JP2011007113A - 筒内噴射式内燃機関の制御装置 - Google Patents

筒内噴射式内燃機関の制御装置 Download PDF

Info

Publication number
JP2011007113A
JP2011007113A JP2009151754A JP2009151754A JP2011007113A JP 2011007113 A JP2011007113 A JP 2011007113A JP 2009151754 A JP2009151754 A JP 2009151754A JP 2009151754 A JP2009151754 A JP 2009151754A JP 2011007113 A JP2011007113 A JP 2011007113A
Authority
JP
Japan
Prior art keywords
exhaust
internal combustion
valve
combustion engine
increase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009151754A
Other languages
English (en)
Inventor
Hiroaki Fujii
宏明 藤井
Makoto Tanaka
田中  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2009151754A priority Critical patent/JP2011007113A/ja
Priority to DE102010030496.4A priority patent/DE102010030496B4/de
Publication of JP2011007113A publication Critical patent/JP2011007113A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0242Variable control of the exhaust valves only
    • F02D13/0246Variable control of the exhaust valves only changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0242Variable control of the exhaust valves only
    • F02D13/0249Variable control of the exhaust valves only changing the valve timing only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/01Internal exhaust gas recirculation, i.e. wherein the residual exhaust gases are trapped in the cylinder or pushed back from the intake or the exhaust manifold into the combustion chamber without the use of additional passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/104Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on a side position of the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

【課題】筒内噴射エンジンの燃焼室内で発生したスモーク等のパーティクルマター(PM)を再燃焼させてPM排出量を低減する。
【解決手段】エンジン運転状態に基づいてエンジン11の燃焼室内で発生するPMが増加するか否かを予測し、PMの増加が予測されたときに、排気バルブ38の開弁タイミングを遅角させるように排気側可変バルブリフト装置40を制御する。このように、燃焼室内で発生するPMの増加が予測されたときに、排気バルブ38の開弁タイミングを遅角させるれば、エンジン11の燃焼室内に着火直後の高温の燃焼ガスを閉じ込める期間を、排気バルブ38の開弁タイミングを遅角させる分だけ拡大することができる。これにより、燃焼室内で発生したPMが高温ガスに晒される高温期間(再燃焼期間)を拡大して、燃焼室内でPMの再燃焼を促進してPM排出量を低減する。
