JP2011014635A - Photoelectric conversion device, and method of manufacturing the same - Google Patents

Photoelectric conversion device, and method of manufacturing the same Download PDF

Info

Publication number
JP2011014635A
JP2011014635A JP2009155809A JP2009155809A JP2011014635A JP 2011014635 A JP2011014635 A JP 2011014635A JP 2009155809 A JP2009155809 A JP 2009155809A JP 2009155809 A JP2009155809 A JP 2009155809A JP 2011014635 A JP2011014635 A JP 2011014635A
Authority
JP
Japan
Prior art keywords
zinc oxide
indium zinc
photoelectric conversion
conversion element
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009155809A
Other languages
Japanese (ja)
Other versions
JP5405923B2 (en
Inventor
Akira Umigami
暁 海上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2009155809A priority Critical patent/JP5405923B2/en
Publication of JP2011014635A publication Critical patent/JP2011014635A/en
Application granted granted Critical
Publication of JP5405923B2 publication Critical patent/JP5405923B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photoelectric conversion device having high efficiency of conversion, and to provide a method of manufacturing the same.SOLUTION: The photoelectric conversion device 1 has an indium zinc oxide layer 20 having a first face 200 on the outer light incident side, and a second face 202 opposite to the first face 200, and changes so as to reduce a refractive index of the indium zinc oxide layer 20 from the second face 202 to the first face 200.

Description

本発明は、膜厚方向に屈折率又は仕事関数が異なる透明電極膜を有する光電変換素子及びその製造方法に関する。   The present invention relates to a photoelectric conversion element having a transparent electrode film having a different refractive index or work function in the film thickness direction, and a method for manufacturing the photoelectric conversion element.

透明導電膜は、太陽電池の光電変換素子の窓電極、電磁シールドの電磁遮蔽膜、透明タッチパネル等の入力装置の電極、液晶表示体、EL(エレクトロルミネセンス)発光体、EC(エレクトロクロミック)表示体等の透明電極等に幅広く用いられている。   The transparent conductive film is a window electrode of a photoelectric conversion element of a solar cell, an electromagnetic shielding film of an electromagnetic shield, an electrode of an input device such as a transparent touch panel, a liquid crystal display, an EL (electroluminescence) light emitter, and an EC (electrochromic) display. Widely used for transparent electrodes such as body.

特に、太陽電池用途で用いられる透明電極は、例えば、外光入射側から、透明基板(ガラス等)/透明電極/半導体の構成であるとき、透明電極の外光入射側の面では、透明電極と透明基板(ガラス等)との屈折率差を低減し、外光反射を低減するために、低屈折率であることが、透明電極と半導体との界面では、半導体層との屈折率差を低減し、半導体との界面での界面反射を低減するために、高屈折率であることが理想とされていた。   In particular, the transparent electrode used in solar cell applications is, for example, a transparent substrate (glass or the like) / transparent electrode / semiconductor from the outside light incident side, and on the surface of the transparent electrode on the outside light incident side, the transparent electrode In order to reduce the difference in refractive index between the transparent electrode (such as glass) and reduce external light reflection, the refractive index difference between the transparent electrode and the semiconductor layer at the interface between the transparent electrode and the semiconductor is low. In order to reduce and reduce interface reflection at the interface with the semiconductor, a high refractive index has been considered ideal.

また、太陽電池用途で用いられる透明電極は、半導体層で発生した電子又はホール移動の際のエネルギー障壁が低い(例えば、電子の移動に関して、p型半導体層/n型半導体層/透明電極/集電極の構成では、n型半導体層と透明電極の界面、及び透明電極と集電極の界面では、仕事関数の差が小さい)ことが理想とされていた。   In addition, a transparent electrode used in a solar cell application has a low energy barrier when electrons or holes generated in the semiconductor layer move (for example, p-type semiconductor layer / n-type semiconductor layer / transparent electrode / collection with respect to the movement of electrons). In the configuration of the electrode, it was ideal that the work function difference was small at the interface between the n-type semiconductor layer and the transparent electrode and at the interface between the transparent electrode and the collector electrode.

一方、従来の透明電極材料は、ITO、AZO、ATOに代表されるように、結晶化することで透明電極に要求される低抵抗化が図られている。屈折率又は仕事関数は結晶構造によって、一義的に決定されるため、膜厚方向に結晶性を変えて屈折率又は仕事関数の傾斜を持たせることは困難であった。   On the other hand, the conventional transparent electrode material, as typified by ITO, AZO, and ATO, achieves low resistance required for the transparent electrode by crystallization. Since the refractive index or work function is uniquely determined by the crystal structure, it is difficult to change the crystallinity in the film thickness direction to give a gradient of the refractive index or work function.

これに対し、外光反射低減の目的で、反射防止層を積層する(例えば、特許文献1,2)、光学膜厚を用いる等の対策が実施されてきた。   On the other hand, for the purpose of reducing external light reflection, measures such as laminating an antireflection layer (for example, Patent Documents 1 and 2) and using an optical film thickness have been implemented.

しかしながら、反射防止層を積層する手法は、プロセスアップを招き、光学膜厚を用いる設計は、膜厚の制約を受け、抵抗値と透過率の両立が十分でなかった。
また、界面反射低減のためには、半導体層界面に高屈折率層を積層する方法があるが、やはり、プロセスアップを招く等の問題があった。
However, the method of laminating the antireflection layer causes an increase in the process, and the design using the optical film thickness is limited by the film thickness, so that both the resistance value and the transmittance are not sufficient.
In addition, there is a method of laminating a high refractive index layer at the interface of the semiconductor layer to reduce the interface reflection. However, there is still a problem that the process is increased.

更に、エネルギー障壁低減の目的で、透明電極と半導体層の間に中間層を設ける方法や、膜厚を増加させ、エネルギー障壁の傾斜を緩やかにする方法等の対策が実施されてきた。
しかしながら、中間層を設ける手法は、プロセスアップを招き、膜厚を増加させる手法は、透過率の低下を招く等の問題があった。
Further, for the purpose of reducing the energy barrier, countermeasures such as a method of providing an intermediate layer between the transparent electrode and the semiconductor layer, a method of increasing the film thickness and making the slope of the energy barrier gentle have been implemented.
However, the method of providing the intermediate layer causes a process increase, and the method of increasing the film thickness has problems such as a decrease in transmittance.

尚、特許文献1には、透明電極層と光吸収層の界面の電子親和力を調整して変換効率を高めることが、特許文献2には、高導電率電極層と光吸収層5の界面の仕事関数を調整して変換効率を高めることが記載されている。   Patent Document 1 discloses that the electron affinity at the interface between the transparent electrode layer and the light absorption layer is adjusted to increase the conversion efficiency. Patent Document 2 describes that the interface between the high conductivity electrode layer and the light absorption layer 5 is adjusted. It is described that the conversion efficiency is improved by adjusting the work function.

特開2004−214300号公報JP 2004-214300 A 特開2005−109360号公報JP 2005-109360 A

本発明の目的は、変換効率の高い光電変換素子及びその製造方法を提供することである。   The objective of this invention is providing a photoelectric conversion element with high conversion efficiency, and its manufacturing method.

