JP2011009196A - 固体電解質型燃料電池 - Google Patents

固体電解質型燃料電池 Download PDF

Info

Publication number
JP2011009196A
JP2011009196A JP2010114970A JP2010114970A JP2011009196A JP 2011009196 A JP2011009196 A JP 2011009196A JP 2010114970 A JP2010114970 A JP 2010114970A JP 2010114970 A JP2010114970 A JP 2010114970A JP 2011009196 A JP2011009196 A JP 2011009196A
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
supply amount
reforming
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010114970A
Other languages
English (en)
Other versions
JP4761260B2 (ja
Inventor
Katsuhisa Tsuchiya
勝久 土屋
Toshiharu Otsuka
俊治 大塚
Tsukasa Shigesumi
司 重住
Toshiharu Oe
俊春 大江
Kiyotaka Nakano
清隆 中野
Masayuki Kawamura
昌之 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2010114970A priority Critical patent/JP4761260B2/ja
Priority to US12/788,923 priority patent/US8497044B2/en
Priority to EP10164136A priority patent/EP2312679B1/en
Priority to CN2010101886011A priority patent/CN101901926B/zh
Publication of JP2011009196A publication Critical patent/JP2011009196A/ja
Application granted granted Critical
Publication of JP4761260B2 publication Critical patent/JP4761260B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2428Grouping by arranging unit cells on a surface of any form, e.g. planar or tubular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/243Grouping of unit cells of tubular or cylindrical configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

【課題】起動状態において、燃料電池セルの温度を安定して上昇させ、円滑に発電開始できる固体電解質型燃料電池を提供する。
【解決手段】固体電解質型燃料電池1であって、燃料電池モジュール2と、改質器20と、燃料供給手段38と、改質用酸化剤ガス供給手段44と、水供給手段28と、発電用酸化剤ガス供給手段45と、発電が開始される前の起動時に改質器内において、部分酸化改質反応のみが発生するPOX、部分酸化改質反応及び水蒸気改質反応が発生するATR、水蒸気改質反応のみが発生するSRの順に改質反応を発生させて、燃料電池セルの温度を上昇させる制御部と、を有し、制御部は、ATRからSRに移行する際の時間に対する燃料供給量の変化率が、起動時において燃料供給量を変更する際の変化率のうちで最も小さくなるように燃料供給手段を制御する。
【選択図】図1

