JP2011016085A - Catalyst for cleaning exhaust gas, method for manufacturing catalyst for cleaning exhaust gas, and honeycomb catalyst for cleaning exhaust gas - Google Patents

Catalyst for cleaning exhaust gas, method for manufacturing catalyst for cleaning exhaust gas, and honeycomb catalyst for cleaning exhaust gas Download PDF

Info

Publication number
JP2011016085A
JP2011016085A JP2009162927A JP2009162927A JP2011016085A JP 2011016085 A JP2011016085 A JP 2011016085A JP 2009162927 A JP2009162927 A JP 2009162927A JP 2009162927 A JP2009162927 A JP 2009162927A JP 2011016085 A JP2011016085 A JP 2011016085A
Authority
JP
Japan
Prior art keywords
catalyst
oxide
exhaust gas
oxide particles
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009162927A
Other languages
Japanese (ja)
Other versions
JP5391885B2 (en
Inventor
Hironori Wakamatsu
広憲 若松
Takemasa Nakagawa
剛正 中川
Tetsuo Naito
哲郎 内藤
Masaki Nakamura
雅紀 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009162927A priority Critical patent/JP5391885B2/en
Publication of JP2011016085A publication Critical patent/JP2011016085A/en
Application granted granted Critical
Publication of JP5391885B2 publication Critical patent/JP5391885B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase a purification performance of a reducing gas such as HC or CO when an oxidation/reduction atmosphere variation of the exhaust gas occurs.SOLUTION: A catalyst 1 for cleaning the exhaust gas has a first oxide particle 3 supporting an Rh particle 2, a second oxide particle 6 supporting a Pt particle 5 and having an oxygen sucking and releasing capacity, and a third oxide particle 8 intervening between these oxide particles. The distance between centroids L between the first oxide particle 3 and the second oxide particle 6 is 50-400 nm.

Description

本発明は、内燃機関から排出される排気ガスを浄化する処理に適用して好適な排気ガス浄化触媒、排気ガス浄化用触媒の製造方法及び排気ガス浄化用ハニカム触媒に関する。   The present invention relates to an exhaust gas purifying catalyst, a method for producing an exhaust gas purifying catalyst, and a honeycomb catalyst for exhaust gas purifying that are suitable for a process for purifying exhaust gas discharged from an internal combustion engine.

近年、内燃機関から排出される排気ガス中に含まれる炭化水素系化合物(HC)、一酸化炭素(CO)、窒素酸化物(NOX)等の有害物質を除去するために、アルミナ(Al2O3)等の金属酸化物担体に白金(Pt)やロジウム(Rh)等の貴金属粒子を担持した排気ガス浄化触媒が広く利用されるようになっている。従来の一般的な排気ガス浄化触媒では、周囲の雰囲気変動に対する貴金属粒子の耐久性を向上させるために、貴金属粒子が多量に用いられている。しかしながら、貴金属粒子を多量に用いることは地球資源保護の観点から見ると望ましくない。 In recent years, in order to remove harmful substances such as hydrocarbon compounds (HC), carbon monoxide (CO), nitrogen oxides (NO x ) contained in exhaust gas discharged from internal combustion engines, alumina (Al 2 Exhaust gas purification catalysts in which noble metal particles such as platinum (Pt) and rhodium (Rh) are supported on a metal oxide carrier such as O 3 ) are widely used. In a conventional general exhaust gas purification catalyst, a large amount of noble metal particles is used in order to improve the durability of the noble metal particles against ambient fluctuations. However, using a large amount of noble metal particles is not desirable from the viewpoint of protecting earth resources.

排気ガスを浄化する性能を一定以上保持しつつ、貴金属の使用量を少なくするための一つの方策は、貴金属粒子の粒径を小さくすることである。貴金属粒子の粒子径を小さくすれば、比表面積が増加するから、所望の触媒浄化性能を得るための貴金属の使用量は少なくて済む。しかしながら、貴金属粒子の粒子径が小さいと、高温での使用や長時間での使用により互いに熱凝集(シンタリング)をしてしまうため、耐久性が低下するおそれがある。   One measure for reducing the amount of noble metal used while maintaining the ability to purify the exhaust gas above a certain level is to reduce the particle size of the noble metal particles. If the particle diameter of the noble metal particles is reduced, the specific surface area increases, so that the amount of noble metal used for obtaining the desired catalyst purification performance can be reduced. However, if the particle diameter of the noble metal particles is small, the heat aggregation (sintering) may occur due to use at a high temperature or use for a long time, which may reduce durability.

そこで、貴金属粒子が第1の化合物に担持され、この貴金属粒子を担持した第1化合物が第2の化合物に内包されて、当該貴金属が担持された第1の化合物同士がこの第2の化合物により隔てられた構造を有する排気ガス浄化用触媒が開発された(特許文献1)。このような構造を有する排気ガス浄化用触媒は、貴金属粒子が第1の化合物に担持されることにより、第1の化合物に貴金属粒子が物理的に固定されることにより、貴金属粒子の移動凝集が抑制され、かつ、この貴金属粒子を担持した第1の化合物が、第2の化合物によって互いに隔てられることで、この貴金属を担持した第1の化合物が互いに接触し凝集することを抑制する。これらのことにより、貴金属粒子が耐久後に凝集することを防止して耐久性を向上させることができる。   Therefore, noble metal particles are supported on the first compound, the first compound supporting the noble metal particles is encapsulated in the second compound, and the first compounds supporting the noble metal are supported by the second compound. An exhaust gas purification catalyst having a separated structure has been developed (Patent Document 1). In the exhaust gas purifying catalyst having such a structure, the noble metal particles are supported on the first compound, and the noble metal particles are physically fixed to the first compound. The first compounds supported by the noble metal particles are separated from each other by the second compound, so that the first compounds supporting the noble metal are prevented from contacting and aggregating with each other. By these things, durability can be improved by preventing the noble metal particles from aggregating after durability.

国際公開第2007/052627号International Publication No. 2007/052627

特許文献1の発明は、車両が加減速する際における排気ガスの酸化/還元雰囲気変動が生じたときの、HCやCOといった還元ガスの浄化に対して、より一層の改良の余地が残されていた。特に、貴金属が排気ガス浄化活性に優れるRhである場合に、触媒の更なる改良が求められる。   The invention of Patent Document 1 leaves room for further improvement with respect to purification of reducing gases such as HC and CO when an exhaust gas oxidation / reduction atmosphere fluctuates when the vehicle accelerates or decelerates. It was. In particular, when the noble metal is Rh having excellent exhaust gas purification activity, further improvement of the catalyst is required.

上記課題を解決する本発明の排気ガス浄化触媒は、Rhを担持した第1の酸化物粒と、Ptを担持した第2の酸化物粒と、これらの酸化物粒の間に介在する第3の酸化物粒とを有し、前記第1の酸化物粒と前記第2の酸化物粒との重心間距離が50〜400nmであることを要旨とする。   The exhaust gas purifying catalyst of the present invention that solves the above-described problems is a first oxide particle supporting Rh, a second oxide particle supporting Pt, and a third oxide interposed between these oxide particles. In summary, the distance between the centers of gravity of the first oxide particles and the second oxide particles is 50 to 400 nm.

本発明の排気ガス浄化用触媒によれば、Rhを担持し酸素吸放出能を有する第1の酸化物粒の近傍にPtを担持し酸素吸放出能を有する第2の酸化物粒を、適切な距離を隔てて具備しているので、還元ガスの浄化に必要な酸素が第2の酸化物から十分に供給されるので、排気ガス雰囲気変動の際にも優れた排気ガス浄化性能を発揮することができる。   According to the exhaust gas purifying catalyst of the present invention, the second oxide particles supporting oxygen and absorbing and releasing oxygen in the vicinity of the first oxide particles supporting oxygen and absorbing and releasing oxygen are appropriately used. Since the oxygen necessary for purification of the reducing gas is sufficiently supplied from the second oxide, the exhaust gas purification performance is excellent even when the exhaust gas atmosphere changes. be able to.

本発明の排気ガス浄化用触媒の一実施形態の模式図である。1 is a schematic view of an embodiment of an exhaust gas purifying catalyst of the present invention. 本発明の排気ガス浄化触媒が担持されたハニカム触媒の模式的な斜視図である。1 is a schematic perspective view of a honeycomb catalyst carrying an exhaust gas purification catalyst of the present invention. 図2のハニカム触媒における一つの細孔について、その貫通方向に垂直な断面における拡大断面図である。FIG. 3 is an enlarged cross-sectional view of a single pore in the honeycomb catalyst of FIG. 2 in a cross section perpendicular to the penetrating direction. ハニカム触媒上に積層された触媒層の積層構造の模式図である。It is a schematic diagram of the laminated structure of the catalyst layer laminated | stacked on the honeycomb catalyst. 酸素放出速度の計測装置の概念図である。It is a conceptual diagram of the measuring device of oxygen release rate. 酸素放出速度の計測条件を示す温度−時間チャート図である。It is a temperature-time chart figure which shows the measurement conditions of an oxygen release rate. 酸素放出速度の算出方法を説明するグラフである。It is a graph explaining the calculation method of an oxygen release rate. 各実施例の酸素評価速度とNOx浄化率との関係を示すグラフである。It is a graph which shows the relationship between the oxygen evaluation speed | rate and NOx purification rate of each Example.

〔排気ガス浄化用触媒〕
以下、本発明の排気ガス浄化触媒の実施形態について、図面を用いつつ説明する。
[Exhaust gas purification catalyst]
Hereinafter, embodiments of an exhaust gas purification catalyst of the present invention will be described with reference to the drawings.

図1は、本発明の排気ガス浄化用触媒の一実施形態の模式図である。図1に示す排気ガス浄化用触媒1は、排気ガス浄化活性を有する触媒金属であるRh粒子2を、第1の酸化物粒3の表面に担持したRh担持酸化物粒4と、Rh粒子2とは別の触媒金属であるPt粒子5を、第2の酸化物粒6の表面に担持したPt担持酸化物粒7と、Rh担持酸化物粒4及びPt担持酸化物粒7との周囲に微細分散している第3の酸化物粒8とを有している。第2の酸化物粒6は、酸素吸放出能(Oxygen Storage Capacity)を有する材料からなる。   FIG. 1 is a schematic view of an embodiment of the exhaust gas purifying catalyst of the present invention. The exhaust gas purifying catalyst 1 shown in FIG. 1 includes Rh-supporting oxide particles 4 that support Rh particles 2 that are catalyst metals having exhaust gas purifying activity on the surface of the first oxide particles 3, and Rh particles 2. Pt particles 5, which are different from the catalyst metal, are placed around the Pt-supported oxide particles 7 supported on the surface of the second oxide particles 6, the Rh-supported oxide particles 4 and the Pt-supported oxide particles 7. The third oxide particles 8 are finely dispersed. The second oxide grains 6 are made of a material having an oxygen storage capacity.

図示した本実施形態の排気ガス浄化用触媒1は、Rh担持酸化物粒4及びPt担持酸化物粒7はそれぞれ、微細粒子の一次粒子又は微細粒子が集合してなる二次粒子の形態を有している。Rh担持酸化物粒4及びPt担持酸化物粒7は、図1では模式的に円形に示しているが、実際の一次粒子又は二次粒子は、球状とは限られず、また粒子径も均一ではない。また、第3の酸化物粒8も模式的に四角形に示しているが、実際の第3の酸化物粒8は直方体を有しているとは限らない。   In the illustrated exhaust gas purification catalyst 1 of the present embodiment, each of the Rh-supported oxide particles 4 and the Pt-supported oxide particles 7 has a form of primary particles of fine particles or secondary particles formed by aggregation of fine particles. is doing. Although the Rh-supported oxide particles 4 and the Pt-supported oxide particles 7 are schematically shown in a circle in FIG. 1, the actual primary particles or secondary particles are not limited to a sphere, and the particle diameter is not uniform. Absent. Moreover, although the 3rd oxide particle 8 is also typically shown in the rectangle, the actual 3rd oxide particle 8 does not necessarily have a rectangular parallelepiped.

図示した本実施形態の排気ガス浄化用触媒1は、Rh担持酸化物粒4とPt担持酸化物粒7との重心間距離Lが50〜400nmの範囲にある。   In the illustrated exhaust gas purification catalyst 1 of the present embodiment, the distance L between the centers of gravity of the Rh-supporting oxide particles 4 and the Pt-supporting oxide particles 7 is in the range of 50 to 400 nm.