【選択図】図1

Description

本発明は、筒内に燃料を直接噴射する筒内噴射式内燃機関の制御装置に関する発明である。
近年、内燃機関の高出力化、低燃費化、低エミッション化の要求を満たすために、筒内噴射内燃機関(直噴エンジン)を搭載した車両が増加している。この筒内噴射内燃機関は運転条件によっては、スモーク等のパーティクルマターの排出量が増加するため、従来より、スモーク排出量を低減する技術が幾つか提案されている。
例えば、特許文献1(特開2002−327651号公報)では、燃焼室の温度を推定して、その推定温度が所定温度以下のときに、排気に黒煙が含まれる状態であると判断して、内部EGRを増加させるとともに、燃焼状態が不安定になると判断された場合にはそれを抑制する制御(例えば内部EGR量の減少、点火時期の進角、燃料噴射時期の進角、吸入空気量の増加等)を行うことで、黒煙の発生を抑制し、かつ燃焼が不安定になるのを防ぐようにしている。
また、特許文献2(特開2008−88856号公報)では、ピストンウエット(ピストン付着燃料量)が多くなると、スモークが発生量が多くなるという関係を考慮して、燃料噴射期間中において、ピストン位置が高いときに、ピストン位置が低いときと比較して、燃料噴射弁から噴射する燃料の貫徹力が弱くなるように噴射燃料の貫徹力を少くとも2段階に切り換えるようにしている。
特開2002−327651号公報 特開2008−88856号公報
上記特許文献1,2のスモーク低減技術は、いずれも、エンジンの燃焼室内で発生するスモーク発生量を低減する技術である。しかし、エンジン運転条件や燃料性状によっては、スモーク発生量を十分に低減できない場合がある。このような場合、燃焼室で発生したスモークは、排気管中の触媒によっては浄化されないため、そのままテールパイプから車外に放出される。
そこで、本発明が解決しようとする課題は、内燃機関の燃焼室内で発生したスモーク等のパーティクルマター(以下「PM」と表記する)を再燃焼させてPM排出量を低減できる筒内噴射式内燃機関の制御装置を提供することにある。
上記課題を解決するために、請求項1に係る発明は、筒内に燃料を直接噴射する筒内噴射式内燃機関の制御装置において、排気バルブの少なくとも開弁タイミングを変化させる排気側可変バルブ装置と、前記内燃機関の運転状態に基づいて該内燃機関の燃焼室内で発生するPMが増加するか否かを予測するPM増加予測手段と、前記PM増加予測手段によりPMの増加が予測されたときに前記排気バルブの開弁タイミングを遅角させるように前記排気側可変バルブ装置を制御する制御手段とを備えた構成としたものである。
このように、内燃機関の燃焼室内で発生するPMの増加が予測されたときに、排気バルブの開弁タイミングを遅角させるようにすれば、内燃機関の燃焼室内に着火直後の高温の燃焼ガスを閉じ込める期間を、排気バルブの開弁タイミングを遅角させる分だけ拡大することができる。これにより、燃焼室内で発生したPMが高温ガスに晒される高温期間(再燃焼期間)を拡大することができ、この高温期間中に発生したPMの再燃焼を促進して、PM排出量を効果的に低減することができる。
この場合、請求項2のように、PM増加予測手段は、内燃機関の運転状態が成層燃焼時、冷間始動時、高負荷時のいずれかに該当するときに、PMが増加すると予測するようにすると良い。一般に、成層燃焼は、均質燃焼と比べてPMが発生しやすい。また、冷間始動時や高負荷時は、均質燃焼でもPMが発生しやすい。従って、成層燃焼時、冷間始動時、高負荷時のいずれかに該当するか否かで、PMが増加するか否かを予測することが可能である。
ところで、排気バルブの開弁タイミングを遅角させるほど、内部EGR量(排気残留量)が増加する傾向があり、内部EGR量が多くなり過ぎると、燃焼安定性が低下する。
そこで、請求項3のように、PM増加予測手段によりPMの増加が予測されたときに、内部EGR量を推定し、推定した内部EGR量に基づいて燃焼安定性を確保できる範囲内で排気バルブの開弁タイミングを遅角させるようにすると良い。このようにすれば、内部EGR量が過多になることにより燃焼安定性が低下することを回避することができ、PM排出量低減と燃焼安定性確保とを両立させることができる。
上記請求項1〜3に係る発明で用いる排気側可変バルブ装置は、請求項4のように、排気バルブのバルブリフト量を変化させる可変バルブリフト装置であっても良いし、請求項5のように、排気バルブのバルブタイミングを変化させる可変バルブタイミング装置であっても良く、要は、排気バルブの少なくとも開弁タイミングを変化させることができる可変バルブ装置であれば良い。
