JP2011015162A - Communication equipment, communication system, communication method, and communication program - Google Patents

Communication equipment, communication system, communication method, and communication program Download PDF

Info

Publication number
JP2011015162A
JP2011015162A JP2009157194A JP2009157194A JP2011015162A JP 2011015162 A JP2011015162 A JP 2011015162A JP 2009157194 A JP2009157194 A JP 2009157194A JP 2009157194 A JP2009157194 A JP 2009157194A JP 2011015162 A JP2011015162 A JP 2011015162A
Authority
JP
Japan
Prior art keywords
signal
unit
remainder
transmission
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009157194A
Other languages
Japanese (ja)
Inventor
Kozue Hirata
梢 平田
Takeshi Onodera
毅 小野寺
Hiroshi Nakano
博史 中野
Minoru Kubota
稔 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2009157194A priority Critical patent/JP2011015162A/en
Publication of JP2011015162A publication Critical patent/JP2011015162A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent degradation in reception characteristics in a communication system using THP.SOLUTION: An interference signal calculating section calculates an interference signal upon reception of a transmission signal based on the propagation path condition information and transmission signal. A subtraction section subtracts the interference signal calculated by the interference signal calculating section from the transmission signal. A determining section determines whether or not to calculate a remainder of the signal subjected to subtraction by the subtraction section based on the information representing a transmission power of the signal subjected to subtraction by the subtraction section. The remainder calculation section calculates the remainder of the signal subjected to subtraction by the subtraction section when the determining section determines the execution of the remainder calculation. Then, from the signal subjected to the remainder calculation, a value of multiple (natural number) of remainder width which is decided according to a modulation method of modulation section and which includes all signal points where a modulation symbol is arranged, is subtracted. A radio transmission section, transmits the signal subjected to subtraction by the subtraction section or the signal subjected to the remainder calculation by the remainder calculation section on the basis of the determination result of the determining section.

Description

本発明は、通信装置、通信システム、通信方法、及び通信プログラムに関する。   The present invention relates to a communication device, a communication system, a communication method, and a communication program.

<THPについて>
基地局装置が送信信号を送信して移動局装置と通信するシステムにおいて、基地局装置が移動局装置の受ける干渉信号を予め減算した送信信号を送信する技術が知られている。この技術では、基地局装置からの送信信号を受信した移動局装置が、干渉信号がキャンセルされた受信信号を受信する。
しかしながら、この技術では、送信信号から干渉信号を減算するので、干渉信号の電力が大きくなると送信信号の電力が増大してしまうという問題があった。
そこで、送信電力の増加を抑圧する技術として、Tomlinson−Harashima Precoding(THP)が提案されている(非特許文献1参照)。このTHPでは、基地局装置が、干渉信号を減算した送信信号の振幅に対して、変調方式に応じて定まる幅を変数とするModulo(剰余)演算を施し、Modulo演算を施した信号を送信する。ここで、Modulo演算とは、ある値にModulo幅δの適当な整数倍を加算することによって、信号を[―δ/2,δ/2]の範囲の信号に変換する演算のことをいう。このとき移動局装置では、基地局装置が送信した送信信号を受信し、受信した受信信号に対して基地局装置と同じModulo演算を施すことにより、干渉信号がキャンセルされた信号を得ることができる。
<About THP>
In a system in which a base station apparatus transmits a transmission signal to communicate with a mobile station apparatus, a technique is known in which the base station apparatus transmits a transmission signal obtained by subtracting in advance an interference signal received by the mobile station apparatus. In this technique, a mobile station apparatus that has received a transmission signal from a base station apparatus receives a reception signal from which an interference signal has been canceled.
However, in this technique, since the interference signal is subtracted from the transmission signal, there is a problem in that the power of the transmission signal increases when the power of the interference signal increases.
Therefore, Tomlinson-Harashima Precoding (THP) has been proposed as a technique for suppressing an increase in transmission power (see Non-Patent Document 1). In this THP, the base station apparatus performs a modulo operation with a variable determined according to the modulation method as a variable on the amplitude of the transmission signal obtained by subtracting the interference signal, and transmits a signal subjected to the modulo operation. . Here, the modulo operation refers to an operation for converting a signal into a signal in the range of [−δ / 2, δ / 2] by adding an appropriate integer multiple of the modulo width δ to a certain value. At this time, the mobile station apparatus receives the transmission signal transmitted from the base station apparatus, and performs the same modulo operation as the base station apparatus on the received signal, thereby obtaining a signal in which the interference signal is canceled. .

上記のTHPを、図22を用いて説明する。
図22は、従来技術に係る信号の変調シンボルの一例を示す概略図である。この図において、横軸はIチャネル(In−phase channel;同相チャネル)、縦軸はQチャネル(Quadrature channel;直交チャネル)を示す。
この図のIQ平面において、符号z1を付した領域z1内にある丸印はシンボルを示し、この図はQPSK(Quadrature Phase Shift Keying;4相位相変調)変調の場合を示す。なお、この図において、破線は、図の説明のために、領域z1と領域z1内のシンボルを繰り返して表示したものである。
The above THP will be described with reference to FIG.
FIG. 22 is a schematic diagram illustrating an example of a modulation symbol of a signal according to the related art. In this figure, the horizontal axis indicates an I channel (In-phase channel), and the vertical axis indicates a Q channel (Quadrature channel).
In the IQ plane of this figure, a circle in the region z1 to which reference numeral z1 is attached indicates a symbol, and this figure shows a case of QPSK (Quadrature Phase Shift Keying) modulation. In this figure, the broken line represents the area z1 and the symbols in the area z1 repeatedly for the purpose of explaining the figure.

図22において、格子状の線でハッチングした変調シンボルx11は干渉信号を減算する前の変調シンボルを示す。また、ベクトルy1は減算する干渉信号を示し、格子状の線でハッチングした変調シンボルx12は、変調シンボルx11から干渉信号を減算した後の変調シンボルを示す。この図が示すように、干渉信号の電力(ベクトルy1の大きさ)が大きくなると、変調シンボルx12の振幅(電力)が大きくなる。   In FIG. 22, a modulation symbol x11 hatched with a grid line indicates a modulation symbol before the interference signal is subtracted. A vector y1 indicates an interference signal to be subtracted, and a modulation symbol x12 hatched with a grid line indicates a modulation symbol after the interference signal is subtracted from the modulation symbol x11. As shown in this figure, when the power of the interference signal (the magnitude of the vector y1) increases, the amplitude (power) of the modulation symbol x12 increases.

図22において、横でハッチングした変調シンボルx13は、変調シンボルx12にModulo演算が施された信号を示す。ここで、領域z1内での変調シンボルx13の位置は、符号z2を付した領域z2内での変調シンボルx12の位置と同じ位置である。
この変調シンボルx13の信号(信号x13という)が、THPにおける基地局装置の送信信号である。この図が示すように、変調シンボルx13は、変調シンボルx12と比較して振幅が小さい。つまり、信号x13の送信電力の増加が抑圧される。
信号x13が送信されると、信号x13には、ベクトルy1と逆のベクトルy2が示す干渉信号が加算される(干渉信号が加算された信号x13を、信号x21という)。移動局装置は、信号x21を受信して復調し、変調シンボルx11を得る。この図が示すように、変調シンボルx21(信号x21)は、干渉信号が大きくなると振幅が大きくなる。
In FIG. 22, the modulation symbol x13 hatched horizontally indicates a signal obtained by performing a modulo operation on the modulation symbol x12. Here, the position of the modulation symbol x13 in the region z1 is the same position as the position of the modulation symbol x12 in the region z2 labeled with the code z2.
The signal of the modulation symbol x13 (referred to as signal x13) is a transmission signal of the base station apparatus in THP. As shown in the figure, the modulation symbol x13 has a smaller amplitude than the modulation symbol x12. That is, an increase in the transmission power of the signal x13 is suppressed.
When the signal x13 is transmitted, an interference signal indicated by a vector y2 opposite to the vector y1 is added to the signal x13 (the signal x13 added with the interference signal is referred to as a signal x21). The mobile station apparatus receives and demodulates the signal x21 to obtain a modulation symbol x11. As shown in this figure, the modulation symbol x21 (signal x21) increases in amplitude as the interference signal increases.

<通信システムについて>
次に、上記のTHPを用いた通信システムについて説明をする。この通信システムは、図22の信号x13を送信する基地局装置と、信号x21を受信する移動局装置とを具備する。
図23は、従来技術に係る通信システムの構成を示す概略ブロック図である。この図において、基地局装置v1は、変調シンボルs(図22の変調シンボルx11)から干渉信号fを減算する(図22のベクトルy1)。基地局装置v1は、その減算結果に対してModulo演算部v11でModulo演算を行い、送信信号x(信号x13)を生成する。基地局装置v1から送信された信号xは、伝搬路を通り干渉fを受け(図22のベクトルy2)、さらに熱雑音nが加わり移動局装置w1で受信される。移動局装置w1では、AGC部w11で受信信号の振幅を調整し、量子化部w12でA/D変換(量子化)を行ってデジタル化し、Modulo演算部w13でModulo演算を行って所望信号(変調シンボル)sチルダ(図22の変調シンボルx11)を得る。
<About communication systems>
Next, a communication system using the above THP will be described. This communication system includes a base station apparatus that transmits the signal x13 in FIG. 22 and a mobile station apparatus that receives the signal x21.
FIG. 23 is a schematic block diagram illustrating a configuration of a communication system according to the related art. In this figure, the base station apparatus v1 subtracts the interference signal f from the modulation symbol s (modulation symbol x11 in FIG. 22) (vector y1 in FIG. 22). The base station apparatus v1 performs a modulo operation on the subtraction result by the modulo operation unit v11 to generate a transmission signal x (signal x13). The signal x transmitted from the base station device v1 passes through the propagation path, receives interference f (vector y2 in FIG. 22), and is further received by the mobile station device w1 with thermal noise n added. In the mobile station apparatus w1, the amplitude of the received signal is adjusted by the AGC unit w11, A / D conversion (quantization) is performed by the quantization unit w12, digitized, and the modulo operation is performed by the modulo operation unit w13 to obtain the desired signal ( Modulation symbol) s tilde (modulation symbol x11 in FIG. 22) is obtained.

ここで、移動局装置w1のAGC部w11と量子化部w12について詳細を説明する。
図24は、従来技術に係るA/D変換を示す概略図である。この図において、横軸は量子化部w12への入力(アナログ信号)を示し、縦軸は出力(デジタル信号)を示す。この図は、入力アナログ信号の振幅が正または負の方向に大きい場合、デジタル値で表現できる範囲を超えてしまい、出力のデジタル信号が一定の値になってしまうことを示す。この現象をクリッピングと呼び、このとき正しく量子化できる幅をクリッピング幅と呼ぶ。
上記のように、THPを用いた通信システムでは、受信信号の振幅が大きくなる(図22の信号x21)。そこで、図23のAGC部w11では、受信信号に対して振幅の減衰を行い、量子化部w12でクリッピングが発生することを防止する。
Here, the details of the AGC unit w11 and the quantization unit w12 of the mobile station apparatus w1 will be described.
FIG. 24 is a schematic diagram showing A / D conversion according to the prior art. In this figure, the horizontal axis indicates the input (analog signal) to the quantization unit w12, and the vertical axis indicates the output (digital signal). This figure shows that when the amplitude of the input analog signal is large in the positive or negative direction, it exceeds the range that can be expressed by a digital value, and the output digital signal becomes a constant value. This phenomenon is called clipping, and the width that can be correctly quantized at this time is called clipping width.
As described above, in the communication system using THP, the amplitude of the received signal increases (signal x21 in FIG. 22). Therefore, the AGC unit w11 in FIG. 23 attenuates the amplitude of the received signal, and prevents the quantization unit w12 from causing clipping.

Harashima,Miyakawa,“Matched−Transmission Technique for Channels With Intersymbol Interference”,p774−p780,IEEE Transactions on Communications,Vol.COM−20,NO.4,August 1972.Harashima, Miyakawa, “Matched-Transmission Technique for Channels With Intersymbol Interference”, p774-p780, IEEE Transactions on Communications. COM-20, NO. 4, August 1972.

しかしながら、従来のTHPを用いた通信システムでは、Modulo演算によって振幅が大きくなった受信信号に対して振幅の減衰を行うと、受信信号のシンボル間のA/D変換の分解能が下がり、受信特性が劣化するという欠点があった。   However, in a conventional communication system using THP, if the amplitude is attenuated with respect to a received signal whose amplitude has been increased by the modulo calculation, the resolution of A / D conversion between symbols of the received signal is lowered, and the reception characteristics are reduced. There was a drawback that it deteriorated.

本発明は上記の点に鑑みてなされたものであり、その目的は、送信信号電力の増大及び受信特性の劣化を防止する通信装置、通信システム、通信方法、及び通信プログラムを提供することにある。 The present invention has been made in view of the above points, and an object thereof is to provide a communication device, a communication system, a communication method, and a communication program that prevent an increase in transmission signal power and a deterioration in reception characteristics. .

(1)本発明は上記の課題を解決するためになされたものであり、本発明は、送信信号を送信する通信装置において、前記送信信号が受信された場合の干渉信号を、伝搬路状態情報と前記送信信号とに基づいて算出する干渉信号算出部と、前記送信信号から前記干渉信号算出部が算出した干渉信号を減算する減算部と、前記減算部が減算した信号の送信電力を示す情報に基づいて、前記減算部が減算した信号に対して剰余演算を行うか否かを判定する判定部と、前記判定部が剰余演算を行うと判定した場合、前記減算部が減算した信号に対して剰余演算を行い、剰余演算を行った信号から、前記変調部の変調方式に応じて決まる幅であって変調シンボルを配置する信号点を全て含む幅である剰余幅の自然数倍の値を減算する剰余演算部と、前記判定部での判定結果に基づいて、前記減算部が減算した信号又は前記剰余演算部が剰余演算及び減算を行った信号を送信する無線送信部と、を備えることを特徴とする通信装置である。
上記構成によると、前記通信装置は、前記送信信号から前記干渉信号を減算した信号の送信電力を示す情報に基づいて前記減算した信号に対して剰余演算を行うか否かを判定し、剰余演算を行うと判定した場合、前記減算した信号に対して剰余演算を行い、剰余演算を行った信号から、前記変調部の変調方式に応じて決まる幅であって変調シンボルを配置する信号点を全て含む幅である剰余幅の自然数倍の値を減算する。また、前記通信装置は、前記判定結果に基づいて、前記減算した信号又は前記剰余演算を行って剰余幅の自然数倍の値を減算した信号を送信する。これにより、前記通信装置は、剰余演算を行うか否かを判定し、剰余演算を行う場合に前記通信装置での送信電力を抑圧することができる。また、前記通信装置は、剰余演算を行う場合に剰余幅の自然数倍の値を減算して受信信号の振幅を抑えることができ、受信特性の劣化を防止することができる。つまり、前記通信装置では、送信信号電力の低減だけでなく、受信機における量子化精度を考慮し、送信信号電力の低減と受信装置における量子化精度とのトレードオフを実現し、送信信号及び受信信号の振幅を抑えることができ、送信信号電力の増大及び受信特性の劣化を防止することができる。
(1) The present invention has been made in order to solve the above-described problem. In the communication apparatus that transmits a transmission signal, the present invention uses an interference signal when the transmission signal is received as propagation path state information. Information indicating the transmission power of the signal subtracted by the subtraction unit, the subtraction unit subtracting the interference signal calculated by the interference signal calculation unit from the transmission signal, the interference signal calculation unit calculated based on the transmission signal And a determination unit that determines whether or not to perform a remainder operation on the signal subtracted by the subtraction unit, and a determination unit that determines whether or not to perform a residue operation, The remainder calculation is performed, and a value that is a width that is determined according to the modulation scheme of the modulation unit and that includes all signal points for arranging the modulation symbols is a value that is a natural number multiple of the remainder width. Remainder operation part to be subtracted and previous And a wireless transmission unit that transmits a signal subtracted by the subtraction unit or a signal obtained by performing the remainder calculation and subtraction by the residue calculation unit based on a determination result in the determination unit. .
According to the above configuration, the communication apparatus determines whether to perform a remainder operation on the subtracted signal based on information indicating transmission power of a signal obtained by subtracting the interference signal from the transmission signal, and performs a remainder operation. If it is determined that the signal is to be subjected to the remainder calculation, a remainder calculation is performed on the subtracted signal, and all the signal points where the modulation symbols are arranged with a width determined according to the modulation scheme of the modulation unit are determined from the remainder calculation signal. Subtract the natural multiple of the remainder width, which is the included width. Further, the communication device transmits the subtracted signal or the signal obtained by performing the remainder calculation and subtracting a value that is a natural number multiple of the remainder width based on the determination result. Thereby, the communication apparatus can determine whether or not to perform a remainder operation, and can suppress transmission power in the communication apparatus when performing a remainder operation. In addition, the communication device can suppress the amplitude of the received signal by subtracting a value that is a natural number multiple of the remainder width when performing the remainder calculation, and can prevent the reception characteristics from deteriorating. That is, in the communication device, not only the transmission signal power is reduced, but also the quantization accuracy in the receiver is considered, and a trade-off between the reduction in the transmission signal power and the quantization accuracy in the reception device is realized. The amplitude of the signal can be suppressed, and an increase in transmission signal power and a deterioration in reception characteristics can be prevented.