本発明によれば、以下の光電変換素子及びその製造方法が提供される。
1.外光入射側の第1の面と、前記第1の面と対向する第2の面を有するインジウム亜鉛酸化物層を有し、
前記第2の面から前記第1の面へ、インジウム亜鉛酸化物層の屈折率が小さくなるように変化している光電変換素子。
2.前記第1の面から前記第2の面の間で、屈折率が連続して変化する1記載の光電変換素子。
3.前記第1の面と前記第2の面の屈折率の差が0.2以上である1又は2記載の光電変換素子。
4.対向する第1の面と第2の面を有するインジウム亜鉛酸化物層と、前記インジウム亜鉛酸化物層の第1の面と接する隣接層を有し、
インジウム亜鉛酸化物層と前記隣接層の仕事関数の差が小さくなるように、前記第2の面から前記第1の面へ、インジウム亜鉛酸化物層の仕事関数が変化している光電変換素子。
5.前記第1の面から前記第2の面の間で、仕事関数が連続して変化する4記載の光電変換素子。
6.前記第1の面が外光入射側にある4又は5記載の光電変換素子。
7.前記第1の面と前記第2の面の仕事関数の差が0.2eV以上である4〜6のいずれか記載の光電変換素子。
8.少なくとも1層のa−Si層を含む1〜7のいずれか記載の光電変換素子。
9.タンデム構造である1〜8のいずれか記載の光電変換素子。
10.単結晶又は多結晶Si基板を含む1〜9のいずれか記載の光電変換素子。
11.製膜温度を室温から昇温することによって、屈折率が傾斜したインジウム亜鉛酸化物膜を形成する、1〜3のいずれか記載の光電変換素子の製造方法。
12.製膜中に徐々に酸素導入量を増やし酸素分圧を上げていくことによって、屈折率が傾斜したインジウム亜鉛酸化物膜を形成する、1〜3のいずれか記載の光電変換素子の製造方法。
13.製膜温度を室温から昇温することによって、仕事関数が傾斜したインジウム亜鉛酸化物膜を形成する、4〜7のいずれか記載の光電変換素子の製造方法。
14.製膜中に徐々に酸素導入量を増やし酸素分圧を上げていくことによって、仕事関数が傾斜したインジウム亜鉛酸化物膜を形成する、4〜7のいずれか記載の光電変換素子の製造方法。
According to the present invention, the following photoelectric conversion element and a manufacturing method thereof are provided.
1. An indium zinc oxide layer having a first surface on the outside light incident side and a second surface facing the first surface;
The photoelectric conversion element which is changing so that the refractive index of an indium zinc oxide layer may become small from the said 2nd surface to the said 1st surface.
2. 2. The photoelectric conversion element according to 1, wherein a refractive index continuously changes between the first surface and the second surface.
3. 3. The photoelectric conversion element according to 1 or 2, wherein a difference in refractive index between the first surface and the second surface is 0.2 or more.
4). An indium zinc oxide layer having opposing first and second surfaces; and an adjacent layer in contact with the first surface of the indium zinc oxide layer;
A photoelectric conversion element in which a work function of an indium zinc oxide layer changes from the second surface to the first surface so that a difference in work function between the indium zinc oxide layer and the adjacent layer is reduced.
5. 5. The photoelectric conversion element according to 4, wherein a work function continuously changes between the first surface and the second surface.
6). 6. The photoelectric conversion element according to 4 or 5, wherein the first surface is on an external light incident side.
7). The photoelectric conversion element according to any one of 4 to 6, wherein a work function difference between the first surface and the second surface is 0.2 eV or more.
8). The photoelectric conversion element according to any one of 1 to 7, comprising at least one a-Si layer.
9. The photoelectric conversion element according to any one of 1 to 8, which has a tandem structure.
10. The photoelectric conversion element according to any one of 1 to 9, comprising a single crystal or polycrystalline Si substrate.
11. The manufacturing method of the photoelectric conversion element in any one of 1-3 which forms the indium zinc oxide film | membrane in which the refractive index inclined by raising film-forming temperature from room temperature.
12 4. The method for producing a photoelectric conversion element according to any one of 1 to 3, wherein an indium zinc oxide film having an inclined refractive index is formed by gradually increasing the amount of oxygen introduced during film formation and increasing the oxygen partial pressure.
13. The manufacturing method of the photoelectric conversion element in any one of 4-7 which forms the indium zinc oxide film | membrane with which the work function inclined by raising film-forming temperature from room temperature.
14 The method for producing a photoelectric conversion element according to any one of 4 to 7, wherein an indium zinc oxide film having an inclined work function is formed by gradually increasing the amount of oxygen introduced during film formation and increasing the oxygen partial pressure.

本発明によれば、変換効率の高い光電変換素子及びその製造方法が提供できる。   ADVANTAGE OF THE INVENTION According to this invention, a photoelectric conversion element with high conversion efficiency and its manufacturing method can be provided.

本発明の光電変換素子の一実施形態であるタンデム型太陽電池を示す図である。It is a figure which shows the tandem solar cell which is one Embodiment of the photoelectric conversion element of this invention. 本発明の光電変換素子の他の実施形態であるタンデム型太陽電池を示す図である。It is a figure which shows the tandem solar cell which is other embodiment of the photoelectric conversion element of this invention.

本発明の第1の態様の光電変換素子は、外光入射側の第1の面と、前記第1の面と対向する第2の面を有するインジウム亜鉛酸化物層を有し、第2の面から第1の面へ、インジウム亜鉛酸化物層の屈折率が小さくなるように変化している。具体的には、外光入射側の第1の面と、第1の面と対向する第2の面の屈折率が異なり、第1の面の屈折率が第2の面の屈折率より小さいインジウム亜鉛酸化物層を有する。
ここで、「面の屈折率」とはその面を形成する材料の屈折率である。また、その面側領域の材料の屈折率でもよく、例えば、界面から10nmまでの領域又は界面から10nmまでの領域の材料の平均の屈折率である。
屈折率は、第1の面から第2の面の間で、断続的に変化してもよいし、連続して変化してもよい。なお、屈折率は短波長領域では大きく変化するため、ここで記載する屈折率は太陽光強度が高く、屈折率が安定化する波長550nmでの値を示す。
The photoelectric conversion element according to the first aspect of the present invention includes an indium zinc oxide layer having a first surface on the incident side of external light and a second surface opposite to the first surface, The refractive index of the indium zinc oxide layer changes from the surface to the first surface so as to decrease. Specifically, the refractive index of the first surface on the external light incident side and the second surface facing the first surface are different, and the refractive index of the first surface is smaller than the refractive index of the second surface. It has an indium zinc oxide layer.
Here, the “refractive index of the surface” is the refractive index of the material forming the surface. Further, it may be the refractive index of the material in the surface side region, for example, the average refractive index of the material in the region from the interface to 10 nm or the region from the interface to 10 nm.
The refractive index may change intermittently or continuously from the first surface to the second surface. In addition, since a refractive index changes a lot in a short wavelength region, the refractive index described here shows a value at a wavelength of 550 nm where the sunlight intensity is high and the refractive index is stabilized.

好ましくは、第1の面と第2の面の屈折率の差は0.2以上である。例えば、約1.5〜2.5、1.7〜2.1と変化する。
好ましくは、第1の面の屈折率は1.9以下である。
この光電変換素子は、外光入射側の第1の面の屈折率が相対的に小さいので、外光の反射を低減でき、変換効率が高まる。
Preferably, the difference in refractive index between the first surface and the second surface is 0.2 or more. For example, it varies from about 1.5 to 2.5 and 1.7 to 2.1.
Preferably, the refractive index of the first surface is 1.9 or less.
Since this photoelectric conversion element has a relatively small refractive index of the first surface on the outside light incident side, reflection of outside light can be reduced and conversion efficiency is increased.

