JP2011010482A - Vehicle driving system - Google Patents

Vehicle driving system Download PDF

Info

Publication number
JP2011010482A
JP2011010482A JP2009152351A JP2009152351A JP2011010482A JP 2011010482 A JP2011010482 A JP 2011010482A JP 2009152351 A JP2009152351 A JP 2009152351A JP 2009152351 A JP2009152351 A JP 2009152351A JP 2011010482 A JP2011010482 A JP 2011010482A
Authority
JP
Japan
Prior art keywords
power generation
converter
value
remaining capacity
drive system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009152351A
Other languages
Japanese (ja)
Inventor
Masayuki Kubota
雅之 久保田
Takashi Domoto
貴史 堂元
Shinichi Toda
伸一 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009152351A priority Critical patent/JP2011010482A/en
Publication of JP2011010482A publication Critical patent/JP2011010482A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vehicle driving system which safely uses an energy storage means and preventing deterioration of the energy storage means.SOLUTION: The vehicle driving system includes a power generating means 1, a first converter 2 converting power of the power generating means 1 into DC, the energy storage means 7 to which power converted by the first converter 2 is supplied via a second converter 5, a remaining capacity detection unit 6 calculating a remaining capacity of the energy storage means 7, a third converter 3 converting power output from the first converter 1 and the second converter 5 into AC, a motor 4 using power converted by the third converter 3 and a control means 8 controlling operation of the power generating device 1, the first converter 2, the second converter 5 and the third converter 3. The control means 8 includes a charging means 8A driving the power generating means 1 when the remaining capacity of the energy storage means 7 becomes a first value PS and stopping the power generating means 1 when the remaining capacity of the energy storage means 7 becomes a second value PE.

Description

本発明は車両駆動システムに関し、特に、発電手段と蓄電手段とを備える車両駆動システムに関する。   The present invention relates to a vehicle drive system, and more particularly, to a vehicle drive system including a power generation unit and a power storage unit.

近年、二次電池等の蓄電手段の高電圧、高エネルギー密度の実現が可能となり、携帯型電子機器の電源、さらには電気自動車や鉄道車両などの車両駆動用の電源などとして注目されている。   In recent years, it has become possible to realize high voltage and high energy density of power storage means such as a secondary battery, and has attracted attention as a power source for portable electronic devices, and further as a power source for driving vehicles such as electric vehicles and railway vehicles.

蓄電手段を搭載した鉄道車両としては、例えばエンジン等の発電機と蓄電装置とを備えた車両を駆動する駆動システムが提案されている(特許文献1参照)。特許文献1の駆動システムでは、動力装置と発電装置と二次電池で構成されるハイブリッド鉄道車両において、走行パターンを予測して充放電を行うものが提案されている。   As a railway vehicle equipped with power storage means, for example, a drive system for driving a vehicle including a generator such as an engine and a power storage device has been proposed (see Patent Document 1). In the drive system of Patent Document 1, a hybrid railway vehicle composed of a power device, a power generation device, and a secondary battery has been proposed that performs charging and discharging by predicting a running pattern.

特開2008−67510号公報JP 2008-67510 A

しかし、ハイブリッドの車両走行時の二次電池等の蓄電手段の利用は、モータの負荷や回生エネルギーによって受動的に決定されており、電池の劣化や安全性を考慮した残容量範囲での動作するための運転は行われてなかった。   However, the use of power storage means such as secondary batteries during hybrid vehicle travel is passively determined by the motor load and regenerative energy, and operates within the remaining capacity range taking into account battery deterioration and safety. There was no driving for.

上記の特許文献1に開示されている技術は、二次電池等の蓄電手段の電池特性を考慮した上での利用すべき残容量範囲で動作を行なったり、蓄電手段の内部抵抗を考慮して動作を行なったりするものではなかった。そのため、蓄電手段が適切な残容量範囲で使用されず、過充電および過放電が生じる場合があり、蓄電手段を安全に利用するとともに劣化を防止することが難しかった。   The technique disclosed in the above Patent Document 1 operates in the remaining capacity range to be used in consideration of the battery characteristics of the power storage means such as a secondary battery, or considers the internal resistance of the power storage means. It was not intended to do any action. For this reason, the power storage means may not be used in an appropriate remaining capacity range, and overcharge and overdischarge may occur, making it difficult to use the power storage means safely and prevent deterioration.

本発明は、上記事情に鑑みて成されたものであって、蓄電手段を安全に利用するとともに蓄電手段の劣化を防止する車両駆動システムを提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a vehicle drive system that uses the power storage means safely and prevents deterioration of the power storage means.

本発明の第1態様による車両駆動システムは、発電手段と、前記発電手段の電力を直流に変換する第1変換器と、前記第1変換器によって変換された電力が第2変換器を介して供給される蓄電手段と、前記蓄電手段の残容量を計算する残容量検出部と、第1変換器と第2変換器とから出力された電力を交流に変換する第3変換器と、第3変換器によって変換された電力を利用する電動機と、前記発電装置、前記第1変換器、前記第2変換器、および前記第3変換器の動作を制御する制御手段と、を備え、前記制御手段は、前記蓄電手段の残容量が第1値よりも小さくなった時、前記発電手段を駆動させ第2値になるまで充電させる充電手段を備える車両駆動システムである。   The vehicle drive system according to the first aspect of the present invention includes a power generation means, a first converter that converts electric power of the power generation means into direct current, and electric power converted by the first converter via a second converter. A power storage means to be supplied; a remaining capacity detector for calculating a remaining capacity of the power storage means; a third converter for converting electric power output from the first converter and the second converter into alternating current; An electric motor that uses the electric power converted by the converter; and control means for controlling operations of the power generation device, the first converter, the second converter, and the third converter, and the control means Is a vehicle drive system provided with charging means for driving the power generation means to charge the battery until it reaches a second value when the remaining capacity of the power storage means becomes smaller than the first value.

本発明によれば、蓄電手段を安全に利用するとともに蓄電手段の劣化を防止する車両駆動システムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the vehicle drive system which prevents a deterioration of an electrical storage means while using an electrical storage means safely can be provided.