(2)また、本発明は、上記の通信装置において、入力された情報を変調し、前記送信信号を生成する変調部を備え、前記判定部は、前記減算部が減算した信号の同相チャネル及び位相チャネルの成分の大きさ予め定めた閾値より大きい場合、又は、同相チャネル或いは位相チャネルの成分の大きさが予め定めた閾値より大きい場合、前記減算部が減算した信号に対して剰余演算を行うと判定し、前記閾値は、前記剰余幅に基づく値であることを特徴とする。   (2) The present invention further includes a modulation unit that modulates input information and generates the transmission signal in the communication device, wherein the determination unit includes an in-phase channel of the signal subtracted by the subtraction unit, and When the magnitude of the phase channel component is larger than a predetermined threshold value, or when the magnitude of the in-phase channel or phase channel component is larger than the predetermined threshold value, a remainder calculation is performed on the signal subtracted by the subtracting unit. And the threshold is a value based on the remainder width.

(3)また、本発明は、上記の通信装置において、前記閾値は、前記剰余幅の整数倍の値を、前記剰余幅に加算した値であることを特徴とする。   (3) Further, in the communication apparatus according to the present invention, the threshold is a value obtained by adding a value that is an integral multiple of the remainder width to the remainder width.

(4)また、本発明は、上記の通信装置において、前記通信装置は、受信した前記送信信号をデジタル信号にデジタル変換する他の通信装置に、前記送信信号を送信し、前記判定部は、前記送信電力を示す情報が、送信電力が予め定めた閾値より高いことを示す場合、前記減算部が減算した信号に対して剰余演算を行うと判定し、前記閾値は、前記他の通信装置がデジタル変換することができるデジタル値の最大値、及び、前記通信装置が送信可能な送信信号の送信電力の最大値、に基づく値であることを特徴とする。
上記構成によると、前記通信装置は、前記デジタル値の最大値、及び送信電力の最大値による誤り率が小さくなる閾値に基づいて、剰余演算を行うか否かを判定することができ、受信特性の劣化を防止することができる。
(4) Further, in the communication device according to the present invention, the communication device transmits the transmission signal to another communication device that digitally converts the received transmission signal into a digital signal. When the information indicating the transmission power indicates that the transmission power is higher than a predetermined threshold value, the subtraction unit determines to perform a remainder operation on the subtracted signal, and the threshold value is determined by the other communication device. It is a value based on a maximum value of a digital value that can be digitally converted and a maximum value of transmission power of a transmission signal that can be transmitted by the communication apparatus.
According to the above configuration, the communication device can determine whether or not to perform a remainder operation based on a threshold value that reduces an error rate due to the maximum value of the digital value and the maximum value of transmission power, and receives characteristics Can be prevented.

(5)また、本発明は、上記の通信装置において、前記判定部は、前記送信電力を示す情報が、送信電力が予め定めた閾値より高いことを示す場合、前記減算部が減算した信号に対して剰余演算を行うと判定し、前記送信信号と前記干渉信号算出部が算出した干渉信号とに基づいて、信号対干渉電力比を算出する信号対干渉電力比算出部と、前記信号対干渉電力比算出部が算出した信号対干渉電力比に基づいて、前記閾値を決定する閾値設定部と、を備えることを特徴とする
上記構成によると、前記通信装置は、信号対干渉電力比に基づいて前記閾値を決定するので、信号対干渉電力比によって誤り率が変わっても、誤り率が小さくなる閾値を決定し、決定した閾値に基づいて剰余演算を行うか否かを判定することができ、受信特性の劣化を防止することができる。
(5) Further, in the communication apparatus according to the present invention, when the information indicating the transmission power indicates that the transmission power is higher than a predetermined threshold value, the determination unit determines the signal subtracted by the subtraction unit. A signal-to-interference power ratio calculation unit that determines that a remainder operation is to be performed and calculates a signal-to-interference power ratio based on the transmission signal and the interference signal calculated by the interference signal calculation unit; and the signal-to-interference A threshold value setting unit that determines the threshold value based on a signal-to-interference power ratio calculated by a power ratio calculation unit. According to the above configuration, the communication device is based on a signal-to-interference power ratio. Therefore, even if the error rate changes depending on the signal-to-interference power ratio, it is possible to determine a threshold value that reduces the error rate and to determine whether or not to perform a remainder operation based on the determined threshold value. Deterioration of reception characteristics Can be prevented.

(6)また、本発明は、上記の通信装置において、前記剰余演算部は、前記判定部が剰余演算を行うと判定した場合、前記減算部が減算した信号に対して剰余演算を行い、剰余演算を行った信号から、前記剰余幅の値を減算することを特徴とする。   (6) Further, in the communication apparatus according to the present invention, when the determination unit determines that the determination unit performs a residue calculation, the residue calculation unit performs a residue calculation on the signal subtracted by the subtraction unit, The value of the remainder width is subtracted from the signal that has been calculated.

(7)また、本発明は、第1の通信装置と、前記第1の通信装置から受信した前記送信信号をデジタル信号にデジタル変換する第2の通信装置と、を具備する無線通信システムにおいて、前記第1の通信装置は、入力された情報を変調し、前記送信信号を生成する変調部と、前記送信信号を前記第2の通信装置が受信した場合の干渉信号を、伝搬路状態情報と前記送信信号とに基づいて算出する干渉信号算出部と、前記送信信号から前記干渉信号算出部が算出した干渉信号を減算する減算部と、前記減算部が減算した信号の送信電力を示す情報に基づいて、前記減算部が減算した信号に対して剰余演算を行うか否かを判定する判定部と、前記判定部が剰余演算を行うと判定した場合、前記減算部が減算した信号に対して剰余演算を行い、剰余演算を行った信号から、前記変調部の変調方式に応じて決まる幅であって変調シンボルを配置する信号点を全て含む幅である剰余幅の自然数倍の値を減算する剰余演算部と、前記判定部の判定結果に基づいて、前記減算部が減算した信号又は前記剰余演算部が剰余演算及び減算を行った信号を送信する無線送信部と、を備え、前記第2の通信装置は、前記第1の通信装置での変調方式に応じて決まる幅であって変調シンボルを配置する信号点を全て含む幅である剰余幅が、前記デジタル変換することができるデジタル値の最大値が示す幅になるように、前記受信信号の振幅を調整する振幅調整部と、前記振幅調整部が振幅を調整した受信信号を、デジタル信号にデジタル変換する量子化部と、を備えることを特徴とする通信システムである。   (7) Moreover, this invention is a radio | wireless communications system provided with the 1st communication apparatus and the 2nd communication apparatus which digitally converts the said transmission signal received from the said 1st communication apparatus into a digital signal, The first communication device modulates input information and generates the transmission signal; an interference signal when the second communication device receives the transmission signal; and propagation path state information Information indicating the transmission power of the interference signal calculation unit calculated based on the transmission signal, a subtraction unit for subtracting the interference signal calculated by the interference signal calculation unit from the transmission signal, and the transmission power of the signal subtracted by the subtraction unit A determination unit that determines whether or not to perform a remainder operation on the signal subtracted by the subtraction unit; and when the determination unit determines to perform a residue operation, Performs remainder operation and remainder A remainder calculation unit that subtracts a value that is a natural number multiple of a remainder width that is a width that is determined according to the modulation scheme of the modulation unit and that includes all signal points where modulation symbols are arranged, from the calculated signal; A wireless transmission unit that transmits a signal obtained by subtraction by the subtraction unit or a signal obtained by performing the remainder calculation and subtraction by the residue calculation unit based on a determination result of the determination unit, and the second communication device includes: The remainder width, which is a width determined according to the modulation method in the first communication apparatus and includes all signal points where modulation symbols are arranged, is indicated by the maximum digital value that can be digitally converted. An amplitude adjustment unit that adjusts the amplitude of the reception signal, and a quantization unit that digitally converts the reception signal whose amplitude is adjusted by the amplitude adjustment unit into a digital signal. System.

(8)また、本発明は、他の通信装置から受信した送信信号をデジタル信号にデジタル変換する通信装置において、前記他の通信装置での変調方式に応じて決まる幅であって変調シンボルを配置する信号点を全て含む幅である剰余幅が、前記デジタル変換することができるデジタル値の最大値が示す幅になるように、前記受信信号の振幅を調整する振幅調整部と、前記振幅調整部が振幅を調整した受信信号を、デジタル信号にデジタル変換する量子化部と、を備えることを特徴とする通信装置である。   (8) Further, the present invention provides a communication device that digitally converts a transmission signal received from another communication device into a digital signal, and has a width determined according to a modulation method in the other communication device, and arranges modulation symbols. An amplitude adjustment unit that adjusts the amplitude of the received signal so that a remainder width that is a width including all signal points to be a width indicated by the maximum value of the digital value that can be digitally converted, and the amplitude adjustment unit And a quantization unit that digitally converts the received signal whose amplitude is adjusted to a digital signal.

(9)また、本発明は、送信信号を送信する通信装置における通信方法において、前記通信装置が、前記送信信号が受信された場合の干渉信号を、伝搬路状態情報と前記送信信号とに基づいて算出する第1の過程と、前記通信装置が、前記送信信号から前記第1の過程にて算出した干渉信号を減算する第2の過程と、前記通信装置が、前記第3の過程にて減算した信号の送信電力を示す情報に基づいて、前記第2の過程にて減算した信号に対して剰余演算を行うか否かを判定する第4の過程と、前記通信装置が、前記第4の過程にて剰余演算を行うと判定した場合、前記第2の過程にて減算した信号に対して剰余演算を行い、剰余演算を行った信号から、前記変調部の変調方式に応じて決まる幅であって変調シンボルを配置する信号点を全て含む幅である剰余幅の自然数倍の値を減算する第5の過程と、前記通信装置が、前記第4の過程での判定結果に基づいて、前記第2の過程にて減算した信号又は前記第5の過程にて剰余演算及び減算を行った信号を送信する第6の過程と、を有することを特徴とする通信方法である。   (9) Further, the present invention provides a communication method in a communication apparatus for transmitting a transmission signal, wherein the communication apparatus determines an interference signal when the transmission signal is received based on propagation path state information and the transmission signal. A first process in which the communication apparatus calculates a second process in which the interference signal calculated in the first process is subtracted from the transmission signal; and the communication apparatus in the third process. A fourth step of determining whether to perform a remainder operation on the signal subtracted in the second step based on information indicating the transmission power of the subtracted signal; and When it is determined that the remainder calculation is performed in the process of step 2, a width determined according to the modulation method of the modulation unit from the signal obtained by performing the remainder calculation on the signal subtracted in the second process. All signal points where modulation symbols are placed A fifth step of subtracting a value that is a natural number multiple of the remainder width that is a width of the signal, and a signal that the communication device subtracted in the second step based on a determination result in the fourth step, or And a sixth process of transmitting the signal obtained by performing the remainder calculation and subtraction in the fifth process.

(10)また、本発明は、他の通信装置から受信した送信信号をデジタル信号にデジタル変換する通信装置における通信方法において、前記通信装置が、前記他の通信装置での変調方式に応じて決まる幅であって変調シンボルを配置する信号点を全て含む幅である剰余幅が、前記デジタル変換することができるデジタル値の最大値が示す幅になるように、前記受信信号の振幅を調整する第1の過程と、前記第1の過程にて振幅を調整した受信信号を、デジタル信号にデジタル変換する第2の過程と、を有することを特徴とする通信方法である。   (10) Further, according to the present invention, in a communication method in a communication apparatus that digitally converts a transmission signal received from another communication apparatus into a digital signal, the communication apparatus is determined according to a modulation method in the other communication apparatus. The amplitude of the received signal is adjusted so that the remainder width, which is a width including all signal points where modulation symbols are arranged, becomes a width indicated by the maximum digital value that can be digitally converted. 1 is a communication method comprising: a first step; and a second step of digitally converting the received signal whose amplitude is adjusted in the first step into a digital signal.

(11)また、本発明は、送信信号を送信する通信装置のコンピュータを、前記送信信号が受信された場合の干渉信号を、伝搬路状態情報と前記送信信号とに基づいて算出する干渉信号算出手段、前記送信信号から前記干渉信号算出手段にて算出した干渉信号を減算する減算手段、前記減算手段にて減算した信号の送信電力を示す情報に基づいて、前記減算手段にて減算した信号に対して剰余演算を行うか否かを判定する判定手段、前記判定手段にて剰余演算を行うと判定した場合、前記減算手段にて減算した信号に対して剰余演算を行い、剰余演算を行った信号から、前記変調部の変調方式に応じて決まる幅であって変調シンボルを配置する信号点を全て含む幅である剰余幅の自然数倍の値を減算する剰余演算手段、前記判定手段での判定結果に基づいて、前記減算手段にて減算した信号又は前記剰余演算手段にて剰余演算及び減算を行った信号を送信する無線送信手段、として機能させる通信プログラムである。   (11) Further, the present invention provides an interference signal calculation for calculating a computer of a communication apparatus that transmits a transmission signal, based on propagation path state information and the transmission signal, when the transmission signal is received. Means subtracting the interference signal calculated by the interference signal calculation means from the transmission signal, based on information indicating the transmission power of the signal subtracted by the subtraction means, to the signal subtracted by the subtraction means A determination means for determining whether or not to perform a remainder operation, and when the determination means determines that a remainder operation is to be performed, a remainder operation is performed on the signal subtracted by the subtraction means, and a remainder operation is performed. Residue calculating means for subtracting a value that is a natural number multiple of a remainder width that is a width determined according to the modulation scheme of the modulation section and includes all signal points for arranging modulation symbols, Judgment Based on the result, which is the radio transmitting means for transmitting a signal subjected to modulo operation and subtraction in the subtraction signal or the remainder operation unit by subtracting means communication program to function as a.

(12)また、本発明は、他の通信装置から受信した送信信号をデジタル信号にデジタル変換する通信装置のコンピュータを、前記他の通信装置での変調方式に応じて決まる幅であって変調シンボルを配置する信号点を全て含む幅である剰余幅が、前記デジタル変換することができるデジタル値の最大値が示す幅になるように、前記受信信号の振幅を調整する振幅調整手段、前記振幅調整手段にて振幅を調整した受信信号を、デジタル信号にデジタル変換する量子化手段、として機能させる通信プログラムである。   (12) Further, the present invention provides a communication apparatus computer that digitally converts a transmission signal received from another communication apparatus into a digital signal, and has a modulation symbol having a width determined according to a modulation method in the other communication apparatus. Amplitude adjusting means for adjusting the amplitude of the received signal so that a remainder width, which is a width including all signal points to be arranged, becomes a width indicated by the maximum digital value that can be digitally converted, and the amplitude adjustment This is a communication program that functions as quantization means for digitally converting a received signal whose amplitude is adjusted by the means into a digital signal.

本発明によれば、前記通信装置は、送信信号及び受信信号の振幅を抑えることができ、送信信号電力の増大及び受信特性の劣化を防止することができる。   According to the present invention, the communication device can suppress the amplitudes of the transmission signal and the reception signal, and can prevent an increase in transmission signal power and a deterioration in reception characteristics.

