used. It has such characteristics as hardness, heat resistance, and wear resistance.

しかしながら、サーメット溶射被膜の使用環境が多様化するにつれて、特性のより優れた溶射被膜材料が望まれており、さらには、上述した諸特性のほか、耐熱衝撃性、靭性、溶融金属に対する耐食性(耐溶融金属腐食性)、および酸に対する耐酸性を兼ね備えた溶射被膜材料の開発が望まれている。   However, as the use environment of cermet sprayed coatings is diversified, thermal sprayed coating materials with better properties are desired. Furthermore, in addition to the above-mentioned properties, thermal shock resistance, toughness, corrosion resistance against molten metal (resistance to resistance) It is desired to develop a sprayed coating material having both (metal corrosion resistance) and acid resistance against acid.

例えば、自動車や家電などの表面処理鋼板を製造するための高温の溶融アルミニウム浴や溶融アルミニウム合金浴(いずれも700〜800℃)中に浸漬されて、連続的に通過する鋼板を支持し、案内して、該鋼板の表面に均一なアルミニウムメッキを被着させるために用いられる、シンクロール、サポートロールなどを被覆するための溶射被膜には、単に高い硬度や耐熱性、耐摩耗性を有するのみならず、耐熱衝撃性、靭性、耐溶融金属腐食性が求められる。   For example, it is immersed in a high-temperature molten aluminum bath or molten aluminum alloy bath (both 700 to 800 ° C.) for producing surface-treated steel sheets for automobiles and home appliances, and supports and continuously guides steel sheets that pass continuously. In addition, the thermal spray coating for covering a sink roll, a support roll, etc., used for depositing a uniform aluminum plating on the surface of the steel plate, has only high hardness, heat resistance, and wear resistance. However, thermal shock resistance, toughness, and molten metal corrosion resistance are required.

その他、使用後に行うロールの洗浄には、塩酸や硝酸などを用いて酸洗処理を行うため、上記要求特性とは別に、耐酸性も求められている。また、アルミニウムダイキャストマシンの部品でもあるプランジャを被覆するための溶射被膜にも、耐熱衝撃性、耐溶融金属腐食性が求められている。   In addition, since the pickling process using hydrochloric acid, nitric acid, or the like is performed for cleaning the roll after use, acid resistance is also required in addition to the above required characteristics. In addition, thermal shock resistance and molten metal corrosion resistance are also required for the thermal spray coating for covering the plunger, which is also a part of an aluminum die cast machine.

上述したような従来型のサーメット溶射被膜のうち、WC−Co系のものは、500℃までの乾燥雰囲気中では、硬度や耐摩耗性に優れているものの、その耐熱性や耐溶融金属腐食性は低く、特に500℃以上の酸化性雰囲気における耐熱性や耐溶融金属腐食性に問題がある。また、Cr32−NiCr系のものでは、900℃の高温域まで、耐熱性や耐溶融金属腐食性は維持されるものの、硬度や耐摩耗性に劣っている。さらに、これらの溶射被膜は、一般に耐熱衝撃性が低く、靭性および溶融金属や酸に対する腐食性が劣っているため、自動車鋼板や家電鋼板用のシンクロールやサポートロール、ダイキャストマシンのプランジャなどの溶射被膜としては、剥離しやすく、寿命が短いという問題がある。 Among the conventional cermet sprayed coatings as described above, the WC-Co type has excellent hardness and wear resistance in a dry atmosphere up to 500 ° C., but its heat resistance and molten metal corrosion resistance. Is low, and in particular, there is a problem in heat resistance and molten metal corrosion resistance in an oxidizing atmosphere of 500 ° C. or higher. Further, Cr 3 C 2 —NiCr-based materials are inferior in hardness and wear resistance, although heat resistance and molten metal corrosion resistance are maintained up to a high temperature range of 900 ° C. Furthermore, these thermal spray coatings generally have low thermal shock resistance, and are poor in toughness and corrosiveness against molten metals and acids. As a thermal spray coating, there is a problem that it is easy to peel off and has a short life.

以上のように、従来から用いられている溶射被膜は、高硬度で耐摩耗性が優れていても、耐熱性や耐溶融金属腐食性に劣っていたり、耐熱性や耐溶融金属腐食性が優れていても、耐摩耗性や硬度が不十分であったりする上に、いずれも耐熱衝撃性が低く、靱性に劣っているという問題がある。   As mentioned above, the thermal spray coating used conventionally has high hardness and excellent wear resistance, but is inferior in heat resistance and molten metal corrosion resistance or excellent in heat resistance and molten metal corrosion resistance. However, there is a problem that the wear resistance and hardness are insufficient, and the thermal shock resistance is low and the toughness is poor.

これらすべての要求特性を同時に満足することができるサーメット溶射被膜を形成するための溶射用粉末として、特許文献1には、質量比にて、B:5.0〜8.0%、Co:15.0〜30.0%、Cr:5.0〜15.0%、W:3.0〜9.0%を含み、残部Moと不可回避的不純物から構成される複合粉末組成物からなる硼化物系サーメット溶射用粉末が開示されている。   As a thermal spraying powder for forming a cermet sprayed coating that can satisfy all of these required characteristics at the same time, Patent Document 1 discloses that B: 5.0 to 8.0%, Co: 15 in mass ratio. 0.03 to 30.0%, Cr: 5.0 to 15.0%, W: 3.0 to 9.0%, boron comprising a composite powder composition composed of the remainder Mo and unavoidable impurities A cermet thermal spray powder is disclosed.