Description

本発明は、固体電解質型燃料電池に関し、特に、燃料と発電用の酸化剤ガスを反応させて発電する固体電解質型燃料電池に関する。
固体電解質型燃料電池(Solid Oxide Fuel Cell:以下「SOFC」とも言う)は、電解質として酸化物イオン導電性固体電解質を用い、その両側に電極を取り付け、一方の側に燃料ガスを供給し、他方の側に酸化剤(空気、酸素等)を供給して、比較的高温で動作する燃料電池である。
このSOFCにおいては、酸化物イオン導電性固体電解質を通過した酸素イオンと燃料との反応によって水蒸気又は二酸化炭素を生成し、電気エネルギー及び熱エネルギーが発生する。電気エネルギーは、SOFC外部に取り出されて、各種電気的用途に使用される。一方、熱エネルギーは、燃料、改質器、水及び酸化剤等の温度を上昇させるために使用される。
特開2007−103194号公報(特許文献1)には、固体酸化物形燃料電池を備えた電源が記載されている。ここに記載されている燃料電池においては、発電に寄与した後の燃料及び空気が、燃焼室で燃焼され、その燃焼熱がセルスタックの加熱に利用されている。
また、特開2005−293951号公報(特許文献2)には、燃料電池及びその運転方法が記載されている。この燃料電池は、水蒸気改質により水素リッチな燃料ガスを供給する第1の供給手段と、燃料用原料ガスを部分酸化により改質して水素リッチな燃料ガスを供給する第2の供給手段を備えている。発電時においては、第1の供給手段を用いて発電に必要な大流量の燃料ガスが供給され、発電開始期及び発電停止期においては、第2の供給手段を用いて部分酸化改質による燃料ガスが供給される。
特開2007−103194号公報 特開2005−293951号公報
しかしながら、特開2005−293951号公報に記載されているような、部分酸化改質と水蒸気改質を組み合わせて使用している燃料電池においては、部分酸化改質反応が発熱反応であり、水蒸気改質反応が吸熱反応であることから、これらを切り換える際に、燃料電池全体の熱的なバランスが崩れ、動作が不安定になる場合があるという問題がある。特に、起動時において、部分酸化改質反応から水蒸気改質反応に切り換える際には、反応が発熱反応から吸熱反応に変化するため、燃料電池セルの急激な温度低下が発生しやすいという問題がある。燃料電池セルの温度が一旦低下してしまうと、これを基の温度まで回復させるには多大な時間を要することがあり、燃料電池の起動から発電開始までの時間が長くなるという問題がある。
従って、本発明は、起動状態において、固体電解質型燃料電池セルの温度を安定して上昇させることができ、円滑に発電を開始することができる固体電解質型燃料電池を提供することを目的としている。
上述した課題を解決するために、本発明は、燃料と発電用の酸化剤ガスを反応させて発電する固体電解質型燃料電池であって、複数の固体電解質型燃料電池セルを備えた燃料電池モジュールと、固体電解質型燃料電池セルに改質された燃料を供給する改質器と、この改質器に改質すべき燃料を供給する燃料供給装置と、改質器に改質用の酸化剤ガスを供給する改質用酸化剤ガス供給装置と、改質器に水を供給する水供給装置と、固体電解質型燃料電池セルに発電用の酸化剤ガスを供給する発電用酸化剤ガス供給装置と、燃料電池モジュールによる発電が開始される前の起動運転として、燃料供給装置、改質用酸化剤ガス供給装置、及び水供給装置を制御して、改質器内において、部分酸化改質反応のみが発生するPOX運転、部分酸化改質反応及び水蒸気改質反応が発生するATR運転、水蒸気改質反応のみが発生するSR運転の順に改質反応が発生されるように、各運転において段階的に燃料供給量を減少させながら固体電解質型燃料電池セルを発電可能な温度に上昇させて起動するコントローラと、を有し、コントローラは、ATR運転からSR運転に移行する際の時間に対する燃料供給量の変化率が、起動運転において燃料供給量を変更する際の変化率のうちで最も小さくなるように上記燃料供給装置を制御することを特徴としている。
このように構成された本発明においては、コントローラは、燃料供給装置、改質用酸化剤ガス供給装置、水供給装置及び発電用酸化剤ガス供給装置を制御して、改質器に燃料、改質用酸化剤ガス、及び水を供給し、固体電解質型燃料電池セルに発電用酸化剤ガスを供給する。また、コントローラは、改質器内において、部分酸化改質反応のみが発生するPOX、部分酸化改質反応及び水蒸気改質反応が発生するATR、水蒸気改質反応のみが発生するSRの順に改質反応を発生させて、固体電解質型燃料電池セルを発電可能な温度に上昇させる。ここで、コントローラは、ATRからSRに移行する際の時間に対する燃料供給量の変化率が、起動時において燃料供給量を変更する際の変化率のうちで最も小さくなるように燃料供給装置を制御する。
このように構成された本発明によれば、ATRからSRに移行する際の燃料供給量の変化率が最も小さくなるように構成されているので、吸熱反応のみが発生するようになるSRへの移行において、急激な温度低下の発生を防止することができる。即ち、POX運転における部分酸化改質反応は発熱反応であり、POX運転において、改質器はこの反応熱と、燃料が発電用酸化剤ガスにより燃焼される燃焼熱によって加熱される。また、ATR運転においては、発熱反応である部分酸化改質反応と、吸熱反応である水蒸気改質反応が同時に発生し、改質器内の反応は、熱的にほぼ均衡した状態となる。次に、ATR運転からSR運転に移行する際には、部分酸化改質反応が次第に行われなくなり、吸熱反応である水蒸気改質反応のみに移行するので、改質器の加熱は、燃料の燃焼熱のみとなる。このため、ATR運転からSR運転への移行の際に急激に燃料供給量を減少させると、改質器における吸熱と加熱のバランスが悪くなり、燃料電池モジュールの温度低下を引き起こす虞がある。一旦、燃料電池モジュールの温度が低下し始めると、これを回復させるためには長い時間を要してしまい、発電の開始が遅くなるという問題がある。本発明によれば、ATRからSRに移行する際の燃料供給量の変化率を極めて緩やかにすることにより、燃料電池モジュール全体に蓄積された熱を利用しながらSR運転に移行することにより、起動状態において、固体電解質型燃料電池セルの温度低下を確実に防止することができ、円滑に発電を開始することができる。また、起動時における燃料供給量の変化率を、ATRからSRへの移行時には最も小さく、他の燃料供給量の変更時にはそれよりも大きくなるように設定しているので、急激な温度低下の発生を防止しながら、起動から発電開始までの所要時間を短縮することができる。
本発明において、好ましくは、コントローラは、起動運転において、改質用酸化剤ガス供給量及び水供給量を段階的に変化させるように構成され、ATR運転からSR運転に移行する際の時間に対する改質用酸化剤ガス供給量の変化率が、起動時において改質用酸化剤ガス供給量を変更する際の変化率のうちで最も小さくなり、且つATR運転からSR運転に移行する際の時間に対する水供給量の変化率が、起動運転において水供給量を変更する際の変化率のうちで最も小さくなるように改質用酸化剤ガス供給装置及び水供給装置を制御する。
このように構成された本発明によれば、改質用酸化剤ガス供給量の変化率及び水供給量の変化率も最も小さくされるので、ATR運転からSR運転への移行時の改質器における反応の急激な変化が防止される。即ち、ATR運転からSR運転への移行時において、改質用酸化剤ガス供給量および水供給量を極めて緩やかに変化させるので、改質器内における発熱反応が急激に発生しなくなったり、吸熱反応が急激に発生することにより、温度低下が発生するのを防止することができる。これにより、固体電解質型燃料電池セルの温度低下を確実に防止することができ、円滑に発電を開始することができる。
本発明において、好ましくは、コントローラは、ATR運転における燃料供給量からSR運転における燃料供給量に移行する際の時間に対する燃料供給量の変化率が、移行の終期には、移行の初期よりも大きくなるように上記燃料供給装置を制御する。
このように構成された本発明によれば、ATR運転からSR運転への移行初期において変化率を小さくすることにより急激な温度変化を防止すると共に、移行終期における変化率を大きくすることにより、ATR運転からSR運転への移行期間を短縮することができる。
本発明において、好ましくは、コントローラは、ATR運転における改質用酸化剤ガス供給量から、SR運転において改質用酸化剤ガスの供給を停止させた状態に移行する際の時間に対する改質用酸化剤ガス供給量の変化率が、移行の終期には、移行の初期よりも大きくなるように改質用酸化剤ガス供給装置を制御する。
このように構成された本発明によれば、ATR運転からSR運転への移行初期において改質用酸化剤ガスを減少させる変化率を小さくすることにより改質器内において急激に発熱反応が行われなくなり、温度低下が発生するのを防止することができると共に、移行終期における変化率を大きくすることにより、ATR運転からSR運転への移行期間を短縮することができる。
本発明において、好ましくは、コントローラは、ATR運転における水供給量からSR運転における水供給量に移行する際、部分酸化改質反応により改質されずに残存した燃料の全てを、水蒸気改質反応により改質するために十分な量の水が、常に供給されるように水供給装置を制御する。
このように構成された本発明によれば、改質用酸化剤ガスの減少により、改質器に供給される燃料のうち、部分酸化改質反応によって改質される燃料量が減少して燃料が余ってしまうことがあり、高温になった改質器内では、余った燃料中の炭素成分が析出してしまう恐れがある。よって、この余った燃料の全てを水蒸気改質するために十分な量の水を供給しているので、高温になった改質器内で燃料中の炭素成分が析出し、改質器を損傷するのを防止することができる。
本発明において、好ましくは、コントローラは、ATR運転における水供給量からSR運転における水供給量に移行する際の時間に対する水供給量の変化率が、移行の初期には、移行の終期よりも大きくなるように水供給装置を制御する。
このように構成された本発明によれば、水供給量を増加させる変化率が、移行の初期には移行の終期よりも大きくなるように制御されるので、ATR運転からSR運転への移行の初期において十分な量の水を確保することができるので、改質器内での炭素析出を確実に防止することができると共に、移行の終期には、水蒸気の過剰により改質器や固体電解質型燃料電池セルの温度低下が発生するのを防止することができる。
また、本発明は、燃料と発電用の酸化剤ガスを反応させて発電する固体電解質型燃料電池であって、複数の固体電解質型燃料電池セルを備えた燃料電池モジュールと、固体電解質型燃料電池セルに改質された燃料を供給する改質器と、この改質器に改質すべき燃料を供給する燃料供給手段と、改質器に改質用の酸化剤ガスを供給する改質用酸化剤ガス供給手段と、改質器に水を供給する水供給手段と、固体電解質型燃料電池セルに発電用の酸化剤ガスを供給する発電用酸化剤ガス供給手段と、燃料電池モジュールによる発電が開始される前の起動運転として、燃料供給手段、改質用酸化剤ガス供給手段、及び水供給手段を制御して、改質器内において、部分酸化改質反応のみが発生するPOX運転、部分酸化改質反応及び水蒸気改質反応が発生するATR運転、水蒸気改質反応のみが発生するSR運転の順に改質反応が発生されるように、各運転において段階的に燃料供給量を減少させながら固体電解質型燃料電池セルを発電可能な温度に上昇させて起動する制御手段と、を有し、制御手段は、ATR運転からSR運転に移行する際の時間に対する燃料供給量の変化率が、起動運転において燃料供給量を変更する際の変化率のうちで最も小さくなるように燃料供給手段を制御することを特徴としている。