また、a−Si層に代表される半導体層の屈折率は3.5以上と大きいため、第2の面の屈折率は半導体層と透明電極層の界面反射低減のため、大きい方が好ましい。好ましくは、2.0以上である。この光電変換素子は、半導体層との屈折率差が小さいため、半導体層と透明電極層との間の界面反射を低減でき、変換効率が向上する。   Moreover, since the refractive index of the semiconductor layer represented by the a-Si layer is as large as 3.5 or more, it is preferable that the refractive index of the second surface be large in order to reduce interface reflection between the semiconductor layer and the transparent electrode layer. Preferably, it is 2.0 or more. Since this photoelectric conversion element has a small difference in refractive index from the semiconductor layer, interface reflection between the semiconductor layer and the transparent electrode layer can be reduced, and conversion efficiency is improved.

図1に、本発明の光電変換素子の一実施形態であるタンデム型太陽電池を示す。この太陽電池1は、基板10上に、透明電極層20、光吸収層30、中間層40、光吸収層32、背面電極層50が設けられている。さらに、透明電極層20及び背面電極層50にそれぞれ集電極60,62が設けられている。矢印が入射する外光を示す。透明電極層20がインジウム亜鉛酸化物層であり、対向する2つの面200,202を有している。第1の態様では、外光入射側の面200(第1の面)の屈折率は、面202(第2の面)の屈折率より低い。即ち、外光入射側の面200の屈折率が小さくなるように、透明電極層20の屈折率が膜厚方向に変化している。
尚、中間層40が、屈折率が異なるインジウム亜鉛酸化物層でもよい。中間層40の2つの面400,402の内、面400が外光入射側の面となる。
FIG. 1 shows a tandem solar cell that is an embodiment of the photoelectric conversion element of the present invention. In this solar cell 1, a transparent electrode layer 20, a light absorption layer 30, an intermediate layer 40, a light absorption layer 32, and a back electrode layer 50 are provided on a substrate 10. Further, collector electrodes 60 and 62 are provided on the transparent electrode layer 20 and the back electrode layer 50, respectively. Arrows indicate the incident external light. The transparent electrode layer 20 is an indium zinc oxide layer and has two opposing surfaces 200 and 202. In the first aspect, the refractive index of the surface 200 (first surface) on the outside light incident side is lower than the refractive index of the surface 202 (second surface). That is, the refractive index of the transparent electrode layer 20 changes in the film thickness direction so that the refractive index of the surface 200 on the outside light incident side becomes small.
The intermediate layer 40 may be an indium zinc oxide layer having a different refractive index. Of the two surfaces 400 and 402 of the intermediate layer 40, the surface 400 is a surface on the outside light incident side.

図2に、本発明の光電変換素子の他の実施形態であるタンデム型太陽電池を示す。この太陽電池3は、図1の太陽電池1において、基板10上の層構成を、透明電極層20から背面電極層50まで逆にしたものである。矢印で示す外光入射方向も逆である。面402又は面202が外光入射側の面となる。   FIG. 2 shows a tandem solar cell which is another embodiment of the photoelectric conversion element of the present invention. This solar cell 3 is obtained by reversing the layer configuration on the substrate 10 from the transparent electrode layer 20 to the back electrode layer 50 in the solar cell 1 of FIG. The direction of incident external light indicated by the arrows is also opposite. The surface 402 or the surface 202 is a surface on the outside light incident side.

本発明の第2の態様の光電変換素子は、対向する第1の面と第2の面を有するインジウム亜鉛酸化物層と、インジウム亜鉛酸化物層の第1の面と接する隣接層を有し、第1の面側のインジウム亜鉛酸化物層と隣接層の仕事関数の差が小さくなるように、第2の面から第1の面へ、インジウム亜鉛酸化物層の仕事関数が変化している。具体的には、第1の面と前記隣接層の仕事関数の差が、第2の面と前記隣接層の仕事関数の差より小さい。
ここで、「面の仕事関数」とはその面を形成する材料の仕事関数である。また、その面側領域の材料の仕事関数でもよく、例えば、界面から10nmまでの領域又は界面から10nmまでの領域の材料の平均の仕事関数である。
The photoelectric conversion element according to the second aspect of the present invention includes an indium zinc oxide layer having a first surface and a second surface facing each other, and an adjacent layer in contact with the first surface of the indium zinc oxide layer. The work function of the indium zinc oxide layer changes from the second surface to the first surface so that the difference in work function between the indium zinc oxide layer on the first surface side and the adjacent layer is reduced. . Specifically, the difference in work function between the first surface and the adjacent layer is smaller than the difference in work function between the second surface and the adjacent layer.
Here, the “surface work function” is the work function of the material forming the surface. Further, it may be the work function of the material in the surface side region, for example, the average work function of the material in the region from the interface to 10 nm or the region from the interface to 10 nm.

仕事関数は、第1の面から第2の面の間で、断続的に変化してもよいし、連続して変化してもよい。例えば、約4.0〜5.5eV、4.5〜5.1eVと変化する。   The work function may change intermittently or continuously from the first surface to the second surface. For example, it changes with about 4.0-5.5 eV and 4.5-5.1 eV.

好ましくは、第1の面と第2の面の仕事関数の差は0.2eV以上である。好ましくは、第1の面と隣接層の仕事関数の差は0.2eV以下である。
この光電変換素子は、第1の面と隣接層の仕事関数の差が小さいので、半導体層で発生した電子又はホール移動の際のエネルギー障壁が低く、変換効率が高まる。
Preferably, the difference in work function between the first surface and the second surface is 0.2 eV or more. Preferably, the work function difference between the first surface and the adjacent layer is 0.2 eV or less.
Since this photoelectric conversion element has a small work function difference between the first surface and the adjacent layer, the energy barrier at the time of movement of electrons or holes generated in the semiconductor layer is low, and conversion efficiency is increased.

図2に示す光電変換素子において、第2の態様では、面202が第1の面であっても、面200が第1の面であってもよい。面202が第1の面のとき、集電極60が隣接層になるため、面202と集電極60の仕事関数の差が、面200と集電極60の仕事関数の差より小さい。即ち、面202と集電極60の仕事関数の差が小さくなるように、透明電極20の仕事関数が膜厚方向に変化する。
図1に示す光電変換素子において、面200が第1の面のとき、集電極60が隣接層になり、面200と集電極60の仕事関数の差が、面202と集電極60の仕事関数の差より小さい。
尚、第1の態様と同様に、中間層40が、仕事関数が異なるインジウム亜鉛酸化物層でもよい。
In the photoelectric conversion element illustrated in FIG. 2, in the second aspect, the surface 202 may be the first surface or the surface 200 may be the first surface. When the surface 202 is the first surface, the collector electrode 60 is an adjacent layer, so that the work function difference between the surface 202 and the collector electrode 60 is smaller than the work function difference between the surface 200 and the collector electrode 60. That is, the work function of the transparent electrode 20 changes in the film thickness direction so that the difference between the work functions of the surface 202 and the collector electrode 60 becomes small.
In the photoelectric conversion element shown in FIG. 1, when the surface 200 is the first surface, the collector electrode 60 is an adjacent layer, and the work function difference between the surface 200 and the collector electrode 60 is the work function of the surface 202 and the collector electrode 60. Less than the difference.
As in the first embodiment, the intermediate layer 40 may be an indium zinc oxide layer having a different work function.

インジウム亜鉛酸化物層は、透明電極又はタンデム構造の中間電極として使用できる。本発明の光電変換素子は単結晶又は多結晶Si基板を含むことができ、太陽電池として好適に使用できる。   The indium zinc oxide layer can be used as a transparent electrode or an intermediate electrode having a tandem structure. The photoelectric conversion element of the present invention can include a single crystal or polycrystalline Si substrate, and can be suitably used as a solar cell.