また、請求項6のように、筒内噴射式内燃機関の排気通路に設けられた排気タービンによって吸気通路に設けられたコンプレッサを駆動して吸入空気を過給する過給機と、前記排気タービンをバイパスする排気バイパス通路を開閉するウェイストゲートバルブとを備えた過給機付きの筒内噴射式内燃機関においては、内燃機関の運転状態に基づいて該内燃機関から排出されるPMが増加するか否かを予測し、前記ウェイストゲートバルブが開放されている運転領域でPMの増加が予測されたときに前記ウェイストゲートバルブを閉じるようにしても良い。つまり、ウェイストゲートバルブが開放されている運転領域でPMの増加が予測されたときに、ウェイストゲートバルブを閉じるようにすれば、排気タービンをバイパスする排気バイパス通路への燃焼ガスの流れが遮断されて、内燃機関から排出される燃焼ガスが全て排気タービン側の排気通路に流れるようになる。これにより、排気タービン側の排気通路内の排気圧力が上昇して該排気通路内の温度が上昇して、内燃機関から該排気通路内に排出される燃焼ガス中のPMの再燃焼が促進されて、PM排出量が効果的に低減される。
また、請求項7のように、排気通路に二次空気を供給する二次空気供給装置を備えた筒内噴射式内燃機関においては、内燃機関の運転状態に基づいて該内燃機関から排出されるPMが増加するか否かを予測し、PMの増加が予測されたときに前記二次空気供給装置を作動させて前記排気通路に二次空気を供給するようにしても良い。つまり、PMの増加が予測されたときに排気通路に二次空気を供給するようにすれば、排気通路内の酸素濃度が上昇して、内燃機関から排気通路内に排出される燃焼ガス中のPMの再燃焼(酸化反応)が促進されて、PM排出量が効果的に低減される。
図1は本発明の実施例1におけるエンジン制御システムの構成を概略的に示す図である。 図2は実施例1のPM低減制御ルーチンの処理の流れを示すフローチャートである。 図3はPM増加予測時に排気バルブの開弁タイミングを遅角させたときの筒内ガス平均温度の変化を通常時と比較して説明する図である。 図4は排気バルブの開弁タイミングを遅角させたときの筒内ガス平均温度の挙動とPM排出量との関係を説明する図である。 図5は本発明の実施例2における過給機付きのエンジン制御システムの構成を概略的に示す図である。 図6は実施例2のPM低減制御ルーチンの処理の流れを示すフローチャートである。 図7は本発明の実施例3における二次空気供給装置付きのエンジン制御システムの構成を概略的に示す図である。 図8は実施例3のPM低減制御ルーチンの処理の流れを示すフローチャートである。
以下、本発明を実施するための形態を具体化した3つの実施例1〜3を説明する。
本発明を排気側可変バルブ装置付きの筒内噴射式内燃機関に適用した実施例1を図1乃至図4に基づいて説明する。
まず、図1に基づいてエンジン制御システム全体の構成を概略的に説明する。
筒内噴射式の内燃機関であるエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、DCモータ等のモータ15によって駆動されるスロットルバルブ16が設けられ、このスロットルバルブ16の開度(スロットル開度)がスロットル開度センサ17によって検出される。
また、スロットルバルブ16の下流側には、サージタンク18が設けられ、このサージタンク18に、吸気管圧力を検出する吸気管圧力センサ19が設けられている。また、サージタンク18には、エンジン11の各気筒に空気を導入する吸気マニホールド20が設けられ、各気筒の吸気マニホールド20に、エンジン11の筒内の気流(スワール流やタンブル流)を制御する気流制御弁31が設けられている。
一方、エンジン11の各気筒の上部には、それぞれ燃料を筒内に直接噴射する燃料噴射弁21が取り付けられている。エンジン11のシリンダヘッドには、各気筒毎に点火プラグ22が取り付けられ、各点火プラグ22の火花放電によって筒内の混合気に着火される。また、エンジン11の吸気バルブ37と排気バルブ38には、それぞれバルブリフト量と開弁タイミングを変化させる吸気側・排気側可変バルブリフト装置39,40(可変バルブ装置)が設けられている。各可変バルブリフト装置39,40は、油圧を駆動源とする油圧駆動式のものであっても良いし、モータ、ソレノイド等の電気アクチュエータを駆動源とする電気駆動式のものであっても良い。