本発明の固体電解質型燃料電池によれば、起動状態から発電状態に円滑に移行することができる。
本発明の一実施形態による固体電解質型燃料電池(SOFC)を示す全体構成図である。 本発明の一実施形態による固体電解質型燃料電池(SOFC)の燃料電池モジュールを示す正面断面図である。 図2のIII-III線に沿って断面図である。 本発明の一実施形態による固体電解質型燃料電池(SOFC)の燃料電池セル単体を示す部分断面図である。 本発明の一実施形態による固体電解質型燃料電池(SOFC)の燃料電池セルスタックを示す斜視図である。 本発明の一実施形態による固体電解質型燃料電池(SOFC)を示すブロック図である。 本発明の一実施形態による固体電解質型燃料電池(SOFC)の起動時の動作を示すタイムチャートである。 本発明の一実施形態による固体電解質型燃料電池(SOFC)の運転停止時の動作を示すタイムチャートである。 本発明の一実施形態による固体電解質型燃料電池(SOFC)の負荷追従運転を説明するタイムチャートである。 本発明の一実施形態において、制御部に入力される要求発電量と、要求発電量を生成するために必要な燃料供給量の関係の一例を示すグラフである。 本発明の一実施形態において、要求発電量の変更に対する燃料供給量の時間的変化の一例を示すグラフである。 本発明の一実施形態において、要求発電量と、要求発電量を生成するために必要な燃料供給量、発電用空気供給量、水供給量の関係の一例を示すデータテーブルである。 本発明の一実施形態において、固体電解質型燃料電池の起動処理手順の一例を示す動作テーブルである。
次に、添付図面を参照して、本発明の実施形態による固体電解質型燃料電池(SOFC)を説明する。
図1は、本発明の一実施形態による固体電解質型燃料電池(SOFC)を示す全体構成図である。この図1に示すように、本発明の一実施形態による固体電解質型燃料電池(SOFC)1は、燃料電池モジュール2と、補機ユニット4を備えている。
燃料電池モジュール2は、ハウジング6を備え、このハウジング6内部には、断熱材(図示せず但し断熱材は必須の構成ではなく、なくても良いものである。)を介して密封空間8が形成されている。なお、断熱材は設けないようにしても良い。この密閉空間8の下方部分である発電室10には、燃料ガスと酸化剤(空気)とにより発電反応を行う燃料電池セル集合体12が配置されている。この燃料電池セル集合体12は、10個の燃料電池セルスタック14(図5参照)を備え、この燃料電池セルスタック14は、16本の燃料電池セルユニット16(図4参照)から構成されている。このように、燃料電池セル集合体12は、160本の燃料電池セルユニット16を有し、これらの燃料電池セルユニット16の全てが直列接続されている。
燃料電池モジュール2の密封空間8の上述した発電室10の上方には、燃焼室18が形成され、この燃焼室18で、発電反応に使用されなかった残余の燃料ガスと残余の酸化剤(空気)とが燃焼し、排気ガスを生成するようになっている。
また、この燃焼室18の上方には、燃料ガスを改質する改質器20が配置され、前記残余ガスの燃焼熱によって改質器20を改質反応が可能な温度となるように加熱している。さらに、この改質器20の上方には、燃焼熱を受けて空気を加熱するための空気用熱交換器22が配置されている。
次に、補機ユニット4は、水道等の水供給源24からの水を貯水してフィルターにより純水とする純水タンク26と、この貯水タンクから供給される水の流量を調整する水流量調整ユニット28(モータで駆動される「水ポンプ」等)を備えている。また、補機ユニット4は、都市ガス等の燃料供給源30から供給された燃料ガスを遮断するガス遮断弁32と、燃料ガスから硫黄を除去するための脱硫器36と、燃料ガスの流量を調整する燃料流量調整ユニット38(モータで駆動される「燃料ポンプ」等)を備えている。さらに、補機ユニット4は、空気供給源40から供給される酸化剤である空気を遮断する電磁弁42と、空気の流量を調整する改質用空気流量調整ユニット44及び発電用空気流量調整ユニット45(モータで駆動される「空気ブロア」等)と、改質器20に供給される改質用空気を加熱する第1ヒータ46と、発電室に供給される発電用空気を加熱する第2ヒータ48とを備えている。これらの第1ヒータ46と第2ヒータ48は、起動時の昇温を効率よく行うために設けられているが、省略しても良い。
次に、燃料電池モジュール2には、排気ガスが供給される温水製造装置50が接続されている。この温水製造装置50には、水供給源24から水道水が供給され、この水道水が排気ガスの熱により温水となり、図示しない外部の給湯器の貯湯タンクへ供給されるようになっている。
また、燃料電池モジュール2には、燃料ガスの供給量等を制御するための制御ボックス52が取り付けられている。
さらに、燃料電池モジュール2には、燃料電池モジュールにより発電された電力を外部に供給するための電力取出部(電力変換部)であるインバータ54が接続されている。
次に、図2及び図3により、本発明の実施形態による固体電解質型燃料電池(SOFC)の燃料電池モジュールの内部構造を説明する。図2は、本発明の一実施形態による固体電解質型燃料電池(SOFC)の燃料電池モジュールを示す側面断面図であり、図3は、図2のIII-III線に沿って断面図である。
図2及び図3に示すように、燃料電池モジュール2のハウジング6内の密閉空間8には、上述したように、下方から順に、燃料電池セル集合体12、改質器20、空気用熱交換器22が配置されている。
改質器20は、その上流端側に純水を導入するための純水導入管60と改質される燃料ガスと改質用空気を導入するための被改質ガス導入管62が取り付けられ、また、改質器20の内部には、上流側から順に、蒸発部20aと改質部20bを形成され、改質部20bには改質触媒が充填されている。この改質器20に導入された水蒸気(純水)が混合された燃料ガス及び空気は、改質器20内に充填された改質触媒により改質される。改質触媒としては、アルミナの球体表面にニッケルを付与したものや、アルミナの球体表面にルテニウムを付与したものが適宜用いられる。
この改質器20の下流端側には、燃料ガス供給管64が接続され、この燃料ガス供給管64は、下方に延び、さらに、燃料電池セル集合体12の下方に形成されたマニホールド66内で水平に延びている。燃料ガス供給管64の水平部64aの下方面には、複数の燃料供給孔64bが形成されており、この燃料供給孔64bから、改質された燃料ガスがマニホールド66内に供給される。
このマニホールド66の上方には、上述した燃料電池セルスタック14を支持するための貫通孔を備えた下支持板68が取り付けられており、マニホールド66内の燃料ガスが、燃料電池セルユニット16内に供給される。
次に、改質器20の上方には、空気用熱交換器22が設けられている。この空気用熱交換器22は、上流側に空気集約室70、下流側に2つの空気分配室72を備え、これらの空気集約室70と空気分配室72は、6個の空気流路管74により接続されている。ここで、図3に示すように、3個の空気流路管74が一組(74a,74b,74c,74d,74e,74f)となっており、空気集約室70内の空気が各組の空気流路管74からそれぞれの空気分配室72へ流入する。
空気用熱交換器22の6個の空気流路管74内を流れる空気は、燃焼室18で燃焼して上昇する排気ガスにより予熱される。
空気分配室72のそれぞれには、空気導入管76が接続され、この空気導入管76は、下方に延び、その下端側が、発電室10の下方空間に連通し、発電室10に余熱された空気を導入する。
次に、マニホールド66の下方には、排気ガス室78が形成されている。また、図3に示すように、ハウジング6の長手方向に沿った面である前面6aと後面6bの内側には、上下方向に延びる排気ガス通路80が形成され、この排気ガス室通路80の上端側は、空気用熱交換器22が配置された空間と連通し、下端側は、排気ガス室78と連通している。また、排気ガス室78の下面のほぼ中央には、排気ガス排出管82が接続され、この排気ガス排出管82の下流端は、図1に示す上述した温水製造装置50に接続されている。
図2に示すように、燃料ガスと空気との燃焼を開始するための点火装置83が、燃焼室18に設けられている。
次に図4により燃料電池セルユニット16について説明する。図4は、本発明の一実施形態による固体電解質型燃料電池(SOFC)の燃料電池セルユニットを示す部分断面図である。
図4に示すように、燃料電池セルユニット16は、燃料電池セル84と、この燃料電池セル84の上下方向端部にそれぞれ接続された内側電極端子86とを備えている。
燃料電池セル84は、上下方向に延びる管状構造体であり、内部に燃料ガス流路88を形成する円筒形の内側電極層90と、円筒形の外側電極層92と、内側電極層90と外側電極層92との間にある電解質層94とを備えている。この内側電極層90は、燃料ガスが通過する燃料極であり、(−)極となり、一方、外側電極層92は、空気と接触する空気極であり、(+)極となっている。
燃料電池セル16の上端側と下端側に取り付けられた内側電極端子86は、同一構造であるため、ここでは、上端側に取り付けられた内側電極端子86について具体的に説明する。内側電極層90の上部90aは、電解質層94と外側電極層92に対して露出された外周面90bと上端面90cとを備えている。内側電極端子86は、導電性のシール材96を介して内側電極層90の外周面90bと接続され、さらに、内側電極層90の上端面90cとは直接接触することにより、内側電極層90と電気的に接続されている。内側電極端子86の中心部には、内側電極層90の燃料ガス流路88と連通する燃料ガス流路98が形成されている。
内側電極層90は、例えば、Niと、CaやY、Sc等の希土類元素から選ばれる少なくとも一種をドープしたジルコニアとの混合体、Niと、希土類元素から選ばれる少なくとも一種をドープしたセリアとの混合体、Niと、Sr、Mg、Co、Fe、Cuから選ばれる少なくとも一種をドープしたランタンガレードとの混合体、の少なくとも一種から形成される。
電解質層94は、例えば、Y、Sc等の希土類元素から選ばれる少なくとも一種をドープしたジルコニア、希土類元素から選ばれる少なくとも一種をドープしたセリア、Sr、Mgから選ばれる少なくとも一種をドープしたランタンガレート、の少なくとも一種から形成される。
外側電極層92は、例えば、Sr、Caから選ばれた少なくとも一種をドープしたランタンマンガナイト、Sr、Co、Ni、Cuから選ばれた少なくとも一種をドープしたランタンフェライト、Sr、Fe、Ni、Cuから選ばれた少なくとも一種をドープしたランタンコバルタイト、銀、などの少なくとも一種から形成される。