この発明の第1の実施形態に係る通信システムの概念図である。1 is a conceptual diagram of a communication system according to a first embodiment of the present invention. 本実施形態に係る基地局装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the base station apparatus which concerns on this embodiment. 本実施形態に係るシンボルと閾値との関係の一例を示す概略図である。It is the schematic which shows an example of the relationship between the symbol which concerns on this embodiment, and a threshold value. 本実施形態に係る移動局装置での受信シンボルの一例を示す概略図である。It is the schematic which shows an example of the received symbol in the mobile station apparatus which concerns on this embodiment. 本実施形態に係る基地局装置での送信シンボルの一例を示す概略図である。It is the schematic which shows an example of the transmission symbol in the base station apparatus which concerns on this embodiment. 本実施形態に係る移動局装置での受信シンボルの別の一例を示す概略図である。It is the schematic which shows another example of the received symbol in the mobile station apparatus which concerns on this embodiment. 本実施形態に係る判定部への入力と伝搬路補償部への入力との関係の一例を示す概略図である。It is the schematic which shows an example of the relationship between the input to the determination part which concerns on this embodiment, and the input to a propagation path compensation part. 本実施形態に係る判定部への入力と伝搬路補償部の入力との関係の別の一例を示す概略図である。It is the schematic which shows another example of the relationship between the input to the determination part which concerns on this embodiment, and the input of a propagation path compensation part. 本実施形態に係る移動局装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the mobile station apparatus which concerns on this embodiment. 従来技術に係る移動局装置での受信信号の一例を示す概略図である。It is the schematic which shows an example of the received signal in the mobile station apparatus which concerns on a prior art. 従来技術に係る振幅の調整を行った信号の一例を示す概略図である。It is the schematic which shows an example of the signal which adjusted the amplitude which concerns on a prior art. 従来技術に係る量子化の一例を示す概略図である。It is the schematic which shows an example of the quantization which concerns on a prior art. 本実施形態に係る移動局装置での受信信号の一例を示す概略図である。It is the schematic which shows an example of the received signal in the mobile station apparatus which concerns on this embodiment. 本実施形態に係る振幅調整処理を行った信号の一例を示す概略図である。It is the schematic which shows an example of the signal which performed the amplitude adjustment process which concerns on this embodiment. 本実施形態に係る量子化の一例を示す概略図である。It is the schematic which shows an example of the quantization which concerns on this embodiment. 本実施形態の変形例1に係る基地局装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the base station apparatus which concerns on the modification 1 of this embodiment. 本実施形態の変形例1に係るシンボルと閾値との関係の一例を示す概略図である。It is the schematic which shows an example of the relationship between the symbol which concerns on the modification 1 of this embodiment, and a threshold value. 本実施形態に係る誤り率特性の一例を示す図である。It is a figure which shows an example of the error rate characteristic which concerns on this embodiment. この発明の第2の実施形態に係る基地局装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the base station apparatus which concerns on 2nd Embodiment of this invention. 本実施形態に係る閾値情報テーブルの一例を示す概略図である。It is the schematic which shows an example of the threshold-value information table which concerns on this embodiment. 本実施形態に係る誤り率特性の一例を示す図である。It is a figure which shows an example of the error rate characteristic which concerns on this embodiment. 従来技術に係る信号の変調シンボルの一例を示す概略図である。It is the schematic which shows an example of the modulation symbol of the signal which concerns on a prior art. 従来技術に係る通信システムの構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the communication system which concerns on a prior art. 従来技術に係るA/D変換を示す概略図である。It is the schematic which shows A / D conversion based on a prior art.

(第1の実施形態)
以下、図面を参照しながら本発明の第1の実施形態について詳しく説明する。図1は、この発明の実施形態に係る通信システムの概念図である。
この図において、通信システムは、基地局装置A(第1の通信装置)及び移動局装置B(第2の通信装置)を具備する。なお、この通信システムは、時分割複信(Time Division Duplex:TDD)の通信システム、つまり、基地局装置Aから移動局装置Bへの通信と、移動局装置Bから基地局装置Aへの通信と、が時間を分けて同じ周波数を用いて行う通信システムである。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a conceptual diagram of a communication system according to an embodiment of the present invention.
In this figure, the communication system includes a base station apparatus A (first communication apparatus) and a mobile station apparatus B (second communication apparatus). Note that this communication system is a time division duplex (TDD) communication system, that is, communication from the base station apparatus A to the mobile station apparatus B, and communication from the mobile station apparatus B to the base station apparatus A. Is a communication system that divides time and uses the same frequency.

図1は、基地局装置Aから送信された送信信号が、2つの伝搬路(伝搬路d1、d2)を介して移動局装置Bに受信されることを示す。なお、伝搬路は3つ以上あってもよい。
この図において、実線の矢印で示す伝搬路d1は、基地局装置Aと移動局装置Bとを直接結ぶ伝搬路である。この伝搬路d1の伝搬路推定値を、伝搬路推定hsという。伝搬路推定値は、伝搬路状態情報ともいう。また、破線の矢印で示す伝搬路d2は、基地局装置Aと移動局装置Bとを反射物を経由して結ぶ伝搬路である。この伝搬路d2の伝搬路推定値を、伝搬路推定hfという。
移動局装置Bにおいて、伝搬路d2を介して受信した信号は、遅延波となって、伝搬路d1を介して受信した送信信号と干渉する。つまり、伝搬路d2を介して受信した信号は、干渉信号となる。
FIG. 1 shows that the transmission signal transmitted from the base station apparatus A is received by the mobile station apparatus B via two propagation paths (propagation paths d1 and d2). There may be three or more propagation paths.
In this figure, a propagation path d1 indicated by a solid arrow is a propagation path directly connecting the base station apparatus A and the mobile station apparatus B. The propagation path estimation value of this propagation path d1 is referred to as propagation path estimation hs. The channel estimation value is also referred to as channel state information. A propagation path d2 indicated by a dashed arrow is a propagation path that connects the base station apparatus A and the mobile station apparatus B via a reflector. The propagation path estimation value of this propagation path d2 is referred to as propagation path estimation hf.
In the mobile station apparatus B, the signal received via the propagation path d2 becomes a delayed wave and interferes with the transmission signal received via the propagation path d1. That is, the signal received via the propagation path d2 becomes an interference signal.

基地局装置Aは、検出した伝搬路推定hs、hfに基づいて、送信信号の干渉信号を算出する。基地局装置Aは、算出した干渉信号を予め減算した変調シンボルを生成し、この変調シンボルの送信信号を送信する。
本実施形態では、基地局装置Aは、生成した変調シンボルの値と予め定めた閾値とを比較し、後述するModulo演算を行うか否かを切り替える。また、移動局装置Bは、後述するA/D変換のクリッピング幅に対応するように、受信信号の振幅の増大又は減衰を行ってアナログ信号をデジタル信号に変換する。
以下、基地局装置Aと移動局装置Bの構成について説明をする。本実施形態では、基地局装置Aを基地局装置a1といい、移動局装置Bを移動局装置b1という。
The base station apparatus A calculates an interference signal of the transmission signal based on the detected propagation path estimates hs and hf. The base station apparatus A generates a modulation symbol obtained by subtracting the calculated interference signal in advance, and transmits a transmission signal of this modulation symbol.
In the present embodiment, the base station apparatus A compares the value of the generated modulation symbol with a predetermined threshold value, and switches whether to perform a modulo operation described later. Also, the mobile station apparatus B converts the analog signal into a digital signal by increasing or decreasing the amplitude of the received signal so as to correspond to the clipping width of A / D conversion described later.
Hereinafter, configurations of the base station apparatus A and the mobile station apparatus B will be described. In the present embodiment, the base station device A is referred to as a base station device a1, and the mobile station device B is referred to as a mobile station device b1.

<基地局装置a1の構成について>
図2は、本実施形態に係る基地局装置a1の構成を示す概略ブロック図である。基地局装置a1は、無線受信部a111、伝搬路推定部a112、干渉信号算出部a113、符号部a114、変調部a115、THP(Tomlinson−Harashima Precoding)部a12、伝搬路補償部a116、及び無線送信部a13を含んで構成される。THP部a12は、減算部a121、閾値設定部a122、判定部a123、及び剰余演算部a124を含んで構成される。無線送信部a13は、マッピング部a131、D/A(Digital Analog)変換部a132、及び送信部a133を含んで構成される。
<About configuration of base station apparatus a1>
FIG. 2 is a schematic block diagram showing the configuration of the base station apparatus a1 according to this embodiment. The base station apparatus a1 includes a radio reception unit a111, a propagation path estimation unit a112, an interference signal calculation unit a113, a coding unit a114, a modulation unit a115, a THP (Tomlinson-Harashima Precoding) unit a12, a propagation path compensation unit a116, and radio transmission Part a13 is included. The THP unit a12 includes a subtraction unit a121, a threshold setting unit a122, a determination unit a123, and a remainder calculation unit a124. The wireless transmission unit a13 includes a mapping unit a131, a D / A (Digital Analog) conversion unit a132, and a transmission unit a133.

無線受信部a111は、移動局装置b1が送信した信号を、アンテナを介して受信する。無線受信部a111は、受信した信号を復調して出力する。また、無線受信部a111は、移動局装置b1が送信したパイロット信号を受信し、伝搬路推定部a112に出力する。
伝搬路推定部a112は、無線受信部a111から入力されたパイロット信号と、予め記憶するパイロット信号のレプリカと、を用いて伝搬路推定を行う。例えば、伝搬路推定部a112は、図1中の伝搬路d1、d2を介して受信したパイロット信号から、それぞれ、伝搬路推定値hs、hfを検出する。伝搬路推定部a112は、検出した伝搬路推定値hsを干渉信号算出部a113及び伝搬路補償部a116に出力し、伝搬路推定値hsを干渉信号算出部a113に出力する。
また、伝搬路推定部a112は、図1中の伝搬路d1、d2を介して受信したパイロット信号の時間差(遅延時間と呼ぶ)を検出し、伝搬路補償部a116に出力する。
The radio reception unit a111 receives a signal transmitted from the mobile station device b1 via an antenna. The wireless receiving unit a111 demodulates and outputs the received signal. Further, the radio reception unit a111 receives the pilot signal transmitted by the mobile station apparatus b1 and outputs the pilot signal to the propagation path estimation unit a112.
The propagation path estimation unit a112 performs propagation path estimation using the pilot signal input from the wireless reception unit a111 and a pilot signal replica stored in advance. For example, the propagation path estimation unit a112 detects the propagation path estimation values hs and hf from the pilot signals received via the propagation paths d1 and d2 in FIG. The propagation path estimation unit a112 outputs the detected propagation path estimation value hs to the interference signal calculation unit a113 and the propagation path compensation unit a116, and outputs the propagation path estimation value hs to the interference signal calculation unit a113.
Moreover, the propagation path estimation part a112 detects the time difference (it calls a delay time) of the pilot signal received via propagation paths d1 and d2 in FIG. 1, and outputs it to the propagation path compensation part a116.

干渉信号算出部a113は、次のように、干渉信号のシンボルf(干渉シンボルfと呼ぶ)を算出する。具体的には、干渉信号算出部a113は、伝搬路推定部a112から入力された伝搬路推定値hs、hfと、後述する伝搬路補償部a116から入力された遅延時間前のシンボルx’と、を用いて干渉成分f=(hf/hs)×x’を算出する。なお、干渉信号(遅延波)が複数ある場合、干渉信号算出部a113は、干渉成分f=f+f+…を算出する。ただし、f=(hf/hs)×x’、f=(hf/hs)×x’、…である。ここで、hf1、hfは各干渉信号の伝搬路推定値、x’、x’は各干渉信号の遅延時間前のシンボルを示す。
干渉信号算出部a113は、算出した干渉シンボルfを、THP部a12に出力する。
The interference signal calculation unit a113 calculates the symbol f of the interference signal (referred to as the interference symbol f) as follows. Specifically, the interference signal calculation unit a113 includes the propagation path estimation values hs and hf input from the propagation path estimation unit a112, the symbol x ′ before the delay time input from the propagation path compensation unit a116 described later, Is used to calculate the interference component f = (hf / hs) × x ′. When there are a plurality of interference signals (delayed waves), the interference signal calculation unit a113 calculates interference components f = f 1 + f 2 +. However, f 1 = (hf 1 / hs) × x 1 ', f 2 = (hf 2 / hs) × x 2', a .... Here, hf 1 and hf 2 are propagation path estimation values of the respective interference signals, and x 1 ′ and x 2 ′ are symbols before the delay time of the respective interference signals.
The interference signal calculation unit a113 outputs the calculated interference symbol f to the THP unit a12.

符号部a114は、入力された情報を符号化し、符号化した符号化ビットを変調部a115に出力する。
変調部a115は、符号部a114から入力された符号化ビットを、QPSK(Quadrature Phase Shift Keying;4相位相変調)の変調方式で変調する。なお、本実施形態では、変調方式がQPSKの場合について説明をするが、本発明はこれに限らず、例えば、8PSK(8 Phase Shift Keying、8相位相変調)、16QAM(16 Quadrature Amplitude Modulation、16値直交振幅変調)、又は、64QAM(64 Quadrature Amplitude Modulation、64値直交振幅変調)などの変調方式でもよい。変調部a115は、変調した変調シンボルSを、THP部a12の減算部a121に出力する。
The encoding unit a114 encodes the input information, and outputs the encoded bits to the modulation unit a115.
The modulation unit a115 modulates the coded bits input from the coding unit a114 using a QPSK (Quadrature Phase Shift Keying) modulation method. In the present embodiment, the case where the modulation scheme is QPSK will be described. However, the present invention is not limited to this, and for example, 8PSK (8 Phase Shift Keying, 8-phase phase modulation), 16QAM (16 Quadrature Amplitude Modulation, 16 Value quadrature amplitude modulation) or 64QAM (64 Quadrature Amplitude Modulation) may be used. The modulation unit a115 outputs the modulated modulation symbol S to the subtraction unit a121 of the THP unit a12.

THP部a12の減算部a121は、入力された変調シンボルSから、干渉信号算出部a113から入力された干渉シンボルfを減算する。これにより、移動局装置b1では、基地局装置a1から伝搬路d2を介して受信する干渉信号の影響を予め除去した信号を受信することができる。   The subtraction unit a121 of the THP unit a12 subtracts the interference symbol f input from the interference signal calculation unit a113 from the input modulation symbol S. Thereby, in the mobile station apparatus b1, the signal which removed beforehand the influence of the interference signal received via the propagation path d2 from the base station apparatus a1 can be received.

減算部a121は、減算したシンボルν(=S−f)を、判定部a123に出力する。
閾値設定部a122は、予め定められた閾値T1(本実施形態では、3δ/2)を記憶する。閾値設定部a122は、記憶する閾値T1を判定部a123に出力する。
判定部a123は、減算部a121から入力されたシンボルνと閾値設定部a122から入力された閾値T1との比較結果に基づいて、Modulo演算可否判定を行う。判定部a123が行うModulo演算可否判定の詳細については、後述する。
判定部a123は、シンボルνをModulo演算可否判定の判定結果に応じて、剰余演算部a124又は伝搬路補償部a116に出力する。
The subtraction unit a121 outputs the subtracted symbol ν (= S−f) to the determination unit a123.
The threshold setting unit a122 stores a predetermined threshold T1 (3δ / 2 in the present embodiment). The threshold setting unit a122 outputs the stored threshold T1 to the determination unit a123.
The determination unit a123 determines whether the modulo calculation is possible based on a comparison result between the symbol ν input from the subtraction unit a121 and the threshold value T1 input from the threshold setting unit a122. Details of the modulo calculation availability determination performed by the determination unit a123 will be described later.
The determination unit a123 outputs the symbol ν to the remainder calculation unit a124 or the propagation path compensation unit a116 according to the determination result of the modulo calculation availability determination.

剰余演算部a124は、判定部a123から入力されたシンボルνに対して、式(2)及び(3)で表わされるModulo演算及び減算(以下、Modulo演算処理という)を行う。なお、従来のModulo演算(剰余演算)は、次の式(1)で表わされる。   The remainder calculation unit a124 performs modulo calculation and subtraction (hereinafter referred to as modulo calculation processing) represented by the expressions (2) and (3) on the symbol ν input from the determination unit a123. A conventional modulo operation (residue operation) is expressed by the following equation (1).

Figure 2011015162
Figure 2011015162

剰余演算部a124では、シンボルνのIチャネル成分Re(ν)、Qチャネル成分Im(ν)それぞれについて、式(1)を利用しオフセットを加えた形の次の式(2)、(3)で表わされるModulo演算処理を行う。   The remainder calculation unit a124 uses the following equations (2) and (3) in the form of adding an offset using the equation (1) for each of the I channel component Re (ν) and the Q channel component Im (ν) of the symbol ν. The modulo calculation process represented by

Figure 2011015162
Figure 2011015162

以下、シンボルνに対してModulo演算処理を行った結果を、M(ν)=M(Re(ν))+jM(Im(ν))と表わす。つまり、式(2)、(3)は、シンボルνに対してModulo演算を行い、Modulo演算を行った信号から、変調部a115の変調方式に応じて決まる幅であって変調シンボルを配置する信号点を全て含む幅であるModulo幅δ(剰余幅)の自然数N倍(本実施形態では、N=1)の値を減算する。   Hereinafter, the result of performing the modulo arithmetic processing on the symbol ν is expressed as M (ν) = M (Re (ν)) + jM (Im (ν)). That is, Equations (2) and (3) are signals for arranging modulation symbols with a width determined according to the modulation scheme of the modulation unit a115 from the signal obtained by performing the modulo operation on the symbol ν and performing the modulo operation. A value that is a natural number N times (in this embodiment, N = 1) of a modulo width δ (remainder width) that is a width including all points is subtracted.