エンジン11のシリンダブロックには、ノッキングを検出するノックセンサ32と、冷却水温を検出する冷却水温センサ23と、所定クランク角毎にクランクパルスを出力するクランク角センサ24と、基準カム角毎にカムパルスを出力する吸気側・排気側カム角センサ(図示せず)が取り付けられ、クランクパルスの間隔(周波数)に基づいてエンジン回転速度が演算されると共に、カムパルスの出力位相を基準にしてクランクパルスをカウントしてそのカウント値からクランク角が検出される。更に、クランク角センサ24と吸気側・排気側カム角センサの出力パルスとの関係に基づいて吸気バルブ37の開弁タイミングと排気バルブ38の開弁タイミングが演算される。
一方、エンジン11の排気管25(排気通路)には、排出ガスを浄化する上流側触媒26と下流側触媒27が設けられ、上流側触媒26の上流側に、排出ガスの空燃比又はリーン/リッチ等を検出する排出ガスセンサ28(空燃比センサ、酸素センサ等)が設けられている。本実施例1では、上流側触媒26として理論空燃比付近で排出ガス中のCO,HC,NOx等を浄化する三元触媒が設けられ、下流側触媒27としてNOx触媒(NOx吸蔵還元型触媒)が設けられている。このNOx触媒27は、排出ガスの空燃比がリーンのときに排出ガス中のNOxを吸蔵し、空燃比が理論空燃比付近又はリッチになったときに吸蔵NOxを還元浄化して放出する特性を持っている。
また、排気管25のうちの上流側触媒26の下流側と吸気管12のうちのスロットルバルブ16の下流側のサージタンク18との間には、排出ガスの一部を吸気側に還流させるためのEGR配管33が接続され、このEGR配管33の途中にEGR量(排気還流量)を制御するEGR弁34が設けられている。
前述した各種センサの出力は、エンジン制御回路(以下「ECU」と表記する)30に入力される。このECU30は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種の制御ルーチンを実行することで、エンジン運転状態に応じて燃料噴射弁21の燃料噴射量や燃料噴射時期、点火プラグ22の点火時期、吸気側・排気側可変バルブリフト装置39,40のバルブリフト量と開弁タイミング等を制御する。
このECU30は、エンジン運転状態(要求トルク、エンジン回転速度、負荷等)に応じて成層燃焼モードと均質燃焼モードとを切り換える。成層燃焼モードでは、少量の燃料を圧縮行程で筒内に直接噴射して点火プラグ22の近傍に成層混合気を形成して成層燃焼させることで、燃費を向上させる。一方、均質燃焼モードでは、燃料噴射量を成層燃焼時よりも増量して吸気行程で筒内に直接噴射して均質混合気を形成して均質燃焼させることで、エンジン出力を高める。
一般に、成層燃焼は、均質燃焼と比べてスモーク等のパーティクルマター(以下「PM」と表記する)が発生しやすい。また、冷間始動時や高負荷時は、均質燃焼でもPMが発生しやすい。従って、成層燃焼時、冷間始動時、高負荷時には、エンジン11の燃焼室内でのPM発生量が多くなる。
そこで、本実施例1では、ECU30は、後述する図2のPM低減制御ルーチンを実行することで、エンジン運転状態に基づいてエンジン11の燃焼室内で発生するPMが増加するか否かを予測し、PMの増加が予測されたときに、排気バルブ38の開弁タイミングを遅角させるように排気側可変バルブリフト装置40を制御する。図3に示すように、エンジン11の燃焼室内で発生するPMの増加が予測されたときに、排気バルブ38の開弁タイミングを遅角させるようにすれば、エンジン11の燃焼室内に着火直後の高温の燃焼ガスを閉じ込める期間を、排気バルブ38の開弁タイミングを遅角させる分だけ拡大することができる。これにより、燃焼室内で発生したPMが高温ガスに晒される高温期間(再燃焼期間)を通常よりも拡大することができ、図4に示すように、高温期間を適度に拡大することで、燃焼室内でPMの再燃焼を促進して、PM排出量を効果的に低減することができる。
以上説明した本実施例1のPM低減制御は、ECU30によって図2のPM低減制御ルーチンに従って次のようにして実行される。本ルーチンは、排気側可変バルブリフト装置40(以下「排気VVL」と表記する)の目標バルブリフト量・目標開弁タイミングの変更時に実行され、特許請求の範囲でいう制御手段としての役割を果たす。本ルーチンが起動されると、まずステップ101で、各種センサの出力信号に基づいて現在のエンジン運転状態を判定し、次のステップ102で、現在のエンジン運転状態に基づいて排気VVLの制御状態を補正可能であるか否かを判定し、排気VVLの制御状態を補正できないと判定されれば、以降の処理を行うことなく、本ルーチンを終了する。