次に図5により燃料電池セルスタック14について説明する。図5は、本発明の一実施形態による固体電解質型燃料電池(SOFC)の燃料電池セルスタックを示す斜視図である。
図5に示すように、燃料電池セルスタック14は、16本の燃料電池セルユニット16を備え、これらの燃料電池セルユニット16の下端側及び上端側が、それぞれ、セラミック製の下支持板68及び上支持板100により支持されている。これらの下支持板68及び上支持板100には、内側電極端子86が貫通可能な貫通穴68a及び100aがそれぞれ形成されている。
さらに、燃料電池セルユニット16には、集電体102及び外部端子104が取り付けられている。この集電体102は、燃料極である内側電極層90に取り付けられた内側電極端子86と電気的に接続される燃料極用接続部102aと、空気極である外側電極層92の外周面全体と電気的に接続される空気極用接続部102bとにより一体的に形成されている。空気極用接続部102bは、外側電極層92の表面を上下方向に延びる鉛直部102cと、この鉛直部102cから外側電極層92の表面に沿って水平方向に延びる多数の水平部102dとから形成されている。また、燃料極用接続部102aは、空気極用接続部102bの鉛直部102cから燃料電池セルユニット16の上下方向に位置する内側電極端子86に向って斜め上方又は斜め下方に向って直線的に延びている。
さらに、燃料電池セルスタック14の端(図5では左端の奥側及び手前側)に位置する2個の燃料電池セルユニット16の上側端及び下側端の内側電極端子86には、それぞれ外部端子104が接続されている。これらの外部端子104は、隣接する燃料電池セルスタック14の端にある燃料電池セルユニット16の外部端子104(図示せず)に接続され、上述したように、160本の燃料電池セルユニット16の全てが直列接続されるようになっている。
次に図6により本実施形態による固体電解質型燃料電池(SOFC)に取り付けられたセンサ類等について説明する。図6は、本発明の一実施形態による固体電解質型燃料電池(SOFC)を示すブロック図である。
図6に示すように、固体電解質型燃料電池1は、制御部110を備え、この制御部110には、使用者が操作するための「ON」や「OFF」等の操作ボタンを備えた操作装置112、発電出力値(ワット数)等の種々のデータを表示するための表示装置114、及び、異常状態のとき等に警報(ワーニング)を発する報知装置116が接続されている。なお、この報知装置116は、遠隔地にある管理センタに接続され、この管理センタに異常状態を通知するようなものであっても良い。
次に、制御部110には、以下に説明する種々のセンサからの信号が入力されるようになっている。
先ず、可燃ガス検出センサ120は、ガス漏れを検知するためのもので、燃料電池モジュール2及び補機ユニット4に取り付けられている。
CO検出センサ122は、本来排気ガス通路80等を経て外部に排出される排気ガス中のCOが、燃料電池モジュール2及び補機ユニット4を覆う外部ハウジング(図示せず)へ漏れたかどうかを検知するためのものである。
貯湯状態検出センサ124は、図示しない給湯器におけるお湯の温度や水量を検知するためのものである。
電力状態検出センサ126は、インバータ54及び分電盤(図示せず)の電流及び電圧等を検知するためのものである。
発電用空気流量検出センサ128は、発電室10に供給される発電用空気の流量を検出するためのものである。
改質用空気流量センサ130は、改質器20に供給される改質用空気の流量を検出するためのものである。
燃料流量センサ132は、改質器20に供給される燃料ガスの流量を検出するためのものである。
水流量センサ134は、改質器20に供給される純水(水蒸気)の流量を検出するためのものである。
水位センサ136は、純水タンク26の水位を検出するためのものである。
圧力センサ138は、改質器20の外部の上流側の圧力を検出するためのものである。
排気温度センサ140は、温水製造装置50に流入する排気ガスの温度を検出するためのものである。
発電室温度センサ142は、図3に示すように、燃料電池セル集合体12の近傍の前面側と背面側に設けられ、燃料電池セルスタック14の近傍の温度を検出して、燃料電池セルスタック14(即ち燃料電池セル84自体)の温度を推定するためのものである。
燃焼室温度センサ144は、燃焼室18の温度を検出するためのものである。
排気ガス室温度センサ146は、排気ガス室78の排気ガスの温度を検出するためのものである。
改質器温度センサ148は、改質器20の温度を検出するためのものであり、改質器20の入口温度と出口温度から改質器20の温度を算出する。
外気温度センサ150は、固体電解質型燃料電池(SOFC)が屋外に配置された場合、外気の温度を検出するためのものである。また、外気の湿度等を測定するセンサを設けるようにしても良い。
これらのセンサ類からの信号は、制御部110に送られ、制御部110は、これらの信号によるデータに基づき、水流量調整ユニット28、燃料流量調整ユニット38、改質用空気流量調整ユニット44、発電用空気流量調整ユニット45に、制御信号を送り、これらのユニットにおける各流量を制御するようになっている。
また、制御ユニット110は、インバータ54に、制御信号を送り、電力供給量を制御するようになっている。
次に図7により本実施形態による固体電解質型燃料電池(SOFC)による起動時の動作を説明する。図7は、本発明の一実施形態による固体電解質型燃料電池(SOFC)の起動時の動作を示すタイムチャートである。
最初は、燃料電池モジュール2を温めるために、無負荷状態で、即ち、燃料電池モジュール2を含む回路を開いた状態で、運転を開始する。このとき、回路に電流が流れないので、燃料電池モジュール2は発電を行わない。
先ず、改質用空気流量調整ユニット44から改質用空気を第1ヒータ46を経由して燃料電池モジュール2の改質器20へ供給する。また、同時に、発電用空気流量調整ユニット45から発電用空気を第2ヒータ48を経由して燃料電池モジュール2の空気用熱交換器22へ供給し、この発電用空気が、発電室10及び燃焼室18に到達する。
この直ぐ後、燃料流量調整ユニット38からも燃料ガスが供給され、改質用空気が混合された燃料ガスが、改質器20及び燃料電池セルスタック14、燃料電池セルユニット16を通過して、燃焼室18に到達する。
次に、点火装置83により着火して、燃焼室18にある燃料ガスと空気(改質用空気及び発電用空気)とを燃焼させる。この燃料ガスと空気との燃焼により排気ガスが生じ、この排気ガスにより、発電室10が暖められ、また、排気ガスが燃料電池モジュール2の密封空間8内を上昇する際、改質器20内の改質用空気を含む燃料ガスを暖めると共に、空気熱交換器22内の発電用空気も暖める。
このとき、燃料流量調整ユニット38及び改質用空気流量調整ユニット44により、改質用空気が混合された燃料ガスが改質器20に供給されているので、改質器20において、式(1)に示す部分酸化改質反応POXが進行する。この部分酸化改質反応POXは、発熱反応であるので、起動性が良好となる。また、この昇温した燃料ガスが燃料ガス供給管64により燃料電池セルスタック14の下方に供給され、これにより、燃料電池セルスタック14が下方から加熱され、また、燃焼室18も燃料ガスと空気が燃焼して昇温されているので、燃料電池セルスタック14は、上方からも加熱され、この結果、燃料電池セルスタック14は、上下方向において、ほぼ均等に昇温可能となっている。この部分酸化改質反応POXが進行しても、燃焼室18では継続して燃料ガスと空気との燃焼反応が持続される。
mn+xO2 → aCO2+bCO+cH2 (1)
部分酸化改質反応POXの開始後、改質器温度センサ148により検出された改質器20の温度に基づいて、水流量調整ユニット28、燃料流量調整ユニット38及び改質用空気流量調整ユニット44により、燃料ガスと改質用空気と水蒸気とを予め混合したガスの改質器20への供給が開始される。このとき、改質器20においては、上述した部分酸化改質反応POXと後述する水蒸気改質反応SRとが併用されたオートサーマル改質反応ATRが進行する。このオートサーマル改質反応ATRは、熱的に内部バランスが取れるので、改質器20内では熱的に自立した状態で反応が進行する。即ち、酸素(空気)が多い場合には部分酸化改質反応POXによる発熱が支配的となり、水蒸気が多い場合には水蒸気改質反応SRによる吸熱反応が支配的となる。また、オートサーマル改質反応ATRが進行中も、燃焼室18では燃焼反応が継続して行われている。
式(2)に示すオートサーマル改質反応ATRの開始後、改質器温度センサ146により検出された改質器20の温度に基づいて、改質用空気流量調整ユニット44による改質用空気の供給が停止されると共に、水流量調整ユニット28による水蒸気の供給を増加させる。これにより、改質器20には、空気を含まず燃料ガスと水蒸気のみを含むガスが供給され、改質器20において、式(3)の水蒸気改質反応SRが進行する。
mn+xO2+yH2O → aCO2+bCO+cH2 (2)
mn+xH2O → aCO2+bCO+cH2 (3)
この水蒸気改質反応SRは吸熱反応であるので、燃焼室18からの燃焼熱と熱バランスをとりながら反応が進行する。また、水蒸気改質反応SRが進行しても、燃焼室18では継続して燃焼反応が進行する。
このようにして、燃料電池モジュール2は、点火装置83により点火した後、部分酸化改質反応POX、オートサーマル改質反応ATR、水蒸気改質反応SRが、順次進行することにより、発電室10内の温度が徐々に上昇する。以上の起動処理が終了した後、燃料電池モジュール2からインバータ54に電力が取り出される。即ち、発電が開始される。燃料電池モジュール2の発電により、燃料電池セル84自体も発熱し、燃料電池セル84の温度も上昇する。
発電開始後においても、改質器20の温度を維持するために、燃料電池セル84で発電に消費される燃料ガス及び発電用空気の量よりも多い燃料ガス及び発電用空気を供給し、燃焼室18での燃焼を継続させる。なお、発電中は、改質効率の高い水蒸気改質反応SRで発電が進行する。
次に、図8により本実施形態による固体電解質型燃料電池(SOFC)の運転停止時の動作を説明する。図8は、本実施形態により固体電解質型燃料電池(SOFC)の運転停止時の動作を示すタイムチャートである。
図8に示すように、燃料電池モジュール2の運転停止を行う場合には、先ず、燃料流量調整ユニット38及び水流量調整ユニット28を操作して、燃料ガス及び水蒸気の改質器20への供給量を減少させる。
また、燃料電池モジュール2の運転停止を行う場合には、燃料ガス及び水蒸気の改質器20への供給量を減少させると同時に、改質用空気流量調整ユニット44による発電用空気の燃料電池モジュール2内への供給量を増大させて、燃料電池セル集合体12及び改質器20を空気により冷却し、これらの温度を低下させる。その後、発電室温度が所定温度、例えば、400℃まで低下したとき、燃料ガス及び水蒸気の改質器20への供給を停止し、改質器20の水蒸気改質反応SRを終了する。この発電用空気の供給は、改質器20の温度が所定温度、例えば、200℃まで低下するまで、継続し、この所定温度となったとき、発電用空気流量調整ユニット45からの発電用空気の供給を停止する。