図1に示す排気ガス浄化用触媒1は、第1の酸化物粒3がRh粒子2を担持することにより、この第1の酸化物粒3がRh粒子2と化学的に結合しアンカー剤として作用し、Rh粒子2の移動を化学的に抑制する。同様に、また、第2の酸化物粒6がPt粒子5を担持することにより、この第2の酸化物粒6がPt粒子5と化学的に結合しアンカー剤として作用し、Pt粒子5の移動を化学的に抑制する。更に、Rh担持酸化物粒4及びPt担持酸化物粒7を第3の酸化物粒8で覆い、内包する形態とすることにより、第3の酸化物粒8がRh粒子2やPt粒子5の移動障壁となって、これらRh粒子2やPt粒子5の移動を物理的に抑制する。これらの貴金属粒子の移動を化学的及び物理的に抑制することによって、Rh粒子2及びPt粒子5はいずれも凝集が抑制されるので、排気ガスの浄化を高温又は長期間行っても10nm程度以下の微細な粒径を維持するので優れた触媒活性を有している。   In the exhaust gas purifying catalyst 1 shown in FIG. 1, the first oxide particles 3 carry Rh particles 2 so that the first oxide particles 3 are chemically bonded to the Rh particles 2 as an anchor agent. Acts and chemically suppresses the movement of the Rh particles 2. Similarly, when the second oxide particles 6 carry the Pt particles 5, the second oxide particles 6 chemically bond with the Pt particles 5 and act as an anchoring agent. Chemical inhibition of migration. Further, by covering the Rh-supporting oxide particles 4 and the Pt-supporting oxide particles 7 with the third oxide particles 8 and encapsulating them, the third oxide particles 8 are formed of the Rh particles 2 and the Pt particles 5. It becomes a movement barrier and physically suppresses the movement of these Rh particles 2 and Pt particles 5. By chemically and physically suppressing the movement of these noble metal particles, the aggregation of both Rh particles 2 and Pt particles 5 is suppressed. Therefore, it has excellent catalytic activity.

Ptを担持する第2の酸化物粒6は、酸素吸放出能を有する材料からなる。このことにより、排気ガス浄化用触媒1中に、Rh担持酸化物粒4及びPt担持酸化物粒7の両方を含む本実施形態の排気ガス浄化触媒においては、Pt担持酸化物粒7を構成する第2の酸化物粒6が、第1の酸化物粒3に担持されたRh粒子2周囲の雰囲気に作用する。より詳しくは、排気ガス浄化用触媒1中でRh担持酸化物粒4とPt担持酸化物粒7とが適切な間隔で分散している状態においては、排気ガス変動に応じて酸素吸放出能を有する第2の酸化物粒6が酸素を吸放出することにより、第1の酸化物粒3上でナノレベルの粒径を有するRh粒子2周囲の雰囲気中から過剰酸素を除去し、また不足酸素を供給する。つまり、Rh粒子2に対し、排気ガス変動時の酸素吸放出速度の向上を図ることができる。このことにより、車両が加減速した際に生じる雰囲気変動時のRh粒子2による排気ガス浄化特性を向上させることが可能となる。   The second oxide particles 6 supporting Pt are made of a material having an oxygen absorption / release capability. Thus, in the exhaust gas purification catalyst of the present embodiment in which both the Rh-supported oxide particles 4 and the Pt-supported oxide particles 7 are included in the exhaust gas purification catalyst 1, the Pt-supported oxide particles 7 are constituted. The second oxide particles 6 act on the atmosphere around the Rh particles 2 supported by the first oxide particles 3. More specifically, in a state where the Rh-supporting oxide particles 4 and the Pt-supporting oxide particles 7 are dispersed at an appropriate interval in the exhaust gas purification catalyst 1, the oxygen absorption / desorption capability is exhibited in accordance with exhaust gas fluctuations. Excess oxygen is removed from the atmosphere around the Rh particle 2 having a nano-level particle size on the first oxide particle 3 by the second oxide particle 6 having oxygen absorption / release. Supply. That is, it is possible to improve the oxygen absorption / release rate when the exhaust gas fluctuates with respect to the Rh particles 2. As a result, it is possible to improve the exhaust gas purification characteristics by the Rh particles 2 when the atmosphere changes when the vehicle is accelerated or decelerated.

したがって、排気ガス浄化に特に有効なRh粒子を含む排気ガス浄化用触媒において、本実施形態のようなPt担持酸化物粒7を有してない触媒構造の場合には、車両が加減速する際の酸化/還元雰囲気変動が生じた場合に、HCやCOといった還元ガスの浄化に対し、それをRhで浄化するために必要な酸素源が不足する結果、ナノレベルの微細Rh粒子による浄化効果を十分に活用することが難しい場合があることの懸念があったのに対して、本実施形態の排気ガス浄化用触媒1では、Pt担持酸化物粒7がRh担持酸化物粒4から適切な距離に位置する構造になることにより、Rh粒子2近傍の酸素吸放出速度が向上し、ナノレベルの微細Rh粒子に十分に酸素を供給させることができる結果、ナノレベルの微細Rh粒子による浄化効果、特にHCやCOといった還元ガスの浄化効果を十分に活用することが可能である。   Therefore, in the exhaust gas purification catalyst containing Rh particles that is particularly effective for exhaust gas purification, in the case of a catalyst structure that does not have the Pt-supported oxide particles 7 as in the present embodiment, the vehicle is accelerated or decelerated. As a result of the lack of the oxygen source required to purify the reducing gas such as HC and CO with Rh when the oxidation / reduction atmosphere fluctuations occur, the purification effect of nano-level fine Rh particles is reduced. While there was a concern that it might be difficult to fully utilize, in the exhaust gas purifying catalyst 1 of the present embodiment, the Pt-supported oxide particles 7 are at an appropriate distance from the Rh-supported oxide particles 4. As a result, the oxygen absorption / release rate in the vicinity of the Rh particles 2 is improved, and oxygen can be sufficiently supplied to the nano-level fine Rh particles. Especially reducing gases such as HC and CO The purification effect can be fully utilized.

また、排気ガス浄化に特に有効なRh粒子を含む排気ガス浄化用触媒において、本実施形態のようなPt担持酸化物粒7を有してない触媒構造の場合には、リッチ雰囲気の際にRh粒子にHCが吸着したままになり(HC被毒)が生じ、NOxの還元浄化が進みにくくなる場合があることの懸念があったのに対して、本実施形態の排気ガス浄化用触媒1では、Pt担持酸化物粒7がRh担持酸化物粒4から適切な距離に位置する構造になることにより、Rh粒子2近傍の酸素吸放出速度が向上し、リーン時にはナノレベルの微細Rh粒子に十分に酸素を供給させることができる結果、Rh粒子2に吸着していたHCはRh粒子に供給された酸素により分解される。したがって、Rh粒子2のHC被毒が効果的に抑制され、NOxの還元浄化の劣化が抑制される。   Further, in the exhaust gas purification catalyst containing Rh particles that is particularly effective for exhaust gas purification, in the case of a catalyst structure that does not have the Pt-supported oxide particles 7 as in the present embodiment, Rh in a rich atmosphere. There is a concern that HC may remain adsorbed on the particles (HC poisoning), which may make it difficult to reduce and purify NOx. In the exhaust gas purifying catalyst 1 of the present embodiment, however, , Pt-supported oxide particles 7 are positioned at an appropriate distance from Rh-supported oxide particles 4, thereby improving the oxygen absorption / release rate in the vicinity of Rh particles 2, which is sufficient for nano-level fine Rh particles when lean As a result, the HC adsorbed on the Rh particles 2 is decomposed by the oxygen supplied to the Rh particles. Therefore, HC poisoning of the Rh particles 2 is effectively suppressed, and deterioration of NOx reduction and purification is suppressed.

更に、本実施形態の排気ガス浄化用触媒1は、第2の酸化物粒6上に、微少量のPt粒子5を担持してPt担持酸化物粒7を構成することにより、この担持したPt粒子5を介した酸素吸収・放出反応が促進される。これにより第2の酸化物粒6上に担持されたPt粒子5近傍の雰囲気変動を抑制して、Pt粒子5の浄化性能を維持し、HC除去活性に優れるPt粒子5の浄化効果を十分に活用することが可能になる。   Further, the exhaust gas purifying catalyst 1 of the present embodiment supports the supported Pt by forming a Pt-supported oxide particle 7 by supporting a small amount of Pt particles 5 on the second oxide particles 6. The oxygen absorption / release reaction through the particles 5 is promoted. As a result, the atmosphere fluctuation in the vicinity of the Pt particles 5 supported on the second oxide particles 6 is suppressed, the purification performance of the Pt particles 5 is maintained, and the purification effect of the Pt particles 5 having excellent HC removal activity is sufficiently obtained. It becomes possible to utilize.

Rh担持酸化物粒4とPt担持酸化物粒7との重心間距離Lは、50〜400nmの範囲とする。重心間距離Lの下限値は、本発明で所期した触媒構造を保つために必要な距離として定められる。第1の酸化物粒3及び第2の酸化物粒6の半径の下限値がそれぞれ10nm、第3の酸化物粒8の粒径の下限値が20nmであることから、重心間距離Lが50nmに満たない場合には、第1の酸化物粒3及び第2の酸化物粒6の凝集が生じてしまい、本発明で所期した触媒構造を保つことが難しい。一方、重心間距離Lが400nmを超える場合は、第1の酸化物粒3上のRh粒子2に対し、Pt担持酸化物粒7からの酸素吸放出速度が十分でなく、結果として、Rh粒子2への酸素放出が悪化する。   The distance L between the centers of gravity of the Rh-supported oxide particles 4 and the Pt-supported oxide particles 7 is set in the range of 50 to 400 nm. The lower limit value of the distance L between the centers of gravity is determined as a distance necessary for maintaining the catalyst structure as intended in the present invention. Since the lower limit value of the radius of the first oxide particle 3 and the second oxide particle 6 is 10 nm and the lower limit value of the particle size of the third oxide particle 8 is 20 nm, the distance L between the centers of gravity is 50 nm. If it is less than 1, the aggregation of the first oxide particles 3 and the second oxide particles 6 occurs, and it is difficult to maintain the catalyst structure expected in the present invention. On the other hand, when the distance L between the centers of gravity exceeds 400 nm, the oxygen absorption / release rate from the Pt-supported oxide particles 7 is not sufficient for the Rh particles 2 on the first oxide particles 3, and as a result, the Rh particles Oxygen release to 2 worsens.

このような重心間距離Lを満たす条件で、本実施形態の触媒構造を実現するにあたり、第1の酸化物粒3、第2の酸化物粒6及び第3の酸化物粒8の粒子径や混入比率は、自由に選定することが可能である。   In realizing the catalyst structure of the present embodiment under the condition satisfying the distance L between the centers of gravity, the particle diameters of the first oxide particles 3, the second oxide particles 6, and the third oxide particles 8 The mixing ratio can be freely selected.

なお、Rh担持酸化物粒4とPt担持酸化物粒7との重心間距離Lの測定は、以下の(1)〜(4)の手順で行うことが可能である。もっとも、他の方法であっても客観的かつ再現性が得られる分析方法であれば可能とする。   The measurement of the distance L between the centers of gravity of the Rh-supporting oxide particles 4 and the Pt-supporting oxide particles 7 can be performed by the following procedures (1) to (4). Of course, other methods can be used as long as they are objective and reproducible.

