JP2011016120A - Removing agent of fluorine ion in wastewater and fluorine ion removing method using the same - Google Patents

Removing agent of fluorine ion in wastewater and fluorine ion removing method using the same Download PDF

Info

Publication number
JP2011016120A
JP2011016120A JP2009164291A JP2009164291A JP2011016120A JP 2011016120 A JP2011016120 A JP 2011016120A JP 2009164291 A JP2009164291 A JP 2009164291A JP 2009164291 A JP2009164291 A JP 2009164291A JP 2011016120 A JP2011016120 A JP 2011016120A
Authority
JP
Japan
Prior art keywords
fluorine
wastewater
fluorine ions
dolomite
fluorine ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009164291A
Other languages
Japanese (ja)
Other versions
JP5240109B2 (en
Inventor
Takayuki Yamada
隆之 山田
Tatsuya Okamura
達也 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshizawa Lime Industry Co Ltd
Original Assignee
Yoshizawa Lime Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshizawa Lime Industry Co Ltd filed Critical Yoshizawa Lime Industry Co Ltd
Priority to JP2009164291A priority Critical patent/JP5240109B2/en
Publication of JP2011016120A publication Critical patent/JP2011016120A/en
Application granted granted Critical
Publication of JP5240109B2 publication Critical patent/JP5240109B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fluorine ion removing agent for removing fluorine ions in wastewater to satisfy a wastewater reference value (8 mg/L) to thereby obtain certain effect, realizing an effective wastewater treatment method and capable of satisfying an environmental reference value (0.8 mg/L).SOLUTION: The fluorine ion removing agent contains semi-baked dolomite, which is obtained by baking dolomite and characterized in that the content of free calcium oxide is 1.5 wt.% or below, preferably 1.2 wt.% or below and the content of free magnesium oxide is 7 wt.% or above, preferably 19 wt.% or above, as an effective component and enables two-stage wastewater treatment wherein a part of fluorine ions in wastewater is first removed by slaked lime and the residual fluorine ions are subsequently removed by the fluorine ion removing agent.

Description

本発明は、半焼成ドロマイトを有効成分とし、フッ素イオンを含有する排水中のフッ素イオンを除去するための除去剤と、それを使用したフッ素イオンの除去方法に関する。本発明において「半焼成ドロマイト」とは、ドロマイト鉱石を600〜900℃の温度で焼成することにより、ドロマイト成分中の炭酸マグネシウムの大部分を脱炭酸させて酸化マグネシウムとする一方、炭酸カルシウムはほとんど脱炭酸させず、そのまま残すようにして得た焼成品を指す。 The present invention relates to a remover for removing fluorine ions in wastewater containing fluorine ions containing semi-baked dolomite as an active ingredient, and a fluorine ion removal method using the same. In the present invention, “semi-calcined dolomite” means calcining dolomite ore at a temperature of 600 to 900 ° C. to decarboxylate most of the magnesium carbonate in the dolomite component to make magnesium oxide, while calcium carbonate is mostly It refers to a fired product obtained by leaving it as it is without decarboxylation.

たとえば半導体の製造工場においては、その製造工程においてフッ酸を使用するため、どうしてもフッ素イオンを含有する排水が多量に排出される。この排水からフッ素イオンを除去し、無害化するためにとられている基本的な対策は、排水に水溶性のカルシウム塩を添加してフッ化カルシウムを生成させることによりフッ素イオンを不溶化し、分離することである。このとき生成するフッ化カルシウムの沈殿は、微細な粒子であるから、その分離を容易にするため、塩化第二鉄やポリ塩化アルミニウム(PAC)のような無機凝集剤を添加するか、高分子凝集剤を添加してフッ化カルシウム凝集フロックを生成させ、生成したフロックを沈殿槽で沈殿させることが行なわれている。 For example, in a semiconductor manufacturing factory, since hydrofluoric acid is used in the manufacturing process, a large amount of waste water containing fluorine ions is inevitably discharged. The basic measures taken to remove and detoxify fluorine ions from this wastewater are to make the fluoride ions insoluble by adding water-soluble calcium salt to the wastewater to produce calcium fluoride. It is to be. The precipitates of calcium fluoride produced at this time are fine particles, so an inorganic flocculant such as ferric chloride or polyaluminum chloride (PAC) is added or polymer is added to facilitate the separation. A flocculant is added to produce calcium fluoride aggregated floc, and the generated floc is precipitated in a precipitation tank.

しかし、フッ化カルシウムの溶解度は比較的高く、単にカルシウム塩で処理しただけでは、排水中のフッ素イオンの濃度を、排水基準値である8mg/L以下にすることは困難である。そこで酸化マグネシウム系の化合物を使用するフッ素含有排水の処理方法が提案された(特許文献1)。その処理方法は、BET比表面積が10m2/g以上で粒度が10μm〜10mmに調製した酸化マグネシウムをフッ素吸着剤として使用し、主としてこれをカラムに充填して通水するものである。 However, the solubility of calcium fluoride is relatively high, and it is difficult to reduce the fluorine ion concentration in the wastewater to 8 mg / L or less, which is the wastewater standard value, simply by treating with calcium salt. Then, the processing method of the fluorine-containing waste water which uses a magnesium oxide type compound was proposed (patent document 1). The treatment method uses magnesium oxide prepared with a BET specific surface area of 10 m 2 / g or more and a particle size of 10 μm to 10 mm as a fluorine adsorbent, which is mainly packed in a column and passed through.