本発明の第1実施形態にかかる車両駆動システムの一構成例を説明するための図である。It is a figure for demonstrating the example of 1 structure of the vehicle drive system concerning 1st Embodiment of this invention. 図1に示す車両駆動システムにおける発電機の運転方法の一例について説明するための図である。It is a figure for demonstrating an example of the operating method of the generator in the vehicle drive system shown in FIG. 本発明の第1実施形態に係る車両駆動システムの他の構成例を説明するための図である。It is a figure for demonstrating the other structural example of the vehicle drive system which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る車両駆動システムにおける発電機の運転方法の一例について説明するための図である。It is a figure for demonstrating an example of the operating method of the generator in the vehicle drive system which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る車両駆動システムにおける発電機の運転方法の一例について説明するための図である。It is a figure for demonstrating an example of the operating method of the generator in the vehicle drive system which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る車両駆動システムの一構成例を説明するための図である。It is a figure for demonstrating the example of 1 structure of the vehicle drive system which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る車両駆動システムの一構成例を説明するための図である。It is a figure for demonstrating the example of 1 structure of the vehicle drive system which concerns on 5th Embodiment of this invention.

以下、本発明の第1実施形態に係る車両駆動システムについて、図面を参照して説明する。図1に示すように、本実施形態に係る車両駆動システムは、発電機1と、発電機1から出力された交流電力を直流電力に変換するAC/DC変換器2と、AC/DC変換器2によって変換された直流電力を変圧するDC/DC変換器5を介して供給され、DC/DC変換器5から供給された直流電力を蓄電する蓄電手段としての二次電池7と、二次電池7の残容量を計算する残容量検出部6と、AC/DC変換器2とDC/DC変換器5とから出力された直流電力を交流電力に変換するDC/AC変換器3と、DC/AC変換器3によって変換された交流電力を利用して駆動する電動機4と、発電装置1、AC/DC変換器2、DC/DC変換器5、および、DC/AC変換器3、の動作を制御する列車制御部8と、を備えている。   Hereinafter, a vehicle drive system according to a first embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, the vehicle drive system according to the present embodiment includes a generator 1, an AC / DC converter 2 that converts AC power output from the generator 1 into DC power, and an AC / DC converter. A secondary battery 7 that is supplied via a DC / DC converter 5 that transforms the direct-current power converted by 2 and stores the direct-current power supplied from the DC / DC converter 5, and a secondary battery 7, a DC / AC converter 3 for converting DC power output from the AC / DC converter 2 and the DC / DC converter 5 into AC power, The operation of the electric motor 4 driven using the AC power converted by the AC converter 3, the power generator 1, the AC / DC converter 2, the DC / DC converter 5, and the DC / AC converter 3 is performed. And a train control unit 8 to be controlled.

二次電池7は、例えば、リチウムイオン電池やニッケル水素電池の電池セルを複数備えている。AC/DC変換器2は、発電機1で発電された交流電圧を直流電圧に変換する。DC/DC変換器5は、AC/DC変換器2から出力された電圧を変換するとともに、二次電池7から出力される電圧を変換する。   The secondary battery 7 includes, for example, a plurality of battery cells such as lithium ion batteries and nickel metal hydride batteries. The AC / DC converter 2 converts the AC voltage generated by the generator 1 into a DC voltage. The DC / DC converter 5 converts the voltage output from the AC / DC converter 2 and converts the voltage output from the secondary battery 7.

DA/AC変換器3は、AC/DC変換器2とDC/DC変換器5とから出力された電力を交流に変換するとともに、電動機4から供給される回生電力を直流電力に変換してDC/DC変換器5に供給する。   The DA / AC converter 3 converts the power output from the AC / DC converter 2 and the DC / DC converter 5 into alternating current, and also converts the regenerative power supplied from the motor 4 into direct current power to generate DC power. / Supplied to DC converter 5.

列車制御部8には、残容量検出部6により検出された二次電池7の残容量の値が供給される。列車制御部8は、二次電池7の残容量が第1値PSとなった時、発電機1を駆動させ第2値PE(第1値PS<第2値PE)になるまで発電機1からの出力により二次電池7を充電させる充電手段8Aを備えている。   The train controller 8 is supplied with the value of the remaining capacity of the secondary battery 7 detected by the remaining capacity detector 6. When the remaining capacity of the secondary battery 7 reaches the first value PS, the train control unit 8 drives the generator 1 until the second value PE (first value PS <second value PE) is reached. Charging means 8 </ b> A for charging the secondary battery 7 by the output from the power supply.

図2に示すように、列車制御部8の充電手段8Aは、二次電池7の残容量が第1値である発電開始ポイント(例えば残容量40%)PSより小さくなった時、発電機1を駆動させて二次電池7を充電し、第2値である発電停止ポイント(例えば残容量60%)PEより大きくなったら発電機1を停止させる。列車制御部8は、二次電池7の残容量が発電開始ポイントPSとなった場合に、再び発電機を駆動する。   As shown in FIG. 2, when the remaining capacity of the secondary battery 7 is smaller than the first power generation start point (for example, 40% remaining capacity) PS, the charging unit 8A of the train control unit 8 Is driven to charge the secondary battery 7, and when the power generation stop point (for example, remaining capacity 60%) PE, which is the second value, becomes larger than PE, the generator 1 is stopped. The train control unit 8 drives the generator again when the remaining capacity of the secondary battery 7 becomes the power generation start point PS.

上記のように、二次電池7の充電を行うと、二次電池7の残容量を適正な範囲内に保つことができ、二次電池7の劣化を防ぎ、過剰な充放電も防止することができる。したがって、本実施形態に係る車両駆動システムによれば、二次電池を安全に利用するとともに二次電池の劣化を防止する車両駆動システムを提供することができる。   As described above, when the secondary battery 7 is charged, the remaining capacity of the secondary battery 7 can be kept within an appropriate range, and the secondary battery 7 can be prevented from deteriorating and excessive charging / discharging can be prevented. Can do. Therefore, according to the vehicle drive system which concerns on this embodiment, while using a secondary battery safely, the vehicle drive system which prevents deterioration of a secondary battery can be provided.