このように、本実施形態においては、燃料電池モジュール2の運転停止を行うとき、改質器20による水蒸気改質反応SRと発電用空気による冷却とを併用しているので、比較的短時間に、燃料電池モジュールの運転を停止させることができる。
次に、図9乃至12を参照して、本発明の実施形態による固体電解質型燃料電池1の発電時における負荷追従運転作用を説明する。
図9は、本実施形態の固体電解質型燃料電池の負荷追従運転を説明するタイムチャートである。図10は、制御部110に入力される要求発電量と、要求発電量を生成するために必要な燃料供給量の関係の一例を示すグラフである。図11は、要求発電量の変更に対する燃料供給量の時間的変化の一例を示すグラフである。図12は、要求発電量と、要求発電量を生成するために必要な燃料供給量、発電用空気供給量、水供給量の関係の一例を示すデータテーブルである。
固体電解質型燃料電池1は、図7により説明した起動処理の後、インバータ54(図6)からの要求発電量に応じた出力電力が得られるように、図9に示す負荷追従運転を実行する。即ち、図6に示すように、コントローラである制御部110は、インバータ54からの要求発電量に応じて、燃料供給装置である燃料流量調整ユニット38、酸化剤ガス供給装置である発電用空気流量調整ユニット45、及び水供給装置である水流量調整ユニット28に信号を送り、必要な流量の燃料、空気、水を燃料電池モジュール2に供給している。これにより、図9に示すように、インバータ54からの要求発電量に追従するように固体電解質型燃料電池1の出力電力が変化する。ここで、要求発電量に対する出力電力の応答には遅れがあり、これは燃料供給量等の変化を緩慢にしているため出力電力が遅れて変化しているものであり、また、要求発電量の急激な変化に対しても、燃料供給量の変化を大きく抑えているため出力電力の追従が遅れているものである。なお、制御部110、燃料流量調整ユニット38、発電用空気流量調整ユニット45、及び水流量調整ユニット28は、夫々、制御手段、燃料供給手段、酸化剤ガス供給手段、及び水供給手段として機能する。
制御部110は、インバータ54からの要求発電量に応じて、図10に一例を示すグラフによって燃料供給量を決定し、決定した流量の燃料が燃料電池モジュール2内の改質器20に供給されるように燃料流量調整ユニット38を制御する。制御部110は、図10の曲線F0に従って要求発電量に対する燃料供給量を決定する。図10に示すように、燃料供給量は、要求発電量の増大に伴って単調に増加するように決定されるが、要求発電量約200W未満では燃料供給量はほぼ一定値にされる。
また、要求発電量が変更された場合に、燃料供給量を急激に変化させると燃料電池セルの温度が急激に変化されるため燃料電池モジュール2の劣化を早めることがあるので、図11に示すように、燃料供給量の変化を緩慢にするために漸増又は漸減される。なお、図11に示すように、燃料を増加させる際の燃料供給量の変化率は、燃料を減少させる際の燃料供給量の変化率よりも小さく設定されている。即ち、燃料供給量の減少に対しては、変化を緩慢にして遅れを大きくすると無用な燃料を消費させることになるため、減少に関しては増加させる場合よりも変化率が大きく設定されている。図11は、要求発電量が500Wから700Wにステップ状に変化された場合における、燃料供給量の時間に対する変化の一例を示すグラフである。図11に示すように、時刻t10において、要求発電量が500Wから700Wに急激に変更されたとすると、必要な燃料供給量も、500Wの電力出力に対応する供給量から700Wに対応する供給量に急激に変化する。しかしながら、制御部110は、燃料供給量が急激に増加することがないよう、図11に想像線F10で示すように、燃料供給量が緩やかに増加されるように燃料流量調整ユニット38を制御する。
同様に、時刻t11において、要求発電量が700Wから500Wに変更された場合にも、制御部110は燃料供給量が急激に減少することがないよう、図11の想像線F10に従って緩やかに燃料供給量を減少させる。なお、燃料供給量の変化率は、供給量を増加させる場合の方が、供給量を減少させる場合よりも緩やかに設定されている。これは先に説明した通り、燃料の減少側はセルの温度を高める方向に作用するものではないためセル劣化の感度が低いことに着目して、無駄な燃料の消費を抑えつつ、燃料の減少が過剰な温度低下につながることがないように配慮して最適化したものである。
さらに、図10及び11は、燃料供給量に関するものであるが、発電用空気供給量、水供給量も、要求発電量に応じて、同様に変更される。
また、本実施形態においては、図12に示すように、要求発電量500Wに対応する燃料供給量は2.3L/minであり、要求発電量700Wに対応する燃料供給量は2.8L/minである。要求発電量が500Wから700Wに増加された場合、制御部110は、4minかけて燃料供給量を2.3L/minから2.8L/minに増加させる。従って、この間の燃料供給量の時間に対する平均的な変化率は、0.125L/min/minである。また、要求発電量が700Wから500Wに低下された場合には、制御部110は、0.5minかけて燃料供給量を2.8L/minから2.3L/minに減少させるので、この間の燃料供給量の平均的な変化率は、1.0L/min/minである。本実施形態において、制御部110は、要求発電量の種々の変化に応じて燃料供給量を変化させるが、要求発電量の変化に対応した燃料供給量の変化率は、0.1〜1.5L/min/minの値に設定されている。
次に、図13と共に図7を再び参照して、本発明の実施形態による固体電解質型燃料電池1の起動処理を詳細に説明する。
図13は、固体電解質型燃料電池1の起動処理手順を示す動作テーブルである。
図7の時刻t0において固体電解質型燃料電池1を起動すると、制御部110は、改質用酸化剤ガス供給装置である改質用空気流量調整ユニット44及び発電用酸化剤ガス供給装置である発電用空気流量調整ユニット45に信号を送ってこれらを起動させ、改質用空気及び発電用空気を燃料電池モジュール2に供給する。なお、本実施形態においては、時刻t0において供給が開始される改質用空気の供給量は10L/min、発電用空気の供給量は100L/minに設定されている(図13)。また、改質用空気流量調整ユニット44は、改質用酸化剤ガス供給手段として機能する。
次いで、時刻t1において、制御部110は、燃料供給装置である燃料流量調整ユニット38に信号を送って、改質器20への燃料供給を開始する。これにより、改質器20へ送り込まれた燃料及び改質用空気は、改質器20、燃料ガス供給管64、マニホールド66を介して各燃料電池セルユニット16内に送り込まれる。各燃料電池セルユニット16内に送り込まれた燃料及び改質用空気は、各燃料電池セルユニット16の燃料ガス流路98上端から夫々流出する。なお、本実施形態においては、時刻t1において供給が開始される燃料の供給量は6L/minに設定されている(図13の「燃焼運転」状態)。
さらに、時刻t2において、制御部110は、点火装置83に信号を送り、燃料電池セルユニット16から流出した燃料に点火する。これにより、燃焼室18内で燃料が燃焼され、その上方に配置された改質器20が加熱されると共に、燃焼室18、発電室10、及びその中に配置された燃料電池セルスタック14の温度も上昇する(図7の時刻t2〜t3)。改質器20が加熱されることにより、改質器20の温度が300゜C程度まで上昇すると、改質器20内においては、部分酸化改質反応(POX)が発生する(図7の時刻t3)。部分酸化改質反応は発熱反応であるため、改質器20は、部分酸化改質反応の発生により、その反応熱によっても加熱されるようになる。
さらに温度が上昇し、改質器20の温度が350゜Cに達すると、制御部110は、燃料流量調整ユニット38に信号を送り、燃料供給量を減少させると共に、改質用空気流量調整ユニット44に信号を送り、改質用空気供給量を増加させる(図7の時刻t4)。これにより、燃料供給量は5L/minに変更され、改質用空気供給量は18L/minに変更される(図13の「POX2」状態)。これらの供給量は、部分酸化改質反応を発生させるために適正な供給量である。即ち、部分酸化改質反応が発生し始める初期の温度領域においては、供給する燃料の割合を多くすることにより、燃料に確実に着火される状態を形成すると共に、その供給量を維持して着火を安定させる(図13の「POX1」状態)。さらに、安定して着火され、温度が上昇した後には、部分酸化改質反応を生成するために必要にして十分な燃料供給量として、燃料の浪費を抑えている(図13の「POX2」状態)。
このように、本実施形態においては、制御部110は、POXが二段階に変化して発生するように燃料流量調整ユニット38を制御する。ここで、一段目のPOX(「POX1」状態)から二段目のPOX(「POX2」状態)への移行は、約4minかけて行われ、燃料供給量は6L/minから5L/minに減少される。従って、この間の燃料供給量の時間に対する平均的な変化率は、0.25L/min/minである。
次に、図7の時刻t5において、改質器20の温度が600゜C以上、且つ、燃料電池セルユニット16の温度が250゜C以上になると、制御部110は、改質用空気流量調整ユニット44に信号を送り、改質用空気供給量を減少させると共に、水供給装置である水流量調整ユニット28に信号を送り、水の供給を開始させる。
制御部110は、4minかけて改質用空気供給量を18L/minから8L/minに減少させる(図13の「ATR1」状態)。従って、この間の改質用空気供給量の時間に対する平均的な変化率は、2.5L/min/minである。また、制御部110は、4minかけて水供給量を0cc/minから2cc/minに増加させる(図13の「ATR1」状態)。従って、この間の水供給量の時間に対する平均的な変化率は、0.5cc/min/minである。なお、時刻t5においては、燃料供給量は変更されない。改質器20内に水(水蒸気)が導入されることにより、改質器20内で水蒸気改質反応も発生するようになる。即ち、図13の「ATR1」状態においては、部分酸化改質反応と水蒸気改質反応が混在したオートサーマル改質(ATR)が発生するようになる。
本実施形態においては、燃料電池セルユニット16の温度は、発電室10内に配置された温度検出手段である発電室温度センサ142によって測定されている。発電室温内の温度と燃料電池セルユニットの温度は、厳密には同一ではないが、発電室温度センサによって検出される温度は燃料電池セルユニットの温度を反映したものであり、発電室内に配置された発電室温度センサにより燃料電池セルユニットの温度を把握することができる。なお、本明細書において、燃料電池セルユニットの温度とは、燃料電池セルユニットの温度を反映した値を指示する任意のセンサにより測定された温度を意味するものとする。