しかしながら、この公知の硼化物系サーメット溶射用粉末は、上述の溶融金属メッキ浴中で使用されるシンクロールやサポートロールなどの溶射被膜としては、硬度、耐摩耗性、耐熱衝撃性、靭性、溶融亜鉛に対する耐食性について、従来のサーメット溶射被膜を上回る十分な性能を有しているものの、溶融亜鉛を除く溶融金属、特に溶融アルミニウムやアルミニウム合金に対する耐食性、酸に対する耐酸性に乏しく、寿命を短命化させる要因となっており、そのさらなる向上が望まれている。   However, this known boride-based cermet thermal spraying powder is used for the above-mentioned thermal spray coatings such as sink rolls and support rolls used in the molten metal plating bath as hardness, wear resistance, thermal shock resistance, toughness, melting Corrosion resistance against zinc, which has sufficient performance over conventional cermet sprayed coatings, but lacks corrosion resistance against molten metals other than molten zinc, especially molten aluminum and aluminum alloys, and acid resistance against acids, shortening life It is a factor, and further improvement is desired.

特許第3134767号公報Japanese Patent No. 3134767

本発明は、上述の様な事情に鑑み、硬度、耐摩耗性、耐熱衝撃性、耐熱性といった特性のみならず、溶融金属に対する耐食性、塩酸や硝酸などに対する耐酸性にも優れたサーメット溶射被膜を形成できる溶射用粉末を提供することを目的とする。   In view of the circumstances as described above, the present invention provides a cermet sprayed coating excellent not only in properties such as hardness, wear resistance, thermal shock resistance, and heat resistance, but also in corrosion resistance against molten metal and acid resistance against hydrochloric acid and nitric acid. An object is to provide a thermal spraying powder that can be formed.

本発明の硼化物系サーメット溶射用粉末は、質量比にて、B:5.0〜8.0%、Ni:15.0〜30.0%、Cr:5.0〜12.0%、W:5.0〜12.0%を含み、残部Moと不可避的不純物から構成される複合粉末組成物からなることを特徴とする。   The boride-based cermet thermal spraying powder of the present invention is, in mass ratio, B: 5.0 to 8.0%, Ni: 15.0 to 30.0%, Cr: 5.0 to 12.0%, W: It is characterized by comprising a composite powder composition containing 5.0 to 12.0% and comprising the remainder Mo and inevitable impurities.

本発明の硼化物系サーメット溶射用粉末を構成する複合粉末組成物において、MoとBとの合計量が質量比にて50.0〜70.0%、NiとCrとWとの合計量が質量比にて30.0〜50.0%であることが好ましい。   In the composite powder composition constituting the boride-based cermet thermal spraying powder of the present invention, the total amount of Mo and B is 50.0 to 70.0% by mass ratio, and the total amount of Ni, Cr and W is The mass ratio is preferably 30.0 to 50.0%.

さらに、本発明の硼化物系サーメット溶射用粉末の好ましい粒度は、溶射被膜を形成する際の溶射方法に応じて決定され、例えば、大気または減圧プラズマ溶射法を採用する場合には、15〜53μm、15〜45μmのいずれかから選択される範囲に整粒されていることが好ましく、高速ガス炎溶射法を採用する場合には、5〜45μm、5〜30μm、5〜38μm、15〜45μm、15〜53μmのいずれかから選択される範囲に整粒されていることが好ましい。   Further, the preferred particle size of the boride-based cermet thermal spraying powder of the present invention is determined according to the thermal spraying method when forming the thermal spray coating, and for example, 15 to 53 μm in the case of adopting the atmospheric or reduced pressure plasma thermal spraying method. It is preferably sized within a range selected from any of 15 to 45 μm, and when adopting a high-speed gas flame spraying method, 5 to 45 μm, 5 to 30 μm, 5 to 38 μm, 15 to 45 μm, It is preferable that the particles are sized within a range selected from any of 15 to 53 μm.

本発明の硼化物系サーメット溶射用粉末によれば、得られる溶射被膜に関して、WC−Co系サーメット溶射被膜と同程度の硬度および耐摩耗性と、Cr32−NiCr系サーメット溶射被膜を上回る耐酸化性および耐熱性とが得られ、しかも公知のMoB−CoCrW系サーメット溶射用粉末により形成された溶射被膜よりも高い耐溶融金属腐食性および耐酸性が得られる。 According to the boride-based cermet thermal spraying powder of the present invention, the obtained thermal spray coating has the same hardness and wear resistance as the WC-Co-based cermet thermal spray coating, and exceeds the Cr 3 C 2 —NiCr-based cermet thermal spray coating. Oxidation resistance and heat resistance can be obtained, and higher molten metal corrosion resistance and acid resistance can be obtained than a sprayed coating formed of a known MoB-CoCrW cermet spray powder.