太陽電池のセル構造は一対の電極間に1以上の光吸収層を有する構造であれば特に限定されない。好ましくは2以上の光吸収層を有する。素子構成の例を以下に示す。屈折率又は仕事関数が異なる少なくとも1つのインジウム亜鉛酸化物層を有する。
(1)裏面光入射型素子構成
[a−Si/a−Si系]
・外光入射側→硝子/インジウム亜鉛酸化物層/a−Si(p,i,n)/中間層/a−SiGe(p,i,n)/Ag
・外光入射側→硝子/インジウム亜鉛酸化物層/a−Si(p,i,n)/中間層/a−SiGe(p,i,n)/インジウム亜鉛酸化物層/Ag
・外光入射側→硝子/インジウム亜鉛酸化物層/a−Si(p,i,n)/インジウム亜鉛酸化物層/a−SiGe(p,i,n)/インジウム亜鉛酸化物層/Ag
The cell structure of the solar battery is not particularly limited as long as it has one or more light absorption layers between a pair of electrodes. Preferably, it has two or more light absorption layers. An example of the element configuration is shown below. It has at least one indium zinc oxide layer having a different refractive index or work function.
(1) Backside light incident type element configuration [a-Si / a-Si system]
External light incident side → glass / indium zinc oxide layer / a-Si (p, i, n) / intermediate layer / a-SiGe (p, i, n) / Ag
External light incident side → glass / indium zinc oxide layer / a-Si (p, i, n) / intermediate layer / a-SiGe (p, i, n) / indium zinc oxide layer / Ag
External light incident side → glass / indium zinc oxide layer / a-Si (p, i, n) / indium zinc oxide layer / a-SiGe (p, i, n) / indium zinc oxide layer / Ag

[a−Si/μc−Si系]
・外光入射側→硝子/インジウム亜鉛酸化物層/a−Si(p,i,n)/中間層/μC−Si(p,i,n)/Ag
・外光入射側→硝子/インジウム亜鉛酸化物層/a−Si(p,i,n)/中間層/μC−Si(p,i,n)/インジウム亜鉛酸化物層/Ag
・外光入射側→硝子/インジウム亜鉛酸化物層/a−Si(p,i,n)/インジウム亜鉛酸化物層/μC−Si(p,i,n)/インジウム亜鉛酸化物層/Ag
[A-Si / μc-Si system]
External light incident side → glass / indium zinc oxide layer / a-Si (p, i, n) / intermediate layer / μC-Si (p, i, n) / Ag
External light incident side → glass / indium zinc oxide layer / a-Si (p, i, n) / intermediate layer / μC-Si (p, i, n) / indium zinc oxide layer / Ag
External light incident side → glass / indium zinc oxide layer / a-Si (p, i, n) / indium zinc oxide layer / μC-Si (p, i, n) / indium zinc oxide layer / Ag

(2)表面光入射型素子構成
[a−Si/a−Si系]
・硝子/Mo/a−SiGe(p,i,n)/中間層/a−Si(p,i,n)/インジウム亜鉛酸化物層←外光入射側
・硝子/Mo/インジウム亜鉛酸化物層/a−SiGe(p,i,n)/中間層/a−Si(p,i,n)/インジウム亜鉛酸化物層←外光入射側
・硝子/Mo/インジウム亜鉛酸化物層/a−SiGe(p,i,n)/インジウム亜鉛酸化物層/a−Si(p,i,n)/インジウム亜鉛酸化物層←外光入射側
(2) Surface light incident type element configuration [a-Si / a-Si system]
Glass / Mo / a-SiGe (p, i, n) / intermediate layer / a-Si (p, i, n) / indium zinc oxide layer ← outside light incident side Glass / Mo / indium zinc oxide layer / A-SiGe (p, i, n) / intermediate layer / a-Si (p, i, n) / indium zinc oxide layer ← outside light incident side Glass / Mo / indium zinc oxide layer / a-SiGe (P, i, n) / indium zinc oxide layer / a-Si (p, i, n) / indium zinc oxide layer <-external light incident side

[a−Si/μc−Si系]
・硝子/Mo/μC−Si(p,i,n)/中間層/a−Si(p,i,n)/インジウム亜鉛酸化物層←外光入射側
・硝子/Mo/インジウム亜鉛酸化物層/μC−Si(p,i,n)/中間層/a−Si(p,i,n)/インジウム亜鉛酸化物層←外光入射側
・硝子/Mo/インジウム亜鉛酸化物層/μC−Si(p,i,n)/インジウム亜鉛酸化物層/a−Si(p,i,n)/インジウム亜鉛酸化物層←外光入射側
[A-Si / μc-Si system]
Glass / Mo / μC-Si (p, i, n) / intermediate layer / a-Si (p, i, n) / indium zinc oxide layer ← outside light incident side Glass / Mo / indium zinc oxide layer / ΜC-Si (p, i, n) / intermediate layer / a-Si (p, i, n) / indium zinc oxide layer ← external light incident side Glass / Mo / indium zinc oxide layer / μC-Si (P, i, n) / indium zinc oxide layer / a-Si (p, i, n) / indium zinc oxide layer <-external light incident side

(3)ハイブリット結晶Si系
・インジウム亜鉛酸化物層/a−Si(p,i)/C−Si(n)/a−Si(i,n+)/インジウム亜鉛酸化物層
・インジウム亜鉛酸化物層/a−Si(p+,i)/C−Si(p)/a−Si(i,n)/インジウム亜鉛酸化物層
(3) Hybrid crystal Si system Indium zinc oxide layer / a-Si (p, i) / C-Si (n) / a-Si (i, n +) / Indium zinc oxide layerIndium zinc oxide layer / A-Si (p +, i) / C-Si (p) / a-Si (i, n) / indium zinc oxide layer

上記の屈折率又は仕事関数が異なるインジウム亜鉛酸化物層は、製膜温度を室温から昇温することによって、又は製膜中に徐々に酸素導入量を増やし酸素分圧を上げていくことによって、形成できる。   The indium zinc oxide layer having a different refractive index or work function is obtained by increasing the film formation temperature from room temperature or by gradually increasing the oxygen introduction amount during film formation and increasing the oxygen partial pressure. Can be formed.

例えば、インジウム亜鉛酸化物からなるターゲットを用いてスパッタリングする。ターゲットとして、好ましくは、In:ZnO=80〜95:5〜20wt%の組成のものを使用できる。 For example, sputtering is performed using a target made of indium zinc oxide. A target having a composition of In 2 O 3 : ZnO = 80 to 95: 5 to 20 wt% can be preferably used.

温度を昇温して製膜するときの条件を以下に示すが、これらに限定されること無く適宜変更することができる。
・全圧 :0.1〜1.0Pa
・酸素分圧:0.001〜0.2Pa
・製膜温度:室温(20℃)〜200℃
・膜厚 :100〜300nm(太陽電池用膜厚)
・製膜速度:2nm〜10nm/sec(膜厚に合せて設定)
・昇温速度:1.2〜18℃/min(製膜時間に合せて設定)
The conditions for forming a film by raising the temperature are shown below, but are not limited thereto and can be changed as appropriate.
・ Total pressure: 0.1-1.0 Pa
・ Oxygen partial pressure: 0.001 to 0.2 Pa
Film forming temperature: room temperature (20 ° C.) to 200 ° C.
-Film thickness: 100-300 nm (film thickness for solar cells)
・ Film forming speed: 2 nm to 10 nm / sec (set according to film thickness)
・ Temperature increase rate: 1.2 to 18 ° C./min (set according to film forming time)