酸化マグネシウムを利用して排水中のフッ素イオンを吸着除去する別の方法は、水酸化マグネシウムを700〜1000℃で焼成してBET表面積40〜200m2/gとした酸化マグネシウムを、フッ素イオンを含有するpH4.0以下の排水に添加し、10〜25℃の温度で処理したのち、凝集剤を加えて固液分離することからなる(特許文献2)。 Another method for adsorbing and removing fluorine ions in wastewater using magnesium oxide is to fluorinate magnesium oxide by baking magnesium hydroxide at 700 to 1000 ° C. to a BET surface area of 40 to 200 m 2 / g, containing fluorine ions. It is added to wastewater having a pH of 4.0 or less, treated at a temperature of 10 to 25 ° C., and then solid-liquid separated by adding a flocculant (Patent Document 2).

フッ素イオン除去の性能を有する生石灰と酸化マグネシウムとを有利に併用することを意図して、焼成ドロマイトを使用する「フッ化物イオン捕捉材」が提案された(特許文献3)。この捕捉材は、「中程度の分解率のドロマイト」であって、温度600〜880℃で焼成した、MgO、CaOおよびCaCOを主要構成物とし、未分解二酸化炭素が1.5〜47重量%であるものと規定され、排水に残留するフッ素イオン濃度を低減するためにも、またフッ素で汚染された土壌からの溶出量を低減するにも用いることができる。
特開2005−342578 特開2007−136424 特開2008−80223
A “fluoride ion scavenger” using calcined dolomite has been proposed with the intention of advantageously using quick lime having the ability to remove fluoride ions and magnesium oxide (Patent Document 3). This trapping material is a “moderate decomposition rate dolomite”, which is mainly composed of MgO, CaO and CaCO 3 baked at a temperature of 600 to 880 ° C., and 1.5 to 47 wt.% Of undecomposed carbon dioxide. % And can be used to reduce the concentration of fluorine ions remaining in the wastewater and also to reduce the amount of elution from soil contaminated with fluorine.
JP-A-2005-342578 JP2007-136424 JP2008-80223

発明者らは、このドロマイトを焼成してMgO、CaOおよびCaCOを主要構成成分としたものを排水中のフッ素イオンを除去するために使用する技術を深く研究し、排水基準値である8.0mg/Lを満たすとともに、水質汚濁に係る環境基準値である0.8mg/Lを確実に達成することを可能にする除去剤の限定としては、未分解二酸化炭素が1.5〜47重量%の焼成ドロマイトというような、おおざっぱな限定では不完全であって、よりきめ細かく性状を限定する必要があることを経験した。限定すべき事項として発明者が見出したのは、半焼成ドロマイト中の遊離酸化カルシウムの量と遊離酸化マグネシウムの量とである。 The inventors have deeply researched a technique for firing this dolomite and using MgO, CaO, and CaCO 3 as main constituents to remove fluorine ions in the wastewater, which is the wastewater standard value. As a limitation of the removal agent that satisfies 0 mg / L and can reliably achieve the environmental standard value of 0.8 mg / L related to water pollution, undecomposed carbon dioxide is 1.5 to 47% by weight. I have experienced that the rough limitation, such as baked dolomite, is incomplete and the properties need to be more finely defined. What the inventors have found as matters to be limited are the amount of free calcium oxide and the amount of free magnesium oxide in the semi-baked dolomite.

本発明の目的は、上記した発明者らが得た知見を活用し、排水中のフッ素イオンを除去して環境基準値を満たすものとする上で確実な効果が得られるような半焼成ドロマイトからなるフッ素イオン除去剤を提供し、それによって効果的な排水処理の方法を実現することにある。 The purpose of the present invention is to make use of the knowledge obtained by the above-described inventors, from a semi-calcined dolomite that provides a certain effect in satisfying the environmental standard value by removing fluorine ions in the waste water. It is to provide a fluorine ion removing agent, thereby realizing an effective wastewater treatment method.

本発明に従う排水中のフッ素イオンの除去剤は、ドロマイトを焼成して得られ、遊離の酸化カルシウムの含有量が1.5重量%以下、好ましくは1.2重量%以下であって、遊離の酸化マグネシウムの含有量が7重量%、好ましくは19重量%以上である半焼成ドロマイトを有効成分とする除去剤である。 The fluorine ion removing agent in the waste water according to the present invention is obtained by firing dolomite, and the content of free calcium oxide is 1.5% by weight or less, preferably 1.2% by weight or less. It is a remover containing semi-calcined dolomite having a magnesium oxide content of 7% by weight, preferably 19% by weight or more as an active ingredient.

本発明に従う排水中のフッ素イオンを除去する方法の基本的態様は、上記した半焼成ドロマイトを有効成分とするフッ素イオンの除去剤を、フッ素を含有する酸性の排水に接触させ、排水中のフッ素を除去することからなる。 The basic aspect of the method for removing fluorine ions in waste water according to the present invention is to bring a fluorine ion remover containing semi-calcined dolomite as an active ingredient into contact with acidic waste water containing fluorine, and It consists of removing.

本発明に従う排水中のフッ素イオンを除去する方法の変更態様は、フッ素を含有する酸性の排水に、まず消石灰を接触させてフッ素イオンの一部を除去し、フッ素イオンの濃度が低下したがなお環境基準値を満たすに至っていない排水に、本発明の半焼成ドロマイトを有効成分とする除去剤を接触させ、排水中のフッ素をさらに除去することからなる。 In the modified embodiment of the method for removing fluorine ions in the waste water according to the present invention, the slaked lime is first brought into contact with acidic waste water containing fluorine to remove a part of the fluorine ions, and the concentration of fluorine ions is reduced. The waste water that does not satisfy the environmental standard value is brought into contact with a removing agent containing the semi-baked dolomite of the present invention as an active ingredient, and fluorine in the waste water is further removed.