発明者は、鋭意研究を重ねた結果、MoBを一次粒子とするサーメットの金属結合相として、Ni、Cr、Wを適正量で組み合わせることにより、得られるサーメット溶射被膜に関して、優れた硬度、耐摩耗性、耐熱衝撃性、耐酸化性、および耐熱性を得られ、しかも耐溶融金属腐食性および耐酸性を十分に向上させられるとの知見を得て、本発明を完成させたものである。   As a result of intensive research, the inventor has obtained excellent hardness and wear resistance with regard to the cermet sprayed coating obtained by combining Ni, Cr and W in appropriate amounts as the metallic binder phase of cermet containing MoB as primary particles. The present invention has been completed by obtaining the knowledge that heat resistance, thermal shock resistance, oxidation resistance, and heat resistance can be obtained, and that the molten metal corrosion resistance and acid resistance can be sufficiently improved.

すなわち、本発明の硼化物系サーメット溶射用粉末は、質量比にて、B:5.0〜8.0%、Ni:15.0〜30.0%、Cr:5.0〜12.0%、W:5.0〜12.0%を含み、残部Moと不可避的不純物から構成される複合粉末組成物からなることを特徴とするものであり、このような構成を採用することによって、上述したような効果を得ることができる。   That is, the boride-based cermet thermal spraying powder of the present invention is, by mass ratio, B: 5.0 to 8.0%, Ni: 15.0 to 30.0%, Cr: 5.0 to 12.0. %, W: 5.0 to 12.0%, comprising a composite powder composition composed of the remainder Mo and unavoidable impurities, by adopting such a configuration, The effects as described above can be obtained.

本発明の硼化物系サーメット溶射用粉末の構成成分は上記の通りであるが、以下にそれぞれの成分限定理由を説明する。   The constituents of the boride-based cermet spray powder of the present invention are as described above. The reasons for limiting the respective components will be described below.

Bは、MoおよびNiと結合して複硼化物相を形成するために必要な元素である。Bの含有量が5.0質量%未満では、溶射被覆時の熱影響と酸化により、溶射被膜中のB量が3.0質量%未満にまで低下するため、得られた溶射被膜に十分な硬度と耐摩耗性が得られない。一方、8.0質量%を超えると、硬度は高くなるが、溶射被膜の強度(靭性と耐熱衝撃性)が著しく低下する。したがって、本発明では、溶射用粉末中のB含有量を、5.0〜8.0%の範囲に限定している。   B is an element necessary for combining with Mo and Ni to form a double boride phase. If the B content is less than 5.0% by mass, the amount of B in the thermal spray coating is reduced to less than 3.0% by mass due to thermal effects and oxidation during thermal spray coating, which is sufficient for the obtained thermal spray coating. Hardness and wear resistance cannot be obtained. On the other hand, if it exceeds 8.0% by mass, the hardness is increased, but the strength (toughness and thermal shock resistance) of the sprayed coating is remarkably lowered. Therefore, in the present invention, the B content in the thermal spraying powder is limited to a range of 5.0 to 8.0%.

Moは、Bと同様に、複硼化物相を形成するために必要な元素である。該複硼化物相は、Mo2NiB2で表されるが、Moの含有量が38.0質量%未満では、前記複硼化物相の形成は不十分となり、溶射被膜は所望の硬度と耐摩耗性を得られない。一方、70.0質量%を超えると、硬度、耐摩耗性、および溶融亜鉛や溶融アルミニウムに対する耐食性(耐溶融金属腐食性)は向上するが、靭性や耐熱衝撃性、さらには溶射用粉末の溶射付着効率(溶射時の歩留り)が著しく低下する。したがって、本発明では、溶射用粉末中のMoの含有量を、38.0〜70.0%の範囲に、好ましくは、40.0〜65.0%の範囲に限定している。 Similar to B, Mo is an element necessary for forming a double boride phase. The double boride phase is represented by Mo 2 NiB 2. However, if the Mo content is less than 38.0% by mass, the formation of the double boride phase is insufficient, and the sprayed coating has a desired hardness and resistance to resistance. Abrasion cannot be obtained. On the other hand, if it exceeds 70.0% by mass, hardness, wear resistance, and corrosion resistance to molten zinc and molten aluminum (molten metal corrosion resistance) are improved, but toughness, thermal shock resistance, and thermal spraying of the powder for thermal spraying are improved. Adhesion efficiency (yield during spraying) is significantly reduced. Therefore, in the present invention, the content of Mo in the thermal spraying powder is limited to a range of 38.0 to 70.0%, preferably a range of 40.0 to 65.0%.