これに対し、上記ステップ102で、排気VVLの制御状態を補正可能であると判定されれば、ステップ103に進み、エンジン運転領域がエンジン11の燃焼室内で発生するPMが増加するPM増加領域であるか否かを判定する。本実施例1では、成層燃焼時、冷間始動時、高負荷時のいずれかに該当するか否かで、PM増加領域であるか否かを判定する。このステップ103の処理が特許請求の範囲でいうPM増加予測手段としての役割を果たす。このステップ103で、PM増加領域ではないと判定されれば、燃焼室内でのPM発生量が少なく、PM低減制御を行う必要がないと判断して、以降の処理を行うことなく、本ルーチンを終了する。
一方、上記ステップ103で、PM増加領域であると判定されれば、ステップ104に進み、吸気バルブ37と排気バルブ38のバルブリフト量と開閉タイミング等に基づいて内部EGR量(排気残留量)を推定する。この後、ステップ105に進み、内部EGR量に基づいて排気VVLを遅角可能であるか否かを判定し、排気VVLを遅角できないと判定されれば、以降の処理を行うことなく、本ルーチンを終了する。これは、内部EGR量が多くなり過ぎると、燃焼安定性が低下するため、内部EGR量が多くなり過ぎないようにするためである。
上記ステップ105で、排気VVLを遅角可能であると判定されれば、ステップ106に進み、排気VVLの目標開弁タイミングを設定する。この後、ステップ107に進み、上記排気VVLの目標開弁タイミングに制御した場合の内部EGR量が適正範囲内(燃焼安定性を確保できる範囲内)であるか否かを判定し、内部EGR量が適正範囲内であると判定されれば、ステップ111に進み、排気VVLの開弁タイミングを上記ステップ106で設定した目標開弁タイミングに補正(遅角)する。これにより、燃焼室内で発生したPMが高温ガスに晒される高温期間(再燃焼期間)を拡大して、燃焼室内でPMの再燃焼を促進してPM排出量を低減する。
これに対し、上記ステップ107で、内部EGR量が適正範囲を越えていると判定されれば、ステップ108に進み、排気VVLの目標バルブリフト量を内部EGR量を減少させる方向に補正すると共に、次のステップ109で、吸気VVL(吸気側可変バルブリフト装置39)の目標バルブリフト量を内部EGR量を減少させる方向に補正する。この後、ステップ110に進み、前記ステップ106で設定した排気VVLの目標開弁タイミングに制御した場合の内部EGR量が適正範囲内(燃焼安定性を確保できる範囲内)であるか否かを判定し、内部EGR量が適正範囲内であると判定されれば、ステップ111に進み、排気VVLの開弁タイミングを前記ステップ106で設定した目標開弁タイミングに補正(遅角)する。
尚、上記ステップ110で、内部EGR量が適正範囲を越えていると判定されれば、ステップ106に戻り、排気VVLの目標開弁タイミングを内部EGR量を減少させる方向に補正して、上述したステップ107〜110の処理を繰り返す。これにより、内部EGR量が燃焼安定性を確保できる範囲内で排気VVLの目標開弁タイミングをできるだけ遅角側に設定する。
以上説明した本実施例1では、エンジン運転状態に基づいてエンジン11の燃焼室内で発生するPMが増加するか否かを予測し、PMの増加が予測されたときに、排気バルブ38の開弁タイミングを遅角させるように排気側可変バルブリフト装置40を制御するようにしたので、エンジン11の燃焼室内で発生するPMの増加が予測されたときに、燃焼室内で発生したPMが高温ガスに晒される高温期間(再燃焼期間)を通常よりも拡大することができて、燃焼室内でPMの再燃焼を促進して、PM排出量を効果的に低減することができる。
しかも、本実施例1では、PMの増加が予測されたときに、内部EGR量を推定し、推定した内部EGR量に基づいて燃焼安定性を確保できる範囲内で排気バルブ38の開弁タイミングを遅角させるようにしたので、内部EGR量が過多になることにより燃焼安定性が低下することを回避することができ、PM排出量低減と燃焼安定性確保とを両立させることができる。
尚、本実施例1では、排気側可変バルブ装置として、排気バルブ38のバルブリフト量を変化させる可変バルブリフト装置40を用いたが、排気バルブ38のバルブタイミングを変化させる可変バルブタイミング装置を用いても良く、要は、排気バルブ38の少なくとも開弁タイミングを変化させることができる可変バルブ装置を用いれば良い。
次に、図5及び図6を用いて本発明を過給機付きの筒内噴射内燃機関に適用した実施例2を説明する。
まず、図5に基づいて過給機付きのエンジン制御システム全体の構成を概略的に説明する。但し、前記実施例1と実質的に同じ部分は、同一符号を付して説明を省略又は簡略化し、主として異なる部分について説明する。