なお、図1に示す車両駆動システムは蓄電手段として二次電池7を備えていたが、図3に示すように、蓄電手段として二次電池7の代わりに電気2重層キャパシタ(EDLC:Electric Double Layer Capacitor)等の大容量コンデンサを備えていてもよい。その場合であっても、蓄電手段である大容量コンデンサを安全に利用するとともに大容量コンデンサの劣化を防止する車両駆動システムを提供することができる。   Although the vehicle drive system shown in FIG. 1 includes the secondary battery 7 as the power storage means, as shown in FIG. 3, an electric double layer capacitor (EDLC: Electric Double Layer) is used instead of the secondary battery 7 as the power storage means. A large-capacity capacitor such as a capacitor may be provided. Even in such a case, it is possible to provide a vehicle drive system that can safely use a large-capacity capacitor as a power storage means and prevent deterioration of the large-capacity capacitor.

次に、本発明の第2実施形態に係る車両駆動システムについて図面を参照して説明する。なお、以下の説明において上述の第1実施形態に係る車両駆動システムと同様の構成については、同一の符号を付して説明を省略する。   Next, a vehicle drive system according to a second embodiment of the present invention will be described with reference to the drawings. In the following description, the same components as those in the vehicle drive system according to the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.

本実施形態に係る車両駆動システムの列車制御部8は、二次電池7の残容量が第1値PSとなった時に発電機1を駆動させ、第3値PA(第1値PS<第3値PA<第2値PE)になった時に発電機1の出力を徐々に低下させ、第2値PEになるまで発電機1からの出力により二次電池7を充電させる充電手段8Aを備えている。   The train control unit 8 of the vehicle drive system according to the present embodiment drives the generator 1 when the remaining capacity of the secondary battery 7 reaches the first value PS, and the third value PA (first value PS <third Charging means 8A for gradually reducing the output of the generator 1 when the value PA <the second value PE) and charging the secondary battery 7 with the output from the generator 1 until the second value PE is provided. Yes.

図4に示すように、列車制御部8の充電手段8Aは、二次電池7の残容量が第1値である発電開始ポイント(例えば残容量40%)PSより小さくなった時、発電機1を駆動させて二次電池7を充電し、二次電池7の残容量が第3値である発電出力低下開始ポイント(例えば50%)PAより大きくなったら、二次電池7の残容量が第2値である発電停止ポイント(例えば60%)PEとなるまで発電機1の出力を低下させていく。列車制御部の充電手段8Aは、二次電池7の残容量が発電停止ポイントPEより大きくなると、発電機1を停止させる。   As shown in FIG. 4, when the remaining capacity of the secondary battery 7 becomes smaller than the first power generation start point (for example, 40% remaining capacity) PS, the charging means 8A of the train control unit 8 Is driven to charge the secondary battery 7, and when the remaining capacity of the secondary battery 7 becomes larger than the power generation output decrease start point (for example, 50%) PA, which is the third value, the remaining capacity of the secondary battery 7 is The output of the generator 1 is decreased until reaching a binary power generation stop point (for example, 60%) PE. The charging unit 8A of the train control unit stops the generator 1 when the remaining capacity of the secondary battery 7 becomes larger than the power generation stop point PE.

上記のように二次電池7を充電すると、二次電池7の残容量が一定以上となった状態となる、発電出力低下開始ポイントPAから発電停止ポイントPEまでの期間において、発電機1の出力を徐々に低下させることにより、二次電池7の電圧が充電停止電圧を超過することを防止することができ、安全に充電することができる。   When the secondary battery 7 is charged as described above, the output of the generator 1 during the period from the power generation output decrease start point PA to the power generation stop point PE, in which the remaining capacity of the secondary battery 7 becomes a certain level or more. By gradually lowering the voltage, it is possible to prevent the voltage of the secondary battery 7 from exceeding the charge stop voltage and to charge safely.

すなわち、本実施形態に係る車両駆動システムによれば、上述の第1実施形態に係る車両駆動システムと同様の効果を得ることができるとともに、より安全に二次電池7を充電することができる。   That is, according to the vehicle drive system according to the present embodiment, the same effect as that of the vehicle drive system according to the first embodiment described above can be obtained, and the secondary battery 7 can be charged more safely.

次に、本発明の第3実施形態に係る車両駆動システムについて図面を参照して説明する。本実施形態に係る車両駆動システムの列車制御部8の充電手段8Aは、二次電池7の残容量が第1値PSとなった時に発電機1を駆動させ、二次電池7の残容量が第4値PBとなるまで発電機1の出力を徐々に増加させる。   Next, a vehicle drive system according to a third embodiment of the present invention will be described with reference to the drawings. The charging means 8A of the train control unit 8 of the vehicle drive system according to the present embodiment drives the generator 1 when the remaining capacity of the secondary battery 7 reaches the first value PS, and the remaining capacity of the secondary battery 7 is reduced. The output of the generator 1 is gradually increased until the fourth value PB is reached.

列車制御部8の充電手段8Aは、二次電池7の残容量が第4値PBになると、二次電池7の残容量が第3値PAとなるまで発電機1の出力を一定にする。列車制御部8の充電手段8Aは、二次電池7の残容量が第3値PAになると、発電機1の出力を徐々に低下させ、第2値PEになるまで発電機1からの出力により二次電池7を充電させる。列車制御部8の充電手段8Aは、二次電池7の残容量が第2値PEになると発電機1を停止する。   When the remaining capacity of the secondary battery 7 reaches the fourth value PB, the charging unit 8A of the train control unit 8 keeps the output of the generator 1 constant until the remaining capacity of the secondary battery 7 reaches the third value PA. When the remaining capacity of the secondary battery 7 reaches the third value PA, the charging means 8A of the train control unit 8 gradually decreases the output of the generator 1 and outputs the power from the generator 1 until the second value PE is reached. The secondary battery 7 is charged. The charging means 8A of the train control unit 8 stops the generator 1 when the remaining capacity of the secondary battery 7 reaches the second value PE.

図5に示すように、充電手段8Aは、二次電池7の残容量が第2値である発電停止ポイントPEとなる満充電状態から、二次電池7の残容量が減少し、二次電池7の残容量が第1値である発電開始ポイント(例えば残容量45%)PSとなるまで発電機1を停止させる。   As shown in FIG. 5, the charging unit 8 </ b> A reduces the remaining capacity of the secondary battery 7 from the fully charged state where the remaining capacity of the secondary battery 7 is the power generation stop point PE, which is the second value. The generator 1 is stopped until the remaining capacity of 7 reaches the power generation start point (for example, remaining capacity 45%) PS which is the first value.