本発明のフッ素イオンの除去剤は、ドロマイトの半焼成により得られ、高いフッ素イオン吸着除去性能を示し、しかも排水と接触している間に崩壊し難いから、この除去材を固定床に充填し、それに排水を接触させることにより排水の処理をすることが可能である。 The fluorine ion remover of the present invention is obtained by semi-firing dolomite, exhibits high fluorine ion adsorption removal performance, and is difficult to disintegrate while in contact with waste water. It is possible to treat the waste water by bringing it into contact with the waste water.

本発明の方法により半焼成ドロマイトを有効成分とするフッ素イオン除去剤を使用して排水処理を行なえば、上記した基本的態様であれ、変更態様であれ、排水中のフッ素イオンを効果的に除去することができるから、その濃度を排水基準値である8.0mg/L以下に低減することが容易である。 If wastewater treatment is performed using a fluorine ion removing agent containing semi-baked dolomite as an active ingredient according to the method of the present invention, fluorine ions in the wastewater are effectively removed regardless of whether the basic mode or the modified mode described above. Therefore, it is easy to reduce the concentration to 8.0 mg / L or less which is the drainage standard value.

本発明の半焼成ドロマイト中に含まれる「遊離酸化カルシウム」の含有量は、日本石灰協会の「日本石灰協会標準試験方法(2006)」に規定の「11.有効石灰の定量方法」に従って分析される、CaOおよびCa(OH)を合計した量(重量%)である。一方、「遊離酸化マグネシウム」の含有量とは、ドロマイト中のMgCOが脱炭酸して生成したMgOの量として算出される量をいう。その算出は、つぎの手順に従って行なう。
・まず、JIS R9011の「石灰の分析方法」に規定された方法により、CaO,MgOおよびIg.loss(灼熱減量)を分析する。つぎに、分析によって得た遊離酸化カルシウムの量が1.5%に達しているか否かによって、下記のいずれかを選ぶ。
・遊離酸化カルシウムの量が1.5%以上のとき:分析で得たMgOの値を、そのまま遊離酸化マグネシウムの量として採用する。
・遊離酸化カルシウムの量が1.5%未満のとき:遊離酸化マグネシウムの量は、分析で得たMgO%−MgCOとして存在するMgO%により算出する。MgCOとして存在するMgO%は、
{Ig.loss%−(CaO%÷56×44)}÷44×40
により求める。
The content of “free calcium oxide” contained in the semi-baked dolomite of the present invention is analyzed in accordance with “11. Method for Quantifying Effective Lime” defined in “Japan Lime Association Standard Test Method (2006)” of the Japan Lime Association. The total amount (% by weight) of CaO and Ca (OH) 2 . On the other hand, the content of “free magnesium oxide” refers to an amount calculated as the amount of MgO produced by decarboxylation of MgCO 3 in dolomite. The calculation is performed according to the following procedure.
First, CaO, MgO and Ig.loss (loss on ignition) are analyzed by the method defined in “Analyzing Method of Lime” in JIS R9011. Next, one of the following is selected depending on whether or not the amount of free calcium oxide obtained by analysis has reached 1.5%.
-When the amount of free calcium oxide is 1.5% or more: The value of MgO obtained by analysis is directly adopted as the amount of free magnesium oxide.
- when the amount of free calcium oxide is less than 1.5%: the amount of free magnesium oxide is calculated by MgO% present as MgO% MgCO 3 was obtained in the analysis. MgO% present as MgCO 3 is
{Ig.loss%-(CaO% ÷ 56 × 44)} ÷ 44 × 40
Ask for.

排水中のフッ素イオンを高度に除去するためには、遊離酸化カルシウムの含有量が低いことが望ましい。したがって、ドロマイトの半焼成に当たり、CaCOの脱炭酸はできるだけ抑制することが望ましい。その理由は、つぎのように説明される。すなわち、MgOによるフッ素イオン除去の反応機構は、
Mg2++F+OH=[Mg(OH)]F
と考えられるところ、Fとの反応はMgOよりもCaOの方が速いため、遊離酸化カルシウムの量が多いと、FがCaOと反応して安定なCaFを形成し、それが除去剤の表面を覆ってしまい、MgOとの反応が妨げられる。その一方で、CaFの溶解度は比較的高いから、溶液中のフッ素イオン濃度は、排水基準値以下にすることに困難がある。液性に関して見れば、フッ素イオンの除去にはpHが低い方が有利であるところ、CaOが多量に存在するとpHが高くなって、不利に作用する。このようなわけで、遊離酸化カルシウム量は1.5重量%以下であることが必要であり、1.2重量%以下であることが好ましい。
In order to highly remove fluorine ions in the wastewater, it is desirable that the content of free calcium oxide is low. Therefore, it is desirable to suppress the decarboxylation of CaCO 3 as much as possible during the semi-firing of dolomite. The reason is explained as follows. That is, the reaction mechanism of fluorine ion removal by MgO is
Mg 2+ + F + OH = [Mg (OH) 2 ] F
Therefore, since the reaction with F is faster in CaO than in MgO, when the amount of free calcium oxide is large, F reacts with CaO to form stable CaF 2 , which is a remover. The reaction with MgO is hindered. On the other hand, since the solubility of CaF is relatively high, it is difficult to make the fluorine ion concentration in the solution below the drainage standard value. From the viewpoint of liquidity, a lower pH is advantageous for removing fluorine ions. However, if CaO is present in a large amount, the pH becomes higher and acts adversely. For this reason, the amount of free calcium oxide needs to be 1.5% by weight or less, and preferably 1.2% by weight or less.