ここで、Modulo幅δは、変調部a115で用いる変調方式に応じて定まるコンスタレーション(信号点配置)を全て含むよう定められた幅を示し(図3参照)、その値は変調方式に応じて予め定まる定数である。例えば、本実施形態の変調方式(QPSK)では、δ=2√2である。なお、このModulo幅δの値は、基地局装置a1と移動局装置b1とで予め記憶されている。
剰余演算部a124は、Modulo演算処理を施したシンボルM(ν)を伝搬路補償部a116に出力する。
Here, the modulo width δ is a width determined to include all constellations (signal point arrangement) determined according to the modulation scheme used in the modulation unit a115 (see FIG. 3), and the value thereof depends on the modulation scheme. It is a constant determined in advance. For example, in the modulation scheme (QPSK) of this embodiment, δ = 2√2. The value of the modulo width δ is stored in advance in the base station device a1 and the mobile station device b1.
The remainder calculation unit a124 outputs the symbol M (ν) subjected to the modulo calculation process to the propagation path compensation unit a116.

伝搬路補償部a116は、判定部a123から入力されたシンボルν、又は剰余演算部a124から入力されたシンボルM(ν)から、伝搬路推定部a112から入力された伝搬路推定値hsを除算する。具体的には、伝搬路補償部a116は、除算後のシンボルをxとして、x=M(S−f)/hs、又は(S−f)/hsを算出する。これにより、移動局装置b1では、伝搬路d1の影響を予め除去した信号を受信することができる。伝搬路補償部a116は、算出したシンボルxを無線送信部a13のマッピング部a131に出力する。
また、伝搬路補償部a116は、伝搬路推定部a112から入力された遅延時間の分だけ遅らせて、シンボルxを干渉信号算出部a113に出力する(遅延時間の分だけ遅れたシンボルxを、シンボルx’と呼ぶ)。つまり、減算部a121では、変調シンボルSから、この変調シンボルSより遅延時間前のシンボルx’に基づいて生成された干渉シンボルfを、減算する。
The propagation path compensation unit a116 divides the propagation path estimation value hs input from the propagation path estimation unit a112 from the symbol ν input from the determination unit a123 or the symbol M (ν) input from the remainder calculation unit a124. . Specifically, the propagation path compensation unit a116 calculates x = M (S−f) / hs or (S−f) / hs, where x is a symbol after division. Thereby, the mobile station apparatus b1 can receive a signal from which the influence of the propagation path d1 has been removed in advance. The propagation path compensation unit a116 outputs the calculated symbol x to the mapping unit a131 of the wireless transmission unit a13.
Also, the propagation path compensator a116 delays by the delay time input from the propagation path estimator a112, and outputs the symbol x to the interference signal calculator a113 (the symbol x delayed by the delay time is converted into the symbol x '). That is, the subtraction unit a121 subtracts the interference symbol f generated based on the symbol x ′ before the modulation symbol S from the modulation symbol S from the modulation symbol S.

無線送信部a13のマッピング部a131は、伝搬路補償部a116から入力されたシンボルxをマッピングして送信信号(デジタル信号)を生成し、IFFT部a132に出力する。
D/A変換部a132は、マッピング部a131から入力されたデジタル信号をアナログ信号に変換し、送信部a133に出力する。
送信部a133は、D/A変換部a132から入力されたアナログ信号をアップコンバートし、アップコンバートしたアナログ信号を送信信号として、アンテナを介して送信する。
The mapping unit a131 of the wireless transmission unit a13 generates a transmission signal (digital signal) by mapping the symbol x input from the propagation path compensation unit a116, and outputs the transmission signal (digital signal) to the IFFT unit a132.
The D / A conversion unit a132 converts the digital signal input from the mapping unit a131 into an analog signal and outputs the analog signal to the transmission unit a133.
The transmission unit a133 up-converts the analog signal input from the D / A conversion unit a132, and transmits the up-converted analog signal as a transmission signal via the antenna.

<Modulo演算可否判定について>
以下、判定部a123が行うModulo演算可否判定の詳細について説明をする。
図3は、本実施形態に係るシンボルνと閾値T1との関係の一例を示す概略図である。この図において、横軸はIチャネル(In−phase channel;同相チャネル)、縦軸はQチャネル(Quadrature channel;直交チャネル)を示す。
この図のIQ平面において、符号z1を付した領域z1内にある白抜きの丸印は信号点を示し、この図は変調方式がQPSKで有ることを示す。なお、この図において、破線は、図の説明のために、領域z1と領域z1内の信号点を繰り返して表示したものである。なお、この破線で囲まれた領域各々であって、領域z1に相当する領域をModulo領域と呼ぶ。
ここで、領域z1のIチャネル、Qチャネルの幅は、Modulo幅δである。
<About modulo calculation availability determination>
Hereinafter, details of the modulo calculation feasibility determination performed by the determination unit a123 will be described.
FIG. 3 is a schematic diagram illustrating an example of the relationship between the symbol ν and the threshold T1 according to the present embodiment. In this figure, the horizontal axis indicates an I channel (In-phase channel), and the vertical axis indicates a Q channel (Quadrature channel).
In the IQ plane of this figure, a white circle in the region z1 denoted by reference numeral z1 indicates a signal point, and this figure indicates that the modulation method is QPSK. In this figure, for the sake of explanation of the figure, the broken line represents the area z1 and signal points in the area z1 repeatedly. Note that each of the regions surrounded by the broken line and corresponding to the region z1 is referred to as a modulo region.
Here, the width of the I channel and the Q channel in the region z1 is the modulo width δ.

図3において、Ti11、Ti12、Tq11、及びTq12は、判定部a123に入力される閾値T1に対応する値である。Ti11、Ti12、Tq11、及びTq12は、それぞれ、(3δ/2,0)、(−3δ/2,0)、(0,−3δ/2)、及び(0,3δ/2)である。Iチャネル及びQチャネルにおいて、−3δ/2より大きく3δ/2より小さい範囲を閾値内と呼ぶ。また、それ以外の範囲を閾値外という。図3において、斜線でハッチングした領域c1は、閾値内の領域を示す。この領域c1のIチャネル、Qチャネルの幅(閾値幅と呼ぶ)は、Modulo幅δの3倍(3δ)である。   In FIG. 3, Ti11, Ti12, Tq11, and Tq12 are values corresponding to the threshold value T1 input to the determination unit a123. Ti11, Ti12, Tq11, and Tq12 are (3δ / 2, 0), (-3δ / 2, 0), (0, -3δ / 2), and (0, 3δ / 2), respectively. In the I channel and the Q channel, a range larger than −3δ / 2 and smaller than 3δ / 2 is referred to as within a threshold. The other range is called out of threshold. In FIG. 3, a hatched area c1 indicates an area within the threshold. The width of the I channel and the Q channel (referred to as threshold width) in this region c1 is three times (3δ) the modulo width δ.

判定部a123は、減算部a121から入力されたシンボルνが、閾値内にあるか否かを判定する。閾値内にあると判定した場合、判定部a123は、シンボルνを伝搬路補償部a116に出力する。この場合、基地局装置a1は、シンボル(S−f)/hsの信号を送信する。
一方、閾値外にあると判定した場合、判定部a123は、シンボルνを剰余演算部a124に出力する。この場合、基地局装置a1は、シンボルM(S−f)/hsの信号を送信する。すなわち、判定部a123は、減算部a121が減算したシンボルνのIチャネル或いはQチャネルの成分のどちらかの大きさが、予め定めた閾値T1(3δ/2)より大きい場合、シンボルνに対してIチャネル成分、Qチャネル成分ともにModulo演算を行うと判定する。
The determination unit a123 determines whether the symbol ν input from the subtraction unit a121 is within the threshold value. If it is determined that the value is within the threshold value, the determination unit a123 outputs the symbol ν to the propagation path compensation unit a116. In this case, the base station apparatus a1 transmits a signal of symbol (Sf) / hs.
On the other hand, when it determines with it being outside a threshold value, the determination part a123 outputs the symbol (nu) to the remainder calculating part a124. In this case, the base station apparatus a1 transmits a signal of symbol M (S−f) / hs. That is, when the magnitude of either the I channel or Q channel component of the symbol ν subtracted by the subtraction unit a121 is larger than the predetermined threshold T1 (3δ / 2), the determination unit a123 It is determined that the modulo operation is performed for both the I channel component and the Q channel component.

例えば、判定部a123は、図3において格子状の線でハッチングしたシンボルν11が入力された場合、閾値内にあると判定する。
一方、判定部a123は、図3において格子状の線でハッチングしたシンボルν12が入力された場合、閾値外にあると判定する。この場合、シンボルν12には、剰余演算部a124においてModulo演算処理が施される。横線でハッチングしたシンボルM12は、変調シンボルから干渉信号を減算した後のシンボルν12にModulo演算処理が施された信号を示す。なお、領域z1内での変調シンボルM12の位置は、符号z2を付した領域z2内でのシンボルν12の位置と同じ位置である。
For example, the determination unit a123 determines that the value is within the threshold when the symbol ν11 hatched with a grid-like line in FIG. 3 is input.
On the other hand, the determination unit a123 determines that the symbol ν12 hatched with a grid-like line in FIG. In this case, the modulo arithmetic processing is performed on the symbol ν12 in the remainder arithmetic unit a124. A symbol M12 hatched by a horizontal line indicates a signal obtained by performing a modulo arithmetic process on the symbol ν12 after the interference signal is subtracted from the modulation symbol. Note that the position of the modulation symbol M12 in the region z1 is the same position as the position of the symbol ν12 in the region z2 labeled with the symbol z2.

図4は、本実施形態に係る移動局装置b1での受信シンボルの一例を示す概略図である。この図において、横軸はIチャネル、縦軸はQチャネルを示す。この図において、領域z1のIチャネル、Qチャネルの幅は、Modulo幅δである。また、この図のIQ平面において、縦線でハッチングした丸印は、受信信号の変調シンボルが配置される信号点を示す。
図4において、判定部a123にて閾値内にある(図3の領域c1内)と判定されたシンボルは、伝搬路d1、d2の影響を受けて、領域z3内の信号点に配置されたシンボルとして受信されることを示す。また、図5において、判定部a123にて閾値外にある(図3の領域c1外)と判定されたシンボルは、Modulo演算処理され、伝搬路d1、d2の影響を受けて、z3の外側の信号点に配置されたシンボルとして受信されることを示す。
ここで、具体的な信号点の推移について、従来のTHPシステムと本実施形態を比較するために、図5、図6を用いて説明する。
FIG. 4 is a schematic diagram illustrating an example of received symbols in the mobile station apparatus b1 according to the present embodiment. In this figure, the horizontal axis indicates the I channel and the vertical axis indicates the Q channel. In this figure, the width of the I channel and the Q channel in the region z1 is a modulo width δ. Also, in the IQ plane of this figure, the circles hatched with vertical lines indicate signal points where received signal modulation symbols are arranged.
In FIG. 4, symbols determined by the determination unit a123 to be within the threshold value (in the region c1 in FIG. 3) are affected by the propagation paths d1 and d2 and are arranged at signal points in the region z3. As received. Further, in FIG. 5, the symbol determined by the determination unit a123 to be out of the threshold (outside the area c1 in FIG. 3) is subjected to modulo calculation processing, influenced by the propagation paths d1 and d2, and outside the z3. It is received as a symbol arranged at a signal point.
Here, specific signal point transition will be described with reference to FIGS. 5 and 6 in order to compare the conventional THP system with the present embodiment.

図5は、本実施形態に係る基地局装置a1での送信シンボルの一例を示す概略図である。また、図6は、本実施形態に係る移動局装置b1での受信シンボルの別の一例を示す概略図である。
まず、判定部a123にて閾値内にあると判定されたシンボルについて説明する。本実施形態では、図5の送信シンボルν11は、Modulo演算処理を行わないため、送信シンボルν11がそのまま送信され、図6のL11の位置で受信される。
なお、従来のTHPシステムであれば、図5のシンボルν11は、式(1)に示す従来のModulo演算処理を施すことにより図5のM11’の位置の送信シンボルとして送信され、図6のL11’の位置で受信される。
FIG. 5 is a schematic diagram illustrating an example of transmission symbols in the base station apparatus a1 according to the present embodiment. FIG. 6 is a schematic diagram illustrating another example of received symbols in the mobile station apparatus b1 according to the present embodiment.
First, the symbols determined by the determination unit a123 to be within the threshold will be described. In the present embodiment, the transmission symbol ν11 in FIG. 5 is not subjected to the modulo calculation process, so the transmission symbol ν11 is transmitted as it is and received at the position L11 in FIG.
In the case of the conventional THP system, the symbol ν11 in FIG. 5 is transmitted as a transmission symbol at the position of M11 ′ in FIG. 5 by performing the conventional modulo arithmetic processing shown in the equation (1), and L11 in FIG. Received at 'position.

次に、判定部a123にて閾値外にあると判定されたシンボルについて説明する。本実施形態では、図5の送信シンボルν12は、式(2)、(3)に示すModulo演算処理を施すことにより図5のM12の位置の送信シンボルとして送信され、図6のL12の位置で受信される。
なお、従来のTHPシステムであれば、図3のシンボルν12は、式(1)に示す従来のModulo演算処理を施すことにより図3のM12’の位置の送信シンボルとして送信され、図6のL12’の位置で受信される。
Next, the symbol determined to be outside the threshold by the determination unit a123 will be described. In the present embodiment, the transmission symbol ν12 in FIG. 5 is transmitted as a transmission symbol at the position M12 in FIG. 5 by performing the modulo arithmetic processing shown in equations (2) and (3), and is transmitted at the position L12 in FIG. Received.
In the case of the conventional THP system, the symbol ν12 in FIG. 3 is transmitted as a transmission symbol at the position of M12 ′ in FIG. 3 by performing the conventional modulo arithmetic processing shown in Expression (1), and the symbol L12 in FIG. Received at 'position.

このように、閾値が示す領域内について、本実施形態のシンボルはModulo幅δ内のシンボルとして受信され、従来のTHPシステムと比べ、受信信号電力を抑圧できる。一方、閾値が示す領域外のシンボルは、従来のTHPシステムと比べ、Modulo幅δだけ内側のシンボルとして受信される。以上のように、本実施形態では従来のTHPシステムの場合と比較して、受信信号点の分布が中央に寄り、受信信号電力を抑えることができる。   As described above, in the region indicated by the threshold, the symbols of the present embodiment are received as symbols within the modulo width δ, and the received signal power can be suppressed as compared with the conventional THP system. On the other hand, symbols outside the region indicated by the threshold are received as symbols inside by the modulo width δ, as compared with the conventional THP system. As described above, in this embodiment, the distribution of received signal points is closer to the center than in the case of the conventional THP system, and the received signal power can be suppressed.

図7は、本実施形態に係る判定部a123への入力と伝搬路補償部a116への入力(この図では、出力)との関係の一例を示す概略図である。この図は、閾値T1が3δ/2の場合、つまり、閾値幅が3δの場合を示す図である。この図において、入力は、判定部a123の入力信号を示す。また、出力は、伝搬路補償部a116への入力信号、つまり、判定部a123又は剰余演算部a124からの出力信号を示す。
図7は、基地局装置a1が、閾値T1が示す領域内のシンボルは、Modulo演算処理を行わず、閾値T1が示す領域外のシンボルは式(2)、(3)の処理を行うことを示す。この図は、閾値幅3δを超える入力信号でも閾値幅3δの出力信号となり、送信電力が抑圧されていることを示す。
FIG. 7 is a schematic diagram illustrating an example of the relationship between the input to the determination unit a123 and the input to the propagation path compensation unit a116 (output in this diagram) according to the present embodiment. This figure shows a case where the threshold T1 is 3δ / 2, that is, a case where the threshold width is 3δ. In this figure, the input indicates an input signal of the determination unit a123. The output indicates an input signal to the propagation path compensation unit a116, that is, an output signal from the determination unit a123 or the remainder calculation unit a124.
FIG. 7 shows that the base station apparatus a1 does not perform the modulo calculation process for the symbols in the area indicated by the threshold T1, and performs the processes of the equations (2) and (3) for the symbols outside the area indicated by the threshold T1. Show. This figure shows that even an input signal exceeding the threshold width 3δ becomes an output signal of the threshold width 3δ, and the transmission power is suppressed.