充電手段8Aは、二次電池7の残容量が発電開始ポイントPSより小さくなった時、発電機1を駆動させて二次電池7を充電し、さらに二次電池7の残容量が減るにつれて、二次電池7の残容量が第4値である発電出力最大ポイント(例えば40%)PB(発電出力最大ポイントPB<発電開始ポイントPS)となるまで発電機1の出力をまで増加させていく。   When the remaining capacity of the secondary battery 7 becomes smaller than the power generation start point PS, the charging unit 8A drives the generator 1 to charge the secondary battery 7, and further, as the remaining capacity of the secondary battery 7 decreases, The output of the generator 1 is increased until the power generation output maximum point (for example, 40%) PB (power generation output maximum point PB <power generation start point PS) where the remaining capacity of the secondary battery 7 is the fourth value is reached.

充電手段8Aは、二次電池7の残容量が発電出力最大ポイントPBを超えた後は、二次電池7の残容量が第3値である発電出力低下開始ポイント(例えば50%)PAとなるまで、最大出力で発電機1を運転させる。   After the remaining capacity of the secondary battery 7 exceeds the power generation output maximum point PB, the charging unit 8A becomes the power generation output decrease start point (for example, 50%) PA where the remaining capacity of the secondary battery 7 is the third value. Until the generator 1 is operated at the maximum output.

充電手段8Aは、二次電池7の残容量が発電出力低下開始ポイントPAより大きくなったら、発電停止ポイント(例えば60%)PEとなるまで、発電機1の出力を徐々に低下させるようなヒステリシス動作を行う。   When the remaining capacity of the secondary battery 7 becomes larger than the power generation output decrease start point PA, the charging unit 8A has a hysteresis that gradually decreases the output of the generator 1 until the power generation stop point (for example, 60%) PE is reached. Perform the action.

上記のように二次電池7を充電すると、二次電池7の残容量が発電開始ポイントPSと発電出力最大ポイントPBとの間である期間において、二次電池7の残容量が小さくなるにつれて発電機1の出力が大きくなっていくため、二次電池7が過放電による放電終止電圧以下になることを防ぐことができる。   When the secondary battery 7 is charged as described above, power generation is performed as the remaining capacity of the secondary battery 7 decreases in a period in which the remaining capacity of the secondary battery 7 is between the power generation start point PS and the power generation output maximum point PB. Since the output of the machine 1 increases, it is possible to prevent the secondary battery 7 from becoming lower than the discharge end voltage due to overdischarge.

また、二次電池7の残容量が発電出力低下開始ポイントPAと発電停止ポイントPEとの間である期間において、二次電池7の残容量が大きくなるにつれて、発電機1の出力が小さくなっていくため、二次電池7が充電時に充電終止電圧以上になることを防ぎ、過充電を防止することができる。   Further, in a period in which the remaining capacity of the secondary battery 7 is between the power generation output decrease start point PA and the power generation stop point PE, the output of the generator 1 decreases as the remaining capacity of the secondary battery 7 increases. Therefore, the secondary battery 7 can be prevented from being over the charge end voltage during charging, and overcharge can be prevented.

すなわち、本実施形態に係る車両駆動システムによれば、上述の第1実施形態に係る車両駆動システムと同様の効果を得ることができるとともに、より安全に二次電池7を放電および充電することができる。   That is, according to the vehicle drive system according to the present embodiment, the same effect as that of the vehicle drive system according to the first embodiment described above can be obtained, and the secondary battery 7 can be discharged and charged more safely. it can.

次に、本発明の第4実施形態に係る車両駆動システムについて図面を参照して説明する。本実施形態に係る車両駆動システムは、図6に示すように、二次電池7の内部抵抗を算出する内部抵抗算出部9をさらに備えている。   Next, a vehicle drive system according to a fourth embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 6, the vehicle drive system according to the present embodiment further includes an internal resistance calculator 9 that calculates the internal resistance of the secondary battery 7.

内部抵抗算出部9は、例えば、二次電池7の温度を検出する温度検出手段(図示せず)と、電池温度に対する内部抵抗の値のデータテーブルとを備えていてもよく、放電中の二次電池7の電圧と電流とから、電圧と電流と内部抵抗との関係式により計算することによって内部抵抗を求める手段を備えていてもよい。内部抵抗算出部9は、算出した内部抵抗値を列車制御部8に供給する。   The internal resistance calculation unit 9 may include, for example, temperature detection means (not shown) for detecting the temperature of the secondary battery 7 and a data table of values of internal resistance with respect to the battery temperature. There may be provided means for obtaining the internal resistance from the voltage and current of the secondary battery 7 by calculating with the relational expression of the voltage, current and internal resistance. The internal resistance calculation unit 9 supplies the calculated internal resistance value to the train control unit 8.

列車制御部8の充電手段8Aは、内部抵抗算出部9から供給された、内部抵抗値に応じて、発電開始ポイントPS、発電停止ポイントPE、発電出力低下開始ポイントPA、および発電出力最大ポイントPBの残容量値を変化させる変化手段(図示せず)を備えている。内部抵抗算出部9および変化手段を備えること以外は、上述の第3実施形態に係る車両駆動システムと同様の構成である。   The charging means 8A of the train control unit 8 includes a power generation start point PS, a power generation stop point PE, a power generation output decrease start point PA, and a power generation output maximum point PB according to the internal resistance value supplied from the internal resistance calculation unit 9. Changing means (not shown) is provided for changing the remaining capacity value. The configuration is the same as that of the vehicle drive system according to the third embodiment described above, except that the internal resistance calculation unit 9 and the changing unit are provided.

例えば、二次電池7の内部抵抗が大きいときには、変化手段は、発電開始ポイントPSと発電出力最大ポイントPBとが高くなるように変化させ、発電停止ポイントPEと発電出力低下開始ポイントPAとが低くなるように変化させる。   For example, when the internal resistance of the secondary battery 7 is large, the changing unit changes the power generation start point PS and the power generation output maximum point PB so that the power generation stop point PE and the power generation output decrease start point PA are low. Change to be.