さらに、図7の時刻t6において、改質器20の温度が600゜C以上、且つ、燃料電池セルユニット16の温度が400゜C以上になると、制御部110は、燃料流量調整ユニット38に信号を送り、燃料供給量を減少させる。また、制御部110は、改質用空気流量調整ユニット44に信号を送り、改質用空気供給量を減少させると共に、水流量調整ユニット28に信号を送り、水の供給量を増加させる。これにより、燃料供給量は4L/minに変更され、改質用空気供給量は4L/minに変更され、水供給量は3cc/minにされる(図13の「ATR2」状態)。改質用空気供給量が減少され、水供給量が増加されることにより、改質器20内においては、部分酸化改質反応の割合が減少し、水蒸気改質反応の割合が増加する。
このように、本実施形態においては、制御部110は、ATRが二段階に変化して発生するように燃料流量調整ユニット38を制御する。ここで、一段目のATR(「ATR1」状態)から二段目のATR(「ATR2」状態)への移行は、約4minかけて行われ、燃料供給量は5L/minから4L/minに減少される。従って、この間の燃料供給量の時間に対する平均的な変化率は、0.25L/min/minである。また、改質用空気供給量は8L/minから4L/minに減少され、この間の改質用空気供給量の時間に対する平均的な変化率は、1.0L/min/minである。さらに、水供給量は2cc/minから3cc/minに増加され、この間の水供給量の時間に対する平均的な変化率は、0.25cc/min/minである。
次に、図7の時刻t7において、改質器20の温度が650゜C以上、且つ、燃料電池セルユニット16の温度が600゜C以上になると、制御部110は、改質用空気流量調整ユニット44に信号を送り、改質用空気の供給を停止する。また、制御部110は、燃料流量調整ユニット38に信号を送り、燃料供給量を減少させると共に、水流量調整ユニット28に信号を送り、水の供給量を増加させる。これにより、燃料供給量は3L/minに変更され、水供給量は8cc/minに変更される(図13の「SR1」状態)。改質用空気の供給が停止されることにより、改質器20内においては、部分酸化改質反応は発生しなくなり、水蒸気改質反応のみが発生するSRが開始される。
この二段目のATR(「ATR2」状態)からSR(「SR1」状態)への移行は、約25minの極めて長い時間をかけて行われ、燃料供給量は4L/minから3L/minに減少される。従って、二段目のATRからSRへの移行完了までの燃料供給量の平均変化率は、0.04L/min/minである。さらに、この際の燃料供給量の変化率は、移行の初期において小さく、移行が進むにつれて次第に大きくなるように、即ち、図7のタイムチャートにおける燃料供給量を示す曲線の傾きはATRからSRへの移行の初期において小さく、移行の終期に向けて絶対値が次第に大きくなるように設定されている。
また、二段目のATRからSRへの移行において、改質用空気供給量は4L/minから0L/min(供給停止)に減少され、この間の改質用空気供給量の時間に対する平均的な変化率は、0.16L/min/minである。この際の改質用空気供給量の変化率は、移行の初期において小さく、移行が進むにつれて次第に大きくなるように、即ち、図7のタイムチャートにおける改質用空気供給量を示す曲線の傾きはATRからSRへの移行の初期において小さく、移行の終期に向けて絶対値が次第に大きくなるように設定されている。
さらに、水供給量は3cc/minから8cc/minに増加され、この間の水供給量の時間に対する平均的な変化率は、0.2cc/min/minである。この際の水供給量の変化率は、燃料及び改質用空気とは逆に、移行の初期において大きく、移行が進むにつれて次第に小さくなるように、即ち、図7のタイムチャートにおける水供給量を示す曲線の傾きはATRからSRへの移行の初期において大きく、移行の終期に向けて絶対値が次第に小さくなるように設定されている。このATRからSRへの移行期間においては、改質用空気の供給が次第に減少され、停止されるので、改質器20内で部分酸化改質反応により改質される燃料の量も減少する。改質器内に供給された燃料のうち、部分酸化改質反応によって改質されずに残存した燃料の全量は、水蒸気改質反応により改質される必要がある。本実施形態においては、ATRからSRへの移行の初期において水供給量を増加させる変化率を大きく設定することにより、部分酸化改質反応により改質されずに残る燃料を全て水蒸気改質反応させるために十分な量の水が常に供給されるように、水流量調整ユニット28が制御される。これにより、改質器20内の水蒸気が不足することにより発生する炭素析出等の不具合の発生を確実に防止している。
これらのATRからSRへの移行における燃料供給量、改質用空気供給量、及び水供給量の時間に対する平均的な変化率は、「POX1」状態から「POX2」状態への移行、「POX2」状態から「ATR1」状態への移行、「ATR1」状態から「ATR2」状態への移行、及び後述する「SR1」状態から「SR2」状態への移行時に変更される各供給量の変化率の中で、絶対値が最も小さくなるように設定されている。さらに、二段目のATRからSRへの移行における燃料供給量、改質用空気供給量、及び水供給量の時間に対する平均的な変化率は、発電開始後の負荷追従運転において変更される各供給量の変化率よりも絶対値が小さくなるように設定されている。
さらに、図7の時刻t8において、改質器20の温度が650゜C以上、且つ、燃料電池セルユニット16の温度が700゜C以上になると、制御部110は、燃料流量調整ユニット38に信号を送り、燃料供給量を減少させると共に、水流量調整ユニット28に信号を送り、水の供給量も減少させる。また、制御部110は、発電用空気流量調整ユニット45に信号を送り、発電用空気の供給量も減少させる。これにより、燃料供給量は発電待機燃料供給量である2.3L/minに変更され、水供給量は6.3cc/minに変更され、発電用空気供給量は80L/minに変更される(図13の「SR2」状態)。
このように、本実施形態においては、制御部110は、SRが二段階に変化して発生するように燃料流量調整ユニット38を制御する。ここで、一段目のSR(「SR1」状態)から二段目のSR(「SR2」状態)への移行は、約4minかけて行われ、燃料供給量は3.0L/minから2.3L/minに減少される。従って、この間の燃料供給量の時間に対する平均的な変化率は、0.175L/min/minである。また、水供給量は8.0cc/minから6.3cc/minに減少され、この間の水供給量の時間に対する平均的な変化率は、0.425cc/min/minである。
制御部110は、「SR2」状態の供給量を所定の発電移行時間以上維持した後、燃料電池モジュール2からインバータ54に電力を出力させ、発電を開始する(図7の時刻t9)。発電開始後の燃料供給量、発電用空気供給量、及び水供給量は、要求電力に応じて図10乃至図11に基づいて決定され、供給され、負荷追従運転が実行される。
なお、本実施形態においては、発電移行時間は4分に設定されている。また、図7に示す例では、「SR1」状態に移行した後速やかに燃料電池セルユニット16の温度は発電可能な温度まで上昇しているが、「SR1」状態に移行後所定の初期SR継続時間が経過した場合には、制御部110は、発電可能な温度に達していなくても運転を「SR2」状態に移行させる。即ち、制御部110は、燃料電池セルユニット16が発電可能な温度に上昇するまで、又は、初期SR継続時間が経過するまで、「SR1」状態の燃料供給量を維持する。なお、本実施形態においては、初期SR継続時間は30分に設定されている。さらに、制御部110は、「SR2」状態に移行した後、所定の発電移行時間が経過し、且つ燃料電池セルユニット16の温度が発電可能な温度以上に上昇した場合に発電を開始する。
本発明の実施形態の固体電解質型燃料電池によれば、「ATR2」状態から「SR1」状態に移行する際の燃料供給量の変化率が最も小さくなるように構成されているので、吸熱反応のみが発生するようになる「SR1」状態への移行において、急激な温度低下の発生を防止することができる。これにより、起動状態において、固体電解質型燃料電池セルの温度を安定して上昇させることができ、円滑に発電を開始することができる。また、起動時における燃料供給量の変化率を、「ATR2」状態から「SR1」状態への移行時には最も小さく、他の燃料供給量の変更時にはそれよりも大きくなるように設定しているので、急激な温度低下の発生を防止しながら、起動から発電開始までの所要時間を短縮することができる。
さらに、本実施形態の固体電解質型燃料電池によれば、「ATR2」状態から「SR1」状態に移行する際の燃料供給量の変化率が、出力電力を変化させる際の燃料供給量の変化率よりも小さくなるように構成されているので、起動状態における固体電解質型燃料電池セルの安定した温度上昇を可能にしながら、要求電力に迅速に追従することができる。
また、本実施形態の固体電解質型燃料電池によれば、「ATR2」状態から「SR1」状態に移行する際の時間に対する改質用空気供給量の変化率が、起動時において改質空気供給量を変更する際の変化率のうちで最も小さくなり、「ATR2」状態から「SR1」状態に移行する際の時間に対する水供給量の変化率が、起動時において水供給量を変更する際の変化率のうちで最も小さくなるように設定されているので、「ATR2」状態から「SR1」状態への移行時の改質器における反応の急激な変化が防止される。これにより、固体電解質型燃料電池セルの温度を安定して上昇させることができ、円滑に発電を開始することができる。
さらに、本実施形態の固体電解質型燃料電池によれば、「ATR2」状態から「SR1」状態に移行する際の時間に対する燃料供給量の変化率が、移行の終期には、移行の初期よりも大きくなるように設定されているので、急激な温度変化を防止しながら、「ATR2」状態から「SR1」状態への移行期間を短縮することができる。
以上、本発明の好ましい実施形態を説明したが、上述した実施形態に種々の変更を加えることができる。特に、上述した実施形態においては、固体電解質型燃料電池は、要求発電量に応じて出力電力を可変するように構成されていたが、常に一定の電力を出力する燃料電池に本発明を適用することもできる。
1 固体電解質型燃料電池
2 燃料電池モジュール
4 補機ユニット
8 密封空間
10 発電室
12 燃料電池セル集合体
14 燃料電池セルスタック
16 燃料電池セルユニット(固体電解質型燃料電池セル)
18 燃焼室
20 改質器
22 空気用熱交換器
24 水供給源
26 純水タンク
28 水流量調整ユニット(水供給装置)
30 燃料供給源
38 燃料流量調整ユニット(燃料供給装置)
40 空気供給源
44 改質用空気流量調整ユニット(改質用酸化剤ガス供給装置、手段)
45 発電用空気流量調整ユニット(発電用酸化剤ガス供給装置、手段)
46 第1ヒータ
48 第2ヒータ
50 温水製造装置
52 制御ボックス
54 インバータ
83 点火装置
84 燃料電池セル
110 制御部(コントローラ、制御手段)
112 操作装置
114 表示装置
116 警報装置
126 電力状態検出センサ
142 発電室温度センサ(温度検出手段)
150 外気温度センサ