なお、上記実施形態において、閾値T1の値が3δ/2の場合について説明をした。しかし、本発明は、これに限らず、例えば、閾値は、5δ/2、7δ/2、・・・、であってもよい。つまり、閾値T1の値は、δ/2+Nδであってもよい(Nは自然数)。
図8は、本実施形態に係る判定部a123への入力と伝搬路補償部a116への入力(この図では、出力)との関係の別の一例を示す概略図である。この図は、閾値T1が5δ/2の場合、つまり、閾値幅が5δの場合を示す図である。この図において、入力は、判定部a123の入力信号を示す。また、出力は、伝搬路補償部a116への入力信号、つまり、判定部a123又は剰余演算部a124からの出力信号を示す。
図8は、基地局装置a1が、閾値T1が示す領域内のシンボルは、Modulo演算処理を行わず、閾値T1が示す領域外のシンボルは式(2)、(3)の処理を行うことを示す。この図は、閾値幅5δを超える入力信号でも閾値幅5δの出力信号となり、送信電力が抑圧されていることを示す。
In the above embodiment, the case where the value of the threshold T1 is 3δ / 2 has been described. However, the present invention is not limited to this, and for example, the threshold value may be 5δ / 2, 7δ / 2,. That is, the value of the threshold T1 may be δ / 2 + Nδ (N is a natural number).
FIG. 8 is a schematic diagram illustrating another example of the relationship between the input to the determination unit a123 and the input to the propagation path compensation unit a116 (output in this diagram) according to the present embodiment. This figure is a diagram showing a case where the threshold T1 is 5δ / 2, that is, a case where the threshold width is 5δ. In this figure, the input indicates an input signal of the determination unit a123. The output indicates an input signal to the propagation path compensation unit a116, that is, an output signal from the determination unit a123 or the remainder calculation unit a124.
FIG. 8 shows that the base station apparatus a1 does not perform the modulo calculation processing for the symbols in the region indicated by the threshold T1, and performs the processing of equations (2) and (3) for the symbols outside the region indicated by the threshold T1. Show. This figure shows that an input signal exceeding the threshold width 5δ becomes an output signal having the threshold width 5δ, and the transmission power is suppressed.

<移動局装置b1の構成について>
図9は、本実施形態に係る移動局装置b1の構成を示す概略ブロック図である。移動局装置b1は、パイロット生成部b111、無線送信部b112、受信部b113、AGC(Automatic Gain Control)部b114、量子化部b115、デマッピング部b116、剰余演算部b117、復調部b118、及び復号部b119を含んで構成される。
<About Configuration of Mobile Station Device b1>
FIG. 9 is a schematic block diagram showing the configuration of the mobile station apparatus b1 according to this embodiment. The mobile station apparatus b1 includes a pilot generation unit b111, a radio transmission unit b112, a reception unit b113, an AGC (Automatic Gain Control) unit b114, a quantization unit b115, a demapping unit b116, a remainder calculation unit b117, a demodulation unit b118, and a decoding unit Part b119 is included.

パイロット生成部b111は、パイロット信号を生成し、無線送信部b112に出力する。
無線送信部b112は、入力された情報をQPSK変調方式等で変調する。無線送信部b112は、変調した信号とパイロット生成部b111から入力されたパイロット信号とをアンテナを介して送信する。
The pilot generation unit b111 generates a pilot signal and outputs it to the radio transmission unit b112.
The wireless transmission unit b112 modulates the input information using a QPSK modulation method or the like. The radio transmission unit b112 transmits the modulated signal and the pilot signal input from the pilot generation unit b111 via an antenna.

受信部b113は、基地局装置a1からの送信信号をアンテナを介して受信する。受信部b113は、受信した受信信号をダウンコンバートしたアナログ信号を、Iチャネル成分とQチャネル成分に分離し、AGC部b114に出力する。  The receiving unit b113 receives a transmission signal from the base station apparatus a1 via an antenna. The reception unit b113 separates an analog signal obtained by down-converting the received reception signal into an I channel component and a Q channel component, and outputs the result to the AGC unit b114.

AGC部b114は、受信信号点の振幅がA/D変換のクリッピング幅に収まるように、受信部b113から入力されたIチャネル成分及びQチャネル成分のアナログ信号各々に対して、一定の比率で振幅の増大又は減衰を行う(振幅調整処理と呼ぶ)。この振幅調整処理の詳細については、後述する。
AGC部b114は、振幅調整処理を行ったアナログ信号を、量子化部b115に出力する。
The AGC unit b114 has an amplitude at a constant ratio with respect to each of the analog signals of the I channel component and the Q channel component input from the receiving unit b113 so that the amplitude of the received signal point falls within the A / D conversion clipping width. Increase or decrease (referred to as amplitude adjustment processing). Details of the amplitude adjustment processing will be described later.
The AGC unit b114 outputs the analog signal subjected to the amplitude adjustment process to the quantization unit b115.

量子化部b115は、AGC部b114から入力されたアナログ信号をデジタル信号にデジタル変換し、デマッピング部b116に出力する。具体的には、量子化部b115は、アナログ信号を、あるビット数kによって表現できる2個(デジタル変換することができるデジタル値の最大値)のレベルのデジタル値にデジタル変換する。なお、このデジタル値の数を、当該デジタル変換の分解能と呼ぶ。 The quantization unit b115 converts the analog signal input from the AGC unit b114 into a digital signal and outputs the digital signal to the demapping unit b116. Specifically, the quantization section b115 is an analog signal, digital conversion to a digital value of the level of 2 k-number that can be expressed by a certain number of bits k (the maximum value of the digital values which may be digital conversion). This number of digital values is called the resolution of the digital conversion.

デマッピング部b116は、量子化部b115から入力された信号にデマッピング処理を施し、変調シンボルを抽出する。この変調シンボルはhs×x+fで表される。つまり、この変調シンボルは、シンボルxが伝播路d1の影響を受けたシンボルhs×xに、干渉シンボルfが合算されたシンボルである。デマッピング部b116は、抽出した変調シンボルを剰余演算部b117に出力する。  The demapping unit b116 performs demapping processing on the signal input from the quantization unit b115, and extracts a modulation symbol. This modulation symbol is represented by hs × x + f. That is, this modulation symbol is a symbol obtained by adding the interference symbol f to the symbol hs × x where the symbol x is affected by the propagation path d1. The demapping unit b116 outputs the extracted modulation symbol to the remainder calculation unit b117.

剰余演算部b117は、デマッピング部b116から入力されたシンボルhs×x+fに対してModulo演算を行う。ここでのModulo演算は式(1)で表わされる。剰余演算部b117は、Modulo演算を施したシンボルS’を復調部b118に出力する。
復調部b118は、入力された情報をQPSKの復調方式で復調する。復調部b118は復調した符号化ビットを復号部b119に出力する。
復号部b119は、復調部b118から入力された符号化ビットを復号し、復号した情報を出力する。
The remainder calculation unit b117 performs a modulo calculation on the symbol hs × x + f input from the demapping unit b116. The modulo operation here is expressed by equation (1). The remainder calculation unit b117 outputs the symbol S ′ subjected to the modulo calculation to the demodulation unit b118.
The demodulator b118 demodulates the input information using the QPSK demodulation method. The demodulator b118 outputs the demodulated encoded bits to the decoder b119.
The decoding unit b119 decodes the encoded bits input from the demodulation unit b118 and outputs the decoded information.

<受信信号と振幅調整処理について>
以下、移動局装置b1での受信信号と、AGC部b114が行う振幅調整処理の詳細について説明をする。
まず、図10〜図12を用いて従来技術の場合を説明する。
<Received signal and amplitude adjustment processing>
Hereinafter, the details of the received signal in the mobile station apparatus b1 and the amplitude adjustment process performed by the AGC unit b114 will be described.
First, the case of the prior art will be described with reference to FIGS.

図10は、従来技術に係る移動局装置での受信信号の一例を示す概略図である。この図において、縦軸は受信信号の振幅を示し、横軸は時間を示す。この図は、本実施形態に係るModulo演算可否判定を行わず、全てのシンボルνについてModulo演算を行った場合を示す。この図において、破線で示す範囲がModulo幅、及び閾値幅である。
図10は、受信振幅の最大となる点が点H1であることを示す。
FIG. 10 is a schematic diagram illustrating an example of a received signal in a mobile station apparatus according to the related art. In this figure, the vertical axis indicates the amplitude of the received signal, and the horizontal axis indicates time. This figure shows a case where the modulo calculation is performed on all the symbols ν without performing the modulo calculation enable / disable determination according to the present embodiment. In this figure, the range shown with a broken line is a Modulo width and a threshold width.
FIG. 10 shows that the point having the maximum reception amplitude is the point H1.

図11は、従来技術に係る振幅の調整を行った信号の一例を示す概略図である。この図において、縦軸は受信信号の振幅を示し、横軸は時間を示す。この図は、図10に示す受信信号の振幅を、振幅の最大値に基づいて調整を行った場合を示す。
図11は、図10中の点H1が示す最大値がクリッピング幅に対応するように、振幅が調整されたことを示す。
FIG. 11 is a schematic diagram illustrating an example of a signal after amplitude adjustment according to the related art. In this figure, the vertical axis indicates the amplitude of the received signal, and the horizontal axis indicates time. This figure shows a case where the amplitude of the received signal shown in FIG. 10 is adjusted based on the maximum value of the amplitude.
FIG. 11 shows that the amplitude has been adjusted so that the maximum value indicated by the point H1 in FIG. 10 corresponds to the clipping width.

図12は、従来技術に係る量子化の一例を示す概略図である。この図において、縦軸は受信信号の振幅を示し、横軸は時間を示す。この図は、図11に示す信号を量子化した場合を示す。
図12は、振幅を3ビット、つまり8値で量子化したことを示す。この図において、L1で示す範囲の振幅は、2個の値で量子化される。
FIG. 12 is a schematic diagram illustrating an example of quantization according to the related art. In this figure, the vertical axis indicates the amplitude of the received signal, and the horizontal axis indicates time. This figure shows the case where the signal shown in FIG. 11 is quantized.
FIG. 12 shows that the amplitude is quantized with 3 bits, that is, 8 values. In this figure, the amplitude in the range indicated by L1 is quantized with two values.

次に、図13〜16を用いて本実施形態の場合について説明をする。
図13は、本実施形態に係る移動局装置b1での受信信号の一例を示す概略図である。この図において、縦軸は受信信号の振幅を示し、横軸は時間を示す。また、この図は、図10と同じシンボルに対して、Modulo演算可否判定を行った場合の図である。また、この図において、破線で示す範囲がModulo幅、及び閾値幅である。なお、点線は、従来技術の場合の受信信号の部分であって、受信振幅の最大となる点が点H1を含む部分を示す。
図13は、図10中の閾値幅内の信号が、Modulo演算可否判定を行ったことにより、Modulo幅内の信号になることを示す。また、この図は、最大の受信振幅が図10中の点H1の振幅よりも小さくなっていることを示す。
Next, the case of the present embodiment will be described with reference to FIGS.
FIG. 13 is a schematic diagram illustrating an example of a received signal in the mobile station apparatus b1 according to the present embodiment. In this figure, the vertical axis indicates the amplitude of the received signal, and the horizontal axis indicates time. Further, this figure is a diagram in the case where the modulo calculation enable / disable determination is performed on the same symbols as those in FIG. In this figure, the range indicated by the broken line is the modulo width and the threshold width. The dotted line indicates the portion of the received signal in the case of the prior art, and the portion where the maximum received amplitude includes the point H1.
FIG. 13 shows that the signal within the threshold width in FIG. 10 becomes a signal within the modulo width by determining whether the modulo calculation is possible. This figure also shows that the maximum reception amplitude is smaller than the amplitude at point H1 in FIG.

図14は、本実施形態に係る量子化の一例を示す概略図である。この図において、縦軸は受信信号の振幅を示し、横軸は時間を示す。この図は、AGC部b114が、クリッピング幅に基づいて、図13に示す受信信号に振幅調整処理を行った場合を示す。受信振幅の最大となる点が点H1を含む部分を示す。
図14は、図13中の最大振幅がクリッピング幅に対応するように、振幅が調整されたことを示す。
FIG. 14 is a schematic diagram illustrating an example of quantization according to the present embodiment. In this figure, the vertical axis indicates the amplitude of the received signal, and the horizontal axis indicates time. This figure shows a case where the AGC unit b114 performs amplitude adjustment processing on the received signal shown in FIG. 13 based on the clipping width. A point where the reception amplitude is maximum indicates a portion including the point H1.
FIG. 14 shows that the amplitude has been adjusted so that the maximum amplitude in FIG. 13 corresponds to the clipping width.

図15は、本実施形態に係る量子化の一例を示す概略図である。この図において、縦軸は受信信号の振幅を示し、横軸は時間を示す。この図は、図14に示す信号を量子化した場合を示す。
図15は、振幅を3ビット、つまり8値で量子化したことを示す。この図において、図12中のL1で示す範囲と同じ範囲の振幅は、4個の値で量子化される。つまり、図15に示すデジタル変換は、図12に示すデジタル変換と比較して、L1で示す範囲の受信信号の分解能が高い。
FIG. 15 is a schematic diagram illustrating an example of quantization according to the present embodiment. In this figure, the vertical axis indicates the amplitude of the received signal, and the horizontal axis indicates time. This figure shows a case where the signal shown in FIG. 14 is quantized.
FIG. 15 shows that the amplitude is quantized with 3 bits, that is, 8 values. In this figure, the amplitude in the same range as the range indicated by L1 in FIG. 12 is quantized with four values. That is, the digital conversion shown in FIG. 15 has a higher resolution of the received signal in the range indicated by L1 than the digital conversion shown in FIG.

このように、本実施形態によれば、基地局装置a1は、送信する変調シンボルSから干渉シンボルfを減算したシンボルνのIチャネル及びQチャネルの成分の大きさが、予め定めた閾値T1より大きい場合、シンボルνに対してModulo演算を行うと判定し、Modulo演算を行うと判定した場合、シンボルνに対してModulo演算処理を行う。また、基地局装置a1は、この判定結果に基づいて、シンボルν又はModulo演算処理を行ったシンボルM(ν)の信号を送信する。これにより、前記通信装置は、剰余演算を行うか否かを判定し、剰余演算を行う場合に前記通信装置での送信電力を抑圧することができる。また、前記通信装置は、剰余演算を行う場合に剰余幅の自然数倍の値を減算して受信信号の振幅を抑えることができ、受信特性の劣化を防止することができる。つまり、前記通信装置では、送信信号電力の低減だけでなく、受信機における量子化精度を考慮し、送信信号電力の低減と受信装置における量子化精度とのトレードオフを実現し、送信信号及び受信信号の振幅を抑えることができ、送信信号電力の増大及び受信特性の劣化を防止することができる。   As described above, according to the present embodiment, the base station apparatus a1 determines that the magnitudes of the I channel and Q channel components of the symbol ν obtained by subtracting the interference symbol f from the modulation symbol S to be transmitted from the predetermined threshold T1. If it is larger, it is determined that the modulo operation is performed on the symbol ν. If it is determined that the modulo operation is performed, the modulo operation process is performed on the symbol ν. Further, the base station apparatus a1 transmits a signal of the symbol ν or the symbol M (ν) subjected to the modulo arithmetic processing based on the determination result. Thereby, the communication apparatus can determine whether or not to perform a remainder operation, and can suppress transmission power in the communication apparatus when performing a remainder operation. Further, the communication device can suppress the amplitude of the received signal by subtracting a value that is a natural number multiple of the remainder width when performing the remainder calculation, and can prevent the reception characteristics from deteriorating. That is, in the communication device, not only the transmission signal power is reduced, but also the quantization accuracy in the receiver is considered, and the trade-off between the transmission signal power reduction and the quantization accuracy in the reception device is realized, and the transmission signal and the reception are received. The amplitude of the signal can be suppressed, and an increase in transmission signal power and a deterioration in reception characteristics can be prevented.

<変形例1>
上記第1の実施形態では、シンボルが図3に示す領域c1内にあるか否かによって、つまり、シンボルνのIチャネル成分あるいはQチャネル成分のどちらかが、3δ/2より大きい範囲であるか否かを判定することによって、両方の成分にModulo演算を行うか否かを判定する場合について説明をした。本変形例1では、シンボルνのIチャネル成分とQチャネル成分とで独立に、その大きさが3δ/2より大きい範囲であるか否かを判定することによって、Modulo演算処理を行う場合について説明をする。
本変形例1では、図1中の基地局装置Aを基地局装置a2と呼ぶ。なお、移動局装置Bは第1の実施形態と同じ機能及び構成を持つ移動局装置b1であるので、説明は省略する。
<Modification 1>
In the first embodiment, whether the symbol is in the region c1 shown in FIG. 3, that is, whether the I channel component or the Q channel component of the symbol ν is in a range larger than 3δ / 2. A case has been described in which it is determined whether or not to perform a modulo operation on both components by determining whether or not. In the first modification, the case where the modulo arithmetic processing is performed by determining whether or not the magnitude of the I channel component and the Q channel component of the symbol ν is in a range larger than 3δ / 2 will be described. do.
In the first modification, the base station apparatus A in FIG. 1 is referred to as a base station apparatus a2. Since the mobile station apparatus B is a mobile station apparatus b1 having the same function and configuration as the first embodiment, the description thereof is omitted.