Niは、金属結合相形成の主体となる元素であるが、一方において複硼化物相の形成にも欠かせない元素であり、得られた溶射被膜に耐酸化性、靭性および耐酸性を付与する効果を有する。また、溶融アルミニウムに対して耐食性(耐溶融金属腐食性)を有する。Niの含有量が15.0質量%未満では、形成される金属結合相と複硼化物相との相互固溶量が少なくなるために、その結合力が低下し、かつ、気孔などの欠陥が発生しやすくなる。一方、30.0質量%を超えると、金属結合相における耐溶融金属腐食性を低下させるとともに、複硼化物中において脆弱なNiBなどの硼化物が多量に形成するようになるので、溶射被膜の靭性が低下してしまう。したがって、本発明では、溶射用粉末中のNi含有量を、15.0〜30.0質量%の範囲に限定している。   Ni is an element that is a main component of forming a metal bonded phase, but on the other hand, is an element indispensable for forming a double boride phase, and imparts oxidation resistance, toughness, and acid resistance to the obtained sprayed coating. Has an effect. Moreover, it has corrosion resistance (molten metal corrosion resistance) against molten aluminum. If the Ni content is less than 15.0% by mass, the amount of mutual solid solution formed between the metal bonded phase and the double boride phase is reduced, so that the bonding strength is reduced and defects such as pores are present. It tends to occur. On the other hand, if it exceeds 30.0% by mass, the corrosion resistance of the molten metal in the metal binder phase is lowered, and borides such as brittle NiB are formed in the double boride in a large amount. Toughness will decrease. Therefore, in this invention, Ni content in the powder for thermal spraying is limited to the range of 15.0-30.0 mass%.

Crは、耐溶融金属腐食性、耐熱性の向上に寄与する元素であり、Niと結合して金属結合相を形成し、靭性を向上させる効果を有する。Crの含有量が5.0質量%未満では、かかる効果を十分に得られなくなる。一方、12.0質量%を超えると、得られた溶射被膜における耐溶融金属腐食性、耐熱性、および耐酸化性をさらに向上させるものの、靭性を低下させるので好ましくない。したがって、本発明では、溶射用粉末中のCr含有量を、5.0〜12.0質量%の範囲に限定している。   Cr is an element that contributes to improvement of resistance to molten metal corrosion and heat resistance, and has the effect of combining with Ni to form a metal bonded phase and improving toughness. If the Cr content is less than 5.0% by mass, such effects cannot be obtained sufficiently. On the other hand, if it exceeds 12.0% by mass, although the molten metal corrosion resistance, heat resistance, and oxidation resistance of the obtained thermal spray coating are further improved, the toughness is lowered, which is not preferable. Therefore, in this invention, Cr content in the powder for thermal spraying is limited to the range of 5.0-12.0 mass%.

Wは、金属結合相を形成するNi、Crと結合して、該金属結合相の耐食性と強度とを一層高めるとともに、さらにはW2NiB2で表される複硼化物を形成するために必要な元素である。Wの含有量が5.0質量%未満では、かかる効果を十分に得られなくなる。一方、12.0質量%を超えると、金属結合相の強度がかえって低下してしまう。したがって、本発明では、溶射用粉末中のW含有量を、5.0〜12.0質量%の範囲に限定している。 W is necessary for bonding with Ni and Cr forming the metal bonded phase to further enhance the corrosion resistance and strength of the metal bonded phase and to form a double boride represented by W 2 NiB 2. Element. If the W content is less than 5.0% by mass, such effects cannot be obtained sufficiently. On the other hand, if it exceeds 12.0% by mass, the strength of the metal bonded phase will be lowered. Therefore, in this invention, W content in the powder for thermal spraying is limited to the range of 5.0-12.0 mass%.

本発明の溶射用粉末組成物においては、さらに、MoとBとの合計量を50.0〜70.0質量%に、NiとCrとWとの合計量を30.0〜50.0質量%に、それぞれ規制することにより、得られた溶射被膜の脆化や剥離現象を抑制することができる。   In the thermal spraying powder composition of the present invention, the total amount of Mo and B is further 50.0 to 70.0 mass%, and the total amount of Ni, Cr and W is 30.0 to 50.0 mass%. By restricting each to%, embrittlement and peeling phenomenon of the obtained sprayed coating can be suppressed.

本発明の硼化物系サーメット溶射用粉末は、一次粒子用原料粉末であるMoB粉末を、これらのバインダ的役割を担うNi、Cr、およびWの金属粉末と共に整粒し、焼結することにより得られる。   The boride-based cermet thermal spraying powder of the present invention is obtained by sizing MoB powder, which is a raw material powder for primary particles, together with Ni, Cr, and W metal powders that play a role of these binders and sintering. It is done.

添加されるNi、CrおよびWの金属粉末としては、それぞれの単体金属粉末を用いることが望ましい。これらの元素を合金粉末の形態、たとえば、80Ni−20Cr合金やステライト合金粉末などの形態で用いた場合には、合金粉末中のNiがMoBなどの硼化物と結合しにくく、Mo2NiB2、W2NiB2といった複硼化物が形成されにくいためである。 As the added Ni, Cr and W metal powders, it is desirable to use the respective single metal powders. When these elements are used in the form of alloy powder, for example, in the form of 80Ni-20Cr alloy or stellite alloy powder, Ni in the alloy powder is difficult to bond with borides such as MoB, and Mo 2 NiB 2 , This is because a double boride such as W 2 NiB 2 is difficult to be formed.