遊離酸化マグネシウムは、フッ素イオン除去のための有効成分であるから、多量に含まれていることが必要であって、この含有量が低いと、同じ量のフッ素イオンを除去するのに、多量の半焼成ドロマイトを消費しなければならない。不相当に多量の半焼成ドロマイトを消費しないでフッ素イオンの除去を行なうには、半焼成ドロマイトが、少なくとも7重量%の遊離酸化マグネシウムを含有することが必要である。後記する実施例にみるとおり、遊離酸化マグネシウムの含有量は19重量%以上あることが好ましい。原理的にいえば、遊離酸化マグネシウムの含有量は高いほど有利なわけであるが、その値を高めようとしてドロマイトの焼成を過度に進めると、製品の半焼成ドロマイト中の遊離酸化カルシウムの量が増大してしまい、フッ素イオン除去剤としての性能が、かえって低下する。実用上の遊離酸化マグネシウム量は、20重量%を若干上回る程度、多くとも25重量%が上限となる。 Since free magnesium oxide is an active ingredient for removing fluorine ions, it needs to be contained in a large amount. If this content is low, a large amount of fluorine ions can be removed to remove the same amount of fluorine ions. Semi-baked dolomite must be consumed. In order to remove fluorine ions without consuming a relatively large amount of semi-calcined dolomite, the semi-calcined dolomite needs to contain at least 7% by weight of free magnesium oxide. As seen in the examples described later, the content of free magnesium oxide is preferably 19% by weight or more. In principle, the higher the free magnesium oxide content, the more advantageous. However, excessive calcination of the dolomite to increase its value will reduce the amount of free calcium oxide in the semi-baked dolomite of the product. It increases, and the performance as a fluorine ion removing agent is rather lowered. The practical amount of free magnesium oxide is slightly higher than 20% by weight, and at most 25% by weight is the upper limit.

上述のような、排水中のフッ素イオン除去剤として有用な半焼成ドロマイト、すなわち、MgCOの脱炭酸は十分に行なうが、その一方でCaCOの脱炭酸はなるべく抑制した半焼成ドロマイトを得るには、ドロマイトの焼成条件の選択が肝要になる。周知のとおり、ドロマイト鉱石の性状は産地によって変動するので、それぞれの場合に最適な焼成条件は実験的に決定するほかないが、通常は、焼成温度は600〜900℃、時間は1〜48時間の範囲内に見出されるであろう。栃木県葛生産のドロマイトを例にとれば、温度700〜800℃、時間2〜24時間の焼成が適切である。 As described above, useful semi-sintered dolomite as a fluorine ion removal agent in waste water, i.e., the decarboxylation of MgCO 3 is sufficiently performed, but decarboxylation while CaCO 3 get half burnt dolomite was possible inhibition Therefore, selection of the dolomite firing conditions is essential. As is well known, since the properties of dolomite ore vary depending on the place of production, the optimum firing conditions in each case must be determined experimentally. Usually, the firing temperature is 600 to 900 ° C., and the time is 1 to 48 hours. Will be found within the scope of Taking dolomite produced in Tochigi Prefecture Kuzu as an example, baking at a temperature of 700 to 800 ° C. for 2 to 24 hours is appropriate.

ドロマイトの焼成温度および時間は、焼成の条件によって異なる。たとえば、CaCOの脱炭酸を防ぐ目的で、ドロマイトをCO雰囲気下で焼成する試みが報告されており(Journal of Solid Chemistry 33, 181, 1980)、CO雰囲気下や加圧下の焼成であれば、焼成温度は当然に高くなる。熱力学的にいっても、このような条件下では炭酸塩の分解温度が、大気雰囲気の場合よりも高くなるからである。それと反対に、アルカリ土類金属の水酸化物、代表的にはCa(OH)の焼成を減圧下に行なうことによって、その分解温度を低くする技術がある(特開2004−354414、特開2006−21945)。炭酸塩に関しても同様で、減圧下に焼成すれば、分解温度を低下させることができる。このように、ドロマイトの焼成の結果は、焼成条件によって異なるが、要は、遊離酸化カルシウムおよび遊離酸化マグネシウムの量が、前記した範囲に入るような焼成を行なうことである。 The firing temperature and time of dolomite vary depending on the firing conditions. For example, there in order to prevent decarboxylation of CaCO 3, dolomite CO 2 is attempting to firing is reported in an atmosphere (Journal of Solid Chemistry 33, 181 , 1980), the firing of the CO 2 atmosphere and pressure In this case, the firing temperature is naturally high. This is because even under thermodynamic conditions, the decomposition temperature of the carbonate is higher than that in the air atmosphere under such conditions. On the other hand, there is a technique for lowering the decomposition temperature by firing an alkaline earth metal hydroxide, typically Ca (OH) 2 under reduced pressure (JP 2004-354414, JP 2006-21945). The same applies to carbonates, and the decomposition temperature can be lowered by baking under reduced pressure. Thus, although the result of baking of dolomite changes with baking conditions, the point is to perform baking so that the quantity of free calcium oxide and free magnesium oxide may enter into the above-mentioned range.