図16は、本実施形態の変形例1に係る基地局装置a2の構成を示す概略ブロック図である。本変形例1に係る基地局装置a2(図16)と第1の実施形態に係る基地局装置a1(図2)とを比較すると、判定部a223及び剰余演算部a224が異なる。しかし、他の構成要素(無線受信部a111、伝搬路推定部a112、干渉信号算出部a113、符号部a114、変調部a115、減算部a121、閾値設定部a122、伝搬路補償部a116、マッピング部a131、D/A変換部a132、及び送信部a133)が持つ機能は第1の実施形態と同じである。第1の実施形態と同じ機能の説明は省略する。
判定部a223及び剰余演算部a224は、IチャネルとQチャネルとで独立に、それぞれ、以下のModulo演算可否判定、及びModulo演算処理を行う。
FIG. 16 is a schematic block diagram illustrating the configuration of the base station device a2 according to the first modification of the present embodiment. When the base station apparatus a2 (FIG. 16) according to the first modification is compared with the base station apparatus a1 (FIG. 2) according to the first embodiment, the determination unit a223 and the remainder calculation unit a224 are different. However, other components (wireless reception unit a111, propagation path estimation unit a112, interference signal calculation unit a113, encoding unit a114, modulation unit a115, subtraction unit a121, threshold setting unit a122, propagation path compensation unit a116, mapping unit a131) The functions of the D / A conversion unit a132 and the transmission unit a133) are the same as those in the first embodiment. A description of the same functions as those in the first embodiment is omitted.
The determination unit a223 and the remainder calculation unit a224 perform the following modulo calculation enable / disable determination and modulo calculation process independently for the I channel and the Q channel, respectively.

<Modulo演算可否判定及びModulo演算処理について>
図17は、本実施形態に係るシンボルνと閾値T1との関係の一例を示す概略図である。この図において、横軸はIチャネル、縦軸はQチャネルを示す。この図のIQ平面において、符号z1を付した領域z1内にある白抜きの丸印は信号点を示し、この図はQPSK変調の場合を示す。なお、この図において、破線は、図の説明のために、領域z1と領域z1内の信号点を繰り返して表示したものである。ここで、領域z1のIチャネル、Qチャネルの幅は、Modulo幅δである。
<Regarding Modulation Computability Determination and Modulo Calculation Processing>
FIG. 17 is a schematic diagram illustrating an example of the relationship between the symbol ν and the threshold T1 according to the present embodiment. In this figure, the horizontal axis indicates the I channel and the vertical axis indicates the Q channel. In the IQ plane of this figure, a white circle in the region z1 denoted by reference numeral z1 indicates a signal point, and this figure shows the case of QPSK modulation. In this figure, for the sake of explanation of the figure, the broken line represents the area z1 and signal points in the area z1 repeatedly. Here, the width of the I channel and the Q channel in the region z1 is the modulo width δ.

図17において、Ti11とTi12、及び、Tq11とTq12は、判定部a123に入力される閾値T1に対応する値である。Ti11とTi12、及び、Tq11とTq12は、それぞれ、(3δ/2,0)と(−3δ/2,0)、及び(0,−3δ/2)と(0,3δ/2)である。
図17において、右斜線でハッチングした領域c21は、Iチャネルにおいて−3δ/2より大きく3δ/2より小さい範囲を示す。Iチャネル及びQチャネルにおいて、−3δ/2より大きく3δ/2より小さい範囲をそれぞれ、Iチャネル閾値内、及びQチャネル閾値内と呼ぶ。この図において、右斜線でハッチングした領域c21は、Iチャネル閾値内の領域を示す。また、この図において、左斜線でハッチングした領域c22は、Qチャネル閾値内の領域を示す。
In FIG. 17, Ti11 and Ti12, and Tq11 and Tq12 are values corresponding to the threshold value T1 input to the determination unit a123. Ti11 and Ti12, and Tq11 and Tq12 are (3δ / 2, 0) and (-3δ / 2, 0), and (0, -3δ / 2) and (0, 3δ / 2), respectively.
In FIG. 17, a region c21 hatched with a right oblique line indicates a range larger than −3δ / 2 and smaller than 3δ / 2 in the I channel. In the I channel and the Q channel, ranges larger than −3δ / 2 and smaller than 3δ / 2 are referred to as an I channel threshold value and a Q channel threshold value, respectively. In this figure, a region c21 hatched with a right oblique line indicates a region within the I channel threshold. In this figure, a region c22 hatched with a left oblique line indicates a region within the Q channel threshold.

判定部a123は、減算部a121から入力されたシンボルνが、Iチャネル閾値内にあるか否かを判定する。また、判定部a123は、シンボルνが、Qチャネル閾値内にあるか否かを判定する。Iチャネル閾値内又はQチャネル閾値内にあると判定した場合、判定部a123は、シンボルνを伝搬路補償部a116に出力する。
一方、Iチャネル閾値外及びQチャネル閾値内閾値外にあると判定した場合、判定部a123は、シンボルνを剰余演算部a124に出力する。
すなわち、判定部a123は、Iチャネル或いはQチャネルの成分の大きさが、予め定めた閾値T1(3δ/2)より大きい場合、減算部a121が減算したシンボルνのIチャネルあるいはQチャネルの成分に対してModulo演算を行うと判定する。
The determination unit a123 determines whether the symbol ν input from the subtraction unit a121 is within the I channel threshold. The determination unit a123 determines whether the symbol ν is within the Q channel threshold. When determining that the current value is within the I channel threshold value or the Q channel threshold value, the determination unit a123 outputs the symbol ν to the propagation path compensation unit a116.
On the other hand, if it is determined that the values are outside the I channel threshold and the Q channel threshold, the determination unit a123 outputs the symbol ν to the remainder calculation unit a124.
That is, when the size of the I channel or Q channel component is larger than the predetermined threshold T1 (3δ / 2), the determination unit a123 determines the I channel or Q channel component of the symbol ν subtracted by the subtraction unit a121. On the other hand, it is determined that the modulo operation is performed.

剰余演算部a224は、判定部a123から入力されたシンボルνのIチャネル成分又はQチャネル成分に対して、Modulo演算処理を行う。ここで、Iチャネル成分又はQチャネル成分に対するModulo演算処理は、それぞれ、式(2)、(3)で表される。   The remainder calculation unit a224 performs a modulo calculation process on the I channel component or the Q channel component of the symbol ν input from the determination unit a123. Here, the modulo arithmetic processing for the I channel component or the Q channel component is expressed by equations (2) and (3), respectively.

例えば、判定部a123は、図17において格子状の線でハッチングしたシンボルν21が入力された場合、Iチャネル閾値外にあり、Qチャネル閾値内にあると判定する。この場合、剰余演算部a224は、IチャネルのModulo演算処理(式(2))を行う。図17中において横線でハッチングしたシンボルM21は、シンボルν21にQチャネルのModulo演算処理を施したシンボルである。
また、例えば、判定部a123は、図17において格子状の線でハッチングしたシンボルν12が入力された場合、閾値外にあると判定する。この場合、シンボルν12には、剰余演算部a224においてIチャネル及びQチャネルのModulo演算処理(式(2)、式(3))の両方が施される。
For example, when the symbol ν21 hatched with a grid-like line in FIG. 17 is input, the determination unit a123 determines that the symbol is outside the I channel threshold and is within the Q channel threshold. In this case, the remainder calculation unit a224 performs I channel modulo calculation processing (equation (2)). In FIG. 17, a symbol M21 hatched with a horizontal line is a symbol obtained by performing a Q-channel modulo arithmetic process on the symbol ν21.
Further, for example, the determination unit a123 determines that the symbol ν12 hatched with a grid-like line in FIG. In this case, the symbol ν12 is subjected to both I channel and Q channel modulo arithmetic processing (expressions (2) and (3)) in the remainder calculation unit a224.

このように、本変形例によれば、基地局装置a2は、Iチャネル成分及びQチャネル成分を独立に、Modulo演算可否判定及びModulo演算処理をすることができる。   Thus, according to the present modification, the base station apparatus a2 can perform the modulo calculation enable / disable determination and the modulo calculation process for the I channel component and the Q channel component independently.

また、閾値は、移動局装置b1、b2でのA/D変換の受信シンボル間の分解能による誤り率特性と、基地局装置a1での送信信号の正規化による誤り率特性と、に基づいて、次のように決定することが好ましい。
図18は、本実施形態に係る誤り率特性の一例を示す図である。この図において、横軸はModulo演算可否判定に用いる閾値T1を示し、縦軸は誤り率を示す。
Further, the threshold is based on the error rate characteristic based on the resolution between the reception symbols of the A / D conversion in the mobile station apparatuses b1 and b2, and the error rate characteristic based on the normalization of the transmission signal in the base station apparatus a1, It is preferable to determine as follows.
FIG. 18 is a diagram illustrating an example of error rate characteristics according to the present embodiment. In this figure, the horizontal axis indicates the threshold T1 used for determining whether or not the modulo calculation is possible, and the vertical axis indicates the error rate.

図18において、破線で示す曲線K11は、A/D変換の受信シンボル間の分解能による誤り率特性を示す。この曲線K11は、閾値T1が大きくなると、Modulo演算処理されない送信シンボルが多くなるため、受信信号の振幅が小さくなり、A/D変換による受信シンボル間の分解能が高くなって誤り率特性が小さくなることを示す。
また、この図において、破線で示す曲線K12は、送信信号の正規化による誤り率特性を示す。送信信号の正規化とは、送信信号の送信電力の上限を超えないように、基地局装置a1、a2(例えば、図2中の送信部a133)が送信信号に対して、一定の比率で振幅の減衰を行うことをいう。ここで、正規化では、閾値T1が大きくなると、Modulo演算処理を行われず送信信号の送信電力が大きくなり、大きな比率で振幅の減衰を行うことになる。曲線K12は、閾値T1が大きくなると、大きな比率で振幅の減衰を行うため信号点間距離が縮小し、誤り率特性が大きくなることを示す。
In FIG. 18, a curved line K11 indicated by a broken line indicates an error rate characteristic depending on the resolution between received symbols of A / D conversion. In this curve K11, when the threshold value T1 increases, the number of transmission symbols that are not subjected to the modulo arithmetic processing increases, so that the amplitude of the reception signal decreases, the resolution between the reception symbols by A / D conversion increases, and the error rate characteristic decreases. It shows that.
In this figure, a curve K12 indicated by a broken line indicates an error rate characteristic by normalization of the transmission signal. The normalization of the transmission signal means that the base station apparatuses a1 and a2 (for example, the transmission unit a133 in FIG. 2) have an amplitude with a constant ratio with respect to the transmission signal so as not to exceed the upper limit of the transmission power of the transmission signal. This means that the attenuation is performed. Here, in normalization, when the threshold value T1 increases, the modulo calculation process is not performed and the transmission power of the transmission signal increases, and the amplitude is attenuated at a large ratio. A curve K12 indicates that when the threshold value T1 is increased, the amplitude is attenuated at a large ratio, the distance between signal points is reduced, and the error rate characteristic is increased.

このように、曲線K11と曲線K12は、A/D変換の受信シンボル間の分解能による誤り率特性と送信信号の正規化による誤り率特性と、が閾値T1に対して逆の特性を持っていることを示す。
曲線K1は、曲線K11と曲線K12を合算した曲線を示す。図18において、点P1は、曲線K1にて誤り率が最小となる点を示す。
この点Pでの閾値T1を、Modulo演算可否判定に用いる閾値T1の設定値として決定することにより、誤り率を最小にすることができる。
As described above, the curve K11 and the curve K12 have opposite characteristics with respect to the threshold value T1 between the error rate characteristic due to the resolution between the reception symbols of the A / D conversion and the error rate characteristic due to the normalization of the transmission signal. It shows that.
A curve K1 indicates a curve obtained by adding the curves K11 and K12. In FIG. 18, a point P1 indicates a point at which the error rate is minimized on the curve K1.
By determining the threshold value T1 at this point P as the set value of the threshold value T1 used for determining whether or not the modulo calculation is possible, the error rate can be minimized.

また、図18中の曲線K1にて誤り率が最小となる閾値T1であって、δ/2+Nδとなる閾値T1を、Modulo演算可否判定に用いる閾値T1の設定値として決定してもよい。
また、閾値設定部a122は、移動局装置b1から通知されたA/D変換の分解能(デジタル値のレベル数または量子化ビット数)を示す情報、及び、基地局装置a1、a2で予め記憶する送信信号の送信電力の上限を示す情報に基づいて、閾値T1を決定してもよい。すなわち、閾値は、移動局装置b1がデジタル変換することができるデジタル値の最大値、及び、基地局装置a1が送信可能な送信信号の送信電力の最大値、に基づく値であってもよい。
これにより、基地局装置a1、a2は、デジタル値のレベル数、及び送信電力の最大値による誤り率が小さくなる閾値に基づいて、Modulo演算を行うか否かを判定することができ、受信特性の劣化を防止することができる。
なお、この場合、移動局装置b1各々で異なる閾値T1であって、移動局装置b1各々のA/D変換の分解能に基づいた閾値T1を用いてModulo演算可否判定を行ってもよい。
In addition, the threshold value T1 at which the error rate becomes the minimum on the curve K1 in FIG. 18 and becomes δ / 2 + Nδ may be determined as the set value of the threshold value T1 used for the modulo calculation availability determination.
Further, the threshold setting unit a122 stores information indicating the A / D conversion resolution (the number of digital values or the number of quantization bits) notified from the mobile station apparatus b1 and the base station apparatuses a1 and a2 in advance. The threshold value T1 may be determined based on information indicating the upper limit of the transmission power of the transmission signal. That is, the threshold may be a value based on the maximum digital value that can be digitally converted by the mobile station apparatus b1 and the maximum transmission power of the transmission signal that can be transmitted by the base station apparatus a1.
As a result, the base station devices a1 and a2 can determine whether or not to perform the modulo operation based on the number of levels of the digital value and the threshold value that reduces the error rate due to the maximum value of the transmission power. Can be prevented.
In this case, the modulo calculation enable / disable determination may be performed using a threshold T1 that is different in each mobile station apparatus b1 and based on the threshold T1 based on the A / D conversion resolution of each mobile station apparatus b1.

(第2の実施形態)
以下、図面を参照しながら本発明の第2の実施形態について詳しく説明する。
上記第1の実施形態では、基地局装置a1は、予め定めた閾値T1、又は受信信号のA/D変換の分解能と送信信号の正規化による誤り率に基づいて決定した閾値T1、を用いてModulo演算可否判定を行う場合について説明をした。本実施形態では、基地局装置が、さらに、S/I(Signal to Interference power ratio;信号対干渉電力比)を用いて閾値を決定し、決定した閾値を用いてModulo演算可否判定を行う場合について説明をする。
本実施形態では、図1中の基地局装置Aを基地局装置a3と呼ぶ。なお、移動局装置Bは第1の実施形態と同じ機能及び構成を持つ移動局装置b1であるので、説明は省略する。
(Second Embodiment)
Hereinafter, a second embodiment of the present invention will be described in detail with reference to the drawings.
In the first embodiment, the base station apparatus a1 uses a predetermined threshold T1 or a threshold T1 determined based on the A / D conversion resolution of the received signal and the error rate by normalization of the transmission signal. The case where the modulo calculation possibility determination is performed has been described. In the present embodiment, the base station apparatus further determines a threshold value using S / I (Signal to Interference power ratio), and performs a modulo calculation availability determination using the determined threshold value. Explain.
In the present embodiment, the base station apparatus A in FIG. 1 is referred to as a base station apparatus a3. Since the mobile station apparatus B is a mobile station apparatus b1 having the same function and configuration as the first embodiment, the description thereof is omitted.

図19は、この発明の第2の実施形態に係る基地局装置a3の構成を示す概略ブロック図である。本実施形態に係る基地局装置a2(図19)と第1の実施形態に係る基地局装置a1(図2)とを比較すると、S/I算出部a322(信号対干渉電力比算出部)及び閾値設定部a322が異なる。しかし、他の構成要素(無線受信部a111、伝搬路推定部a112、干渉信号算出部a113、符号部a114、変調部a115、減算部a121、閾値設定部a122、判定部a123、剰余演算部a124、伝搬路補償部a116、マッピング部a131、D/A変換部a132、及び送信部a133)が持つ機能は第1の実施形態と同じである。第1の実施形態と同じ機能の説明は省略する。   FIG. 19 is a schematic block diagram showing the configuration of the base station device a3 according to the second embodiment of this invention. When the base station apparatus a2 (FIG. 19) according to the present embodiment is compared with the base station apparatus a1 (FIG. 2) according to the first embodiment, an S / I calculation unit a322 (signal-to-interference power ratio calculation unit) and The threshold setting unit a322 is different. However, other components (wireless reception unit a111, propagation path estimation unit a112, interference signal calculation unit a113, encoding unit a114, modulation unit a115, subtraction unit a121, threshold setting unit a122, determination unit a123, residue calculation unit a124, The functions of the propagation path compensation unit a116, the mapping unit a131, the D / A conversion unit a132, and the transmission unit a133) are the same as those in the first embodiment. A description of the same functions as those in the first embodiment is omitted.