(1) 触媒粉末のTEM-EDX分析もしくはHAADF-STEM分析
(2) 画像中でのRh担持酸化物粒4及びPt担持酸化物粒7の輪郭抽出
(3) 抽出した輪郭を基に表面積から球近似及び中心点の設定
(4) 最近接中心点の検索と距離測定
まず、上記(1) の触媒粉末のTEM-EDX分析もしくはHAADF-STEM分析においては、触媒粉末をエポキシ樹脂にて包理処理し、硬化後、ウルトラミクロトームにより、超薄切片を作成した。その切片を用いて、透過型電子顕微鏡(TEM)もしくはHAADF(High-Angle-Annular-Dark-Field)-STEMにより触媒層内部の触媒粉末を観察しRh担持酸化物粒4、Pt担持酸化物粒7又は第3の酸化物粒8の判別を行う。一例としてTEM-EDXの場合の分析手順を示すと、まず、得られた映像の中で、コントラスト(影)の部分に焦点を充て、元素種を限定し、その元素を有する粒子の粒子径を特定した。これらの粒子の元素種、粒子径の相違によりRh担持酸化物粒4、Pt担持酸化物粒7又は第3の酸化物粒8の判別を行う。Rh担持酸化物粒4及びPt担持酸化物粒7と、第3の酸化物粒8との判別については、EDXにより貴金属種の有無を検出することで判断可能である。ただし、EDXのX線ビーム径に対し貴金属粒径が小さい場合には検出ができない場合があるため、Rh担持酸化物粒4とPt担持酸化物粒7との含有元素が異なることを利用し、Ndの検出強度比を用いて判別を行うことが好ましい。HAADF-STEM像の場合はコントラストにより判別が可能である。
(1) TEM-EDX analysis or HAADF-STEM analysis of catalyst powder
(2) Contour extraction of Rh-supported oxide particles 4 and Pt-supported oxide particles 7 in the image
(3) Sphere approximation and center point setting from surface area based on extracted contour
(4) Find nearest center point and measure distance First, in TEM-EDX analysis or HAADF-STEM analysis of catalyst powder of (1) above, the catalyst powder is embedded in epoxy resin, cured, Ultrathin sections were prepared with a microtome. Using this section, the catalyst powder inside the catalyst layer was observed with a transmission electron microscope (TEM) or HAADF (High-Angle-Annular-Dark-Field) -STEM, and Rh-supported oxide particles 4 and Pt-supported oxide particles 7 or the third oxide grain 8 is discriminated. As an example, the analysis procedure in the case of TEM-EDX is shown. First, in the obtained image, focus is placed on the contrast (shadow) part, the element type is limited, and the particle diameter of the particle containing the element is determined. Identified. The Rh-supporting oxide particles 4, the Pt-supporting oxide particles 7 or the third oxide particles 8 are discriminated based on the difference in the element type and particle diameter of these particles. The discrimination between the Rh-supporting oxide particles 4 and the Pt-supporting oxide particles 7 and the third oxide particles 8 can be made by detecting the presence or absence of a noble metal species by EDX. However, since the detection may not be possible when the particle diameter of the noble metal is smaller than the X-ray beam diameter of EDX, utilizing the fact that the contained elements of the Rh-supported oxide particles 4 and the Pt-supported oxide particles 7 are different, It is preferable to perform discrimination using the detected intensity ratio of Nd. In the case of a HAADF-STEM image, discrimination is possible by contrast.

次に、上記(2)の画像中でのRh担持酸化物粒4及びPt担持酸化物粒7の輪郭抽出においては、上記(1) で得られた像よりRh担持酸化物粒4及びPt担持酸化物粒7の輪郭を抽出するのであって、例えば、抽出方法は画像処理ソフトを用いたコントラストによる自動抽出、及びOHPシートなどに写し取る手動抽出のいずれであっても構わない。   Next, in the contour extraction of the Rh-supporting oxide particles 4 and Pt-supporting oxide particles 7 in the image of (2) above, the Rh-supporting oxide particles 4 and Pt-supporting from the image obtained in (1) above. The outline of the oxide grains 7 is extracted. For example, the extraction method may be either automatic extraction by contrast using image processing software or manual extraction copied to an OHP sheet.

次に、上記(3) の抽出した輪郭を基に表面積から球近似及び中心点の設定及び上記(4) の最近接中心点の検索と距離測定については、いずれも市販の画像処理ソフトにより可能である。抽出した輪郭により面積を算出し、この真球粒子と仮定した場合の表面積から算出した粒径及び重心を設定する。同様に面積からの真円仮定でも構わないが、表面積近似が好ましい。   Next, based on the contour extracted in (3) above, the sphere approximation and center point setting from the surface area and the closest center point search and distance measurement in (4) above are all possible using commercially available image processing software. It is. The area is calculated from the extracted contour, and the particle size and the center of gravity calculated from the surface area when assuming the true spherical particle are set. Similarly, a perfect circle from the area may be assumed, but surface area approximation is preferable.

一例として、この粒子の最近接となるPt担持酸化物粒7(あるいはRh担持酸化物粒4)を検索し、距離を測定するのに用いた装置名を示すと、ソフト名:カールツアイス製KS-400である。   As an example, Pt-supported oxide particles 7 (or Rh-supported oxide particles 4) that are closest to these particles are searched, and the name of the device used to measure the distance is shown. Software name: KS manufactured by Carl Zeiss -400.

次に、Rh担持酸化物粒4を構成する第1の酸化物粒3は、Zr-Ce-La複合酸化物よりなることが好ましい。その理由は、Rhが担持される酸化物は、担持されるRhが過剰に酸化されることのないZr(ジルコニウム)を主材料とし、Ce(セリウム)及び耐熱性向上を図るためのLa(ランタン)を含有することが好ましいからである。この第1の酸化物に対してのCeの添加効果について、そのメカニズムの詳細は不明であるが、担持するRhへの電子授受などに伴う排気ガス浄化活性向上が考えられる。   Next, the first oxide particles 3 constituting the Rh-supporting oxide particles 4 are preferably made of a Zr—Ce—La composite oxide. The reason is that the oxide on which Rh is supported is mainly composed of Zr (zirconium) in which the supported Rh is not excessively oxidized, and Ce (cerium) and La (lanthanum) for improving heat resistance. It is because it is preferable to contain. Although the details of the mechanism of the addition effect of Ce to the first oxide are unknown, it is conceivable to improve the exhaust gas purification activity accompanying the electron transfer to the supported Rh.

また、Pt担持酸化物粒7を構成する第2の酸化物粒6は、Zr、Ce、Nd(ネオジム)及びY(イットリウム)から選ばれる少なくとも1種を含む酸化物よりなることが好ましい。より好ましくは、第2の酸化物粒6は、Zr及び酸素吸放出能を有するCeを主材料とし、この主材料の耐熱性を高めるためのNd又はYを含む材料を用いることができる。   Moreover, it is preferable that the 2nd oxide particle 6 which comprises the Pt carrying | support oxide particle 7 consists of an oxide containing at least 1 sort (s) chosen from Zr, Ce, Nd (neodymium), and Y (yttrium). More preferably, the second oxide grain 6 can be made of a material containing Nd or Y, which is mainly composed of Zr and Ce having oxygen absorbing / releasing ability, and for enhancing the heat resistance of the main material.

Rh粒子2を担持する第1の酸化物粒3とPt粒子5を担持する第2の酸化物粒6との組み合わせに関して、上記のように第1の酸化物粒3がZr-Ce-La複合酸化物よりなり、第2の酸化物粒6がZr、Ce、Nd及びYから選ばれる少なくとも1種を含む酸化物よりなる構成材料とすることで、Rh粒子2上でのCO-HC-NOx-O2が関与する排気浄化反応に対し、酸素吸放出速度向上効果を、高い耐久性で維持可能である。 Regarding the combination of the first oxide particles 3 supporting the Rh particles 2 and the second oxide particles 6 supporting the Pt particles 5, the first oxide particles 3 are composed of a Zr-Ce-La composite as described above. CO—HC—NOx on the Rh particles 2 is made of an oxide, and the second oxide particles 6 are made of an oxide containing at least one selected from Zr, Ce, Nd and Y. It is possible to maintain the oxygen absorption / release rate improvement effect with high durability against the exhaust purification reaction involving -O 2 .

第2の酸化物粒6は、Zr-Ce-Nd複合酸化物であることが、より好ましい。Pt粒子5を担持し、酸素吸放出能を有する第2の酸化物粒6としては、Ndを含んだ化合物であることがより好ましいのである。詳細なメカニズムは不明であるが、Yに対し、Ndは塩基性を示すため、酸性ガスであるNOx浄化に対し、良好な排気ガス浄化特性を得ることができる。また、酸素吸放出速度に対してもNdを添加した系では、Yを添加した系に対し、速度を増大する作用を示すことを見出している。   The second oxide particles 6 are more preferably a Zr—Ce—Nd composite oxide. The second oxide particles 6 that support the Pt particles 5 and have the ability to absorb and release oxygen are more preferably compounds containing Nd. Although the detailed mechanism is unknown, since Nd is basic with respect to Y, good exhaust gas purification characteristics can be obtained for NOx purification, which is an acidic gas. In addition, it has been found that the system in which Nd is added to the oxygen absorption / release rate also has an effect of increasing the speed as compared with the system in which Y is added.

Rh担持酸化物粒4とPt担持酸化物粒7との重心間距離Lは、200〜250nmの範囲であることが、より好ましい。この範囲であれば、重心間距離Lを250nm以下とすることにより触媒の酸素吸放出速度を高めつつ、一方で、重心間距離Lを200nm未満にするために第1の酸化物粒3及び第2の酸化物粒6を粒径が数十nmレベルまで微細化するのに必要な、第1の酸化物粒3及び第2の酸化物粒6の粉末加工が不要となり、結果として、比較的安価に上記本発明の作用効果を発現させることが可能となる。   The distance L between the centers of gravity of the Rh-supporting oxide particles 4 and the Pt-supporting oxide particles 7 is more preferably in the range of 200 to 250 nm. Within this range, the oxygen absorption / release rate of the catalyst is increased by setting the distance L between the centers of gravity to 250 nm or less, while the first oxide particles 3 and the first oxide grains 3 are used to reduce the distance L between the centers of gravity to less than 200 nm. The powder processing of the first oxide particles 3 and the second oxide particles 6 necessary for refining the oxide particles 6 of 2 to a size of several tens of nanometers becomes unnecessary, and as a result, The effects of the present invention can be expressed at low cost.

Pt担持酸化物粒7のメジアン径D2は、150〜200nmであることが好ましい。Pt担持酸化物粒7の各粒子の径は、第2の酸化物粒6の一次粒子又は二次粒子の大きさによって相違しており、Pt担持酸化物粒7が、メジアン径で150nmに満たない程に微細な酸化物粒である場合には、このような微細な酸化物を合成するためにはコロイド法などの高コストの製法を必要とし、加工コスト増を招く。一方、200nmを超えるメジアン径の場合においては、Rh担持酸化物粒4及びPt担持酸化物粒7粒間の距離増大を招き、結果として、本発明で所期した前述の作用発現が得にくい。また、重心間距離が同じであったとしても、Pt担持酸化物粒7が大きい場合は、Pt担持酸化物粒7が小さい場合と比べて、第2の酸化物粒6上に担持されたPt量が多いため、この第2の酸化物粒6上のPtが凝集し、肥大化することが懸念される。 Median diameter D 2 of Pt supported oxide particles 7 is preferably 150 to 200 nm. The diameter of each particle of the Pt-supported oxide particle 7 differs depending on the size of the primary particle or the secondary particle of the second oxide particle 6, and the Pt-supported oxide particle 7 has a median diameter of 150 nm. In the case where the oxide particles are too fine, a high-cost manufacturing method such as a colloid method is required to synthesize such a fine oxide, resulting in an increase in processing cost. On the other hand, in the case of a median diameter exceeding 200 nm, the distance between the Rh-supporting oxide particles 4 and the Pt-supporting oxide particles 7 is increased, and as a result, it is difficult to obtain the above-described action manifested in the present invention. Even if the distance between the centers of gravity is the same, the Pt supported oxide particles 7 are larger when the Pt supported oxide particles 7 are smaller than when the Pt supported oxide particles 7 are small. Since the amount is large, there is a concern that Pt on the second oxide grains 6 aggregates and enlarges.

Rh担持酸化物粒4のメジアン径D1は、特に限定されない、Pt担持酸化物粒7のメジアン径との兼ね合いで、Rh担持酸化物粒4とPt担持酸化物粒7との重心間距離50〜200nmを満たすようなRh担持酸化物粒4のメジアン径であればよい。排気ガス浄化用触媒1の製造工程を考慮すると、Rh担持酸化物粒4とPt担持酸化物粒7とを同一の粉砕装置により粉砕する場合には、Pt担持酸化物粒7と同程度のRh担持酸化物粒4の粒径とすることもできる。 The median diameter D 1 of the Rh-supported oxide particles 4 is not particularly limited, and the distance between the centers of gravity of the Rh-supported oxide particles 4 and the Pt-supported oxide particles 7 is 50 in consideration of the median diameter of the Pt-supported oxide particles 7. Any median diameter of the Rh-supported oxide particles 4 satisfying ~ 200 nm may be used. Considering the manufacturing process of the exhaust gas purifying catalyst 1, when the Rh-supported oxide particles 4 and the Pt-supported oxide particles 7 are pulverized by the same pulverizer, the same Rh as the Pt-supported oxide particles 7 is obtained. The particle size of the supported oxide particles 4 can also be set.