酸素濃度を変えて製膜するときの条件を以下に示すが、これらに限定されること無く適宜変更することができる。
・全圧 :0.1〜1.0Pa
・酸素分圧:0.001〜0.2Pa
・製膜温度:室温(20℃)〜200℃
・膜厚 :100〜300nm(太陽電池用膜厚)
・製膜速度:2nm〜10nm/sec(膜厚に合せて設定)
・酸素導入:0.033〜2%/sec(製膜時間に合せて設定)
The conditions for film formation by changing the oxygen concentration are shown below, but are not limited to these and can be changed as appropriate.
・ Total pressure: 0.1-1.0 Pa
・ Oxygen partial pressure: 0.001 to 0.2 Pa
Film forming temperature: room temperature (20 ° C.) to 200 ° C.
-Film thickness: 100-300 nm (film thickness for solar cells)
・ Film forming speed: 2 nm to 10 nm / sec (set according to film thickness)
・ Oxygen introduction: 0.033 to 2% / sec (set according to the film formation time)

本発明の光電変換素子は、プロセスアップを招く積層構成ではなく、単層構成で、インジウム亜鉛酸化物層の外光入射側面の屈折率を低くできる。外光入射側面の屈折率を低くするために、光学膜厚設計の制約がない。
また、本発明の光電変換素子は、プロセスアップを招く積層構成ではなく、単層構成で、インジウム亜鉛酸化物層と隣接層の仕事関数の差を小さくできる。インジウム亜鉛酸化物層の膜厚増加を伴わないので、透過率の低下がない。
The photoelectric conversion element of the present invention can reduce the refractive index of the side surface of the indium zinc oxide layer from which the external light is incident, instead of a laminated structure that causes an increase in the process. There is no restriction on the optical film thickness design in order to reduce the refractive index of the external light incident side surface.
In addition, the photoelectric conversion element of the present invention can reduce the work function difference between the indium zinc oxide layer and the adjacent layer with a single-layer structure, not with a stacked structure that causes an increase in process. Since the thickness of the indium zinc oxide layer is not increased, there is no decrease in transmittance.

[屈折率及び仕事関数の温度依存性]
<試験例1>
In中にZnOを10wt%含むターゲットを用い、マグネトロンスパッタ装置を用いて、ガラス上に、300nmの膜厚のインジウム亜鉛酸化物膜を、製膜速度10nm、基板温度室温、酸素0%、製膜圧力0.5Paの条件で製膜した。
得られたインジウム亜鉛酸化物膜の屈折率を、分光エリプソメトリー測定装置(有限会社テクノ・シナジー社製)により測定したところ、屈折率は2.1(550nm)であった。
また、得られたインジウム亜鉛酸化物膜の仕事関数を、大気中光電子分光装置(理研計器株式会社製:AC−2)により測定したところ、仕事関数は4.5eVであった。
[Temperature dependence of refractive index and work function]
<Test Example 1>
Using a target containing 10 wt% ZnO in In 2 O 3 and using a magnetron sputtering apparatus, an indium zinc oxide film having a thickness of 300 nm is formed on a glass at a deposition rate of 10 nm, a substrate temperature of room temperature, and oxygen of 0%. The film was formed under the conditions of a film forming pressure of 0.5 Pa.
When the refractive index of the obtained indium zinc oxide film was measured with a spectroscopic ellipsometry measuring apparatus (manufactured by Techno Synergy Co., Ltd.), the refractive index was 2.1 (550 nm).
The work function of the obtained indium zinc oxide film was measured with an atmospheric photoelectron spectrometer (manufactured by Riken Keiki Co., Ltd .: AC-2), and the work function was 4.5 eV.

<試験例2>
基板温度を50℃とした他は試験例1と同じようにしてインジウム亜鉛酸化物膜を製膜し、屈折率と仕事関数を測定した。屈折率は1.9(550nm)、仕事関数は4.5eVであった。
<Test Example 2>
An indium zinc oxide film was formed in the same manner as in Test Example 1 except that the substrate temperature was 50 ° C., and the refractive index and work function were measured. The refractive index was 1.9 (550 nm), and the work function was 4.5 eV.

<試験例3>
基板温度を100℃とした他は試験例1と同じようにしてインジウム亜鉛酸化物膜を製膜し、屈折率と仕事関数を測定した。屈折率は1.9(550nm)、仕事関数は4.7eVであった。
<Test Example 3>
An indium zinc oxide film was formed in the same manner as in Test Example 1 except that the substrate temperature was 100 ° C., and the refractive index and work function were measured. The refractive index was 1.9 (550 nm), and the work function was 4.7 eV.

<試験例4>
基板温度を200℃とした他は試験例1と同じようにしてインジウム亜鉛酸化物膜を製膜し、屈折率と仕事関数を測定した。屈折率は1.7(550nm)、仕事関数は4.9eVであった。
<Test Example 4>
An indium zinc oxide film was formed in the same manner as in Test Example 1 except that the substrate temperature was 200 ° C., and the refractive index and work function were measured. The refractive index was 1.7 (550 nm), and the work function was 4.9 eV.

[屈折率及び仕事関数の酸素分圧依存性]
<試験例5>
酸素濃度を1%(酸素分圧:0.005Pa)とした他は試験例1と同じようにしてインジウム亜鉛酸化物膜を製膜し、屈折率と仕事関数を測定した。屈折率は2.1(550nm)、仕事関数は4.7eVであった。
[Dependence of refractive index and work function on oxygen partial pressure]
<Test Example 5>
An indium zinc oxide film was formed in the same manner as in Test Example 1 except that the oxygen concentration was 1% (oxygen partial pressure: 0.005 Pa), and the refractive index and work function were measured. The refractive index was 2.1 (550 nm), and the work function was 4.7 eV.

<試験例6>
酸素濃度を5%(酸素分圧0.025Pa)とした他は試験例1と同じようにしてインジウム亜鉛酸化物膜を製膜し、屈折率と仕事関数を測定した。屈折率は1.9(550nm)、仕事関数は4.8eVであった。
<Test Example 6>
An indium zinc oxide film was formed in the same manner as in Test Example 1 except that the oxygen concentration was 5% (oxygen partial pressure 0.025 Pa), and the refractive index and work function were measured. The refractive index was 1.9 (550 nm), and the work function was 4.8 eV.

<試験例7>
酸素濃度を20%(酸素分圧0.1Pa)とした他は試験例1と同じようにしてインジウム亜鉛酸化物膜を製膜し、屈折率と仕事関数を測定した。屈折率は1.7(550nm)、仕事関数は5.1eVであった。
<Test Example 7>
An indium zinc oxide film was formed in the same manner as in Test Example 1 except that the oxygen concentration was 20% (oxygen partial pressure 0.1 Pa), and the refractive index and work function were measured. The refractive index was 1.7 (550 nm), and the work function was 5.1 eV.