二次電池7の内部抵抗が小さいときには、変化手段は、発電開始ポイントPSと発電出力最大ポイントPBとが低くなるように変化させ、発電停止ポイントPEと発電出力低下開始ポイントPAとが高くなるように変化させる。   When the internal resistance of the secondary battery 7 is small, the changing means changes the power generation start point PS and the power generation output maximum point PB to be low, so that the power generation stop point PE and the power generation output decrease start point PA are high. To change.

上記のように、内部抵抗値に応じて、発電開始ポイントPS、発電停止ポイントPE、発電出力低下開始ポイントPA、および発電出力最大ポイントPBの残容量値を変化させること以外は、充電手段8Aは、上述の第3実施形態に係る車両駆動システムと同様に二次電池7を充電する。   As described above, except for changing the remaining capacity values of the power generation start point PS, the power generation stop point PE, the power generation output decrease start point PA, and the power generation output maximum point PB according to the internal resistance value, the charging unit 8A The secondary battery 7 is charged in the same manner as in the vehicle drive system according to the third embodiment described above.

上記のように二次電池7を充電すると、二次電池7の内部抵抗の増加したことによって生じる、充電終止電圧や放電終止電圧を超える充電および放電を防止することができる。また、二次電池7の内部抵抗が低下した際には二次電池7の使用可能容量範囲を広げることができ、二次電池7の容量を最大限に利用して有効利用することができる。   When the secondary battery 7 is charged as described above, it is possible to prevent the charge and discharge exceeding the charge end voltage and the discharge end voltage caused by the increase in the internal resistance of the secondary battery 7. In addition, when the internal resistance of the secondary battery 7 is reduced, the usable capacity range of the secondary battery 7 can be expanded, and the capacity of the secondary battery 7 can be utilized to the maximum extent.

すなわち、本実施形態に係る車両駆動システムによれば、上述の第1実施形態に係る車両駆動システムと同様の効果を得ることができるとともに、より安全に二次電池7を放電および充電し、二次電池7を有効利用することができる。   That is, according to the vehicle drive system according to the present embodiment, the same effect as that of the vehicle drive system according to the first embodiment described above can be obtained, and the secondary battery 7 can be discharged and charged more safely. The secondary battery 7 can be used effectively.

次に、本発明の第5実施形態に係る車両駆動システムについて、図面を参照して説明する。本実施形態に係る車両駆動システムは、図7に示すように、内部抵抗算出部9と、発電モード選択部10と、発電モード表示部11とを更に備えている。   Next, a vehicle drive system according to a fifth embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 7, the vehicle drive system according to the present embodiment further includes an internal resistance calculation unit 9, a power generation mode selection unit 10, and a power generation mode display unit 11.

内部抵抗算出部9は、上述の第4実施形態に係る車両駆動システムと同様に、例えば、二次電池7の温度を検出する温度検出手段(図示せず)と、電池温度に対する内部抵抗の値のデータテーブルとを備えていてもよく、放電中の二次電池7の電圧と電流とから、電圧と電流と内部抵抗との関係式により計算することによって内部抵抗を求める手段を備えていてもよい。内部抵抗算出部9は、算出した内部抵抗値を列車制御部8に供給する。   The internal resistance calculation unit 9 is, for example, a temperature detection means (not shown) for detecting the temperature of the secondary battery 7 and the value of the internal resistance with respect to the battery temperature, as in the vehicle drive system according to the fourth embodiment described above. Or a means for obtaining the internal resistance by calculating from the voltage and current of the secondary battery 7 being discharged by the relational expression of the voltage, current and internal resistance. Good. The internal resistance calculation unit 9 supplies the calculated internal resistance value to the train control unit 8.

発電モード選択部10は、発電機1の動作を制御するための複数の発電モードを記憶する記憶手段(図示せず)と、記憶手段に記録された複数の発電モードのいずれかを選択するとともに、発電モードの情報を列車制御部8に供給する選択手段(図示せず)とを備えている。選択手段には運転手が操作手段(図示せず)を操作することによる操作信号が供給され、供給された操作信号に基づいて選択手段が発電モードを選択する。   The power generation mode selection unit 10 selects a storage unit (not shown) for storing a plurality of power generation modes for controlling the operation of the generator 1 and a plurality of power generation modes recorded in the storage unit. And selection means (not shown) for supplying information on the power generation mode to the train control unit 8. The selection means is supplied with an operation signal when the driver operates the operation means (not shown), and the selection means selects the power generation mode based on the supplied operation signal.

発電機1の発電モードは、車両が走行する経路の勾配や長さに応じて複数のパターンが準備されていてもよく、車両の数に応じて複数のパターンが準備されていてもよく、車両が走行する時間帯に応じて複数のパターンが準備されていてもよい。   As the power generation mode of the generator 1, a plurality of patterns may be prepared according to the gradient and length of the route on which the vehicle travels, or a plurality of patterns may be prepared according to the number of vehicles. A plurality of patterns may be prepared according to the time zone during which the vehicle travels.

列車制御部8は、発電モード選択部10により選択された発電モードの情報に応じて発電機1の動作を制御するモード制御手段(図示せず)を備えている。モード制御手段は、例えば選択された発電機1の発電モードに応じて、発電開始ポイントPS、発電停止ポイントPE、発電出力低下開始ポイントPA、および発電出力最大ポイントPBの残容量値を変化させる。   The train control unit 8 includes mode control means (not shown) that controls the operation of the generator 1 according to the information on the power generation mode selected by the power generation mode selection unit 10. The mode control means changes the remaining capacity values of the power generation start point PS, the power generation stop point PE, the power generation output decrease start point PA, and the power generation output maximum point PB, for example, according to the power generation mode of the selected generator 1.

例えば、上りの勾配が大きい経路を走行するための発電機1の発電モードが選択された場合には、モード制御手段は、発電開始ポイントPSと発電出力最大ポイントPBとが高くなるように変化させて、二次電池7の過放電を防止する。   For example, when the power generation mode of the generator 1 for traveling on a route with a large upward gradient is selected, the mode control means changes the power generation start point PS and the power generation output maximum point PB to be higher. Thus, overdischarge of the secondary battery 7 is prevented.