S/I算出部a322は、変調シンボルSと干渉シンボルfの電力比に基づいてS/Iを算出する。
閾値設定部a332は、S/I算出部a322から入力されたS/Iに基づいて、閾値T2を決定する。具体的には、閾値設定部a332は、予め記憶する閾値情報テーブル(図20)の閾値情報にて、S/I算出部a322から入力されたS/Iに対応する閾値T2に決定する。
The S / I calculation unit a322 calculates S / I based on the power ratio between the modulation symbol S and the interference symbol f.
The threshold setting unit a332 determines the threshold T2 based on the S / I input from the S / I calculation unit a322. Specifically, the threshold value setting unit a332 determines the threshold value T2 corresponding to the S / I input from the S / I calculation unit a322 based on the threshold value information in the threshold information table (FIG. 20) stored in advance.

図21は、本実施形態に係る閾値情報テーブルの一例を示す概略図である。図示するように閾値情報テーブルは、S/I、及び閾値の各項目の列を有している。閾値情報テーブルは、ある範囲のS/I毎に閾値情報が格納される行と列からなる2次元の表形式のデータである。
例えば、図20の1行目の閾値情報は、S/Iの値kがm1より小さい場合、閾値設定部a332が閾値T2を3δに決定することを示す。なお、この図において、m1<m2である。つまり、S/Iが小さくなると閾値T2が大きくなり、S/Iが大きくなると閾値T2が小さくなる。
FIG. 21 is a schematic diagram illustrating an example of the threshold information table according to the present embodiment. As shown in the figure, the threshold information table has columns for each item of S / I and threshold. The threshold information table is two-dimensional tabular data composed of rows and columns in which threshold information is stored for each range of S / I.
For example, the threshold information in the first row in FIG. 20 indicates that when the S / I value k is smaller than m1, the threshold setting unit a332 determines the threshold T2 to be 3δ. In this figure, m1 <m2. That is, the threshold value T2 increases as S / I decreases, and the threshold value T2 decreases as S / I increases.

以下、S/Iと閾値との関係について説明をする。
図21は、本実施形態に係る誤り率特性の一例を示す図である。この図において、横軸はModulo演算可否判定に用いる閾値T2を示し、縦軸は誤り率を示す。また、この図において、一点鎖線で示す曲線K11は、図18の曲線K11を示し、S/Iがある値k1の場合のA/D変換の受信シンボル間の分解能による誤り率特性を示す。
Hereinafter, the relationship between the S / I and the threshold will be described.
FIG. 21 is a diagram illustrating an example of error rate characteristics according to the present embodiment. In this figure, the horizontal axis indicates the threshold T2 used for determining whether or not the modulo calculation is possible, and the vertical axis indicates the error rate. In this figure, a curve K11 indicated by a one-dot chain line indicates the curve K11 of FIG. 18, and indicates an error rate characteristic depending on the resolution between received symbols of A / D conversion when S / I is a certain value k1.

図21において、破線で示す曲線K21は、A/D変換の受信シンボル間の分解能による誤り率特性を示し、S/Iがk1より小さな値k2の場合のA/D変換の受信シンボル間の分解能による誤り率特性を示す。この曲線K21が示す誤り率は、曲線K11が示す誤り率と比較して大きくなっている。これは、S/Iが小さくなる、つまり干渉シンボルfの電力が大きくなると、受信信号の振幅が大きくなり、A/D変換の受信シンボル間の分解能による誤り率が大きくなることを示す。具体的には、干渉シンボルfの電力が大きくなると、減算部a121にて減算したシンボルν(=S−f)が閾値外となる確率が高くなる(例えば、図3の領域c1外)。この場合、この受信信号の振幅がより高くなりA/D変換における受信シンボル間の分解能が低下してしまうため、A/D変換の受信シンボル間の分解能による誤り率が大きくなる。   In FIG. 21, a curved line K21 indicated by a broken line indicates an error rate characteristic depending on the resolution between received symbols of A / D conversion, and the resolution between received symbols of A / D conversion when S / I is a value k2 smaller than k1. Shows the error rate characteristics. The error rate indicated by the curve K21 is larger than the error rate indicated by the curve K11. This indicates that when the S / I decreases, that is, the power of the interference symbol f increases, the amplitude of the received signal increases and the error rate due to the resolution between the received symbols of A / D conversion increases. Specifically, when the power of the interference symbol f increases, the probability that the symbol ν (= S−f) subtracted by the subtraction unit a121 is outside the threshold value (for example, outside the area c1 in FIG. 3). In this case, the amplitude of the received signal becomes higher and the resolution between received symbols in A / D conversion decreases, so the error rate due to the resolution between received symbols in A / D conversion increases.

図21において、破線で示す曲線K12は、図18の曲線K12と同じ曲線であり、送信信号の正規化による誤り率特性を示す。
曲線K2は、曲線K21と曲線K12を合算した曲線を示す。図20において、点P2は、曲線K2にて誤り率が最小となる点を示す。点P2と図18の点P1とを比較すると、点P2が示す閾値T2は、点P1が示す閾値T1より大きい。つまり、S/Iが小さくなると点Pが示す閾値T2が大きくなり、S/Iが大きくなると点Pが示す閾値T2が小さくなる。
なお、図20が示す閾値情報は、図21が示すS/Iと閾値T2との関係を予め測定した情報である。
In FIG. 21, a curve K12 indicated by a broken line is the same curve as the curve K12 of FIG. 18, and shows an error rate characteristic by normalization of the transmission signal.
A curve K2 indicates a curve obtained by adding the curve K21 and the curve K12. In FIG. 20, a point P2 indicates a point where the error rate is minimized on the curve K2. Comparing the point P2 with the point P1 in FIG. 18, the threshold value T2 indicated by the point P2 is larger than the threshold value T1 indicated by the point P1. That is, when S / I decreases, the threshold value T2 indicated by the point P increases, and when S / I increases, the threshold value T2 indicated by the point P decreases.
The threshold information shown in FIG. 20 is information obtained by measuring in advance the relationship between the S / I and the threshold T2 shown in FIG.

このように、本実施形態によれば、基地局装置a3は、S/Iに基づいて閾値T2を決定するので、S/Iによって送信信号および受信信号の振幅の分布が変わっても、誤り率が小さくなる閾値T2を決定し、決定した閾値T2に基づいてModulo演算を行うか否かを判定することができ、受信特性の劣化を防止することができる。   As described above, according to the present embodiment, the base station apparatus a3 determines the threshold value T2 based on S / I. Therefore, even if the amplitude distribution of the transmission signal and the reception signal changes due to S / I, the error rate. Can be determined, and whether or not to perform a modulo operation can be determined based on the determined threshold T2, and deterioration of reception characteristics can be prevented.

なお、上記各実施形態では、通信システムが時分割複信の通信システムである場合を説明し、基地局装置Aが、移動局装置Bから基地局装置Aへ送信されたパイロット信号を用いて、基地局装置Aから移動局装置Bへの伝搬路を推定する場合について説明をした。しかし、本発明はこれに限らず、時分割複信の通信システムでなくてもよい。この場合、例えば、移動局装置Bが推定した伝搬路推定値hs、hfを基地局装置Aに送信し、基地局装置Aは移動局装置Bから受信した伝搬路推定値hs、hfに基づいて、(例えば、干渉信号算出部a113にて)干渉シンボルfの算出、及び(例えば、伝搬路補償部a116にて)伝搬路補償を行う。   In each of the above embodiments, a case where the communication system is a time division duplex communication system will be described, and the base station apparatus A uses a pilot signal transmitted from the mobile station apparatus B to the base station apparatus A. The case where the propagation path from the base station apparatus A to the mobile station apparatus B is estimated has been described. However, the present invention is not limited to this, and the communication system may not be a time division duplex communication system. In this case, for example, the propagation path estimation values hs and hf estimated by the mobile station apparatus B are transmitted to the base station apparatus A, and the base station apparatus A is based on the propagation path estimation values hs and hf received from the mobile station apparatus B. (For example, the interference signal calculation unit a113) calculates the interference symbol f and (for example, the propagation channel compensation unit a116) performs channel compensation.

また、上記各実施形態において、基地局装置a1、a2、a3から移動局装置b1へ通信をする場合について説明した。しかし、本発明はこれに限らず、移動局装置b1から基地局装置a1、a2、a3へ通信をする場合であってもよい。この場合、上記の基地局装置a1、a2、又はa3が持つ機能及び構成を移動局装置が備え、移動局装置b1が持つ機能及び構成を基地局装置が備える。   Moreover, in each said embodiment, the case where communication was performed from base station apparatus a1, a2, a3 to the mobile station apparatus b1 was demonstrated. However, the present invention is not limited to this, and may be a case where communication is performed from the mobile station device b1 to the base station devices a1, a2, and a3. In this case, the mobile station apparatus has the functions and configuration of the base station apparatus a1, a2, or a3, and the base station apparatus has the functions and configuration of the mobile station apparatus b1.

なお、上記各実施形態において、移動局装置b1では、受信部b113がアナログ信号Iチャネル成分とQチャネル成分に分離し、分離したアナログ信号に対して、AGC部b114が振幅調整処理を行う場合について説明をした。しかし、本発明はこれに限らず、受信部b113がアナログ信号を成分に分離せずにAGC部b114に出力し、AGC部b114が振幅調整処理を行った後、Iチャネル成分とQチャネル成分に分離してもよい。  In each of the above embodiments, in mobile station apparatus b1, reception unit b113 separates the analog signal I channel component and Q channel component, and AGC unit b114 performs amplitude adjustment processing on the separated analog signal. I explained. However, the present invention is not limited to this, and the receiving unit b113 outputs the analog signal to the AGC unit b114 without separating it into components, and after the AGC unit b114 performs the amplitude adjustment process, the I channel component and the Q channel component are output. It may be separated.

なお、上記各実施形態において、式(2)、(3)に代えて、次の式(4)、(5)を用いてもよい。  In the above embodiments, the following formulas (4) and (5) may be used instead of formulas (2) and (3).

Figure 2011015162
Figure 2011015162

ここで、N1、N2は、自然数である。また、N1とT1は、2×N1−1≠2×T1 かつ 2×N1−1<4×T1、及び、2×N2−1≠2×T1 かつ 2×N2−1<4×T1を満たす数である。この条件は、振幅が閾値幅よりも外側にならないための条件である。   Here, N1 and N2 are natural numbers. N1 and T1 satisfy 2 × N1-1 ≠ 2 × T1 and 2 × N1-1 <4 × T1, and 2 × N2-1 ≠ 2 × T1 and 2 × N2-1 <4 × T1. Is a number. This condition is a condition for preventing the amplitude from being outside the threshold width.

なお、上述した実施形態における基地局装置a1〜a3、移動局装置b1の一部、例えば、伝搬路推定部a112、干渉信号算出部a113、符号部a114、変調部a115、伝搬路補償部a116、減算部a121、a321、閾値設定部a122、a322、判定部a123、a223、剰余演算部a124、a224、パイロット生成部b111、AGC部b114、量子化部b115、剰余演算部b117、復調部b118、復号部b119をコンピュータで実現するようにしても良い。その場合、この制御機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。なお、ここでいう「コンピュータシステム」とは、基地局装置a1〜a3又は移動局装置b1に内蔵されたコンピュータシステムであって、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでも良い。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。   Note that a part of the base station devices a1 to a3 and the mobile station device b1 in the above-described embodiment, for example, a propagation path estimation unit a112, an interference signal calculation unit a113, a coding unit a114, a modulation unit a115, a propagation path compensation unit a116, Subtraction unit a121, a321, threshold setting unit a122, a322, determination unit a123, a223, residue calculation unit a124, a224, pilot generation unit b111, AGC unit b114, quantization unit b115, residue calculation unit b117, demodulation unit b118, decoding The part b119 may be realized by a computer. In that case, a program for realizing this control function may be recorded on a computer-readable recording medium, and the program recorded on this recording medium may be read into a computer system and executed. Here, the “computer system” is a computer system built in the base station devices a1 to a3 or the mobile station device b1, and includes an OS and hardware such as peripheral devices. The “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM and a CD-ROM, and a hard disk incorporated in a computer system. Further, the “computer-readable recording medium” is a medium that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line, In such a case, a volatile memory inside a computer system serving as a server or a client may be included and a program that holds a program for a certain period of time. The program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.

以上、図面を参照してこの発明の一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。   As described above, the embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to the above, and various design changes and the like can be made without departing from the scope of the present invention. It is possible to

A、a1、a2、a3・・・基地局装置(第1の通信装置)、B、b1・・・移動局装置(第2の通信装置)、a111・・・無線受信部、a112・・・伝搬路推定部、a113・・・干渉信号算出部、a114・・・符号部、a115・・・変調部、a12、a22、a32・・・THP部、a116・・・伝搬路補償部、a13・・・無線送信部、a121・・・減算部、a122、a322・・・閾値設定部、a123、a223・・・判定部、a124、a224・・・剰余演算部、a322・・・S/I算出部(信号対干渉電力比算出部)、a131・・・マッピング部、a132・・・D/A変換部、a133・・・送信部、b111・・・パイロット生成部、b112・・・無線送信部、b113・・・受信部、b114・・・AGC部、b115・・・量子化部、b116・・・デマッピング部、b117・・・剰余演算部、b118・・・復調部、b119・・・復号部   A, a1, a2, a3 ... base station apparatus (first communication apparatus), B, b1 ... mobile station apparatus (second communication apparatus), a111 ... radio reception unit, a112 ... Propagation path estimation section, a113 ... interference signal calculation section, a114 ... coding section, a115 ... modulation section, a12, a22, a32 ... THP section, a116 ... propagation path compensation section, a13. ..Wireless transmission unit, a121 ... subtraction unit, a122, a322 ... threshold setting unit, a123, a223 ... determination unit, a124, a224 ... residue calculation unit, a322 ... S / I calculation Unit (signal to interference power ratio calculation unit), a131 ... mapping unit, a132 ... D / A conversion unit, a133 ... transmission unit, b111 ... pilot generation unit, b112 ... wireless transmission unit , B113... Receiver, b114 · AGC unit, B115 · · · quantizer, B116 · · · demapping unit, B117 · · · remainder operation unit, B118 · · · demodulator, B 119 · · · decoding unit

Claims (12)