本発明の硼化物系サーメット溶射用粉末を用いて、基板上にサーメット溶射被覆する方法としては、常法、つまり、溶射ガンを使用した大気または減圧プラズマ溶射法、もしくは高速ガス炎溶射法が適用される。通常、プラズマ溶射法には、15〜53μm、15〜45μmの粒径の溶射用粉末が、また、高速ガス炎溶射法には、5〜30μm、5〜38μm、5〜45μmもしくは15〜45μm、15〜53μmの粒径の溶射用粉末が使用される。なお、これらの粉末が、上記粒度範囲よりも粗い場合には、緻密な溶射被膜を形成することが困難になるとともに、加熱不足による溶射用粉末の付着歩留りが低下する。この結果、低硬度および低付着歩留りの溶射被膜しか得られず、品質低下やコスト高を招く。一方、上記粒度範囲よりも微細である場合には、粉末の流動性が低下するとともに、受熱効率の高い微細粉末が溶融して、溶射ガンのノズル内面に堆積する。この結果、溶射作業性が著しく損なわれる。   As a method of coating the substrate with the cermet sprayed cermet spray powder of the present invention, a conventional method, that is, an atmospheric or reduced pressure plasma spraying method using a spray gun or a high-speed gas flame spraying method is applied. Is done. Usually, the plasma spraying method uses a powder for spraying with a particle size of 15 to 53 μm, 15 to 45 μm, and the high-speed gas flame spraying method uses 5 to 30 μm, 5 to 38 μm, 5 to 45 μm, or 15 to 45 μm, A thermal spraying powder with a particle size of 15-53 μm is used. In addition, when these powders are coarser than the above particle size range, it becomes difficult to form a dense sprayed coating, and the deposition yield of the spraying powder due to insufficient heating decreases. As a result, only a thermal spray coating having a low hardness and a low adhesion yield can be obtained, leading to a reduction in quality and a high cost. On the other hand, when the particle size is finer than the above particle size range, the fluidity of the powder is lowered, and the fine powder having high heat receiving efficiency is melted and deposited on the nozzle inner surface of the spray gun. As a result, the thermal spraying workability is significantly impaired.

以下に本発明の実施例について説明する。なお、本発明は下記の実施例に限定されるものではない。   Examples of the present invention will be described below. In addition, this invention is not limited to the following Example.

[実施例1〜5、比較例1〜3]
(溶射用粉末の作製)
実施例1においては、原料粉末として、Bを10.1質量%含有するMoB粉末と、Ni、CrおよびWのそれぞれの単体金属粉末を用いた。MoB粉末を62.5質量%、Ni粉末を22.0質量%、Cr粉末を8.5質量%、W粉末を6.5質量%、それぞれ採取し、ステンレス鋼製容器に入れて振動ボールミル内において24時間湿式で粉砕混合した。該容器から取り出したスラリーを非酸化性雰囲気中において噴霧乾燥して造粒した後、真空中で焼結して得られた粉末を回収し、これを空気分級機によって5〜45μmの粉末に整粒して溶射用粉末を調製した。
[Examples 1-5, Comparative Examples 1-3]
(Preparation of thermal spraying powder)
In Example 1, MoB powder containing 10.1% by mass of B and single metal powders of Ni, Cr and W were used as the raw material powder. 62.5% by mass of MoB powder, 22.0% by mass of Ni powder, 8.5% by mass of Cr powder, and 6.5% by mass of W powder were collected and placed in a stainless steel container in a vibrating ball mill. And pulverized and mixed in wet for 24 hours. The slurry taken out from the container is spray-dried in a non-oxidizing atmosphere and granulated, and then the powder obtained by sintering in vacuum is recovered, and this is adjusted to a powder of 5 to 45 μm by an air classifier. The powder for thermal spraying was prepared by granulation.

また、原料粉末の添加量を表1に示すようにそれぞれ変化させたことを除き、実施例1と同様に、溶射用粉末の作製を行った。なお、実施例5においては、空気分級機によって15〜53μmの粉末に整粒して溶射用粉末を調整した。   Further, a powder for thermal spraying was prepared in the same manner as in Example 1 except that the addition amount of the raw material powder was changed as shown in Table 1. In Example 5, the thermal spraying powder was prepared by adjusting the particle size to 15 to 53 μm using an air classifier.

上記実施例および比較例のそれぞれについて、得られた溶射用粉末の化学組成および分級粒度範囲を表1に示す。   Table 1 shows the chemical composition and the classified particle size range of the obtained thermal spraying powder for each of the above Examples and Comparative Examples.

(試験片の作製)
得られた溶射用粉末を使用して高速ガス炎溶射法(燃料:水素−酸素)により、SS400製基板上に0.4mm厚さの溶射被膜を形成した。その後、機械加工および表面研磨により、該溶射被膜表面の凹凸を取り除き、平滑度が仕上げ記号で▽▽▽(表面粗さ区分値:Rmax=6.3S、Rz=6.3Z、Ra=1.6a)となる試験片をそれぞれ得た。
(Preparation of test piece)
A spray coating having a thickness of 0.4 mm was formed on a SS400 substrate by a high-speed gas flame spraying method (fuel: hydrogen-oxygen) using the obtained powder for spraying. Thereafter, the unevenness on the surface of the sprayed coating is removed by machining and surface polishing, and the smoothness is represented by a finish symbol ▽▽▽ (surface roughness classification values: R max = 6.3 S, R z = 6.3 Z, R a = 1.6a) were obtained.