逆に、下りの勾配が大きい経路を走行するための発電機1の発電モードが選択された場合には、モード制御手段は、電動機4からの回生電力が二次電池7に供給されることによる過充電を防止するため、発電機1の出力を低くしたり発電機1を停止したりして、発電モードに応じて発電機1の動作を制御する。   On the other hand, when the power generation mode of the generator 1 for traveling on a route with a large downward gradient is selected, the mode control means is because the regenerative power from the motor 4 is supplied to the secondary battery 7. In order to prevent overcharge, the operation of the generator 1 is controlled according to the power generation mode by reducing the output of the generator 1 or stopping the generator 1.

発電モード表示部11には、列車制御部8から選択された運転モード情報が供給される。発電モード表示部11は、供給された運転モード情報に応じて、車両の運転パターンを表示させる表示手段(図示せず)を備えている。   The operation mode information selected from the train control unit 8 is supplied to the power generation mode display unit 11. The power generation mode display unit 11 includes display means (not shown) for displaying a driving pattern of the vehicle according to the supplied driving mode information.

表示手段は、例えば液晶表示パネルや有機EL表示パネル等の表示パネルのように電気的に表示させる表示手段であってもよく、選択されたパターンを機械的に表示させるものであってもよい。上記の構成以外は、上述の第3実施形態に係る車両駆動システムと同様である。   The display means may be a display means for displaying electrically, such as a display panel such as a liquid crystal display panel or an organic EL display panel, or may be a mechanism for mechanically displaying a selected pattern. Except for the above configuration, the vehicle drive system according to the third embodiment is the same as the above-described vehicle drive system.

上記のように発電機1の運転モードに応じて発電機1の運転を制御することにより、運転手により発電機1の運転パターンを任意に変更することが可能となり、予想外の状況にも対応することが可能となる。また、発電機1の運転パターンは発電モード表示部11に表示されるため、運転手が発電機1の運転状況を把握でき、安全に走行することができる。   By controlling the operation of the generator 1 according to the operation mode of the generator 1 as described above, it becomes possible for the driver to arbitrarily change the operation pattern of the generator 1 and cope with unexpected situations. It becomes possible to do. Further, since the operation pattern of the generator 1 is displayed on the power generation mode display unit 11, the driver can grasp the operation status of the generator 1 and can travel safely.

すなわち、本実施形態に係る車両駆動システムによれば、上述の第1実施形態に係る車両駆動システムと同様の効果を得ることができるとともに、より安全に車両を走行させることができる。   That is, according to the vehicle drive system according to the present embodiment, the same effect as the vehicle drive system according to the first embodiment described above can be obtained, and the vehicle can be driven more safely.

次に、本発明の第6実施形態に係る車両駆動システムについて説明する。本実施形態に係る車両駆動システムは、電動機4の負荷を測定する負荷測定手段(図示せず)を備えている。負荷測定手段により測定された電動機4の負荷の大きさは列車制御部8に供給される。   Next, a vehicle drive system according to a sixth embodiment of the present invention will be described. The vehicle drive system according to the present embodiment includes load measuring means (not shown) that measures the load of the electric motor 4. The magnitude of the load on the electric motor 4 measured by the load measuring means is supplied to the train control unit 8.

列車制御部8は、電動機4の負荷の大きさに応じて発電機1の出力を変化させる手段(図示せず)を備えている。本実施形態に係る車両駆動システムは、上記の構成以外は、上述の第3実施形態に係る車両駆動システムと同様である。   The train control unit 8 includes means (not shown) that changes the output of the generator 1 according to the load of the electric motor 4. The vehicle drive system according to the present embodiment is the same as the vehicle drive system according to the third embodiment described above, except for the configuration described above.

例えば、電動機4の負荷が所定の値よりも大きい場合には、発電機1を駆動して、電動機4の負荷が所定の値よりも小さくなると発電機1を停止させる。したがって、電動機4の負荷が所定の値よりも大きい場合には、発電機1と二次電池7とからの電力が電動機4に供給され、電動機4の負荷が所定の値よりも小さくなると、二次電池7から電動機4に電力が供給される。   For example, when the load of the electric motor 4 is larger than a predetermined value, the generator 1 is driven, and when the load of the electric motor 4 becomes smaller than the predetermined value, the generator 1 is stopped. Therefore, when the load of the electric motor 4 is larger than a predetermined value, the electric power from the generator 1 and the secondary battery 7 is supplied to the electric motor 4, and when the load of the electric motor 4 becomes smaller than the predetermined value, two Electric power is supplied from the secondary battery 7 to the electric motor 4.

また、電動機4から回生電力が得られている場合には、発電機1を停止し、回生電力のみによって二次電池7を充電させる。したがって、発電機1と回生電力とにより二次電池7が充電されて過充電となることを防止することができる。   Moreover, when the regenerative electric power is obtained from the electric motor 4, the generator 1 is stopped and the secondary battery 7 is charged only by the regenerative electric power. Therefore, the secondary battery 7 can be prevented from being charged and overcharged by the generator 1 and the regenerative power.

上記のように、電動機4の負荷の大きさに応じて発電機1の出力を変化させることにより、二次電池7の充電および放電の頻度を減少させることができ、DC/DC変換器5による変換時におけるエネルギーの損失も減少させることができるため、効率よく車両を駆動させることができる。   As described above, the frequency of charging and discharging of the secondary battery 7 can be reduced by changing the output of the generator 1 in accordance with the magnitude of the load of the electric motor 4, and the DC / DC converter 5 Since the loss of energy at the time of conversion can also be reduced, the vehicle can be driven efficiently.

すなわち、本実施形態に係る車両駆動システムによれば、上述の第1実施形態に係る車両駆動システムと同様の効果を得ることができるとともに、二次電池7の充放電頻度が減り、DC/DC変換器5における損出も減るため、効率の良く車両を運転することができる。   That is, according to the vehicle drive system according to the present embodiment, the same effect as that of the vehicle drive system according to the first embodiment described above can be obtained, and the charge / discharge frequency of the secondary battery 7 is reduced, so that DC / DC Since loss in the converter 5 is also reduced, the vehicle can be driven efficiently.