第3の酸化物粒8は、アルミナ(Al2O3)やシリカ(SiO2)を適用することができる。 Alumina (Al 2 O 3 ) or silica (SiO 2 ) can be applied to the third oxide particles 8.

〔排気ガス浄化用触媒の製造方法〕
排気ガス浄化用触媒1を製造するには、Rh粒子と第1の酸化物粒と、Pt粒子と第2の酸化物粒と第3の酸化物粒とをそれぞれ用意する。第1の酸化物及び第2の酸化物のために金属アルコキシドのような酸化物前駆体を用意してもよい。また、第3の酸化物粒はベーマイトのような前駆体を用意してもよい。次に、Rh粒子を第1の酸化物粒の表面に担持させてRh担持酸化物粒を形成する。また、Pt粒子を第2の酸化物粒の表面に担持させてPt担持酸化物粒を形成する。これらのRh酸化物粒及びPt担持酸化物粒を粉砕する。粉砕することより、製造される排気ガス浄化触媒は、Rh酸化物粒とPt担持酸化物粒との重心間距離を50〜400nmの範囲にすることができる。この粉砕をするための粉砕装置については特に限定はなく、目標とする重心間距離や酸化物粒径に応じて適切な装置を選択すればよい。例えば湿式のボールミル等を用いた粉砕装置を用いることができる。粉砕後に第3の酸化物粒又は第3の酸化物の前駆体を加えて混合した後、乾燥させてから焼成することによって、排気ガス浄化用触媒1を得ることができる。
[Method for producing exhaust gas purifying catalyst]
In order to manufacture the exhaust gas purification catalyst 1, Rh particles, first oxide particles, Pt particles, second oxide particles, and third oxide particles are prepared. An oxide precursor such as a metal alkoxide may be prepared for the first oxide and the second oxide. The third oxide particles may be prepared with a precursor such as boehmite. Next, Rh particles are supported on the surface of the first oxide particles to form Rh-supported oxide particles. Further, Pt particles are supported on the surface of the second oxide particles to form Pt supported oxide particles. These Rh oxide particles and Pt-supported oxide particles are pulverized. By pulverizing, the manufactured exhaust gas purification catalyst can make the distance between the centers of gravity of the Rh oxide particles and the Pt-supported oxide particles be in the range of 50 to 400 nm. There is no particular limitation on the pulverizing apparatus for pulverizing, and an appropriate apparatus may be selected according to the target distance between the centers of gravity and the oxide particle diameter. For example, a pulverizer using a wet ball mill or the like can be used. The exhaust gas purifying catalyst 1 can be obtained by adding and mixing the third oxide particles or the third oxide precursor after pulverization, followed by drying and firing.

上記のような製造方法を用いることにより、本実施形態の排気ガス浄化用触媒1を比較的安価に製造可能となる。もちろん、貴金属担持酸化物粒を溶媒中で析出させ、その周囲に第3の酸化物を配置させるといったボトムアップ的手法も用いることは可能であるが、複数の工程を要し、製造コスト増大を招く。   By using the above manufacturing method, the exhaust gas purifying catalyst 1 of the present embodiment can be manufactured at a relatively low cost. Of course, it is possible to use a bottom-up method of precipitating noble metal-supported oxide particles in a solvent and arranging a third oxide around the noble metal-supported oxide particles. Invite.

〔排気ガス浄化用ハニカム触媒〕
次に、本発明の実施形態に係る排気ガス浄化用ハニカム触媒について、図2〜4を用いて説明する。
[Honeycomb catalyst for exhaust gas purification]
Next, an exhaust gas purifying honeycomb catalyst according to an embodiment of the present invention will be described with reference to FIGS.

図2は、本発明の排気ガス浄化用ハニカム触媒の一実施形態の模式的な斜視図である。図2に示す排気ガス浄化用ハニカム触媒20は、耐熱性材料からなり、概略円柱形状を有し、一方の端面から他方の端面との間を貫通する多数の細孔20aを有している。なお、図2では、発明の理解を容易にするよう細孔20aを模式的に描いている。そのため、細孔20aの形状、寸法及び個数は現実の担体細孔とは相違している。現実の排気ガス浄化用ハニカム触媒は、隣接する細孔を隔てる隔壁は薄く、例えば0.1mm程度である。   FIG. 2 is a schematic perspective view of an embodiment of the honeycomb catalyst for purifying exhaust gas of the present invention. The honeycomb catalyst 20 for exhaust gas purification shown in FIG. 2 is made of a heat resistant material, has a substantially cylindrical shape, and has a large number of pores 20a penetrating from one end face to the other end face. In FIG. 2, the pores 20a are schematically drawn so as to facilitate understanding of the invention. Therefore, the shape, size and number of the pores 20a are different from the actual carrier pores. In an actual exhaust gas purifying honeycomb catalyst, the partition walls separating adjacent pores are thin, for example, about 0.1 mm.

図3に、図2の排気ガス浄化用ハニカム触媒20における一つの細孔20aについて、その貫通方向に垂直な断面における拡大断面図を示す。図3の拡大断面図に示されるように、触媒層10が隣接する細孔20aを隔てる隔壁の表面上に塗布形成されている。図3に示す触媒層10は、隔壁に近い側(内層側)Pdを含有する触媒コート層11を有すると共に、表層側に本発明の一実施形態の排気ガス浄化用触媒1を含む触媒コート層12を有し、合計2層の触媒コート層が積層されてなる。   FIG. 3 shows an enlarged cross-sectional view of one pore 20a in the exhaust gas purification honeycomb catalyst 20 of FIG. 2 in a cross section perpendicular to the penetrating direction. As shown in the enlarged sectional view of FIG. 3, the catalyst layer 10 is formed by coating on the surface of the partition wall separating the adjacent pores 20a. The catalyst layer 10 shown in FIG. 3 has a catalyst coat layer 11 containing Pd on the side close to the partition wall (inner layer side), and the catalyst coat layer containing the exhaust gas purifying catalyst 1 of the embodiment of the present invention on the surface layer side. 12 and a total of two catalyst coat layers are laminated.

図4に、図3の排気ガス浄化用ハニカム触媒20の一つの細孔20aの貫通方向と平行な方向に切断した部分的な断面図を示す。図4のように、細孔20a内を流れる排気ガスGに優先的に接触する位置に本発明の一実施形態の排気ガス浄化用触媒1を含む触媒コート層12が形成されることにより、本発明の一実施形態の排気ガス浄化用触媒1の効果がより顕著に発現できる。その理由は必ずしも明確ではないが、排気ガスが細孔20aの入口から出口にかけて流れる過程で排気ガス成分は、触媒コート層中で浄化していく。そのため、より排気ガス成分が濃い領域、換言すれば表層側に排気ガス浄化用触媒1を位置させることで、酸素吸放出機能の増強効果に特に効果的に得られ、その結果、排気ガス浄化用触媒1の特徴的な酸素吸放出機能を有効に活用できるのではないかと考える。   FIG. 4 is a partial cross-sectional view cut in a direction parallel to the penetration direction of one pore 20a of the exhaust gas purification honeycomb catalyst 20 of FIG. As shown in FIG. 4, the catalyst coat layer 12 including the exhaust gas purifying catalyst 1 according to the embodiment of the present invention is formed at a position where the exhaust gas G flows preferentially in the pores 20a. The effect of the exhaust gas purifying catalyst 1 of one embodiment of the invention can be manifested more remarkably. The reason is not necessarily clear, but the exhaust gas component is purified in the catalyst coat layer in the process in which the exhaust gas flows from the inlet to the outlet of the pore 20a. Therefore, by positioning the exhaust gas purification catalyst 1 in a region having a richer exhaust gas component, in other words, on the surface layer side, the effect of enhancing the oxygen absorption / release function can be obtained particularly effectively. I think that the characteristic oxygen storage / release function of the catalyst 1 can be effectively utilized.

〔実施例1〕
(Rh-Pt含有触媒粉末調製)
1)硝酸Rh水溶液をZr-Ce-La複合酸化物に含浸担持し、150℃で12Hr乾燥後、400℃で1Hr焼成し、Rh担持Zr-Ce-La複合酸化物粉末を得た。この粉末を固形分として40%となるように純水に投入し、ビーズミルにてRh含有スラリを得た。この時のRh粉末粒子のレーザー散乱式粒度分布計:HORIBA製LA920により計測したメジアン径は152nmであった。
Example 1
(Preparation of Rh-Pt containing catalyst powder)
1) A Zr—Ce—La composite oxide was impregnated and supported with an aqueous Rh nitrate solution, dried at 150 ° C. for 12 hours, and then fired at 400 ° C. for 1 hour to obtain an Rh supported Zr—Ce—La composite oxide powder. This powder was put into pure water so as to have a solid content of 40%, and an Rh-containing slurry was obtained with a bead mill. At this time, the median diameter of the Rh powder particles measured by a laser scattering particle size distribution analyzer: LA920 manufactured by HORIBA was 152 nm.

2)ジニトロジアミンPt水溶液をZr-Ce-Nd複合酸化物に含浸担持し、上記と同様にし、Pt含有スラリを得た。この時のPt粉末粒子のメジアン径は200nmであった。 2) A Zr—Ce—Nd composite oxide was impregnated and supported with a dinitrodiamine Pt aqueous solution, and a Pt-containing slurry was obtained in the same manner as described above. At this time, the median diameter of the Pt powder particles was 200 nm.

3)上記1)及び2)で得られたスラリ及び、ベーマイトと硝酸とを予め混合しておいたスラリを所定量混合し、超音波ミキサーにて混合攪拌した。 3) A predetermined amount of the slurry obtained in 1) and 2) above and the slurry in which boehmite and nitric acid were mixed in advance were mixed, and the mixture was stirred with an ultrasonic mixer.

4)次いで、上記混合スラリを乾燥してから550℃×3Hr、Air気流中にて焼成し、Pt-Rh含有触媒粉末を得た。この時、粉末に含まれるRh濃度は0.8wt%、Pt濃度は0.1wt%、Zr-Ce-La複合酸化物として29wt%、Zr-Ce-Nd複合酸化物として19.8wt%、残部がアルミナであった。この触媒粉末のRh担持酸化物粒とPt担持酸化物粒との重心間距離は、上述したカールツァイス製KS-400を用いて測定して254nmであった。 4) Next, the mixed slurry was dried and then calcined at 550 ° C. × 3 Hr in an air stream to obtain a Pt—Rh-containing catalyst powder. At this time, the Rh concentration contained in the powder was 0.8 wt%, the Pt concentration was 0.1 wt%, the Zr-Ce-La composite oxide was 29 wt%, the Zr-Ce-Nd composite oxide was 19.8 wt%, and the balance was alumina. there were. The distance between the centers of gravity of the Rh-supported oxide particles and the Pt-supported oxide particles of this catalyst powder was 254 nm as measured using the above-mentioned Carl Zeiss KS-400.

(Pd含有触媒粉末調製)
1)硝酸Pd水溶液をZr-Ce-La-Nd複合酸化物に含浸担持し、150℃で12Hr乾燥後、400℃で1Hr焼成し、Pd担持Zr-Ce-La-Nd複合酸化物を得た。
(Preparation of Pd-containing catalyst powder)
1) Zr-Ce-La-Nd composite oxide impregnated and supported with Pd nitrate aqueous solution, dried for 12 hours at 150 ° C, then calcined for 1 hour at 400 ° C to obtain Pd-supported Zr-Ce-La-Nd composite oxide .

2)得られたPd含有粉末を純水に投入し、ビーズミルにて粉砕した。この時のPd含有粉末のメジアン径は150nmであった。 2) The obtained Pd-containing powder was put into pure water and pulverized with a bead mill. At this time, the median diameter of the Pd-containing powder was 150 nm.