Claims (8)

  1. 燃料と発電用の酸化剤ガスを反応させて発電する固体電解質型燃料電池であって、
    複数の固体電解質型燃料電池セルを備えた燃料電池モジュールと、
    上記固体電解質型燃料電池セルに改質された燃料を供給する改質器と、
    この改質器に改質すべき燃料を供給する燃料供給装置と、
    上記改質器に改質用の酸化剤ガスを供給する改質用酸化剤ガス供給装置と、
    上記改質器に水を供給する水供給装置と、
    上記固体電解質型燃料電池セルに発電用の酸化剤ガスを供給する発電用酸化剤ガス供給装置と、
    上記燃料電池モジュールによる発電が開始される前の起動運転として、上記燃料供給装置、上記改質用酸化剤ガス供給装置、及び上記水供給装置を制御して、上記改質器内において、部分酸化改質反応のみが発生するPOX運転、部分酸化改質反応及び水蒸気改質反応が発生するATR運転、水蒸気改質反応のみが発生するSR運転の順に改質反応が発生されるように、上記各運転において段階的に燃料供給量を減少させながら上記固体電解質型燃料電池セルを発電可能な温度に上昇させて起動するコントローラと、を有し、
    上記コントローラは、ATR運転からSR運転に移行する際の時間に対する燃料供給量の変化率が、起動運転において燃料供給量を変更する際の変化率のうちで最も小さくなるように上記燃料供給装置を制御することを特徴とする固体電解質型燃料電池。
  2. 上記コントローラは、起動運転において、改質用酸化剤ガス供給量及び水供給量を段階的に変化させるように構成され、ATR運転からSR運転に移行する際の時間に対する改質用酸化剤ガス供給量の変化率が、起動時において改質用酸化剤ガス供給量を変更する際の変化率のうちで最も小さくなり、且つATR運転からSR運転に移行する際の時間に対する水供給量の変化率が、起動運転において水供給量を変更する際の変化率のうちで最も小さくなるように上記改質用酸化剤ガス供給装置及び上記水供給装置を制御する請求項1記載の固体電解質型燃料電池。
  3. 上記コントローラは、ATR運転における燃料供給量からSR運転における燃料供給量に移行する際の時間に対する燃料供給量の変化率が、移行の終期には、移行の初期よりも大きくなるように上記燃料供給装置を制御することを特徴とする請求項1記載の固体電解質型燃料電池。
  4. 上記コントローラは、ATR運転における改質用酸化剤ガス供給量からSR運転において改質用酸化剤ガスの供給を停止させた状態に移行する際の時間に対する改質用酸化剤ガス供給量の変化率が、移行の終期には、移行の初期よりも大きくなるように上記改質用酸化剤ガス供給装置を制御することを特徴とする請求項1記載の固体電解質型燃料電池。
  5. 上記コントローラは、ATR運転における改質用酸化剤ガス供給量からSR運転において改質用酸化剤ガスの供給を停止させた状態に移行する際の時間に対する改質用酸化剤ガス供給量の変化率が、移行の終期には、移行の初期よりも大きくなるように上記改質用酸化剤ガス供給装置を制御することを特徴とする請求項3記載の固体電解質型燃料電池。
  6. 上記コントローラは、ATR運転における水供給量からSR運転における水供給量に移行する際、部分酸化改質反応により改質されずに残存した燃料の全てを、水蒸気改質反応により改質するために十分な量の水が、常に供給されるように上記水供給装置を制御することを特徴とする請求項5記載の固体電解質型燃料電池。
  7. 上記コントローラは、ATR運転における水供給量からSR運転における水供給量に移行する際の時間に対する水供給量の変化率が、移行の初期には、移行の終期よりも大きくなるように上記水供給装置を制御することを特徴とする請求項2記載の固体電解質型燃料電池。
  8. 燃料と発電用の酸化剤ガスを反応させて発電する固体電解質型燃料電池であって、
    複数の固体電解質型燃料電池セルを備えた燃料電池モジュールと、
    上記固体電解質型燃料電池セルに改質された燃料を供給する改質器と、
    この改質器に改質すべき燃料を供給する燃料供給手段と、
    上記改質器に改質用の酸化剤ガスを供給する改質用酸化剤ガス供給手段と、
    上記改質器に水を供給する水供給手段と、
    上記固体電解質型燃料電池セルに発電用の酸化剤ガスを供給する発電用酸化剤ガス供給手段と、
    上記燃料電池モジュールによる発電が開始される前の起動運転として、上記燃料供給手段、上記改質用酸化剤ガス供給手段、及び上記水供給手段を制御して、上記改質器内において、部分酸化改質反応のみが発生するPOX運転、部分酸化改質反応及び水蒸気改質反応が発生するATR運転、水蒸気改質反応のみが発生するSR運転の順に改質反応が発生されるように、上記各運転において段階的に燃料供給量を減少させながら上記固体電解質型燃料電池セルを発電可能な温度に上昇させて起動する制御手段と、を有し、
    上記制御手段は、ATR運転からSR運転に移行する際の時間に対する燃料供給量の変化率が、起動運転において燃料供給量を変更する際の変化率のうちで最も小さくなるように上記燃料供給手段を制御することを特徴とする固体電解質型燃料電池。
JP2010114970A 2009-05-28 2010-05-19 固体電解質型燃料電池 Expired - Fee Related JP4761260B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010114970A JP4761260B2 (ja) 2009-05-28 2010-05-19 固体電解質型燃料電池
US12/788,923 US8497044B2 (en) 2009-05-28 2010-05-27 Solid oxide fuel cell device
EP10164136A EP2312679B1 (en) 2009-05-28 2010-05-27 Solid oxide fuel cell device
CN2010101886011A CN101901926B (zh) 2009-05-28 2010-05-28 固体电解质型燃料电池