(試験片の分析、特性試験および評価)
各々の試験片について、EPMA定量分析による溶射被膜の組成分析を行った。また、CuΚα線を用いたX線回折法により同定を行った。いずれの実施例および比較例においても、主として、Mo2NiB2、W2NiB2の三元系複硼化物相が認められた。各々の組成分析の結果について表2に、同定の結果について表3にそれぞれ示す。
(Test piece analysis, characteristic test and evaluation)
About each test piece, the composition analysis of the thermal spray coating by EPMA quantitative analysis was performed. Moreover, identification was performed by an X-ray diffraction method using CuΚα rays. In any of the examples and comparative examples, a ternary double boride phase of Mo 2 NiB 2 and W 2 NiB 2 was mainly observed. The result of each composition analysis is shown in Table 2, and the result of identification is shown in Table 3.

[硬度]
次に、微小ビッカース硬さ試験機(株式会社マツザワ製:DMH−1)を用いて、試験片のビッカース硬さ(Hv)を、試験荷重:2.94Nにてそれぞれ測定した。評価としては、Hvが600未満を×(不可)、600以上800未満を△(可)、800以上1000未満を○(良)、1000以上を◎(優)と評価した。
[hardness]
Next, using a micro Vickers hardness tester (manufactured by Matsuzawa Co., Ltd .: DMH-1), the Vickers hardness (Hv) of the test piece was measured at a test load of 2.94 N, respectively. As evaluation, Hv less than 600 was evaluated as x (impossible), 600 or more and less than 800 was evaluated as △ (possible), 800 or more and less than 1000 was evaluated as ◯ (good), and 1000 or more was evaluated as ◎ (excellent).

[耐摩耗性]
また、往復運動摩耗試験機(スガ試験機株式会社製:NUS−ISO−2)を用いて、JIS H 8503 第9項に規定された試験方法に従って、相手材にSiC研磨紙320番を使用し、試験荷重を29.4N、往復荷重回数を1600回として、試験片の耐摩耗性試験を行った。評価としては、摩耗減量(mg/cm2)の値が、5.0以上の場合を×(不可)、2.0以上5.0未満の場合を△(可)、1.0以上2.0未満の場合を○(良)、1.0未満の場合を◎(優)と評価した。
[Abrasion resistance]
In addition, using a reciprocating wear tester (Suga Test Instruments Co., Ltd .: NUS-ISO-2), according to the test method defined in Item 9 of JIS H 8503, SiC abrasive paper No. 320 is used as the mating material. The test piece was subjected to a wear resistance test with a test load of 29.4 N and a reciprocating load count of 1600 times. As evaluation, when the value of wear loss (mg / cm 2 ) is 5.0 or more, × (impossible), when 2.0 or more and less than 5.0, Δ (possible), 1.0 or more. The case of less than 0 was evaluated as ◯ (good), and the case of less than 1.0 was evaluated as ◎ (excellent).

[耐熱衝撃性]
さらに、試験片を600℃の電気炉中に30分間保持した後、水中で急冷する熱サイクルを繰り返し30回行い、1回毎に溶射被膜に生ずる亀裂や剥離の有無を目視およびカラーチェックにより観察して、耐熱衝撃性の評価を行った。亀裂などの異常が認められた時までの熱サイクルの反復回数により評価し、5回未満の場合を×(不可)、5回以上10回未満の場合を△(可)、10回以上20回未満の場合を○(良)、20回以上の場合を◎(優)と評価した。
[Thermal shock resistance]
Furthermore, after holding the test piece in an electric furnace at 600 ° C. for 30 minutes, a thermal cycle in which it is rapidly cooled in water is repeated 30 times, and the presence or absence of cracks or peeling occurring in the sprayed coating is observed visually and by color check. Then, the thermal shock resistance was evaluated. Evaluation is based on the number of thermal cycles repeated until an abnormality such as a crack is observed. The case of less than 5 times x (impossible), the case of 5 times or more and less than 10 times △ (possible), 10 times or more 20 times The case of less than ○ was evaluated as ◯ (good), and the case of 20 times or more was evaluated as ◎ (excellent).

[高温酸化性]
試験片を900℃の電気炉中に2時間保持して、溶射被膜の酸化増量の測定を行った。酸化増量(mg/cm2)の値が、5.0以上の場合には×(不可)、3.0以上5.0未満の場合には△(可)、2.0以上3.0未満の場合には○(良)、2.0未満の場合には◎(優)と評価した。
[High temperature oxidation]
The test piece was held in an electric furnace at 900 ° C. for 2 hours to measure the increase in oxidation of the sprayed coating. When the value of oxidation increase (mg / cm 2 ) is 5.0 or more, × (impossible), when it is 3.0 or more and less than 5.0, Δ (possible), 2.0 or more and less than 3.0 In the case of ◯, it was evaluated as ◯ (good), and in the case of less than 2.0, ◎ (excellent).

[高温硬度]
上記の900℃への保持中に、微小ビッカース硬さ試験機(株式会社マツザワ製:DMH−1)を用いて、試験片のビッカース硬さ(Hv)を、試験荷重:2.94Nにてそれぞれ測定した。
[High temperature hardness]
During the above-described holding at 900 ° C., the Vickers hardness (Hv) of the test piece was measured at a test load of 2.94 N using a micro Vickers hardness tester (manufactured by Matsuzawa Co., Ltd .: DMH-1). It was measured.