3)この溶液を上記と同様に、硝酸を含むベーマイト含有溶液と混合し、乾燥・焼成することで、Pd含有触媒粉末を得た。この時、触媒粉末に含まれるPd濃度は6wt%、Zr-Ce-La-Nd複合酸化物として、46wt%、残部がアルミナであった。 3) In the same manner as above, this solution was mixed with a boehmite-containing solution containing nitric acid, dried and calcined to obtain a Pd-containing catalyst powder. At this time, the concentration of Pd contained in the catalyst powder was 6 wt%, as a Zr—Ce—La—Nd composite oxide, 46 wt%, and the balance was alumina.

(触媒層コーティング)
1)内層コート層
上記Pd含有触媒粉末と、硝酸水と、Pd含有触媒粉末に対して8%のベーマイトとを磁性アルミナポットに投入し、次いで、アルミナボールを投入し、振とう・粉砕し(3μm=3000nm)、Pd含有触媒スラリを得た。得られたスラリを、900cpsi-2mil、φ99(容量0.7L)のコージェライト製ハニカムセル内に投入し、余剰スラリを空気流にて除去し、120℃で通風乾燥した。次いで、400℃×1Hr、Air中で焼成することにより、内層にPdを含有する触媒層を得た。この時のハニカム1LあたりのPd濃度は6.0g/Lであった。
(Catalyst layer coating)
1) Inner layer coating layer The Pd-containing catalyst powder, nitric acid water, and 8% boehmite with respect to the Pd-containing catalyst powder are put into a magnetic alumina pot, and then alumina balls are put, shaken and ground ( 3 μm = 3000 nm), a Pd-containing catalyst slurry was obtained. The obtained slurry was put into a cordierite honeycomb cell of 900 cpsi-2 mil, φ99 (capacity 0.7 L), excess slurry was removed by an air flow, and air-dried at 120 ° C. Subsequently, a catalyst layer containing Pd in the inner layer was obtained by firing in Air at 400 ° C. × 1 Hr. At this time, the Pd concentration per liter of the honeycomb was 6.0 g / L.

更に、助触媒として、上記ハニカム触媒に所定量のBa(バリウム)を吸水可能な濃度に調整した、酢酸Ba水溶液に上記で得られたPd含有触媒層を塗布済の触媒ハニカムを浸漬させ、Pd含有触媒層中にBaを含む触媒ハニカムを得た。この時の触媒ハニカム1LあたりのBaOとしての量は3.0g/Lであった。   Further, as a co-catalyst, the catalyst honeycomb coated with the Pd-containing catalyst layer obtained above was immersed in an aqueous solution of Ba acetate adjusted to a concentration capable of absorbing a predetermined amount of Ba (barium) in the honeycomb catalyst, and Pd A catalyst honeycomb containing Ba in the contained catalyst layer was obtained. The amount of BaO per 1 L of catalyst honeycomb at this time was 3.0 g / L.

2)表層コート層
上記Rh-Pt含有触媒粉末と、硝酸水と、Rh-Pt含有触媒粉末に対して8%のベーマイトとを磁性アルミナポットに投入し、それ以降の工程は上述のPd含有触媒スラリと同様にして、Rh-Pt含有触媒スラリを得た。得られたスラリを、上述したBaを含むPd含有触媒層を形成した触媒ハニカムセル内に投入し、それ以降の工程は上述の内層コート層と同様にして、上記Rh-Pt含有触媒コート層を形成することにより、内層にPd含有触媒粉末、表層にRh-Pt含有触媒粉末を含有する触媒ハニカムを得た。この時のハニカム1LあたりのRh量及びPt量は、各々0.4g/L、0.05g/Lであった。
2) Surface coating layer The above Rh-Pt-containing catalyst powder, nitric acid water, and 8% boehmite with respect to the Rh-Pt-containing catalyst powder are put into a magnetic alumina pot, and the subsequent steps are the above-mentioned Pd-containing catalyst. A catalyst slurry containing Rh—Pt was obtained in the same manner as the slurry. The obtained slurry was put into the catalyst honeycomb cell in which the Pd-containing catalyst layer containing Ba described above was formed, and the subsequent steps were performed in the same manner as the above-mentioned inner layer coat layer, and the Rh-Pt-containing catalyst coat layer was formed. As a result, a catalyst honeycomb containing Pd-containing catalyst powder in the inner layer and Rh—Pt-containing catalyst powder in the surface layer was obtained. At this time, the Rh amount and the Pt amount per 1 L of the honeycomb were 0.4 g / L and 0.05 g / L, respectively.

〔実施例2〕
実施例1のRh-Pt含有触媒粉末調製において、Rh担持Zr-Ce-La複合酸化物粒の粉砕粒径を153nm、Pt担持Zr-Ce-Nd複合酸化物粒の粉砕径を258nmとし、両者の重心間距離が351nmであった以外は実施例1同様にして、実施例2の触媒ハニカムを得た。
[Example 2]
In the preparation of the Rh-Pt-containing catalyst powder of Example 1, the pulverized particle size of the Rh-supported Zr-Ce-La composite oxide particles was 153 nm, the pulverized diameter of the Pt-supported Zr-Ce-Nd composite oxide particles was 258 nm, A catalyst honeycomb of Example 2 was obtained in the same manner as in Example 1 except that the distance between the center of gravity was 351 nm.

〔実施例3〕
実施例1のRh-Pt含有触媒粉末調製において、Rh担持Zr-Ce-La複合酸化物粒の粉砕粒径を157nm、Pt担持Zr-Ce-Nd複合酸化物粒の粉砕径を167nmとし、両者の重心間距離は219nmであった以外は実施例1同様にして、実施例3の触媒ハニカムを得た。
Example 3
In the preparation of the Rh-Pt-containing catalyst powder of Example 1, the pulverized particle size of the Rh-supported Zr-Ce-La composite oxide particles was 157 nm, the pulverized particle size of the Pt-supported Zr-Ce-Nd composite oxide particles was 167 nm, A catalyst honeycomb of Example 3 was obtained in the same manner as in Example 1 except that the distance between the center of gravity was 219 nm.

〔実施例4〕
実施例1のRh-Pt含有触媒粉末調製において、Rh担持Zr-Ce-La複合酸化物粒の粉砕粒径を172nm、Pt担持酸化物をZr-Ce-Y複合酸化物とし、Pt担持Zr-Ce-Y複合酸化物粒の粉砕径を203nmとし、重心間距離は260nmであった以外は実施例1と同様にして、実施例4の触媒ハニカムを得た。
Example 4
In the preparation of the Rh—Pt-containing catalyst powder of Example 1, the pulverized particle size of the Rh-supported Zr—Ce—La composite oxide particles was 172 nm, the Pt-supported oxide was Zr—Ce—Y composite oxide, and the Pt-supported Zr— A catalyst honeycomb of Example 4 was obtained in the same manner as in Example 1 except that the pulverized diameter of the Ce-Y composite oxide particles was 203 nm and the distance between the centers of gravity was 260 nm.

〔実施例5〕
(Rh-Pt含有触媒粉末調製)
1)硝酸Rh水溶液をZr-Ce-La複合酸化物に含浸担持し、150℃で12Hr乾燥後、400℃で1Hr焼成し、Rh担持Zr-Ce-La複合酸化物粉末を得た。この粉末を固形分として40%となるように純水に投入し、ビーズミルにてRh含有スラリを得た。この時のRh粉末粒子のレーザー散乱式粒度分布計:HORIBA製LA920により計測したメジアン径は163nmであった。
Example 5
(Preparation of Rh-Pt containing catalyst powder)
1) A Zr—Ce—La composite oxide was impregnated and supported with an aqueous Rh nitrate solution, dried at 150 ° C. for 12 hours, and then fired at 400 ° C. for 1 hour to obtain an Rh supported Zr—Ce—La composite oxide powder. This powder was put into pure water so as to have a solid content of 40%, and an Rh-containing slurry was obtained with a bead mill. At this time, the median diameter of the Rh powder particles measured by a laser scattering particle size distribution analyzer: LA920 manufactured by HORIBA was 163 nm.

2)ジニトロジアミンPt水溶液をZr-Ce-Nd複合酸化物に含浸担持し、上記と同様にし、Pt含有スラリを得た。この時のPt粉末粒子のメジアン径は205nmであった。 2) A Zr—Ce—Nd composite oxide was impregnated and supported with a dinitrodiamine Pt aqueous solution, and a Pt-containing slurry was obtained in the same manner as described above. At this time, the median diameter of the Pt powder particles was 205 nm.

3)上記1)及び2)で得られたスラリ及び、ベーマイトと硝酸とを予め混合しておいたスラリを所定量混合し、超音波ミキサーにて混合攪拌した。 3) A predetermined amount of the slurry obtained in 1) and 2) above and the slurry in which boehmite and nitric acid were mixed in advance were mixed, and the mixture was stirred with an ultrasonic mixer.

4)次いで、上記混合スラリを乾燥してから550℃×3Hr、Air気流中にて焼成し、Pt-Rh含有触媒粉末を得た。この時、粉末に含まれるRh濃度は0.8wt%、Pt濃度は0.1wt%、Zr-Ce-La複合酸化物として19wt%、Zr-Ce-Nd複合酸化物として、19.8wt%、残部がアルミナであった。この触媒粉末のRh担持酸化物粒とPt担持酸化物粒との重心間距離は、カールツァイス製KS-400を用いて298nmであった。 4) Next, the mixed slurry was dried and then calcined at 550 ° C. × 3 Hr in an air stream to obtain a Pt—Rh-containing catalyst powder. At this time, the Rh concentration contained in the powder was 0.8 wt%, the Pt concentration was 0.1 wt%, the Zr-Ce-La composite oxide was 19 wt%, the Zr-Ce-Nd composite oxide was 19.8 wt%, and the balance was alumina. Met. The distance between the centers of gravity of the Rh-supported oxide particles and the Pt-supported oxide particles of this catalyst powder was 298 nm using KS-400 manufactured by Carl Zeiss.

(Pd含有触媒粉末調製)
実施例1のPd含有触媒粉末調製と同じ製法により、同じPd含有触媒粉末を得た。
(Preparation of Pd-containing catalyst powder)
The same Pd-containing catalyst powder was obtained by the same production method as in the preparation of the Pd-containing catalyst powder of Example 1.

(触媒層コーティング)
1)内層コート層
実施例1と同じプロセスにして同じ内層コート層を得た。
(Catalyst layer coating)
1) Inner layer coat layer The same inner layer coat layer was obtained by the same process as in Example 1.

2)表層コート層
上記Rh-Pt含有触媒粉末と、硝酸水と、Rh-Pt含有触媒粉末に対して8%のベーマイトとを磁性アルミナポットに投入し、以下は実施例1と同様にして、内層にPd含有触媒粉末、表層にRh-Pt含有触媒粉末を含有する触媒ハニカムを得た。この時のハニカム1LあたりのRh量及びPt量は、各々0.4g/L、0.05g/Lであった。
2) Surface coating layer The above Rh-Pt-containing catalyst powder, nitric acid water, and 8% boehmite with respect to the Rh-Pt-containing catalyst powder were put into a magnetic alumina pot. A catalyst honeycomb containing Pd-containing catalyst powder in the inner layer and Rh—Pt-containing catalyst powder in the surface layer was obtained. At this time, the Rh amount and the Pt amount per 1 L of the honeycomb were 0.4 g / L and 0.05 g / L, respectively.

〔実施例6〕
(Rh-Pt含有触媒粉末調製)
1)硝酸Rh水溶液を平均粒子径20nmのZr-Ce-La複合酸化物が分散したコロイド溶液に滴下し、Rh担持Zr-Ce-La複合酸化物コロイド溶液を得た。
Example 6
(Preparation of Rh-Pt containing catalyst powder)
1) An aqueous Rh nitrate solution was dropped into a colloidal solution in which a Zr-Ce-La composite oxide having an average particle size of 20 nm was dispersed to obtain an Rh-supported Zr-Ce-La composite oxide colloidal solution.

2)ジニトロジアミンPt水溶液を平均粒子径20nmのZr-Ce-Nd複合酸化物が分散したコロイド溶液に滴下し、Pt担持Zr-Ce-Nd複合酸化物コロイド溶液を得た。 2) A dinitrodiamine Pt aqueous solution was dropped into a colloidal solution in which a Zr-Ce-Nd composite oxide having an average particle diameter of 20 nm was dispersed to obtain a Pt-supported Zr-Ce-Nd composite oxide colloidal solution.