本発明の排水中のフッ素イオンを除去する方法は、本発明のフッ素イオンの除去剤をフッ素を含有する酸性の排水に接触させることからなるが、具体的にはさまざまな方法で実施することができる。そのひとつは、粉末状の除去剤を排水に投入して撹拌することにより、効率的にフッ素イオン除去剤の性能を発揮させることである。この目的には、フッ素イオン吸着後の排水からの除去剤粉末の固液分離に好都合なように、除去剤の粒度を適切に選ぶ必要がある。固液分離には適宜の凝集剤を使用するなど、排水処理の分野で確立された技術を利用することができる。 The method for removing fluorine ions in the wastewater of the present invention comprises contacting the fluorine ion removing agent of the present invention with acidic wastewater containing fluorine, and specifically, various methods can be used. it can. One of them is to efficiently exhibit the performance of the fluorine ion removing agent by putting the powdery removing agent into the waste water and stirring it. For this purpose, it is necessary to appropriately select the particle size of the removing agent so as to facilitate the solid-liquid separation of the removing agent powder from the waste water after adsorption of fluoride ions. For solid-liquid separation, techniques established in the field of wastewater treatment, such as using an appropriate flocculant, can be used.

いまひとつの、実施がより容易な態様は、除去剤を充填したカラムに排水を通す操作である。このためには、除去剤を、適宜の粒度であって、排水と除去剤との接触が十分である一方、フッ素イオンの吸着によっても崩壊することが少ないものにして使用することが必要である。具体的には、粒度を3〜7mmに調整したフッ素イオンの除去剤が好適である。この崩壊性を調べるには、前掲の特許文献3に記載された「注水顆粒維持率」試験法が有用である。その方法は、2〜5mmサイズの試料を25個選び、500mLの常温の水中に投入して24時間後に顆粒の形状を維持している粒子の数を数えることからなる。崩壊の割合は、5%以下であることが望ましい。 Another embodiment that is easier to implement is an operation of passing waste water through a column filled with a removing agent. For this purpose, it is necessary to use the removing agent having an appropriate particle size and sufficient contact between the waste water and the removing agent, but with little destruction due to adsorption of fluorine ions. . Specifically, a fluorine ion remover having a particle size adjusted to 3 to 7 mm is suitable. In order to investigate this disintegration property, the “water injection granule maintenance rate” test method described in Patent Document 3 is useful. The method consists of selecting 25 samples having a size of 2 to 5 mm, putting them in 500 mL of room temperature water, and counting the number of particles maintaining the shape of the granules after 24 hours. The rate of collapse is desirably 5% or less.

上述の使用の態様から理解されるように、本発明のフッ素イオン除去剤は、適切な粒度の粒子として使用すべきである。除去性能の観点からは、できるだけ微細な粉末、具体的には1mm通過が好ましく、一方で、排水処理に使用したときに固体状態を維持することを期待される場合、たとえば通水カラムに充填したり、河床に敷き詰めたりするものは、より大径の、具体的には3〜7mm程度の破砕片が適切である。 As will be understood from the above-described use mode, the fluoride ion removing agent of the present invention should be used as particles of an appropriate particle size. From the viewpoint of removal performance, it is preferable to pass as fine a powder as possible, specifically 1 mm. On the other hand, when it is expected to maintain a solid state when used for wastewater treatment, for example, it is packed in a water flow column. Or, those that are spread on the riverbed are suitably larger pieces, specifically about 3 to 7 mm.

表1に示す組成をもつドロマイトを原料として使用し、これを700℃、750℃または800℃において種々の時間焼成して、有効石灰量および遊離酸化マグネシウムの値が異なる半焼成ドロマイトを得た。得られた半焼成ドロマイトのMgO含有量および遊離酸化マグネシウム量を、焼成条件とともに表2に示す。この除去剤について、前掲の特許文献3に記載の「注水顆粒維持率」測定法に従って排水と接触させたときに崩壊する可能性を調べたところ、いずれの試料にも崩壊が認められず、形状を維持する特性が高いことがわかった。
(表2において、原石の遊離酸化カルシウム量が0.1重量%となっているのは、分析誤差である。)
Dolomite having the composition shown in Table 1 was used as a raw material and calcined at 700 ° C., 750 ° C. or 800 ° C. for various times to obtain semi-calcined dolomite having different effective lime content and free magnesium oxide values. Table 2 shows the MgO content and free magnesium oxide content of the obtained semi-baked dolomite together with the baking conditions. The removal agent was examined for the possibility of disintegration when contacted with drainage according to the method for measuring the “poured granule maintenance rate” described in Patent Document 3 described above. It was found that the characteristics of maintaining the
(In Table 2, it is an analysis error that the amount of free calcium oxide in the raw stone is 0.1% by weight.)

表1 重量%

Figure 2011016120
Table 1 Weight%
Figure 2011016120

表2

Figure 2011016120
Table 2
Figure 2011016120

フッ素イオン含有排水のシミュレート溶液として、フッ化ナトリウムNaFを水に溶解した、フッ素イオン濃度が20mg/Lの水溶液を用意した。この溶液500mLに対して上記の半焼成ドロマイト各2gを投入し、マグネチックスターラーで撹拌してフッ素イオンの除去を行なった。24時間後の液のフッ素イオン濃度を測定して、表3に示す結果を得た。表3には、フッ素イオンの除去率を併せて示し、遊離MgOの値を再度掲げる。 As a simulated solution of fluorine ion-containing wastewater, an aqueous solution having a fluoride ion concentration of 20 mg / L in which sodium fluoride NaF was dissolved in water was prepared. 2 g each of the above-mentioned semi-baked dolomite was added to 500 mL of this solution and stirred with a magnetic stirrer to remove fluorine ions. The fluorine ion concentration of the liquid after 24 hours was measured, and the results shown in Table 3 were obtained. Table 3 also shows the removal rate of fluorine ions, and lists the value of free MgO again.