[腐食性]
さらに、試験片を740℃で溶融しているAl−45%Zn中へ120時間(5日間)浸漬させる浸漬試験を行った。また、試験片の基板を機械加工および表面研磨により取り除いて被膜のみの状態とした後、ウォーターバスで50℃に加熱した50容量%塩酸(HCl)溶液および50容量%硝酸(HNO3)溶液へ1時間それぞれ浸漬させる浸積試験を行った。
[Corrosive]
Further, an immersion test was performed in which the test piece was immersed in Al-45% Zn melted at 740 ° C. for 120 hours (5 days). In addition, the substrate of the test piece was removed by machining and surface polishing so as to be in a state of only a film, and then heated to 50 ° C. in a water bath to a 50 volume% hydrochloric acid (HCl) solution and a 50 volume% nitric acid (HNO 3 ) solution. An immersion test was performed in which each was immersed for 1 hour.

いずれの浸漬試験においても、腐食減量(mg/cm2)の値が、200以上の場合には×(不可)、100以上200未満の場合には△(可)、50以上100未満の場合には○(良)、50未満の場合には◎(優)と評価した。 In any immersion test, when the value of corrosion weight loss (mg / cm 2 ) is 200 or more, × (impossible), when it is 100 or more and less than 200, Δ (possible), when it is 50 or more and less than 100 Was evaluated as ○ (excellent), and when less than 50, it was evaluated as ◎ (excellent).

以上の特性試験の結果を、表3に示す。   Table 3 shows the results of the above characteristic tests.

[従来例1〜3]
表1に示す化学組成を有する粉末を用いたことを除いては、実施例1と同様に、溶射用粉末の作製を行った。従来例1では、Niを添加せずにMoB−NiCrW系溶射用粉末とした。また、従来例2では、従来法によりWC−Co系サーメット溶射用粉末を、従来例3では、従来法によりCr32−NiCr系サーメット溶射用粉末をそれぞれ得た。
[Conventional Examples 1 to 3]
A powder for thermal spraying was prepared in the same manner as in Example 1 except that powder having the chemical composition shown in Table 1 was used. In Conventional Example 1, a powder for thermal spraying of MoB-NiCrW was used without adding Ni. In Conventional Example 2, WC-Co cermet spray powder was obtained by a conventional method, and in Conventional Example 3, Cr 3 C 2 -NiCr cermet spray powder was obtained by a conventional method.

これらについても、実施例1と同様にして、試験片の作製、分析、特性試験および評価をそれぞれ行った。

Figure 2011017049
Figure 2011017049
Figure 2011017049
Also for these, in the same manner as in Example 1, preparation, analysis, characteristic testing and evaluation of the test pieces were performed.
Figure 2011017049
Figure 2011017049
Figure 2011017049

[評価]
以上の結果から明らかなように、本発明の硼化物系サーメット溶射用粉末を使用して得られた溶射被膜(実施例1〜5)は、硬度、耐摩耗性、耐熱衝撃性、耐酸化性、耐熱性、耐溶融金属腐食性、および耐酸性のすべてが優れており(これら各特性の評価がすべて「◎」または「○」であり、比較例1〜3のように少なくとも一部の特性の評価が「△」になっておらず)、本発明の有効性は十分に実証されたものと言える。
[Evaluation]
As is apparent from the above results, the thermal spray coatings (Examples 1 to 5) obtained using the boride-based cermet thermal spray powder of the present invention have hardness, wear resistance, thermal shock resistance, and oxidation resistance. , Heat resistance, molten metal corrosion resistance, and acid resistance are all excellent (the evaluation of each of these characteristics is all “す べ て” or “○”, and at least some of the properties as in Comparative Examples 1 to 3) It is said that the effectiveness of the present invention has been fully demonstrated.

また、本発明の硼化物系サーメット溶射用粉末を使用して得られた溶射被膜(実施例1〜5)は、従来型のWC−Co系サーメット溶射被膜(従来例2)と同程度の硬度と耐摩耗性を有し、また、従来型のCr32−NiCr系サーメット溶射被膜(従来例3)を上回る耐酸化性と耐熱性を備えると共に、公知のMoB−CoCrW系サーメット溶射被膜(従来例1)よりも高い耐溶融金属性および耐酸性を有することが明らかである。 Further, the thermal spray coatings (Examples 1 to 5) obtained using the boride-based cermet thermal spraying powder of the present invention have the same hardness as the conventional WC-Co cermet thermal spray coating (Conventional Example 2). In addition, it has oxidation resistance and heat resistance exceeding those of the conventional Cr 3 C 2 —NiCr cermet sprayed coating (conventional example 3), and is a known MoB—CoCrW cermet sprayed coating ( It is clear that it has higher molten metal resistance and acid resistance than the conventional example 1).