3)上記1)及び2)で得られたコロイド溶液及び、ベーマイトと硝酸とを予め混合しておいたスラリを所定量混合し、超音波ミキサーにて混合攪拌した。 3) A predetermined amount of the colloidal solution obtained in 1) and 2) above and a slurry in which boehmite and nitric acid were mixed in advance were mixed, and the mixture was stirred with an ultrasonic mixer.

4)次いで、上記混合スラリを乾燥後、550℃×3Hr、Air気流中にて焼成し、Pt-Rh含有触媒粉末を得た。この時、粉末に含まれるRh濃度は0.8wt%、Pt濃度は0.1wt%、Zr-Ce-La複合酸化物として29wt%、Zr-Ce-Nd複合酸化物として19.8wt%、残部がアルミナであった。この触媒粉末のRh担持酸化物粒とPt担持酸化物粒との重心間距離は52nmであった。 4) Next, the mixed slurry was dried and then calcined at 550 ° C. × 3 Hr in an air stream to obtain a Pt—Rh-containing catalyst powder. At this time, the Rh concentration contained in the powder was 0.8 wt%, the Pt concentration was 0.1 wt%, the Zr-Ce-La composite oxide was 29 wt%, the Zr-Ce-Nd composite oxide was 19.8 wt%, and the balance was alumina. there were. The distance between the centers of gravity of the Rh-supported oxide particles and the Pt-supported oxide particles of this catalyst powder was 52 nm.

その他は実施例1と同様にして、実施例6の触媒ハニカムを得た。 Otherwise in the same manner as in Example 1, a catalyst honeycomb of Example 6 was obtained.

〔実施例7〕
実施例1のRhを担持させる酸化物がZrO2で、Rh担持ZrO2粉砕粒径が149nm、Pt担持材料がZr-Ce複合酸化物であり、このPt担持材料の粉砕粒径は200nm、Rh担持酸化物粒とPt担持材料との重心間距離が260nmであったこと以外は実施例1と同様にして、実施例7の触媒を得た。
Example 7
The oxide for supporting Rh in Example 1 is ZrO 2 , the Rh-supported ZrO 2 pulverized particle size is 149 nm, the Pt-supported material is a Zr—Ce composite oxide, the pulverized particle size of this Pt-supported material is 200 nm, Rh A catalyst of Example 7 was obtained in the same manner as in Example 1 except that the distance between the centers of gravity of the supported oxide particles and the Pt-supported material was 260 nm.

〔参考例1〕
実施例1のRh-Pt触媒粉末調製において、Rh担持酸化物がZrO2(ジルコニア)であり、このRh担持ジルコニア粒の粉砕粒径が149nm、Pt担持Zr-Ce-Nd複合酸化物粒の粉砕径が200nmとし、重心間距離は248nmであった以外は同様にして、参考例1の触媒ハニカムを得た。この参考例1は本発明の排気ガス浄化用触媒の範疇に含まれる。
[Reference Example 1]
In the preparation of the Rh-Pt catalyst powder of Example 1, the Rh-supported oxide was ZrO 2 (zirconia), the pulverized particle size of the Rh-supported zirconia particles was 149 nm, and the Pt-supported Zr—Ce—Nd composite oxide particles were pulverized. A catalyst honeycomb of Reference Example 1 was obtained in the same manner except that the diameter was 200 nm and the distance between the centers of gravity was 248 nm. This Reference Example 1 is included in the category of the exhaust gas purifying catalyst of the present invention.

〔参考例2〕
実施例1のRh-Pt含有粉末粉末調製において、Rh担持Zr-Ce-La複合酸化物粒の粉砕粒径が153nm、Pt担持酸化物をZr-Ce-Y複合酸化物とし、Pt担持Zr-Ce-Y複合酸化物粒の粉砕径を258nmとし、重心間距離は351nmであった以外は実施例1と同様にして、参考例2の触媒ハニカムを得た。この参考例2は本発明の排気ガス浄化用触媒の範疇に含まれる。
[Reference Example 2]
In the preparation of the Rh—Pt-containing powder powder of Example 1, the pulverized particle size of the Rh-supported Zr—Ce—La composite oxide particles is 153 nm, the Pt-supported oxide is a Zr—Ce—Y composite oxide, and the Pt-supported Zr— A catalyst honeycomb of Reference Example 2 was obtained in the same manner as in Example 1 except that the pulverized diameter of the Ce-Y composite oxide particles was 258 nm and the distance between the centers of gravity was 351 nm. This Reference Example 2 is included in the category of the exhaust gas purifying catalyst of the present invention.

〔比較例1〕
比較例1は、Pt担持酸化物粒の粒径が大きいため、Rh担持酸化物粒とPt担持酸化物粒との間の重心間距離が400nm以下ではない例である。
[Comparative Example 1]
Comparative Example 1 is an example in which the distance between the centers of gravity between the Rh-supported oxide particles and the Pt-supported oxide particles is not 400 nm or less because the Pt-supported oxide particles have a large particle size.

(Rh含有触媒粉末調製)
1)硝酸Rh水溶液をZr-Ce-La複合酸化物に含浸担持し、150℃で12Hr乾燥後、400℃で1Hr焼成し、Rh担持Zr-Ce-La複合酸化物粉末を得た。この粉末を固形分として40%となるように純水に投入し、ビーズミルにてRh含有スラリを得た。この時のRh粉末粒子のレーザー散乱式粒度分布計:HORIBA製LA920により計測したメジアン径は152nmであった。
(Preparation of Rh-containing catalyst powder)
1) A Zr—Ce—La composite oxide was impregnated and supported with an aqueous Rh nitrate solution, dried at 150 ° C. for 12 hours, and then fired at 400 ° C. for 1 hour to obtain an Rh supported Zr—Ce—La composite oxide powder. This powder was put into pure water so as to have a solid content of 40%, and an Rh-containing slurry was obtained with a bead mill. At this time, the median diameter of the Rh powder particles measured by a laser scattering particle size distribution analyzer: LA920 manufactured by HORIBA was 152 nm.

2)上記1)で得られたスラリ及びベーマイトと硝酸とを予め混合しておいたスラリを所定量混合し、超音波ミキサーにて混合攪拌した。 2) A predetermined amount of the slurry obtained in 1) above and the slurry in which boehmite and nitric acid were mixed in advance were mixed, and the mixture was stirred with an ultrasonic mixer.

3)次いで、上記混合スラリを乾燥してから550℃×3Hr、Air気流中にて焼成し、Rh含有触媒粉末を得た。この時、粉末に含まれるRh濃度は0.8wt%、Zr-Ce-La複合酸化物として29wt%、残部がアルミナであった。 3) Next, the mixed slurry was dried and then calcined in an air stream at 550 ° C. × 3 Hr to obtain an Rh-containing catalyst powder. At this time, the Rh concentration contained in the powder was 0.8 wt%, 29 wt% as the Zr—Ce—La composite oxide, and the balance was alumina.

(Pt含有触媒粉末調製)
ジニトロジアミンPt溶液をZr-Ce-Nd複合酸化物に含浸担持し、乾燥焼成後、Pt0.2%含有担持粉末を得た。このPt含有触媒粉末を得る過程で、ビーズミルにて粉砕することはなかった。そのため得られたPt含有担持粉末の粒径は3000nmであった。
(Preparation of Pt-containing catalyst powder)
A dinitrodiamine Pt solution was impregnated and supported on a Zr—Ce—Nd composite oxide, and after drying and firing, a supported powder containing 0.2% Pt was obtained. In the process of obtaining this Pt-containing catalyst powder, it was not pulverized by a bead mill. Therefore, the particle size of the obtained Pt-containing supported powder was 3000 nm.

(Pd含有触媒粉末調製)
1)硝酸Pd水溶液をZr-Ce-La-Nd複合酸化物に含浸担持し、150℃で12Hr乾燥後、400℃で1Hr焼成し、Pd担持Zr-Ce-La-Nd複合酸化物を得た。
(Preparation of Pd-containing catalyst powder)
1) Zr-Ce-La-Nd composite oxide impregnated and supported with Pd nitrate aqueous solution, dried for 12 hours at 150 ° C, then calcined for 1 hour at 400 ° C to obtain Pd-supported Zr-Ce-La-Nd composite oxide .

2)得られたPd含有粉末を純水に投入し、ビーズミルにて粉砕した。この時のPd含有粉末の平均粒子径は150nmであった。 2) The obtained Pd-containing powder was put into pure water and pulverized with a bead mill. The average particle size of the Pd-containing powder at this time was 150 nm.

3)この溶液を実施例1のPd含有触媒粉末調製と同様に、硝酸を含むベーマイト含有溶液と混合し、乾燥・焼成することで、Pd含有粉末を得た。この時、粉末に含まれるPd濃度は6wt%、Zr-Ce-La-Nd複合酸化物として、46wt%、残部がアルミナであった。 3) Similar to the preparation of the Pd-containing catalyst powder of Example 1, this solution was mixed with a boehmite-containing solution containing nitric acid, dried and fired to obtain a Pd-containing powder. At this time, the concentration of Pd contained in the powder was 6 wt%, as a Zr—Ce—La—Nd composite oxide, 46 wt%, and the balance was alumina.

(触媒コーティング)
1)内層コート
上記Pd含有触媒粉末と、硝酸水と、Pd粉末に対し8%のベーマイトとを磁性アルミナポットに投入し、次いで、アルミナボールを投入し、振とう・粉砕し、Pd含有スラリを得た。得られたスラリを、900cpsi-2mil、φ99(容量0.7L)のコージェライト製ハニカムセル内に投入し、余剰スラリを空気流にて除去し、120℃で通風乾燥した。次いで、400℃×1Hr、Air中で焼成することにより、内層にPdを含有する触媒層を得た。この時のハニカム1LあたりのPd濃度は6.0g/Lであった。
(Catalyst coating)
1) Inner layer coating The above Pd-containing catalyst powder, nitric acid water, and 8% boehmite with respect to the Pd powder are put into a magnetic alumina pot, then alumina balls are put, shaken and pulverized, and a Pd-containing slurry is added. Obtained. The obtained slurry was put into a cordierite honeycomb cell of 900 cpsi-2 mil, φ99 (capacity 0.7 L), excess slurry was removed by an air flow, and air-dried at 120 ° C. Subsequently, a catalyst layer containing Pd in the inner layer was obtained by firing in Air at 400 ° C. × 1 Hr. At this time, the Pd concentration per liter of the honeycomb was 6.0 g / L.

更に、助触媒として、上記ハニカム触媒に所定量のBaを吸水可能な濃度に調整した、酢酸Ba水溶液に上記で得られたPd含有触媒層を塗布済の触媒ハニカムを浸漬させ、Pd含有触媒層中にBaを含む触媒ハニカムを得た。この時の触媒ハニカム1LあたりのBaOとしての量は3.0g/Lであった。   Further, as a co-catalyst, the catalyst honeycomb coated with the Pd-containing catalyst layer obtained above was immersed in an aqueous solution of Ba acetate adjusted to a concentration capable of absorbing a predetermined amount of Ba in the honeycomb catalyst, and the Pd-containing catalyst layer A catalyst honeycomb containing Ba therein was obtained. The amount of BaO per 1 L of catalyst honeycomb at this time was 3.0 g / L.

2)表層コート層
上記Rh含有触媒粉末と、Pt含有触媒粉末と、硝酸水と、触媒貴金属担持粉末の合計に対して8%のベーマイトとを磁性アルミナポットに投入し、それ以降の工程は上述の内層コート層と同様にして、内層にPd含有触媒粉末、表層にRh含有触媒粉末及びPt含有触媒粉末を含有する触媒ハニカムを得た。この時のハニカム1LあたりのRh及びPt量は、各々0.4g/L、0.05g/Lであった。
2) Surface coating layer The above Rh-containing catalyst powder, Pt-containing catalyst powder, nitric acid water, and 8% boehmite with respect to the total amount of the catalyst precious metal-supported powder are charged into the magnetic alumina pot. In the same manner as the inner coat layer, a catalyst honeycomb containing Pd-containing catalyst powder in the inner layer and Rh-containing catalyst powder and Pt-containing catalyst powder in the surface layer was obtained. At this time, the amounts of Rh and Pt per liter of honeycomb were 0.4 g / L and 0.05 g / L, respectively.