[製膜温度を変えた太陽電池素子の作製]
<実施例1>
In中にZnOを10wt%含むターゲットを用い、基板温度昇温機構の付帯したマグネトロンスパッタ装置を用いて、太陽電池素子基板「硝子/Mo/a−SiGe(p,i,n)/中間層/a−Si(p,i,n)」に、300nmの膜厚のインジウム亜鉛酸化物膜を、製膜速度10nm/sec、酸素0%、製膜圧力0.5Paの条件下で、基板温度を室温(20℃)から昇温速度6℃/secで200℃まで昇温し、製膜した。
太陽電池素子基板上に製膜したインジウム亜鉛酸化物膜の屈折率は、試験例1〜4の結果より、屈折率が2.1(第2の面)から1.7(外光入射側第1の面)まで傾斜していることが想定される。
また、インジウム亜鉛酸化物膜の仕事関数は、試験例1〜4の結果より、仕事関数が4.5から4.9まで傾斜していることが想定される。
インジウム亜鉛酸化物膜上に、取り出し電極をAuペーストで印刷し、素子性能を評価したところ、変換効率は18%であった。
なお、一般的に、a−Si層の仕事関数は4.0eV、Auの仕事関数は5.1eVであることが知られている。
[Preparation of solar cell elements with different film forming temperatures]
<Example 1>
Using a target containing 10 wt% ZnO in In 2 O 3 and using a magnetron sputtering apparatus with a substrate temperature raising mechanism, a solar cell element substrate “glass / Mo / a-SiGe (p, i, n) / In the intermediate layer / a-Si (p, i, n) ”, an indium zinc oxide film having a film thickness of 300 nm is formed under the conditions of a film forming speed of 10 nm / sec, oxygen of 0%, and a film forming pressure of 0.5 Pa. The substrate temperature was raised from room temperature (20 ° C.) to 200 ° C. at a rate of temperature increase of 6 ° C./sec to form a film.
From the results of Test Examples 1 to 4, the refractive index of the indium zinc oxide film formed on the solar cell element substrate is from 2.1 (second surface) to 1.7 (external light incident side first). 1 surface).
Further, the work function of the indium zinc oxide film is assumed to be inclined from 4.5 to 4.9 from the results of Test Examples 1 to 4.
When the extraction electrode was printed with an Au paste on the indium zinc oxide film and the device performance was evaluated, the conversion efficiency was 18%.
In general, it is known that the work function of the a-Si layer is 4.0 eV, and the work function of Au is 5.1 eV.

変換効率は以下のようにして求めた。
作製した太陽電池をAM1.5条件下(入射強度(Pin)100mW/cm)でI−V特性を測定した。得られた開放端電圧(Voc)、短絡電流密度(Jsc)、曲線因子(FF値)から、太陽電池の光電変換効率(η)を下記式によって導出した。

Figure 2011014635
Conversion efficiency was determined as follows.
The IV characteristics of the produced solar cell were measured under AM1.5 conditions (incident intensity (Pin) 100 mW / cm 2 ). From the obtained open-circuit voltage (Voc), short-circuit current density (Jsc), and fill factor (FF value), the photoelectric conversion efficiency (η) of the solar cell was derived by the following equation.
Figure 2011014635

<実施例2>
基板温度を室温(20℃)から昇温速度1℃/secで50℃まで昇温して製膜した他は実施例1と同様にしてインジウム亜鉛酸化物膜を製膜し、太陽電池素子を作製し、評価した。変換効率は15%であった。
試験例1,2の結果より、インジウム亜鉛酸化物膜の屈折率は、2.1(第2の面)から1.9(外光入射側第1の面)まで傾斜し、仕事関数は4.5のままであることが想定される。
<Example 2>
An indium zinc oxide film was formed in the same manner as in Example 1 except that the substrate temperature was increased from room temperature (20 ° C.) to 50 ° C. at a temperature increase rate of 1 ° C./sec to form a solar cell element. Prepared and evaluated. The conversion efficiency was 15%.
From the results of Test Examples 1 and 2, the refractive index of the indium zinc oxide film is tilted from 2.1 (second surface) to 1.9 (first surface on the outside light incident side), and the work function is 4 .5 is assumed to remain.

<比較例1>
基板温度を室温のままで製膜した他は実施例1と同様にしてインジウム亜鉛酸化物膜を製膜し、太陽電池素子を作製し、評価した。変換効率は12%であった。
試験例1の結果より、インジウム亜鉛酸化物膜の屈折率は2.1のまま、仕事関数は4.5のままであることが想定される。
<Comparative Example 1>
An indium zinc oxide film was formed in the same manner as in Example 1 except that the substrate temperature was kept at room temperature, and a solar cell element was produced and evaluated. The conversion efficiency was 12%.
From the result of Test Example 1, it is assumed that the refractive index of the indium zinc oxide film remains 2.1 and the work function remains 4.5.

[酸素濃度を変えた太陽電池素子の作製]
<実施例3>
In中にZnOを10wt%含むターゲットを用い、バルブ自動調整機構の付帯したマグネトロンスパッタ装置を用いて、太陽電池素子基板「硝子/Mo/a−SiGe(p,i,n)/中間層/a−Si(p,i,n)」に、300nmの膜厚のインジウム亜鉛酸化物膜を、製膜温度室温、製膜速度10nm、製膜圧力0.5Paの条件下で、Ar100%から、酸素をガス流量100sccmに対し、0.033sccm,0.067sccm,0.1sccmと1秒毎に0.033sccmづつ1sccmまで増加させながら、製膜した。
太陽電池素子基板上に製膜したインジウム亜鉛酸化物膜の屈折率は、試験例1,5の結果より、屈折率が2.1のままであることが想定される。
また、インジウム亜鉛酸化物膜の仕事関数は、試験例1,5の結果より、仕事関数が4.5から4.7まで傾斜していることが想定される。
インジウム亜鉛酸化物膜上に、取り出し電極をAuペーストで印刷し、素子性能を評価したところ、変換効率は14%であった。
なお、一般的に、a−Si層の仕事関数は4.0eV、Auの仕事関数は5.1eVであることが知られている。
[Production of solar cell elements with different oxygen concentrations]
<Example 3>
Using a target containing 10 wt% ZnO in In 2 O 3 and using a magnetron sputtering apparatus with an automatic valve adjustment mechanism, a solar cell element substrate “glass / Mo / a-SiGe (p, i, n) / intermediate” Layer / a-Si (p, i, n) "with an indium zinc oxide film having a thickness of 300 nm under conditions of a film forming temperature of room temperature, a film forming speed of 10 nm, and a film forming pressure of 0.5 Pa. From this, the film was formed while increasing oxygen to 0.03 sccm, 0.067 sccm, 0.1 sccm, and 0.033 sccm every second to 1 sccm with respect to a gas flow rate of 100 sccm.
From the results of Test Examples 1 and 5, it is assumed that the refractive index of the indium zinc oxide film formed on the solar cell element substrate remains 2.1.
Further, the work function of the indium zinc oxide film is assumed to be inclined from 4.5 to 4.7 from the results of Test Examples 1 and 5.
When the extraction electrode was printed with an Au paste on the indium zinc oxide film and the device performance was evaluated, the conversion efficiency was 14%.
In general, it is known that the work function of the a-Si layer is 4.0 eV, and the work function of Au is 5.1 eV.

<実施例4>
Ar100%から、酸素をガス流量100sccmに対し、0.67sccm,1.34sccm,2sccmと1秒毎に0.67sccmづつ20sccmまで増加させながら製膜した他は実施例3と同様にしてインジウム亜鉛酸化物膜を製膜し、太陽電池素子を作製し、評価した。変換効率は18%であった。
試験例1,5〜7の結果より、インジウム亜鉛酸化物膜の屈折率は2.1(第2の面)から1.7(外光入射側第1の面)まで傾斜し、仕事関数が4.5から5.1まで傾斜していることが想定される。
<Example 4>
Indium zinc oxide was formed in the same manner as in Example 3 except that oxygen was formed from 0.6% to 20 sccm at 0.67 sccm, 1.34 sccm, and 2 sccm per second with respect to a gas flow rate of 100 sccm from Ar 100%. A physical film was formed to produce and evaluate a solar cell element. The conversion efficiency was 18%.
From the results of Test Examples 1 to 5, the refractive index of the indium zinc oxide film is tilted from 2.1 (second surface) to 1.7 (first surface on the outside light incident side), and the work function is It is assumed that it is inclined from 4.5 to 5.1.