表3

Figure 2011016120
表3にみるように、遊離MgO量が適切な(同時に遊離CaO量も抑制されている)試料番号4および5の半焼成ドロマイトを使用すれば、処理24時間後の廃水中のフッ素イオン濃度を、環境基準値である0.8mg/L以下に減少させることができる。) Table 3
Figure 2011016120
As shown in Table 3, if the semi-calcined dolomite samples Nos. 4 and 5 with an appropriate amount of free MgO (the amount of free CaO is also suppressed at the same time) are used, the fluorine ion concentration in the wastewater after 24 hours of treatment can be obtained. The environmental standard value can be reduced to 0.8 mg / L or less. )

フッ素イオン除去剤中に含まれる遊離酸化カルシウムの量と、24時間後の液のフッ素イオン濃度との関係をプロットして、図1に示すグラフを得た。同様に、フッ素イオン除去剤中に含まれる遊離酸化マグネシウムの量と、24時間後の液のフッ素イオン濃度との関係をプロットして、図2に示すグラフを得た。 The relationship between the amount of free calcium oxide contained in the fluorine ion removing agent and the fluorine ion concentration of the liquid after 24 hours was plotted to obtain the graph shown in FIG. Similarly, the relationship between the amount of free magnesium oxide contained in the fluorine ion removing agent and the fluorine ion concentration of the liquid after 24 hours was plotted to obtain the graph shown in FIG.

上記したところと同様にして、フッ素イオン濃度が20mg/Lのフッ化ナトリウム水溶液を用意した。この溶液500mLに消石灰2gを投入し、撹拌下に24時間保ってCa(OH)によるフッ素イオンの除去を行なった。その結果、液中のF濃度は9.9mg/Lに減少した。この、消石灰によるフッ素イオンの一部除去を行なった溶液に、上のフッ素イオン除去試験で最もよい成績を収めた試料No.5の粉末を2g投入し、撹拌状態に保って、2時間、4時間、8時間および24時間後の液のフッ素イオン濃度を測定した。比較のため、同量の消石灰を使用して、同様にフッ素イオンの除去を行なった。結果は表4および図3に示すとおりで、消石灰で処理した場合、フッ素イオン濃度に変化がなく、それ以上のフッ素イオン除去はできなかった。これに対して、半焼成ドロマイトで処理したものは、濃度が、5.3mg/Lに減少して、排水基準を容易に満たすところになった。 In the same manner as described above, an aqueous sodium fluoride solution having a fluorine ion concentration of 20 mg / L was prepared. 2 g of slaked lime was added to 500 mL of this solution, and the fluorine ions were removed with Ca (OH) 2 while being kept under stirring for 24 hours. As a result, the F concentration in the liquid decreased to 9.9 mg / L. In this solution in which a part of fluorine ions was removed by slaked lime, Sample No. 2 g of the powder of No. 5 was added and kept in a stirring state, and the fluorine ion concentration of the liquid after 2 hours, 4 hours, 8 hours and 24 hours was measured. For comparison, fluorine ions were similarly removed using the same amount of slaked lime. The results are as shown in Table 4 and FIG. 3, and when treated with slaked lime, there was no change in the fluorine ion concentration, and it was not possible to remove more fluorine ions. On the other hand, what was processed with the semi-baked dolomite reduced the concentration to 5.3 mg / L, and easily reached the drainage standard.

表4 フッ素イオン濃度(mg/L)の経時変化

Figure 2011016120
Table 4 Changes in fluoride ion concentration (mg / L) over time
Figure 2011016120

フッ素イオン除去剤の試料No.5を破砕ないし粉砕して、粒度がそれぞれ、(A)2〜1mm、(B)2〜0.5mm、(C)1〜0.5mm、(D)0.5〜0.212mmまたは(E)0.212mm以下の5種類の除去剤とした。フッ素イオン濃度が20mg/Lのフッ化ナトリウム水溶液の各500mLに、これら粒度の異なる除去剤を投入して撹拌し、2時間、4時間、8時間および24時間経過したときの液のフッ素イオン濃度を測定した。結果は図4のグラフに示すとおりであって、粗粒の試料(A)および(B)を用いた場合は、24時間経過後の液のフッ素イオン濃度は3〜4mg/Lであって、排水基準値8.0mg/Lを満たすことはできたが、環境基準値である0.8mg/Lを達成することはできなかった。それに対し、細粒の試料(C)〜(E)を用いた場合は、24時間経過後の液のフッ素イオン濃度は0.5〜0.7mg/Lであって、上記の環境基準値をも満たす結果が得られた。 Sample No. of fluorine ion removing agent 5 is crushed or crushed, and the particle sizes are (A) 2 to 1 mm, (B) 2 to 0.5 mm, (C) 1 to 0.5 mm, (D) 0.5 to 0.212 mm, or (E ) Five types of removal agents of 0.212 mm or less were used. Fluorine ion concentration of the liquid when 2 hours, 4 hours, 8 hours, and 24 hours have passed after adding and removing these different particle size removers to 500 mL each of a sodium fluoride aqueous solution having a fluorine ion concentration of 20 mg / L. Was measured. The results are as shown in the graph of FIG. 4, and when using coarse-grained samples (A) and (B), the fluorine ion concentration of the liquid after 24 hours was 3 to 4 mg / L, Although it was possible to satisfy the wastewater standard value of 8.0 mg / L, the environmental standard value of 0.8 mg / L could not be achieved. On the other hand, when fine-grained samples (C) to (E) were used, the fluorine ion concentration of the liquid after 24 hours was 0.5 to 0.7 mg / L, and the environmental standard value was The result which also satisfies is obtained.