〔比較例2〕
比較例2は、比較例1との相違が比較例1におけるPt担持酸化物粒について、Ptを担持していない点にある。換言すれば、表層コート層がPt含有触媒粉末と、Ptを担持しない酸化物粉末とを含む例である。
[Comparative Example 2]
Comparative Example 2 is different from Comparative Example 1 in that the Pt-supported oxide particles in Comparative Example 1 do not support Pt. In other words, this is an example in which the surface layer includes a Pt-containing catalyst powder and an oxide powder not supporting Pt.

比較例1からPt担持工程を除いた以外は同様にして、比較例2の触媒を得た。   A catalyst of Comparative Example 2 was obtained in the same manner except that the Pt supporting step was omitted from Comparative Example 1.

〔比較例3〕
比較例3は、Rh担持酸化物粒とPt担持酸化物粒との重心間距離が400nmを超える例である。
[Comparative Example 3]
Comparative Example 3 is an example in which the distance between the centers of gravity of the Rh-supported oxide particles and the Pt-supported oxide particles exceeds 400 nm.

実施例1のPt担持酸化物粒径を605nmとし、重心間距離が410nmであった以外は実施例1と同様にして、比較例3の触媒ハニカムを得た。   A catalyst honeycomb of Comparative Example 3 was obtained in the same manner as in Example 1 except that the particle diameter of the Pt-supported oxide in Example 1 was 605 nm and the distance between the centers of gravity was 410 nm.

〔触媒の評価〕
実施例1〜7、参考例1〜2、比較例1〜3の触媒ハニカムに耐久試験を行った。耐久試験の条件は、日産自動車製 V型6気筒3.5Lエンジン後方に触媒ハニカムを配置し、無鉛ガソリンを燃料にエンジンを動作させて触媒入口温度が900℃となるよう調整し、排気ガス雰囲気下にて200hの触媒耐久処理を行った。
[Evaluation of catalyst]
Durability tests were performed on the catalyst honeycombs of Examples 1 to 7, Reference Examples 1 and 2, and Comparative Examples 1 to 3. The endurance test was conducted by placing a catalyst honeycomb behind the Nissan V-type 6-cylinder 3.5L engine and adjusting the catalyst inlet temperature to 900 ° C by operating the engine with unleaded gasoline as fuel. The catalyst endurance treatment was performed for 200 hours.

耐久試験後に車両評価を行って触媒ハニカムのNOx浄化率を調べた。この車両評価では、日産自動車製、直列4気筒1.5Lエンジン搭載車のエンジン直下型触媒位置に所定の触媒ハニカムを搭載し、JC08モード(コールド始動)をシャシダイナモ上で走行した。このとき、使用燃料は無鉛レギュラーガソリンを使用した。そして、当該触媒ハニカムの前後からガスをサンプリングし、排気ガス分析装置(HORIBA製 MEXA-1600D及びMEXA-9100D)にて排気ガス成分を分析した。分析排気ガス成分から下記計算式にてNOx浄化率の算出を行った。   Vehicle evaluation was conducted after the durability test to examine the NOx purification rate of the catalyst honeycomb. In this vehicle evaluation, a predetermined catalyst honeycomb was mounted at the position directly below the engine of a vehicle equipped with an in-line 4-cylinder 1.5L engine manufactured by Nissan Motor, and the JC08 mode (cold start) was run on the chassis dynamo. At this time, unleaded regular gasoline was used as the fuel. Then, gas was sampled from before and after the catalyst honeycomb, and exhaust gas components were analyzed by an exhaust gas analyzer (MEXA-1600D and MEXA-9100D manufactured by HORIBA). The NOx purification rate was calculated from the analysis exhaust gas component by the following formula.

NOx浄化率(%)=[(触媒入口NOx量 - 触媒出口NOx量) / 触媒入口NOx量] ×100
また、耐久試験後の触媒について酸素放出速度を計測した。この酸素放出速度の計測は、エンジン排気ガス耐久試験を900℃×50Hrで行った後の触媒ハニカムの一部をサンプリングして触媒試料とし、マス分析計を装備した評価装置にてCOパルスの際のCO2生成速度から、触媒中の酸素を放出する速度として評価した。
NOx purification rate (%) = [(NOx amount at catalyst inlet-NOx amount at catalyst outlet) / NOx amount at catalyst inlet] × 100
Further, the oxygen release rate of the catalyst after the durability test was measured. This oxygen release rate is measured by sampling a portion of the catalyst honeycomb after performing an engine exhaust gas endurance test at 900 ° C x 50 hours to obtain a catalyst sample, and using an evaluation device equipped with a mass analyzer during the CO pulse. The rate of releasing oxygen in the catalyst was evaluated from the CO 2 production rate.

この評価装置の概念図を図5に示す。同図に示す評価装置30は、U字管31の底部に触媒試料40が収容される。この触媒試料40が収容されたU字管31の底部及びその近傍を、加熱装置32により所定の温度、例えば600℃に加熱可能となっている。この加熱温度を計測するために熱電対33が触媒試料40近傍に配設される。U字管31にガスを供給するために、ガス成分の異なる複数のガス供給源34a、34b、34c及び34dが設けられている。これらガス供給源34a、34b、34c及び34dのそれぞれに切替バルブ35a、35b、35c及び35dが接続され、ガス配管36及び流量調整バルブ37を通じてU字管31の一方の開口に接続する。U字管31のもう一方の開口には、U字管31内に供給され、所定温度で触媒試料40に触れた後のガスを分析するための分析装置38が接続される。この分析装置38は、例えば四重極形質量分析計(Q-mass)を用いることができる。   A conceptual diagram of this evaluation apparatus is shown in FIG. In the evaluation apparatus 30 shown in the figure, a catalyst sample 40 is accommodated at the bottom of the U-shaped tube 31. The bottom of the U-shaped tube 31 in which the catalyst sample 40 is accommodated and the vicinity thereof can be heated to a predetermined temperature, for example, 600 ° C. by the heating device 32. In order to measure the heating temperature, a thermocouple 33 is provided in the vicinity of the catalyst sample 40. In order to supply gas to the U-shaped tube 31, a plurality of gas supply sources 34a, 34b, 34c and 34d having different gas components are provided. These gas supply sources 34a, 34b, 34c and 34d are connected to switching valves 35a, 35b, 35c and 35d, respectively, and connected to one opening of the U-shaped tube 31 through the gas pipe 36 and the flow rate adjusting valve 37. Connected to the other opening of the U-shaped tube 31 is an analyzer 38 for analyzing the gas supplied into the U-shaped tube 31 and touching the catalyst sample 40 at a predetermined temperature. As the analyzer 38, for example, a quadrupole mass spectrometer (Q-mass) can be used.

評価装置30のU字管31に触媒試料0.100gを装入し、評価温度600℃の条件で評価した。このときの評価装置30に供給されるガス種、加熱温度及び操業時間を図6にグラフで示す。まず、前処理処理としてリッチ排気ガスを模したH2(4%)/Heガスを流量50cc/minで流しつつ600℃まで30分かけて加熱した。600℃を維持し、ガスを流しつつ30分経過したときに分析装置38でのデータ取得を開始し、5分後にガス種をHeガスに切り替えてU字管31内を5分間パージした。パージ後にガス種をCO(10%)/Heガスに切り替えて流量50cc/minで10分間COガスを供給し、このときに触媒試料40により浄化されて生成するCO2ガスを分析装置38で観察した。再びHeガスにガス種を切り替えてU字管31内を5分間パージした後、ガス種をリーン排気ガスを模したO2(10%)/Heガスに切り替えて流量50cc/minで10分間 O2(10%)/Heガスを供給してから再度Heガスにガス種を切り替えてU字管31内を5分間パージした。パージ後にガス種をCO(10%)/Heガスに切り替えて流量50cc/minで10分間COガスを供給し、このときに触媒試料40により浄化されて生成するCO2ガスを分析装置38で観察した。 A catalyst sample of 0.100 g was charged into the U-shaped tube 31 of the evaluation device 30 and evaluated under the condition of an evaluation temperature of 600 ° C. The gas type, heating temperature, and operation time supplied to the evaluation apparatus 30 at this time are shown in a graph in FIG. First, as pretreatment, H 2 (4%) / He gas imitating rich exhaust gas was heated to 600 ° C. over 30 minutes while flowing at a flow rate of 50 cc / min. When the temperature was maintained at 600 ° C. and 30 minutes passed while flowing gas, data acquisition by the analyzer 38 was started, and after 5 minutes, the gas type was switched to He gas and the inside of the U-shaped tube 31 was purged for 5 minutes. After purging, the gas type is switched to CO (10%) / He gas, and CO gas is supplied at a flow rate of 50 cc / min for 10 minutes. At this time, the CO 2 gas purified and generated by the catalyst sample 40 is observed with the analyzer 38. did. After switching the gas type to He gas again and purging the inside of the U-shaped tube 31 for 5 minutes, the gas type is changed to O 2 (10%) / He gas imitating lean exhaust gas and the flow rate is 50 cc / min for 10 minutes. After supplying 2 (10%) / He gas, the gas type was switched to He gas again, and the inside of the U-shaped tube 31 was purged for 5 minutes. After purging, the gas type is switched to CO (10%) / He gas, and CO gas is supplied at a flow rate of 50 cc / min for 10 minutes. At this time, the CO 2 gas purified and generated by the catalyst sample 40 is observed with the analyzer 38. did.

分析装置38で観察して得られたデータの一例を図7にグラフで示す。図7にグラフで示された傾きを触媒試料40の酸素放出速度として定義した。   An example of data obtained by observation with the analyzer 38 is shown in a graph in FIG. The slope shown by the graph in FIG. 7 was defined as the oxygen release rate of the catalyst sample 40.

表1に実施例1〜7、参考例1〜2、比較例1〜3の触媒の構成成分及びそのサイズ、並びにNOx浄化率を示す。また、図8に実施例1〜7、参考例1〜2、比較例1〜3の触媒の酸素放出速度とNOx浄化率との関係をグラフに示す。

Figure 2011016085
Table 1 shows the constituent components and sizes of the catalysts of Examples 1 to 7, Reference Examples 1 and 2, and Comparative Examples 1 to 3, and the NOx purification rate. FIG. 8 is a graph showing the relationship between the oxygen release rate and the NOx purification rate of the catalysts of Examples 1-7, Reference Examples 1-2, and Comparative Examples 1-3.
Figure 2011016085

表1及び図8から明らかなように、本発明に従う実施例1〜7、参考例1〜2は、酸素放出速度が高く、優れたNOx浄化性能を有している。   As is apparent from Table 1 and FIG. 8, Examples 1 to 7 and Reference Examples 1 and 2 according to the present invention have a high oxygen release rate and excellent NOx purification performance.

これに対して、Ptを担持するZr-Ce-Nd複合酸化物粒の粒径が3000nmと大きく、Rhを担持するZr-La-Ce複合酸化物粒との重心間距離を400nm以下にし得ない比較例1及び比較例2は、酸素放出速度が実施例1よりも低く、NOx浄化率も低かった。比較例1と比較例2との対比では、比較例2はZr-Ce-Nd複合酸化物粒がPtを担持していないため、比較例1よりも酸素放出速度及びNOx浄化率のいずれも低かった。また、比較例3は、Ptを担持するZr-Ce-Nd複合酸化物粒とRhを担持するZr-La-Ce複合酸化物粒との重心間距離が400nmを超えていたため、実施例1よりも酸素放出速度が低く、NOx浄化率も低かった。   On the other hand, the particle size of the Zr-Ce-Nd composite oxide particles supporting Pt is as large as 3000 nm, and the distance between the centers of gravity of the Zr-La-Ce composite oxide particles supporting Rh cannot be 400 nm or less. In Comparative Example 1 and Comparative Example 2, the oxygen release rate was lower than that in Example 1, and the NOx purification rate was also low. In comparison between Comparative Example 1 and Comparative Example 2, Comparative Example 2 has lower oxygen release rate and NOx purification rate than Comparative Example 1 because the Zr—Ce—Nd composite oxide particles do not carry Pt. It was. In Comparative Example 3, the distance between the centers of gravity of the Zr—Ce—Nd composite oxide particles supporting Pt and the Zr—La—Ce composite oxide particles supporting Rh exceeded 400 nm. The oxygen release rate was low and the NOx purification rate was low.