Claims (3)

質量比にて、B:5.0〜8.0%、Ni:15.0〜30.0%、Cr:5.0〜12.0%、W:5.0〜12.0%を含み、残部Moと不可避的不純物からなるようにMoB粒子と単体金属のNi、Cr粒子とで構成された複合粉末組成物からなる硼化物系サーメット溶射用粉末。   In a mass ratio, B: 5.0 to 8.0%, Ni: 15.0 to 30.0%, Cr: 5.0 to 12.0%, W: 5.0 to 12.0% included A boride-based cermet spray powder comprising a composite powder composition composed of MoB particles and single metal Ni and Cr particles so as to be composed of the remainder Mo and inevitable impurities. MoとBとの合計量が質量比にて50.0〜70.0%、NiとCrとWとの合計量が質量比にて30.0〜50.0%であることを特徴とする、請求項1に記載の硼化物系サーメット溶射用粉末。   The total amount of Mo and B is 50.0 to 70.0% by mass ratio, and the total amount of Ni, Cr and W is 30.0 to 50.0% by mass ratio. The boride-based cermet thermal spraying powder according to claim 1. 粒度を5〜30μm、5〜38μm、5〜45μm、15〜45μmまたは15〜53μmのいずれかから選択される範囲に整粒したことを特徴とする、請求項1〜3のうちのいずれか1項に記載の硼化物系サーメット溶射用粉末。   The particle size is adjusted to a range selected from any one of 5 to 30 µm, 5 to 38 µm, 5 to 45 µm, 15 to 45 µm, and 15 to 53 µm. The boride-based cermet thermal spraying powder described in the above item.
JP2009162052A 2009-07-08 2009-07-08 Boride-based cermet powder for thermal spraying Withdrawn JP2011017049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009162052A JP2011017049A (en) 2009-07-08 2009-07-08 Boride-based cermet powder for thermal spraying

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009162052A JP2011017049A (en) 2009-07-08 2009-07-08 Boride-based cermet powder for thermal spraying

Publications (1)

Publication Number Publication Date
JP2011017049A true JP2011017049A (en) 2011-01-27

Family

ID=43595039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009162052A Withdrawn JP2011017049A (en) 2009-07-08 2009-07-08 Boride-based cermet powder for thermal spraying

Country Status (1)

Country Link
JP (1) JP2011017049A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104789896A (en) * 2015-04-21 2015-07-22 苏州统明机械有限公司 Wear-resisting alloy steel powder for thermal spraying and preparation method thereof
JP2016520711A (en) * 2013-03-15 2016-07-14 メソコート インコーポレイテッド Ternary ceramic spray powder and coating method
KR102064583B1 (en) 2018-09-21 2020-01-09 최재용 Amorphous alloy powder exhibiting corrosion and wear resistance properties, manufactruing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016520711A (en) * 2013-03-15 2016-07-14 メソコート インコーポレイテッド Ternary ceramic spray powder and coating method
CN104789896A (en) * 2015-04-21 2015-07-22 苏州统明机械有限公司 Wear-resisting alloy steel powder for thermal spraying and preparation method thereof
KR102064583B1 (en) 2018-09-21 2020-01-09 최재용 Amorphous alloy powder exhibiting corrosion and wear resistance properties, manufactruing method thereof

Similar Documents

Publication Publication Date Title
US6641917B2 (en) Spray powder and method for its production
JP5058645B2 (en) Thermal spray powder, thermal spray coating and hearth roll
JP4653721B2 (en) Ni-based self-fluxing alloy powder for thermal spraying, method for producing the same, and self-fluxing alloy spray coating obtained using the powder
JP4532343B2 (en) Carbide cermet sprayed coating member excellent in corrosion resistance and method for producing the same
KR20010082717A (en) Spray powder, thermal spraying process using it, and sprayed coating
CN113122841B (en) Corrosion-resistant and wear-resistant coating with gradient composite structure and preparation method thereof
JP2660455B2 (en) Heat resistant hard sintered alloy
JP2012102362A (en) Boride cermet-based powder for thermal spraying
JP2011017049A (en) Boride-based cermet powder for thermal spraying
JP4193958B2 (en) Molten metal member having excellent corrosion resistance against molten metal and method for producing the same
JP5851826B2 (en) WC-based cemented carbide for cutting tools having excellent plastic deformation resistance at high temperatures, coated cutting tools, and methods for producing the same
CN106591761A (en) Preparation method for composite coating resisting etching of molten metal
CN110306143B (en) High-temperature-resistant corrosion-resistant sink roller and manufacturing method thereof
Fadavi et al. Study on high-temperature oxidation behaviors of plasma-sprayed TiB 2-Co composite coatings
JP2011026666A (en) Powder of boride-based cermet for thermal spraying
JP3430498B2 (en) Corrosion- and wear-resistant self-fluxing alloy material for thermal spraying
JP4328715B2 (en) Ni-based self-fluxing alloy powder for thermal spraying and manufacturing method thereof
JP3134767B2 (en) Boride cermet spraying powder
JPH0645863B2 (en) Thermal spray material excellent in high temperature wear resistance and build-up resistance and its coated article
JP2002173758A (en) Powder for flame spraying and parts with flame sprayed coating by using the powder
JP6796446B2 (en) Thermal spray coating
JP2011017058A (en) Boride-based cermet powder for thermal spraying
JP3134768B2 (en) Boride cermet spraying powder
JP2004353045A (en) Boride-based cermet powder for thermal spraying
JP2004353046A (en) Boride cermet powder for thermal spraying

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111114

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130311