本発明の実施例のデータであって、フッ素イオン除去剤中に含まれる遊離酸化カルシウムの量と、その除去剤を用いて排水中のフッ素イオンを除去したときの、24時間後の液中のフッ素イオン濃度との関係を示すグラフ。It is the data of the Example of this invention, Comprising: The quantity of the free calcium oxide contained in a fluorine ion removal agent, and when the fluorine ion in waste water was removed using the removal agent, 24 hours later in the liquid The graph which shows the relationship with a fluorine ion concentration. 本発明の実施例のデータであって、フッ素イオン除去剤中に含まれる遊離酸化マグネシウムの量と、その除去剤を用いて排水中のフッ素イオンを除去したときの、24時間後の液中のフッ素イオン濃度との関係を示すグラフ。It is the data of the Example of this invention, Comprising: The quantity of the free magnesium oxide contained in a fluorine ion removal agent, and when the fluorine ion in waste water was removed using the removal agent, 24 hours later in the liquid The graph which shows the relationship with a fluorine ion concentration. 本発明の実施例のデータであって、時間の経過に伴うフッ素イオン濃度の変化を、本発明のフッ素イオン除去剤と消石灰とを比較して示すグラフ。It is data of the Example of this invention, Comprising: The graph which shows the change of the fluorine ion concentration with progress of time comparing the fluorine ion removal agent of this invention and slaked lime. 発明の実施例のデータであって、フッ素イオン除去剤の粒度と、達成し得たフッ素イオン除去効果との関係を示すグラフ。It is data of the Example of invention, Comprising: The graph which shows the relationship between the particle size of a fluorine ion removal agent, and the fluorine ion removal effect which could be achieved.

Claims (9)

ドロマイトを焼成して得られ、遊離酸化カルシウムの含有量が1.5重量%以下で、遊離酸化マグネシウの含有量が7重量%以上である半焼成ドロマイトを有効成分とする排水中のフッ素イオンの除去剤。 It is obtained by calcining dolomite, the content of free calcium oxide is 1.5% by weight or less, and the content of free calcined magnesium oxide is 7% by weight or more. Remover. 遊離酸化カルシウムの含有量が1.2重量%以下であり、遊離酸化マグネシウの含有量が19重量%以上である半焼成ドロマイトを有効成分とする請求項1の排水中のフッ素イオンの除去剤。 The agent for removing fluorine ions in waste water according to claim 1, comprising semi-calcined dolomite having a free calcium oxide content of 1.2% by weight or less and a free magnesium oxide content of 19% by weight or more. ドロマイトを、温度600〜900℃に0.5〜48時間焼成し、破砕または粉砕してなる請求項1または2の排水中のフッ素イオンの除去剤。 The remover of fluorine ions in waste water according to claim 1 or 2, wherein dolomite is calcined at a temperature of 600 to 900 ° C for 0.5 to 48 hours, and crushed or pulverized. 葛生産のドロマイトを温度700〜800℃に2〜24時間焼成し、破砕または粉砕してなる請求項3の排水中のフッ素イオンの除去剤。 The remover of fluorine ions in waste water according to claim 3, wherein the dolomite produced by Kuzu is calcined at a temperature of 700 to 800 ° C for 2 to 24 hours and then crushed or pulverized. 破砕して粒度3〜7mmに調整してなり、注水顆粒維持率(フッ素イオンの除去剤の粒子25個を常温の水中に24時間浸漬したのちに、形状を維持した粒子のパーセンテージ)が95%以上である請求項1ないし4のいずれかの排水中のフッ素イオンの除去剤。 It is crushed and adjusted to a particle size of 3 to 7 mm, and the water injection granule maintenance ratio (the percentage of particles that maintain their shape after being immersed in water at room temperature for 24 hours with 25 fluoride ion removal agents) is 95% It is the above, The removal agent of the fluorine ion in the waste_water | drain in any one of Claim 1 thru | or 4. 粉砕して粒径1mm以下に調整してなる、請求項1ないし4のいずれかの排水中のフッ素イオンの除去剤。 The remover of fluorine ions in waste water according to any one of claims 1 to 4, which is pulverized and adjusted to a particle size of 1 mm or less. 請求項1ないし6のいずれかに記載したフッ素イオンの除去剤を、フッ素を含有する酸性の排水に接触させ、排水中のフッ素を除去することからなる排水中のフッ素イオンの除去方法。 A method for removing fluorine ions in wastewater, comprising contacting the fluorine ion removing agent according to any one of claims 1 to 6 with acidic wastewater containing fluorine to remove fluorine in the wastewater. フッ素を含有する酸性の排水に、まず消石灰を接触させてフッ素イオンの一部を除去し、このフッ素イオンの濃度が減少した排水に、請求項1ないし5のいずれかに記載したフッ素イオンの除去剤を接触させることからなる排水中のフッ素イオンの除去方法。 First, slaked lime is contacted with acidic wastewater containing fluorine to remove a part of the fluorine ions, and the fluorine ion removal according to any one of claims 1 to 5 is performed on the wastewater with a reduced concentration of fluorine ions. A method for removing fluorine ions in waste water, which comprises contacting an agent. 請求項6に記載した粒径1mm以下のフッ素イオンの除去剤を使用して、排水中のフッ素イオンの濃度を0.8mg/L以下に低減することからなる排水中のフッ素イオンの除去方法。 A method for removing fluorine ions in wastewater, comprising reducing the concentration of fluorine ions in wastewater to 0.8 mg / L or less using the fluorine ion remover having a particle size of 1 mm or less according to claim 6.
JP2009164291A 2009-07-10 2009-07-10 Fluorine ion removal agent in waste water and method for removing fluorine ion using the same Active JP5240109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009164291A JP5240109B2 (en) 2009-07-10 2009-07-10 Fluorine ion removal agent in waste water and method for removing fluorine ion using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009164291A JP5240109B2 (en) 2009-07-10 2009-07-10 Fluorine ion removal agent in waste water and method for removing fluorine ion using the same