送信信号を送信する通信装置において、
前記送信信号が受信された場合の干渉信号を、伝搬路状態情報と前記送信信号とに基づいて算出する干渉信号算出部と、
前記送信信号から前記干渉信号算出部が算出した干渉信号を減算する減算部と、
前記減算部が減算した信号の送信電力を示す情報に基づいて、前記減算部が減算した信号に対して剰余演算を行うか否かを判定する判定部と、
前記判定部が剰余演算を行うと判定した場合、前記減算部が減算した信号に対して剰余演算を行い、剰余演算を行った信号から、前記変調部の変調方式に応じて決まる幅であって変調シンボルを配置する信号点を全て含む幅である剰余幅の自然数倍の値を減算する剰余演算部と、
前記判定部での判定結果に基づいて、前記減算部が減算した信号又は前記剰余演算部が剰余演算及び減算を行った信号を送信する無線送信部と、
を備えることを特徴とする通信装置。
In a communication device that transmits a transmission signal,
An interference signal calculating unit that calculates an interference signal when the transmission signal is received based on propagation path state information and the transmission signal;
A subtracting unit for subtracting the interference signal calculated by the interference signal calculating unit from the transmission signal;
A determination unit that determines whether to perform a remainder operation on the signal subtracted by the subtraction unit, based on information indicating the transmission power of the signal subtracted by the subtraction unit;
When the determination unit determines that the remainder calculation is performed, the remainder calculation is performed on the signal subtracted by the subtraction unit, and the width is determined according to the modulation scheme of the modulation unit from the signal obtained by the remainder calculation. A remainder calculation unit that subtracts a value that is a natural number multiple of the remainder width, which is a width that includes all signal points for arranging modulation symbols;
Based on the determination result in the determination unit, a radio transmission unit that transmits the signal subtracted by the subtraction unit or the signal obtained by performing the residue calculation and subtraction by the residue calculation unit,
A communication apparatus comprising:
入力された情報を変調し、前記送信信号を生成する変調部を備え、
前記判定部は、前記減算部が減算した信号の同相チャネル及び位相チャネルの成分の大きさ予め定めた閾値より大きい場合、又は、同相チャネル或いは位相チャネルの成分の大きさが予め定めた閾値より大きい場合、前記減算部が減算した信号に対して剰余演算を行うと判定し、
前記閾値は、前記剰余幅に基づく値であることを特徴とする請求項1に記載の通信装置。
A modulation unit that modulates input information and generates the transmission signal;
The determination unit is larger than the predetermined threshold value of the in-phase channel and phase channel components of the signal subtracted by the subtraction unit, or the in-phase channel or phase channel component size is larger than the predetermined threshold value. The subtraction unit determines to perform a remainder operation on the subtracted signal,
The communication apparatus according to claim 1, wherein the threshold is a value based on the remainder width.
前記閾値は、前記剰余幅の自然数倍の値を、前記剰余幅の半分の値に加算した値であることを特徴とする請求項2に記載の通信装置。   The communication device according to claim 2, wherein the threshold value is a value obtained by adding a value that is a natural number multiple of the remainder width to a value that is half the remainder width. 前記通信装置は、受信した前記送信信号をデジタル信号にデジタル変換する他の通信装置に、前記送信信号を送信し、
前記判定部は、前記送信電力を示す情報が、送信電力が予め定めた閾値より高いことを示す場合、前記減算部が減算した信号に対して剰余演算を行うと判定し、
前記閾値は、前記他の通信装置がデジタル変換することができるデジタル値の最大値、及び、前記通信装置が送信可能な送信信号の送信電力の最大値、に基づく値であることを特徴とする請求項1に記載の通信装置。
The communication device transmits the transmission signal to another communication device that converts the received transmission signal into a digital signal.
When the information indicating the transmission power indicates that the transmission power is higher than a predetermined threshold, the determination unit determines to perform a remainder operation on the signal subtracted by the subtraction unit,
The threshold is a value based on a maximum value of a digital value that can be digitally converted by the other communication device and a maximum value of transmission power of a transmission signal that can be transmitted by the communication device. The communication apparatus according to claim 1.
前記判定部は、前記送信電力を示す情報が、送信電力が予め定めた閾値より高いことを示す場合、前記減算部が減算した信号に対して剰余演算を行うと判定し、
前記送信信号と前記干渉信号算出部が算出した干渉信号とに基づいて、信号対干渉電力比を算出する信号対干渉電力比算出部と、
前記信号対干渉電力比算出部が算出した信号対干渉電力比に基づいて、前記閾値を決定する閾値設定部と、
を備えることを特徴とする請求項1乃至4のいずれかの項に記載の通信装置。
When the information indicating the transmission power indicates that the transmission power is higher than a predetermined threshold, the determination unit determines to perform a remainder operation on the signal subtracted by the subtraction unit,
A signal-to-interference power ratio calculation unit that calculates a signal-to-interference power ratio based on the transmission signal and the interference signal calculated by the interference signal calculation unit;
A threshold setting unit that determines the threshold based on the signal-to-interference power ratio calculated by the signal-to-interference power ratio calculation unit;
The communication apparatus according to claim 1, further comprising:
前記剰余演算部は、前記判定部が剰余演算を行うと判定した場合、前記減算部が減算した信号に対して剰余演算を行い、剰余演算を行った信号から、前記剰余幅の値を減算することを特徴とする請求項1に記載の通信装置。   When the determination unit determines to perform a residue operation, the residue operation unit performs a residue operation on the signal subtracted by the subtraction unit, and subtracts the value of the residue width from the signal subjected to the residue operation. The communication apparatus according to claim 1. 第1の通信装置と、前記第1の通信装置から受信した前記送信信号をデジタル信号にデジタル変換する第2の通信装置と、を具備する無線通信システムにおいて、
前記第1の通信装置は、
入力された情報を変調し、前記送信信号を生成する変調部と、
前記送信信号を前記第2の通信装置が受信した場合の干渉信号を、伝搬路状態情報と前記送信信号とに基づいて算出する干渉信号算出部と、
前記送信信号から前記干渉信号算出部が算出した干渉信号を減算する減算部と、
前記減算部が減算した信号の送信電力を示す情報に基づいて、前記減算部が減算した信号に対して剰余演算を行うか否かを判定する判定部と、
前記判定部が剰余演算を行うと判定した場合、前記減算部が減算した信号に対して剰余演算を行い、剰余演算を行った信号から、前記変調部の変調方式に応じて決まる幅であって変調シンボルを配置する信号点を全て含む幅である剰余幅の自然数倍の値を減算する剰余演算部と、
前記判定部の判定結果に基づいて、前記減算部が減算した信号又は前記剰余演算部が剰余演算及び減算を行った信号を送信する無線送信部と、
を備え、
前記第2の通信装置は、
前記第1の通信装置での変調方式に応じて決まる幅であって変調シンボルを配置する信号点を全て含む幅である剰余幅が、前記デジタル変換することができるデジタル値の最大値が示す幅になるように、前記受信信号の振幅を調整する振幅調整部と、
前記振幅調整部が振幅を調整した受信信号を、デジタル信号にデジタル変換する量子化部と、
を備えることを特徴とする通信システム。
In a wireless communication system comprising: a first communication device; and a second communication device that digitally converts the transmission signal received from the first communication device into a digital signal.
The first communication device is:
A modulator that modulates input information and generates the transmission signal;
An interference signal calculation unit that calculates an interference signal when the second communication device receives the transmission signal based on propagation path state information and the transmission signal;
A subtracting unit for subtracting the interference signal calculated by the interference signal calculating unit from the transmission signal;
A determination unit that determines whether to perform a remainder operation on the signal subtracted by the subtraction unit, based on information indicating the transmission power of the signal subtracted by the subtraction unit;
When the determination unit determines that the remainder calculation is performed, the remainder calculation is performed on the signal subtracted by the subtraction unit, and the width is determined according to the modulation scheme of the modulation unit from the signal obtained by the remainder calculation. A remainder calculation unit that subtracts a value that is a natural number multiple of the remainder width, which is a width that includes all signal points for arranging modulation symbols;
Based on the determination result of the determination unit, a radio transmission unit that transmits a signal subtracted by the subtraction unit or a signal obtained by performing a residue calculation and subtraction by the residue calculation unit;
With
The second communication device is:
The remainder width, which is a width determined according to the modulation method in the first communication apparatus and includes all signal points where modulation symbols are arranged, is indicated by the maximum digital value that can be digitally converted. An amplitude adjuster for adjusting the amplitude of the received signal,
A quantizing unit that digitally converts the received signal whose amplitude is adjusted by the amplitude adjusting unit into a digital signal;
A communication system comprising:
他の通信装置から受信した送信信号をデジタル信号にデジタル変換する通信装置において、
前記他の通信装置での変調方式に応じて決まる幅であって変調シンボルを配置する信号点を全て含む幅である剰余幅が、前記デジタル変換することができるデジタル値の最大値が示す幅になるように、前記受信信号の振幅を調整する振幅調整部と、
前記振幅調整部が振幅を調整した受信信号を、デジタル信号にデジタル変換する量子化部と、
を備えることを特徴とする通信装置。
In a communication device that digitally converts a transmission signal received from another communication device into a digital signal,
The remainder width, which is a width determined according to the modulation method in the other communication apparatus and includes all signal points for arranging modulation symbols, is the width indicated by the maximum digital value that can be digitally converted. An amplitude adjusting unit for adjusting the amplitude of the received signal,
A quantizing unit that digitally converts the received signal whose amplitude is adjusted by the amplitude adjusting unit into a digital signal;
A communication apparatus comprising:
送信信号を送信する通信装置における通信方法において、
前記通信装置が、前記送信信号が受信された場合の干渉信号を、伝搬路状態情報と前記送信信号とに基づいて算出する第1の過程と、
前記通信装置が、前記送信信号から前記第1の過程にて算出した干渉信号を減算する第2の過程と、
前記通信装置が、前記第3の過程にて減算した信号の送信電力を示す情報に基づいて、前記第2の過程にて減算した信号に対して剰余演算を行うか否かを判定する第4の過程と、
前記通信装置が、前記第4の過程にて剰余演算を行うと判定した場合、前記第2の過程にて減算した信号に対して剰余演算を行い、剰余演算を行った信号から、前記変調部の変調方式に応じて決まる幅であって変調シンボルを配置する信号点を全て含む幅である剰余幅の自然数倍の値を減算する第5の過程と、
前記通信装置が、前記第4の過程での判定結果に基づいて、前記第2の過程にて減算した信号又は前記第5の過程にて剰余演算及び減算を行った信号を送信する第6の過程と、
を有することを特徴とする通信方法。
In a communication method in a communication device that transmits a transmission signal,
A first step in which the communication device calculates an interference signal when the transmission signal is received based on propagation path state information and the transmission signal;
A second process in which the communication device subtracts the interference signal calculated in the first process from the transmission signal;
4th which determines whether the said communication apparatus performs remainder calculation with respect to the signal subtracted in the said 2nd process based on the information which shows the transmission power of the signal subtracted in the said 3rd process. And the process
When the communication apparatus determines that the remainder operation is performed in the fourth process, the modulation unit performs the remainder operation on the signal subtracted in the second process, and the modulation unit A fifth step of subtracting a value that is a natural number multiple of the remainder width, which is a width that is determined according to the modulation method and includes all signal points for arranging modulation symbols;
The communication device transmits a signal obtained by subtraction in the second process or a signal obtained by performing remainder calculation and subtraction in the fifth process based on the determination result in the fourth process. Process,
A communication method characterized by comprising:
他の通信装置から受信した送信信号をデジタル信号にデジタル変換する通信装置における通信方法において、
前記通信装置が、前記他の通信装置での変調方式に応じて決まる幅であって変調シンボルを配置する信号点を全て含む幅である剰余幅が、前記デジタル変換することができるデジタル値の最大値が示す幅になるように、前記受信信号の振幅を調整する第1の過程と、
前記第1の過程にて振幅を調整した受信信号を、デジタル信号にデジタル変換する第2の過程と、
を有することを特徴とする通信方法。
In a communication method in a communication device for digitally converting a transmission signal received from another communication device into a digital signal,
The remainder width, which is a width determined according to a modulation scheme in the other communication device and includes all signal points where modulation symbols are arranged, is the maximum digital value that can be digitally converted. A first step of adjusting the amplitude of the received signal so as to have a width indicated by the value;
A second step of digitally converting the received signal whose amplitude has been adjusted in the first step into a digital signal;
A communication method characterized by comprising:
送信信号を送信する通信装置のコンピュータを、
前記送信信号が受信された場合の干渉信号を、伝搬路状態情報と前記送信信号とに基づいて算出する干渉信号算出手段、
前記送信信号から前記干渉信号算出手段にて算出した干渉信号を減算する減算手段、
前記減算手段にて減算した信号の送信電力を示す情報に基づいて、前記減算手段にて減算した信号に対して剰余演算を行うか否かを判定する判定手段、
前記判定手段にて剰余演算を行うと判定した場合、前記減算手段にて減算した信号に対して剰余演算を行い、剰余演算を行った信号から、前記変調部の変調方式に応じて決まる幅であって変調シンボルを配置する信号点を全て含む幅である剰余幅の自然数倍の値を減算する剰余演算手段、
前記判定手段での判定結果に基づいて、前記減算手段にて減算した信号又は前記剰余演算手段にて剰余演算及び減算を行った信号を送信する無線送信手段、
として機能させる通信プログラム。
A communication device computer for transmitting a transmission signal;
An interference signal calculation means for calculating an interference signal when the transmission signal is received based on propagation path state information and the transmission signal;
Subtracting means for subtracting the interference signal calculated by the interference signal calculating means from the transmission signal;
A determination unit for determining whether to perform a remainder operation on the signal subtracted by the subtraction unit, based on information indicating transmission power of the signal subtracted by the subtraction unit;
When it is determined that the remainder calculation is performed by the determination means, the remainder calculation is performed on the signal subtracted by the subtraction means, and the width determined according to the modulation method of the modulation unit from the signal obtained by the remainder calculation. A remainder calculating means for subtracting a value that is a natural number multiple of a remainder width that is a width including all signal points for arranging modulation symbols;
Wireless transmission means for transmitting a signal obtained by subtraction by the subtraction means or a signal obtained by performing remainder calculation and subtraction by the remainder calculation means based on the determination result by the determination means;
Communication program to function as.
他の通信装置から受信した送信信号をデジタル信号にデジタル変換する通信装置のコンピュータを、
前記他の通信装置での変調方式に応じて決まる幅であって変調シンボルを配置する信号点を全て含む幅である剰余幅が、前記デジタル変換することができるデジタル値の最大値が示す幅になるように、前記受信信号の振幅を調整する振幅調整手段、
前記振幅調整手段にて振幅を調整した受信信号を、デジタル信号にデジタル変換する量子化手段、
として機能させる通信プログラム。
A communication device computer for digitally converting a transmission signal received from another communication device into a digital signal;
The remainder width, which is a width determined according to the modulation method in the other communication apparatus and includes all signal points for arranging modulation symbols, is the width indicated by the maximum digital value that can be digitally converted. Amplitude adjusting means for adjusting the amplitude of the received signal,
Quantization means for digitally converting the received signal whose amplitude is adjusted by the amplitude adjusting means into a digital signal,
Communication program to function as.
JP2009157194A 2009-07-01 2009-07-01 Communication equipment, communication system, communication method, and communication program Pending JP2011015162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009157194A JP2011015162A (en) 2009-07-01 2009-07-01 Communication equipment, communication system, communication method, and communication program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009157194A JP2011015162A (en) 2009-07-01 2009-07-01 Communication equipment, communication system, communication method, and communication program

Publications (1)

Publication Number Publication Date
JP2011015162A true JP2011015162A (en) 2011-01-20

Family

ID=43593610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009157194A Pending JP2011015162A (en) 2009-07-01 2009-07-01 Communication equipment, communication system, communication method, and communication program

Country Status (1)

Country Link
JP (1) JP2011015162A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5854812A (en) * 1994-11-17 1998-12-29 Ke Kommunikations-Elektronic Gmbh & Co. Method of digital transmission of messages using dynamic-range-limited precoding
WO2001048995A1 (en) * 1999-12-23 2001-07-05 Fernway Limited A modified tomlinson-harashima precoding method circuit for infinite impulse response (iir) channels
WO2006001301A1 (en) * 2004-06-25 2006-01-05 Evolvable Systems Research Institute Inc. Parameter adjustment device and parameter adjustment method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5854812A (en) * 1994-11-17 1998-12-29 Ke Kommunikations-Elektronic Gmbh & Co. Method of digital transmission of messages using dynamic-range-limited precoding
WO2001048995A1 (en) * 1999-12-23 2001-07-05 Fernway Limited A modified tomlinson-harashima precoding method circuit for infinite impulse response (iir) channels
WO2006001301A1 (en) * 2004-06-25 2006-01-05 Evolvable Systems Research Institute Inc. Parameter adjustment device and parameter adjustment method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013024155; Wei Yu, et al.: 'Trellis and convolutional precoding for transmitter-based interference presubtraction' IEEE Transactions on Communications Vo.53, Issue.7, 20050718, pages.1220-1230, IEEE *

Similar Documents

Publication Publication Date Title
KR102496679B1 (en) Method and apparatus for power allocation for superposition transmission
JP5558355B2 (en) Receiving method and receiving apparatus
JP4661870B2 (en) Digital communication system, indoor device and outdoor device
US20060239387A1 (en) Digital reception apparatus
TW201919418A (en) Method of receiving data, method of transmitting data and user equipment
US20120071104A1 (en) Transmitter device, receiver device, and wireless communication system
AU2015207321B2 (en) Communication apparatus, demodulation apparatus, carrier reproduction apparatus, phase error compensation apparatus, phase error compensation method, and storage medium on which phase error compensation program has been stored
JP2016032127A (en) Radio communication system, distortion compensation device, and distortion compensation method
WO2013129422A1 (en) Radio transmission device, radio reception device and data transmission method
JP5046114B2 (en) Multilevel QAM demodulator, demodulating method thereof, and radio communication system
JP2011009946A (en) Communication system, communication equipment, communication method, and communication program
JP2011015162A (en) Communication equipment, communication system, communication method, and communication program
KR20130030753A (en) Power adjustment of in-phase and quadrature components at a coherent optical receiver
JP6422834B2 (en) Array antenna apparatus and delay compensation method
US20170179595A1 (en) Base station and communication control method
WO2014045483A1 (en) Reception quality measurement device and reception quality measurement method
JPWO2011033571A1 (en) Receiving machine
JP2011188093A (en) Ofdm modulator
JP5873426B2 (en) Communication system and communication method
JP5454237B2 (en) Receiving apparatus and receiving method
JP6397376B2 (en) Transmission power control method, radio communication system, and radio communication apparatus
WO2023032160A1 (en) Wireless communication system, wireless communication method, and wireless communication transmission device
US9960940B2 (en) Frequency shaping and adaptive rounding for O-QPSK and MSK transmission in polar coordinates
JP5893773B1 (en) Receiving method and receiving apparatus
Osawa et al. Iterative canceller of adjacent channel interference induced by nonlinearity of power amplifier in millimeter wave systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130924