次に、本発明の第7実施形態に係る車両駆動システムについて説明する。本実施形態に係る車両駆動システムは、列車制御部8が制御解除手段(図示せず)を備えていること以外は上述の第3実施形態に係る車両駆動システムと同様である。   Next, a vehicle drive system according to a seventh embodiment of the present invention will be described. The vehicle drive system according to the present embodiment is the same as the vehicle drive system according to the third embodiment described above, except that the train control unit 8 includes control release means (not shown).

制御解除手段には、運転手が操作手段を操作することにより制御解除信号が供給される。制御解除信号が供給されると、制御解除手段は、二次電池7の残容量が発電開始ポイントPSになっても、二次電池7の放電を続けさせ、二次電池7の容量を全て使いきることを可能にする。   A control release signal is supplied to the control release means when the driver operates the operation means. When the control release signal is supplied, the control release means causes the secondary battery 7 to continue discharging even if the remaining capacity of the secondary battery 7 reaches the power generation start point PS, and uses all the capacity of the secondary battery 7. It is possible to come.

このように発電機1の制御を解除することによって、発電機1の故障時や事故を回避する必要がある時等、非常時に車両を駆動する電源を確保することができる。   By canceling the control of the generator 1 in this way, it is possible to secure a power source for driving the vehicle in an emergency such as when the generator 1 fails or when an accident needs to be avoided.

すなわち、本実施形態に係る車両駆動システムによれば、上述の第1実施形態に係る車両駆動システムと同様の高価を得ることができるとともに、非常時の安全を確保する車両駆動システムを提供することができる。   That is, according to the vehicle drive system according to the present embodiment, it is possible to provide a vehicle drive system that can obtain the same high cost as the vehicle drive system according to the above-described first embodiment and ensure safety in an emergency. Can do.

なお、この発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.

また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合わせてもよい。   Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine the component covering different embodiment suitably.

PS…第1値(発電開始ポイント)、PE…第2値(発電停止ポイント)、1…発電手段(発電機)、2…第1変換器(AC/DC変換器)、3…第3変換器(AC/DC変換器)、4…電動機、5…第2変換器(DC/DC変換器)、6…残容量検出部、7…蓄電手段(二次電池)、8…制御手段(列車制御部)、8A…充電手段。   PS ... first value (power generation start point), PE ... second value (power generation stop point), 1 ... power generation means (generator), 2 ... first converter (AC / DC converter), 3 ... third conversion (AC / DC converter), 4 ... electric motor, 5 ... second converter (DC / DC converter), 6 ... remaining capacity detector, 7 ... storage means (secondary battery), 8 ... control means (train) Control part), 8A ... charging means.

Claims (9)

発電手段と、
前記発電手段から出力された電圧を直流に変換する第1変換器と、
前記第1変換器によって変換された電圧が第2変換器を介して供給される蓄電手段と、
前記蓄電手段の残容量を計算する残容量検出部と、
第1変換器と第2変換器とから出力された電圧を交流に変換する第3変換器と、
第3変換器によって変換された電圧が供給される電動機と、
前記発電装置、前記第1変換器、前記第2変換器、および前記第3変換器の動作を制御する制御手段と、を備え、
前記制御手段は、前記蓄電手段の残容量が第1値となった時に前記発電手段を駆動させ、前記蓄電手段の残容量が第2値となった時に前記発電手段を停止させる充電手段を備える車両駆動システム。
Power generation means;
A first converter that converts the voltage output from the power generation means into direct current;
Power storage means to which the voltage converted by the first converter is supplied via the second converter;
A remaining capacity detector for calculating a remaining capacity of the power storage means;
A third converter for converting the voltage output from the first converter and the second converter into alternating current;
An electric motor supplied with the voltage converted by the third converter;
Control means for controlling operations of the power generator, the first converter, the second converter, and the third converter,
The control unit includes a charging unit that drives the power generation unit when the remaining capacity of the power storage unit reaches a first value and stops the power generation unit when the remaining capacity of the power storage unit reaches a second value. Vehicle drive system.
前記蓄電手段は、大容量コンデンサである請求項1記載の車両駆動システム。   The vehicle drive system according to claim 1, wherein the power storage means is a large-capacity capacitor. 前記蓄電手段は、二次電池である請求項1記載の車両駆動システム。   The vehicle drive system according to claim 1, wherein the power storage means is a secondary battery. 前記充電手段は、前記蓄電手段の残容量が前記第1値よりも大きく前記第2値より小さい第3値となった時から、前記発電手段の出力の低下を開始させる手段を備える請求項1記載の車両駆動システム。   2. The charging means includes means for starting a decrease in the output of the power generation means when a remaining capacity of the power storage means becomes a third value larger than the first value and smaller than the second value. The vehicle drive system described. 前記充電手段は、前記蓄電手段の残容量が前記第2値に達した後、前記第1値となるまでの期間は前記発電装置を停止させるとともに、前記蓄電手段の残容量が前記第1値となった時に前記発電手段の出力の上昇を開始させて前記蓄電手段の残容量が前記第1値よりも小さい第4値となった時に前記発電手段の出力を最大にする手段を備える請求項1記載の車両駆動システム。   The charging means stops the power generation device during a period from when the remaining capacity of the power storage means reaches the second value to the first value, and the remaining capacity of the power storage means is equal to the first value. And a means for maximizing the output of the power generation means when the remaining capacity of the power storage means reaches a fourth value smaller than the first value. The vehicle drive system according to claim 1. 前記蓄電手段の内部抵抗を検出する検出部をさらに備え、
前記充電手段は、前記検出部により検出された内部抵抗の大きさに応じて、前記第1値と前記第2値とを変化させる変化手段を備える請求項1乃至請求項5のいずれか1項記載の車両駆動システム。
A detector for detecting an internal resistance of the power storage means;
The said charging means is provided with the change means to change the said 1st value and the said 2nd value according to the magnitude | size of the internal resistance detected by the said detection part. The vehicle drive system described.
前記複数の発電モードのいずれかを選択する発電モード選択手段と、前記発電装置の運転状況と前記発電モードとを表示させる発電モード表示手段と、をさらに備え、
前記発電モード選択手段は、前記発電手段の複数の発電モードを記憶する記憶手段と、前記記憶手段に記憶された複数の発電モードのいずれかを選択し、選択された発電モード情報を前記制御手段に供給する選択手段と、を備え、
前記制御手段は、供給された発電モード情報に従って前記発電装置を運転する手段と、を備える請求項1乃至請求項6のいずれか1項記載の車両駆動システム。
A power generation mode selection means for selecting any one of the plurality of power generation modes; and a power generation mode display means for displaying an operation status of the power generation apparatus and the power generation mode.
The power generation mode selection means selects a storage means for storing a plurality of power generation modes of the power generation means and a plurality of power generation modes stored in the storage means, and selects the selected power generation mode information as the control means. Selecting means for supplying to
The vehicle drive system according to any one of claims 1 to 6, wherein the control means includes means for operating the power generation device in accordance with the supplied power generation mode information.
前記電動機の負荷の大きさを測定する測定手段をさらに備え、
前記制御手段は、前記測定手段から得た負荷が所定の値より大きい場合のみ前記発電装置を運転させる請求項1乃至請求項7のいずれか1項記載の車両駆動システム。
Further comprising measuring means for measuring the magnitude of the load of the electric motor,
The vehicle drive system according to any one of claims 1 to 7, wherein the control means operates the power generator only when a load obtained from the measurement means is larger than a predetermined value.
前記制御手段は、前記蓄電手段の残容量を全て使用可能とする制御解除手段をさらに備える請求項1乃至請求項8のいずれか1項記載の車両駆動システム。   The vehicle drive system according to any one of claims 1 to 8, wherein the control means further includes a control release means that enables the remaining capacity of the power storage means to be used.
JP2009152351A 2009-06-26 2009-06-26 Vehicle driving system Withdrawn JP2011010482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009152351A JP2011010482A (en) 2009-06-26 2009-06-26 Vehicle driving system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009152351A JP2011010482A (en) 2009-06-26 2009-06-26 Vehicle driving system