<比較例2>
酸素濃度を20%(酸素分圧0.1Pa)のままで製膜した他は実施例3と同様にしてインジウム亜鉛酸化物膜を製膜し、太陽電池素子を作製し、評価した。変換効率は12%であった。
試験例7の結果より、インジウム亜鉛酸化物膜の屈折率は1.7のまま、仕事関数は5.1のままであることが想定される。
<Comparative Example 2>
An indium zinc oxide film was formed in the same manner as in Example 3 except that the film was formed with the oxygen concentration kept at 20% (oxygen partial pressure 0.1 Pa), and a solar cell element was fabricated and evaluated. The conversion efficiency was 12%.
From the result of Test Example 7, it is assumed that the refractive index of the indium zinc oxide film remains 1.7 and the work function remains 5.1.

<実施例5>
太陽電池素子基板「硝子/Mo/a−SiGe(p,i,n)/インジウム亜鉛酸化物膜/a−Si(p,i,n)」を用いた他は実施例1と同様にしてインジウム亜鉛酸化物膜を製膜し、太陽電池素子を作製し、評価した。変換効率は20%であった。
試験例1〜4の結果より、インジウム亜鉛酸化物膜の屈折率は、2.1(第2の面)から1.7(外光入射側第1の面)まで傾斜し、仕事関数は4.5から4.9まで傾斜していることが想定される。
<Example 5>
Indium as in Example 1 except that the solar cell element substrate “glass / Mo / a-SiGe (p, i, n) / indium zinc oxide film / a-Si (p, i, n)” was used. A zinc oxide film was formed to produce a solar cell element and evaluated. The conversion efficiency was 20%.
From the results of Test Examples 1 to 4, the refractive index of the indium zinc oxide film is tilted from 2.1 (second surface) to 1.7 (first surface on the outside light incident side), and the work function is 4 It is assumed that it is inclined from .5 to 4.9.

<実施例6>
太陽電池素子基板「硝子/Mo/a−SiGe(p,i,n)/インジウム亜鉛酸化物膜/a−Si(p,i,n)」を用いた他は実施例4と同様にしてインジウム亜鉛酸化物膜を製膜し、太陽電池素子を作製し、評価した。変換効率は20%であった。
試験例1,5〜7の結果より、インジウム亜鉛酸化物膜の屈折率は、2.1(第2の面)から1.7(外光入射側第1の面)まで傾斜し、仕事関数は4.5から5.1まで傾斜していることが想定される。
<Example 6>
Indium as in Example 4 except that the solar cell element substrate “glass / Mo / a-SiGe (p, i, n) / indium zinc oxide film / a-Si (p, i, n)” was used. A zinc oxide film was formed to produce a solar cell element and evaluated. The conversion efficiency was 20%.
From the results of Test Examples 1 and 5 to 7, the refractive index of the indium zinc oxide film is tilted from 2.1 (second surface) to 1.7 (first surface on the outside light incident side), and the work function Is assumed to be inclined from 4.5 to 5.1.

<実施例7>
太陽電池素子基板「硝子/Mo/μc−Si(p,i,n)/中間層/a−Si(p,i,n)」を用いた他は実施例1と同様にしてインジウム亜鉛酸化物膜を製膜し、太陽電池素子を作製し、評価した。変換効率は18%であった。
試験例1〜4の結果より、インジウム亜鉛酸化物膜の屈折率は、2.1(第2の面)から1.7(外光入射側第1の面)まで傾斜し、仕事関数は4.5から4.9まで傾斜していることが想定される。
<Example 7>
Indium zinc oxide in the same manner as in Example 1 except that the solar cell element substrate “glass / Mo / μc-Si (p, i, n) / intermediate layer / a-Si (p, i, n)” was used. A film was formed to produce and evaluate a solar cell element. The conversion efficiency was 18%.
From the results of Test Examples 1 to 4, the refractive index of the indium zinc oxide film is tilted from 2.1 (second surface) to 1.7 (first surface on the outside light incident side), and the work function is 4 It is assumed that it is inclined from .5 to 4.9.

<実施例8>
太陽電池素子基板「硝子/Mo/μc−Si(p,i,n)/中間層/a−Si(p,i,n)」を用いた他は実施例4と同様にしてインジウム亜鉛酸化物膜を製膜し、太陽電池素子を作製し、評価した。変換効率は18%であった。
試験例1,5〜7の結果より、インジウム亜鉛酸化物膜の屈折率は、2.1(第2の面)から1.7(外光入射側第1の面)まで傾斜し、仕事関数は4.5から5.1まで傾斜していることが想定される。
<Example 8>
Indium zinc oxide in the same manner as in Example 4 except that the solar cell element substrate “glass / Mo / μc-Si (p, i, n) / intermediate layer / a-Si (p, i, n)” was used. A film was formed to produce and evaluate a solar cell element. The conversion efficiency was 18%.
From the results of Test Examples 1 and 5 to 7, the refractive index of the indium zinc oxide film is tilted from 2.1 (second surface) to 1.7 (first surface on the outside light incident side), and the work function Is assumed to be inclined from 4.5 to 5.1.

上記の屈折率又は仕事関数が膜厚方向に異なるインジウム亜鉛酸化物層を有する素子は、インジウム亜鉛酸化物層を電極又はタンデムの中間層として用いる、太陽電池(a−Si、a−SiとμC−Siのタンデム、a−SiとC−Siの積層、結晶シリコン系、非シリコン系、有機系)、有機EL素子等として使用できる。   The element having an indium zinc oxide layer having different refractive index or work function in the film thickness direction uses a solar cell (a-Si, a-Si and μC) using the indium zinc oxide layer as an electrode or an tandem intermediate layer. -Si tandem, a-Si and C-Si stack, crystalline silicon, non-silicon, organic), organic EL element, and the like.

1,3 太陽電池
10 基板
20 透明電極層
30,32 光吸収層
40 中間層
50 背面電極層
60,62 集電極
200,202,400,402 面
DESCRIPTION OF SYMBOLS 1,3 Solar cell 10 Board | substrate 20 Transparent electrode layer 30,32 Light absorption layer 40 Intermediate | middle layer 50 Back electrode layer 60,62 Collector electrode 200,202,400,402 surface

Claims (14)