Publications (2)

Publication Number Publication Date
JP2011016120A true JP2011016120A (en) 2011-01-27
JP5240109B2 JP5240109B2 (en) 2013-07-17

Family

ID=43594334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009164291A Active JP5240109B2 (en) 2009-07-10 2009-07-10 Fluorine ion removal agent in waste water and method for removing fluorine ion using the same

Country Status (1)

Country Link
JP (1) JP5240109B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012157834A (en) * 2011-02-01 2012-08-23 Yoshizawa Lime Industry Removing agent for harmful substances in wastewater and removal method using the same
JP2013248594A (en) * 2012-06-04 2013-12-12 Yoshizawa Lime Industry Cesium trapping material, and method for manufacturing the same
CN103949203A (en) * 2014-04-30 2014-07-30 明光市恒大棒粉厂 Preparation method of novel compound wastewater treatment adsorbing agent
JP2017080722A (en) * 2015-10-30 2017-05-18 Jx金属株式会社 Method of removing fluorine in aqueous solution

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242650A (en) * 1975-09-30 1977-04-02 Hitachi Plant Eng & Constr Co Ltd Method for processing waste water containing fluorine
JP2008080223A (en) * 2006-09-27 2008-04-10 Nisshoku Corp Fluoride ion capturing material and its using method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242650A (en) * 1975-09-30 1977-04-02 Hitachi Plant Eng & Constr Co Ltd Method for processing waste water containing fluorine
JP2008080223A (en) * 2006-09-27 2008-04-10 Nisshoku Corp Fluoride ion capturing material and its using method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6010063977; ШАБЛОВСКАЯ Г К, ЖУМАНОВ О, ЗАБАРИЛО А Б, ГОРОНОВСКИЙ И Т: 'Удаление из воды марганца, фосфатов и фторидов фильтро' Химия и технология воды Vol.10,No.3, 1988, pp.275-276 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012157834A (en) * 2011-02-01 2012-08-23 Yoshizawa Lime Industry Removing agent for harmful substances in wastewater and removal method using the same
JP2013248594A (en) * 2012-06-04 2013-12-12 Yoshizawa Lime Industry Cesium trapping material, and method for manufacturing the same
CN103949203A (en) * 2014-04-30 2014-07-30 明光市恒大棒粉厂 Preparation method of novel compound wastewater treatment adsorbing agent
JP2017080722A (en) * 2015-10-30 2017-05-18 Jx金属株式会社 Method of removing fluorine in aqueous solution

Also Published As

Publication number Publication date
JP5240109B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
Cusack et al. Enhancement of bauxite residue as a low-cost adsorbent for phosphorus in aqueous solution, using seawater and gypsum treatments
JP5187376B2 (en) Removal agent for heavy metal ions in waste water and method for removing heavy metal ions using the same
Gräfe et al. Bauxite residue issues: III. Alkalinity and associated chemistry
RU2718879C1 (en) Method of eluting calcium from steel-smelting slag and method of extracting calcium from steel-smelting slag
JP5239718B2 (en) Water treatment method for waste water containing heavy metals
US7077963B2 (en) Processes for water treatment
JP5792664B2 (en) Method for regenerating used activated carbon, activated activated carbon and method for producing the same
JP5913436B2 (en) Boron remover
JP5831914B2 (en) Water treatment method
JP5240109B2 (en) Fluorine ion removal agent in waste water and method for removing fluorine ion using the same
JP5451323B2 (en) Water treatment method
JP5257469B2 (en) Remover of harmful substances in waste water and removal method using the same
JP4558633B2 (en) Wastewater treatment method containing fluoride ions
JP2010082497A (en) Water treating agent and method for treating water
JP4631425B2 (en) Method and apparatus for treating fluorine-containing wastewater containing phosphoric acid
JP2007283216A (en) Boron-containing wastewater treatment method
KR101707769B1 (en) Water treatment agent manufacturing method and a water treatment agent is made by him
JP4808093B2 (en) Recycling method of iron powder for arsenic removal
JP6805935B2 (en) How to reuse phosphorus adsorbent in environmental water
JP2016168545A (en) Heavy metal treatment material and treatment method of heavy metal-containing fly ash washing liquid
JP2008006331A (en) Recycling method of iron powder for arsenic removal
JP2010221103A (en) Fluorine-containing wastewater treatment method
JP2010253462A (en) Method of insolubilizing harmful substance
JP2004512930A (en) Water treatment processes and compositions
JP2010082507A (en) Boron removing agent and method for treating boron-containing water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5240109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250