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009129053 2009-05-28
JP2009129053 2009-05-28
JP2010114970A JP4761260B2 (ja) 2009-05-28 2010-05-19 固体電解質型燃料電池

Publications (2)

Publication Number Publication Date
JP2011009196A true JP2011009196A (ja) 2011-01-13
JP4761260B2 JP4761260B2 (ja) 2011-08-31

Family

ID=43220611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010114970A Expired - Fee Related JP4761260B2 (ja) 2009-05-28 2010-05-19 固体電解質型燃料電池

Country Status (4)

Country Link
US (1) US8497044B2 (ja)
EP (1) EP2312679B1 (ja)
JP (1) JP4761260B2 (ja)
CN (1) CN101901926B (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137564A1 (ja) * 2011-04-04 2012-10-11 日産自動車株式会社 固体酸化物型燃料電池システム及びその運転方法
JP2012216290A (ja) * 2011-03-31 2012-11-08 Toto Ltd 固体酸化物型燃料電池
WO2013035771A1 (ja) * 2011-09-07 2013-03-14 Toto株式会社 固体酸化物型燃料電池
JP5327491B1 (ja) * 2012-07-19 2013-10-30 Toto株式会社 固体酸化物型燃料電池
JP2015074586A (ja) * 2013-10-09 2015-04-20 大阪瓦斯株式会社 水蒸気改質反応器の運転方法、水蒸気改質反応装置および燃料電池発電装置
JP2017183228A (ja) * 2016-03-31 2017-10-05 本田技研工業株式会社 燃料電池モジュールおよび燃料電池モジュールの制御方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4761259B2 (ja) * 2009-05-28 2011-08-31 Toto株式会社 固体電解質型燃料電池
JP5517106B2 (ja) * 2009-05-28 2014-06-11 Toto株式会社 固体電解質型燃料電池
JP5316830B1 (ja) * 2012-03-23 2013-10-16 Toto株式会社 固体酸化物型燃料電池
JP6094737B2 (ja) * 2012-03-23 2017-03-15 Toto株式会社 固体酸化物型燃料電池
JP5316829B1 (ja) * 2012-04-09 2013-10-16 Toto株式会社 固体酸化物型燃料電池
US9780391B2 (en) * 2012-07-19 2017-10-03 Toto Ltd. Solid oxide fuel cell device
EP2991146A1 (en) * 2014-08-28 2016-03-02 Toto Ltd. Solid oxide fuel cell apparatus
JP6593057B2 (ja) * 2015-09-17 2019-10-23 ブラザー工業株式会社 燃料電池、制御方法、及びコンピュータプログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121003A (ja) * 2000-10-13 2002-04-23 Toyota Motor Corp 改質器の原料投入量制御
JP2002201002A (ja) * 2000-12-27 2002-07-16 Toyota Motor Corp 改質器の起動制御
JP2004319420A (ja) * 2003-02-25 2004-11-11 Kyocera Corp 燃料電池及びその運転方法
WO2009028427A1 (ja) * 2007-08-29 2009-03-05 Kyocera Corporation 燃料電池装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4265173B2 (ja) * 2002-08-23 2009-05-20 日産自動車株式会社 発電装置
JP2005293951A (ja) 2004-03-31 2005-10-20 Sumitomo Precision Prod Co Ltd 燃料電池及びその運転方法
JP2007103194A (ja) 2005-09-06 2007-04-19 Toto Ltd 固体酸化物形燃料電池を備えた電源

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121003A (ja) * 2000-10-13 2002-04-23 Toyota Motor Corp 改質器の原料投入量制御
JP2002201002A (ja) * 2000-12-27 2002-07-16 Toyota Motor Corp 改質器の起動制御
JP2004319420A (ja) * 2003-02-25 2004-11-11 Kyocera Corp 燃料電池及びその運転方法
WO2009028427A1 (ja) * 2007-08-29 2009-03-05 Kyocera Corporation 燃料電池装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012216290A (ja) * 2011-03-31 2012-11-08 Toto Ltd 固体酸化物型燃料電池
WO2012137564A1 (ja) * 2011-04-04 2012-10-11 日産自動車株式会社 固体酸化物型燃料電池システム及びその運転方法
JP2012221563A (ja) * 2011-04-04 2012-11-12 Nissan Motor Co Ltd 固体酸化物型燃料電池システム
WO2013035771A1 (ja) * 2011-09-07 2013-03-14 Toto株式会社 固体酸化物型燃料電池
JP2013069669A (ja) * 2011-09-07 2013-04-18 Toto Ltd 固体酸化物型燃料電池
US9236625B2 (en) 2011-09-07 2016-01-12 Toto Ltd. Solid oxide fuel cell system
JP5327491B1 (ja) * 2012-07-19 2013-10-30 Toto株式会社 固体酸化物型燃料電池
US9331348B2 (en) 2012-07-19 2016-05-03 Toto Ltd. Solid oxide fuel cell device
JP2015074586A (ja) * 2013-10-09 2015-04-20 大阪瓦斯株式会社 水蒸気改質反応器の運転方法、水蒸気改質反応装置および燃料電池発電装置
JP2017183228A (ja) * 2016-03-31 2017-10-05 本田技研工業株式会社 燃料電池モジュールおよび燃料電池モジュールの制御方法

Also Published As

Publication number Publication date
EP2312679A1 (en) 2011-04-20
US20100304245A1 (en) 2010-12-02
JP4761260B2 (ja) 2011-08-31
CN101901926B (zh) 2013-03-20
US8497044B2 (en) 2013-07-30
EP2312679B1 (en) 2012-05-23
CN101901926A (zh) 2010-12-01

Similar Documents

Publication Publication Date Title
JP4761260B2 (ja) 固体電解質型燃料電池
JP4761259B2 (ja) 固体電解質型燃料電池
JP5500504B2 (ja) 固体電解質型燃料電池
JP5517106B2 (ja) 固体電解質型燃料電池
JP4707023B2 (ja) 固体電解質型燃料電池
JP6070923B2 (ja) 固体酸化物型燃料電池
WO2012043645A1 (ja) 燃料電池装置
JP6108073B2 (ja) 固体酸化物型燃料電池
JP2010277843A (ja) 固体電解質型燃料電池
JP2010238623A (ja) 固体電解質型燃料電池
JP5441001B2 (ja) 固体電解質型燃料電池
JP2011009136A (ja) 固体電解質型燃料電池
JP2012142217A (ja) 固体酸化物形燃料電池装置
JP5618069B2 (ja) 固体酸化物形燃料電池装置
JP5594648B2 (ja) 固体酸化物形燃料電池装置
JP5517096B2 (ja) 固体電解質型燃料電池
JP5412923B2 (ja) 固体電解質型燃料電池
JP5585931B2 (ja) 固体電解質型燃料電池
JP2013235711A (ja) 固体酸化物型燃料電池
JP2013229155A (ja) 固体酸化物型燃料電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101026

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20101026

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20101117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110516

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4761260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110529

LAPS Cancellation because of no payment of annual fees