外光入射側の第1の面と、前記第1の面と対向する第2の面を有するインジウム亜鉛酸化物層を有し、
前記第2の面から前記第1の面へ、インジウム亜鉛酸化物層の屈折率が小さくなるように変化している光電変換素子。
An indium zinc oxide layer having a first surface on the outside light incident side and a second surface facing the first surface;
The photoelectric conversion element which is changing so that the refractive index of an indium zinc oxide layer may become small from the said 2nd surface to the said 1st surface.
前記第1の面から前記第2の面の間で、屈折率が連続して変化する請求項1記載の光電変換素子。   The photoelectric conversion element according to claim 1, wherein the refractive index continuously changes between the first surface and the second surface. 前記第1の面と前記第2の面の屈折率の差が0.2以上である請求項1又は2記載の光電変換素子。   The photoelectric conversion element according to claim 1 or 2, wherein a difference in refractive index between the first surface and the second surface is 0.2 or more. 対向する第1の面と第2の面を有するインジウム亜鉛酸化物層と、前記インジウム亜鉛酸化物層の第1の面と接する隣接層を有し、
インジウム亜鉛酸化物層と前記隣接層の仕事関数の差が小さくなるように、前記第2の面から前記第1の面へ、インジウム亜鉛酸化物層の仕事関数が変化している光電変換素子。
An indium zinc oxide layer having opposing first and second surfaces; and an adjacent layer in contact with the first surface of the indium zinc oxide layer;
A photoelectric conversion element in which a work function of an indium zinc oxide layer changes from the second surface to the first surface so that a difference in work function between the indium zinc oxide layer and the adjacent layer is reduced.
前記第1の面から前記第2の面の間で、仕事関数が連続して変化する請求項4記載の光電変換素子。   The photoelectric conversion element according to claim 4, wherein a work function continuously changes between the first surface and the second surface. 前記第1の面が外光入射側にある請求項4又は5記載の光電変換素子。   The photoelectric conversion element according to claim 4, wherein the first surface is on an external light incident side. 前記第1の面と前記第2の面の仕事関数の差が0.2eV以上である請求項4〜6のいずれか記載の光電変換素子。   The photoelectric conversion element according to claim 4, wherein a work function difference between the first surface and the second surface is 0.2 eV or more. 少なくとも1層のa−Si層を含む請求項1〜7のいずれか記載の光電変換素子。   The photoelectric conversion element according to claim 1, comprising at least one a-Si layer. タンデム構造である請求項1〜8のいずれか記載の光電変換素子。   It is a tandem structure, The photoelectric conversion element in any one of Claims 1-8. 単結晶又は多結晶Si基板を含む請求項1〜9のいずれか記載の光電変換素子。   The photoelectric conversion element according to claim 1, comprising a single crystal or polycrystalline Si substrate. 製膜温度を室温から昇温することによって、屈折率が傾斜したインジウム亜鉛酸化物膜を形成する、請求項1〜3のいずれか記載の光電変換素子の製造方法。   The manufacturing method of the photoelectric conversion element in any one of Claims 1-3 which forms the indium zinc oxide film | membrane where the refractive index inclined by raising film-forming temperature from room temperature. 製膜中に徐々に酸素導入量を増やし酸素分圧を上げていくことによって、屈折率が傾斜したインジウム亜鉛酸化物膜を形成する、請求項1〜3のいずれか記載の光電変換素子の製造方法。   The process for producing a photoelectric conversion element according to any one of claims 1 to 3, wherein an indium zinc oxide film having an inclined refractive index is formed by gradually increasing the amount of oxygen introduced during film formation and increasing the oxygen partial pressure. Method. 製膜温度を室温から昇温することによって、仕事関数が傾斜したインジウム亜鉛酸化物膜を形成する、請求項4〜7のいずれか記載の光電変換素子の製造方法。   The manufacturing method of the photoelectric conversion element in any one of Claims 4-7 which forms the indium zinc oxide film | membrane with which the work function inclined by raising film-forming temperature from room temperature. 製膜中に徐々に酸素導入量を増やし酸素分圧を上げていくことによって、仕事関数が傾斜したインジウム亜鉛酸化物膜を形成する、請求項4〜7のいずれか記載の光電変換素子の製造方法。   The process for producing a photoelectric conversion element according to any one of claims 4 to 7, wherein an indium zinc oxide film having an inclined work function is formed by gradually increasing the amount of oxygen introduced during film formation and increasing the oxygen partial pressure. Method.
JP2009155809A 2009-06-30 2009-06-30 Photoelectric conversion element and manufacturing method thereof Expired - Fee Related JP5405923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009155809A JP5405923B2 (en) 2009-06-30 2009-06-30 Photoelectric conversion element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009155809A JP5405923B2 (en) 2009-06-30 2009-06-30 Photoelectric conversion element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011014635A true JP2011014635A (en) 2011-01-20
JP5405923B2 JP5405923B2 (en) 2014-02-05

Family

ID=43593267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009155809A Expired - Fee Related JP5405923B2 (en) 2009-06-30 2009-06-30 Photoelectric conversion element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5405923B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012244065A (en) * 2011-05-23 2012-12-10 Mitsubishi Electric Corp Thin film photoelectric conversion device, manufacturing method thereof, and thin film photoelectric conversion module
WO2023024620A1 (en) * 2021-08-27 2023-03-02 隆基绿能科技股份有限公司 Stacked photovoltaic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08167726A (en) * 1994-12-14 1996-06-25 Fuji Electric Co Ltd Thin film photoelectric conversion element
JPH09135037A (en) * 1995-11-10 1997-05-20 Canon Inc Photovoltaic device
JP2004335207A (en) * 2003-05-02 2004-11-25 Fuji Electric Holdings Co Ltd Organic el element and its manufacturing method
JP2005142087A (en) * 2003-11-07 2005-06-02 Dainippon Printing Co Ltd Electrode board for dye-sensitized solar cell, its manufacturing method and the dye-sensitized solar cell
JP2005174832A (en) * 2003-12-12 2005-06-30 Tadahiro Omi Display element, manufacturing method of the same, and display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08167726A (en) * 1994-12-14 1996-06-25 Fuji Electric Co Ltd Thin film photoelectric conversion element
JPH09135037A (en) * 1995-11-10 1997-05-20 Canon Inc Photovoltaic device
JP2004335207A (en) * 2003-05-02 2004-11-25 Fuji Electric Holdings Co Ltd Organic el element and its manufacturing method
JP2005142087A (en) * 2003-11-07 2005-06-02 Dainippon Printing Co Ltd Electrode board for dye-sensitized solar cell, its manufacturing method and the dye-sensitized solar cell
JP2005174832A (en) * 2003-12-12 2005-06-30 Tadahiro Omi Display element, manufacturing method of the same, and display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012244065A (en) * 2011-05-23 2012-12-10 Mitsubishi Electric Corp Thin film photoelectric conversion device, manufacturing method thereof, and thin film photoelectric conversion module
WO2023024620A1 (en) * 2021-08-27 2023-03-02 隆基绿能科技股份有限公司 Stacked photovoltaic device

Also Published As

Publication number Publication date
JP5405923B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
US7875945B2 (en) Rear electrode structure for use in photovoltaic device such as CIGS/CIS photovoltaic device and method of making same
TWI463682B (en) Heterojunction solar cell having intrinsic amorphous silicon film
CN103107228B (en) Photoelectric conversion device
WO2005011002A1 (en) Silicon based thin film solar cell
US8710357B2 (en) Transparent conductive structure
CN110970562A (en) Perovskite/crystalline silicon laminated solar cell and preparation method thereof
CN104081544B (en) High work function buffer layer for silicon based opto-electronics device
WO2022247570A1 (en) Heterojunction solar cell and preparation method therefor
CN108735828A (en) A kind of hetero-junctions back contact solar cell and preparation method thereof
KR20100025068A (en) MANUFACTURING METHOD OF COMPOUND SOLLAR CELL USING Z n O NANOROD AND THE COMPOUND SOLLAR CELL
JP2016127179A (en) Thin film solar cell and manufacturing method thereof
JP5405923B2 (en) Photoelectric conversion element and manufacturing method thereof
KR101474487B1 (en) Thin film solar cell and Method of fabricating the same
JP2011077454A (en) Crystal silicon system solar cell and method of manufacturing the same
CN102386244B (en) CdTe battery transition layer and preparation method thereof and CdTe battery
CN102856421A (en) Novel three-junction thin-film solar cell and production method thereof
US20110155229A1 (en) Solar cell and method for manufacturing the same
CN208521944U (en) A kind of hetero-junctions back contact solar cell
KR20110077923A (en) Front electrode for a thin film silicone solar cell and a thin film silicone solar cell comprising the same
CN114171632A (en) Heterojunction solar cell and photovoltaic module
JP5542025B2 (en) Photoelectric conversion device
KR100957679B1 (en) Thin film solar cell
JP2010034231A (en) Thin-film solar cell and surface electrode for thin-film solar cell
JP2014168012A (en) Photoelectric conversion apparatus and process of manufacturing the same
JP2010010347A (en) Thin-film solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131031

LAPS Cancellation because of no payment of annual fees