Publications (1)

Publication Number Publication Date
JP2011010482A true JP2011010482A (en) 2011-01-13

Family

ID=43566464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009152351A Withdrawn JP2011010482A (en) 2009-06-26 2009-06-26 Vehicle driving system

Country Status (1)

Country Link
JP (1) JP2011010482A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9168932B2 (en) 2012-05-22 2015-10-27 Kabushiki Kaisha Toshiba Battery charging control apparatus of a train
KR101730728B1 (en) 2015-10-01 2017-05-11 현대자동차주식회사 Method and apparatus for detecting ground assembly of wireless power charging system
KR101766040B1 (en) 2015-09-18 2017-08-07 현대자동차주식회사 Battery charging control system and method for vehicle
KR101803151B1 (en) 2015-10-16 2017-11-29 현대자동차주식회사 Method and apparatus for magnetic field alignment in wireless power charging system and primary pad used therein
KR101860695B1 (en) 2015-01-29 2018-05-23 닛산 지도우샤 가부시키가이샤 Parking support system and parking support method
WO2020057279A1 (en) * 2018-09-19 2020-03-26 中车资阳机车有限公司 System and method for controlling mainline hybrid power locomotive set
JP2021002904A (en) * 2019-06-20 2021-01-07 株式会社豊田自動織機 Fuel cell vehicle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9168932B2 (en) 2012-05-22 2015-10-27 Kabushiki Kaisha Toshiba Battery charging control apparatus of a train
KR101860695B1 (en) 2015-01-29 2018-05-23 닛산 지도우샤 가부시키가이샤 Parking support system and parking support method
KR101766040B1 (en) 2015-09-18 2017-08-07 현대자동차주식회사 Battery charging control system and method for vehicle
US9878623B2 (en) 2015-09-18 2018-01-30 Hyundai Motor Company Battery charging control system and method for vehicle
US10131233B2 (en) 2015-09-18 2018-11-20 Hyundai Motor Company Battery charging control system and method for vehicle
KR101730728B1 (en) 2015-10-01 2017-05-11 현대자동차주식회사 Method and apparatus for detecting ground assembly of wireless power charging system
KR101803151B1 (en) 2015-10-16 2017-11-29 현대자동차주식회사 Method and apparatus for magnetic field alignment in wireless power charging system and primary pad used therein
WO2020057279A1 (en) * 2018-09-19 2020-03-26 中车资阳机车有限公司 System and method for controlling mainline hybrid power locomotive set
JP2021002904A (en) * 2019-06-20 2021-01-07 株式会社豊田自動織機 Fuel cell vehicle

Similar Documents

Publication Publication Date Title
JP5577775B2 (en) Electric vehicle power supply
CN105599614B (en) The control method and external power supply system of the external power supply system of the vehicle of fuel cell are installed
JP5478743B2 (en) Power regeneration power system
JP2011010482A (en) Vehicle driving system
EP2918442B1 (en) Charge/discharge system
JP6319053B2 (en) Vehicle driven by motor, and control method of charge / discharge of secondary battery mounted on vehicle
JP5796457B2 (en) Battery system and battery system control method
JP2011189768A (en) Control apparatus for hybrid vehicle
JP2010004732A (en) Power supply system
JP6013857B2 (en) Secondary battery charge / discharge controller for construction machinery
JP2017073917A (en) Driving apparatus, transportation apparatus and management method
JP2014090578A (en) Power supply device for vehicle
JP5066027B2 (en) Electric vehicle control device
JP5514459B2 (en) Charging system
JP3960557B1 (en) Hybrid storage device for electric vehicle and electric vehicle
JP2006034041A (en) Controller for feeder system power storage system
JP6966871B2 (en) Battery system
JP2017070077A (en) Power storage device, transportation equipment, and control method
KR20170025605A (en) Power conversion control method of for using high voltage vehicle
JP2016152718A (en) Charge and discharge controller, mobile and power sharing amount determination method
WO2013031615A1 (en) Battery system for hybrid car and hybrid car equipped with this battery system
JP6055703B2 (en) Power system
JP2010133333A (en) Control device for cargo handling machine and control method for cargo handling machine
JP2014121131A (en) Power supply for vehicle and electric vehicle
CN104272511A (en) Fuel cell system

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120904