参考例1は、実施例7と比べると、Ptを担持する酸化物がNdを含むことにより、酸素放出速度及びNOx浄化率に優れていた。つまり、実施例7は、PtやRhの担持材が、NdやY、La等の耐熱性向上効果を有する元素を含有しておらず、そのため、OSC機能の劣化が参考例1に比較して起きやすくなっていると考えられる。また、この参考例1と実施例1との対比により、Rh担持複合酸化物がZr-La-Ce複合酸化物である実施例1は、参考例1よりも良好なNOx浄化特性を具備していた。   Compared with Example 7, Reference Example 1 was superior in oxygen release rate and NOx purification rate because the oxide supporting Pt contained Nd. That is, in Example 7, the support material of Pt and Rh does not contain an element having an effect of improving heat resistance such as Nd, Y, La, etc. Therefore, the deterioration of the OSC function is compared with Reference Example 1. It seems that it is easy to get up. Further, in comparison with Reference Example 1 and Example 1, Example 1 in which the Rh-supported composite oxide is a Zr—La—Ce composite oxide has better NOx purification characteristics than Reference Example 1. It was.

また、実施例4と実施例1は、いずれも良好な酸素放出速度及びNOx浄化率を有しているが、両者を対比すると、Rh担持酸化物がZr-Ce-La複合酸化物である実施例1のほうが、Zr-Ce-Y複合酸化物である実施例4よりも良好な酸素放出速度及びNOx浄化率のいずれも優れていた。   In addition, both Example 4 and Example 1 have a good oxygen release rate and NOx purification rate. However, when both are compared, the Rh-supported oxide is a Zr—Ce—La composite oxide. Example 1 was superior in both oxygen release rate and NOx purification rate better than Example 4, which was a Zr—Ce—Y composite oxide.

以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、この実施の形態による本発明の開示の一部をなす論述及び図面により本発明は限定されることはない。すなわち、上記実施の形態に基づいて当業者等によりなされる他の実施の形態、実施例及び運用技術等は全て本発明の範疇に含まれることは勿論であることを付け加えておく。   As mentioned above, although the embodiment to which the invention made by the present inventors was applied has been described, the present invention is not limited by the description and the drawings that form part of the disclosure of the present invention according to this embodiment. That is, it should be added that other embodiments, examples, operation techniques, and the like made by those skilled in the art based on the above embodiments are all included in the scope of the present invention.

1 排気ガス浄化用触媒
2 Rh粒子
3 第1の酸化物粒
4 Rh担持酸化物粒
5 Pt粒子
6 第2の酸化物粒
7 Pt担持酸化物粒
8 第3の酸化物粒
11 触媒コート層
12 触媒コート層
20 排気ガス浄化用ハニカム触媒
DESCRIPTION OF SYMBOLS 1 Exhaust gas purification catalyst 2 Rh particle 3 1st oxide particle 4 Rh carrying | support oxide particle 5 Pt particle 6 2nd oxide particle 7 Pt carrying | support oxide particle 8 3rd oxide particle 11 Catalyst coating layer 12 Catalyst coating layer 20 Exhaust gas purification honeycomb catalyst

Claims (7)

Rhを担持した第1の酸化物粒と、Ptを担持し酸素吸放出能を有する第2の酸化物粒と、これらの酸化物粒の間に介在する第3の酸化物粒とを有し、
前記Rhを担持した第1の酸化物粒と前記Ptを担持し酸素吸放出能を有する第2の酸化物粒との重心間距離が50〜400nmであることを特徴とする排気ガス浄化用触媒。
A first oxide particle supporting Rh; a second oxide particle supporting Pt and having an oxygen absorption / release capacity; and a third oxide particle interposed between these oxide particles. ,
The exhaust gas purifying catalyst characterized in that the distance between the centers of gravity of the first oxide particles supporting Rh and the second oxide particles supporting Pt and having oxygen absorption / release capacity is 50 to 400 nm. .
Rhを担持する第1の酸化物がZr-Ce-La複合酸化物であり、Ptを担持する第2の酸化物がZr、Ce、Nd及びYから選ばれる少なくとも1種を含む酸化物であることを特徴とする請求項1に記載の排気ガス浄化用触媒。   The first oxide supporting Rh is a Zr—Ce—La composite oxide, and the second oxide supporting Pt is an oxide containing at least one selected from Zr, Ce, Nd, and Y. The exhaust gas purifying catalyst according to claim 1. 前記第2の酸化物が、Zr-Ce-Nd複合酸化物であることを特徴とする請求項1に記載の排気ガス浄化用触媒。   The exhaust gas purifying catalyst according to claim 1, wherein the second oxide is a Zr-Ce-Nd composite oxide. 前記前記Rhを担持した第1の酸化物粒と前記Ptを担持し酸素吸放出能を有する第2の酸化物粒との重心間距離が200〜250nmであることを特徴とする請求項1に記載の排気ガス浄化用触媒。   The distance between the centers of gravity of the first oxide particles supporting the Rh and the second oxide particles supporting the Pt and having oxygen absorption / release capacity is 200 to 250 nm. The catalyst for exhaust gas purification as described. 前記Ptを担持した第2の酸化物粒のメジアン径が150〜200nmであることを特徴とする請求項1に記載の排気ガス浄化用触媒。   2. The exhaust gas purifying catalyst according to claim 1, wherein the median diameter of the second oxide particles supporting Pt is 150 to 200 nm. ハニカム状に貫通孔が複数形成された担体の隣接する当該貫通孔を隔てる隔壁の表面に触媒層が形成された排気ガス浄化用ハニカム触媒であって、
前記触媒層は、表層側の請求項1記載の排気ガス浄化用触媒の触媒コート層と、内層側のPdを含有する触媒の触媒コート層とを積層形成してなることを特徴とする排気ガス浄化用ハニカム触媒。
A honeycomb catalyst for purifying exhaust gas, in which a catalyst layer is formed on the surface of a partition wall separating adjacent through holes of a carrier having a plurality of through holes formed in a honeycomb shape,
2. The exhaust gas according to claim 1, wherein the catalyst layer is formed by laminating a catalyst coat layer of the exhaust gas purifying catalyst according to claim 1 on the surface layer side and a catalyst coat layer of a catalyst containing Pd on the inner layer side. Honeycomb catalyst for purification.
請求項1に記載の排気ガス浄化用触媒を製造する方法であって、
Rhを担持した第1の酸化物及びPtを担持した第2の酸化物を予め粉砕し、次いで第3の酸化物を混合した後、乾燥させてから焼成することを特徴とする排気ガス浄化用触媒の製造方法。
A method for producing the exhaust gas purifying catalyst according to claim 1,
The first oxide carrying Rh and the second oxide carrying Pt are pulverized in advance, then mixed with the third oxide, dried, and then fired. A method for producing a catalyst.
JP2009162927A 2009-07-09 2009-07-09 Exhaust gas purification catalyst, exhaust gas purification catalyst manufacturing method, exhaust gas purification honeycomb catalyst Active JP5391885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009162927A JP5391885B2 (en) 2009-07-09 2009-07-09 Exhaust gas purification catalyst, exhaust gas purification catalyst manufacturing method, exhaust gas purification honeycomb catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009162927A JP5391885B2 (en) 2009-07-09 2009-07-09 Exhaust gas purification catalyst, exhaust gas purification catalyst manufacturing method, exhaust gas purification honeycomb catalyst

Publications (2)

Publication Number Publication Date
JP2011016085A true JP2011016085A (en) 2011-01-27
JP5391885B2 JP5391885B2 (en) 2014-01-15

Family

ID=43594300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009162927A Active JP5391885B2 (en) 2009-07-09 2009-07-09 Exhaust gas purification catalyst, exhaust gas purification catalyst manufacturing method, exhaust gas purification honeycomb catalyst

Country Status (1)

Country Link
JP (1) JP5391885B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011036834A (en) * 2009-08-18 2011-02-24 Mazda Motor Corp Catalyst for cleaning exhaust, and method of producing the same
JP2017104805A (en) * 2015-12-09 2017-06-15 大日本印刷株式会社 Oxygen absorption material and packaging material
JP2017221943A (en) * 2017-08-31 2017-12-21 大日本印刷株式会社 Oxygen absorption material and packaging material
CN112284996A (en) * 2020-10-19 2021-01-29 青岛川青院新材料科技有限公司 Oxygen content testing device and method for oxygen-absorbing packaging material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01137732U (en) * 1988-03-11 1989-09-20
JP2007313498A (en) * 2006-04-28 2007-12-06 Nissan Motor Co Ltd Exhaust gas purifying catalyst and its manufacturing method
JP2008272745A (en) * 2007-04-05 2008-11-13 Nissan Motor Co Ltd Catalyst for purifying exhaust gas
JP2008279428A (en) * 2007-04-12 2008-11-20 Nissan Motor Co Ltd Catalyst for cleaning exhaust gas and method for preparing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01137732U (en) * 1988-03-11 1989-09-20
JP2007313498A (en) * 2006-04-28 2007-12-06 Nissan Motor Co Ltd Exhaust gas purifying catalyst and its manufacturing method
JP2008272745A (en) * 2007-04-05 2008-11-13 Nissan Motor Co Ltd Catalyst for purifying exhaust gas
JP2008279428A (en) * 2007-04-12 2008-11-20 Nissan Motor Co Ltd Catalyst for cleaning exhaust gas and method for preparing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011036834A (en) * 2009-08-18 2011-02-24 Mazda Motor Corp Catalyst for cleaning exhaust, and method of producing the same
JP2017104805A (en) * 2015-12-09 2017-06-15 大日本印刷株式会社 Oxygen absorption material and packaging material
WO2017098777A1 (en) * 2015-12-09 2017-06-15 大日本印刷株式会社 Oxygen absorbing material and packaging material
JP2017221943A (en) * 2017-08-31 2017-12-21 大日本印刷株式会社 Oxygen absorption material and packaging material
CN112284996A (en) * 2020-10-19 2021-01-29 青岛川青院新材料科技有限公司 Oxygen content testing device and method for oxygen-absorbing packaging material
CN112284996B (en) * 2020-10-19 2024-04-12 青岛川青院新材料科技有限公司 Oxygen content testing device and method for oxygen absorbing packaging material

Also Published As

Publication number Publication date
JP5391885B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
US8486853B2 (en) Exhaust gas purifying catalyst and method for manufacturing the same
RU2478427C1 (en) Catalyst for cleaning exhaust gases and method for production thereof
JP5515936B2 (en) Exhaust gas purification catalyst
US11097260B2 (en) Exhaust gas purification device
KR100993975B1 (en) Exhaust gas purifying catalyst and method of manufacturing the same
JP2008168278A (en) Catalyst for cleaning exhaust gas and its manufacturing method
JP6130424B2 (en) Exhaust gas purification catalyst
JP2011200817A (en) Exhaust gas purification catalyst
JP6771119B2 (en) Exhaust gas purification catalyst
JP6130423B2 (en) Exhaust gas purification catalyst
KR20100134605A (en) Catalyst for cleaning internal combustion engine exhaust gas and method for cleaning exhaust gas using said catalyst
JP5391885B2 (en) Exhaust gas purification catalyst, exhaust gas purification catalyst manufacturing method, exhaust gas purification honeycomb catalyst
JP2007144290A (en) Exhaust gas purification catalyst and manufacturing method of exhaust gas purification catalyst
JP2017100073A (en) Catalyst for exhaust purification
CN111905728A (en) Catalyst for exhaust gas purification
JP2008272745A (en) Catalyst for purifying exhaust gas
US20200376466A1 (en) Composition for exhaust gas purification, exhaust gas purifying catalyst containing same, and exhaust gas purifying catalyst structure
CN111905727A (en) Catalyst for exhaust gas purification
JP5831083B2 (en) Exhaust gas purification catalyst and method for producing the same
JP6947954B1 (en) Exhaust gas purification catalyst
JP2014000516A (en) Carrier for supporting catalyst, supported catalyst for exhaust gas purification, and filter for exhaust gas purification
US20230050366A1 (en) Exhaust gas purification system
JP2003047849A (en) Catalyst and method for cleaning exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

R150 Certificate of patent or registration of utility model

Ref document number: 5391885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150