過給機45は、排気管25(排気通路)のうちの上流側触媒26の上流側(排出ガスセンサ28の上流側)に、排気タービン46が配置され、吸気管12のうちのエアフローメータ14とスロットルバルブ16との間に、コンプレッサ47が配置されている。この過給機45は、排気タービン46とコンプレッサ47とが連結され、排出ガスの運動エネルギーで排気タービン46を回転駆動することでコンプレッサ47を回転駆動して吸入空気を過給するようになっている。
更に、吸気管12には、コンプレッサ47をバイパスする吸気バイパス通路48が設けられ、この吸気バイパス通路48の途中に、吸気バイパス通路48を開閉するエアバイパスバルブ(以下「ABV」と表記する)49が設けられている。このABV49は、ABV用バキュームスイッチングバルブ(以下「ABV用VSV」と表記する)50を制御することでABV49の開度が制御されるようになっている。また、吸気管12のうちのコンプレッサ47とスロットルバルブ16との間には、過給機45のコンプレッサ47で加圧された吸入空気を冷却するインタークーラー51が設けられている。
一方、排気管25には、排気タービン46をバイパスする排気バイパス通路52が設けられ、この排気バイパス通路52の途中に、排気バイパス通路52を開閉するウェイストゲートバルブ(以下「WGV」と表記する)53が設けられている。このWGV53は、WGV用バキュームスイッチングバルブ(以下「WGV用VSV」と表記する)54を制御してダイヤフラム式のアクチュエータ55を制御することでWGV53の開度が制御されるようになっている。
この場合、エンジン11に吸入空気を過給する運転領域では、WGV53を閉弁又は開度を小さくして、排気バイパス通路52への燃焼ガスの流れを遮断又はガス流量を低下させて、エンジン11から排出される高温の燃焼ガスを排気タービン46側の排気管25に流す(排気タービン46側に流すガス流量はWGV53の開度によって制御する)。これにより、排気タービン46側の排気管25内の排気圧力を上昇させて排気タービン46の回転速度を上昇させることで、コンプレッサ47の回転速度を上昇させて過給効果を高める。
一方、吸入空気の過給を必要としない運転領域では、WGV53を開弁して、エンジン11から排出される燃焼ガスを排気バイパス通路52に流すことで、排気タービン46側の排気管25内の排気圧力を低下させて排気タービン46の回転を停止させると共に、ABV49を開弁して、コンプレッサ47をバイパスする吸気バイパス通路48に吸入空気を流して吸入空気の過給を停止させる。
本実施例2では、ECU30は、後述する図6のPM低減制御ルーチンを実行することで、エンジン運転状態に基づいてエンジン11の燃焼室内で発生するPM(排気管25内に排出されるPM)が増加するか否かを予測し、WGV53が開放されている運転領域でPMの増加が予測されたときにWGV53を閉じるようにしている。つまり、WGV53が開放されている運転領域でPMの増加が予測されたときに、WGV53を閉じるようにすれば、排気タービン46をバイパスする排気バイパス通路52への燃焼ガスの流れが遮断されて、エンジン11から排出される燃焼ガスが全て排気タービン46側の排気管25に流れるようになる。これにより、排気タービン46側の排気管25内の排気圧力が上昇して該排気管25内の温度が上昇して、エンジン11から該排気管25内に排出される燃焼ガス中のPMの再燃焼が促進されて、PM排出量が効果的に低減される。
以上説明した本実施例2のPM低減制御は、ECU30によって図6のPM低減制御ルーチンに従って次のようにして実行される。本ルーチンは、エンジン運転中に所定周期で繰り返し実行され、特許請求の範囲でいうPM増加予測手段及び制御手段としての役割を果たす。
本ルーチンが起動されると、まずステップ201で、各種センサの出力信号等に基づいて現在のエンジン運転状態を判定し、次のステップ202で、WGV53が開弁しているか否かを判定し、WGV53が開弁していなければ、以降の処理を行うことなく、本ルーチンを終了する。
これに対し、上記ステップ202で、WGV53が開弁していると判定されれば、ステップ203に進み、WGV53が閉弁可能な運転状態であるか否かを判定し、WGV53が閉弁可能な運転状態ではないと判定されれば、以降の処理を行うことなく、本ルーチンを終了する。
上記ステップ203で、WGV53が閉弁可能な運転状態であると判定されれば、ステップ204に進み、エンジン運転領域がエンジン11の燃焼室内で発生するPMが増加するPM増加領域であるか否かを判定する。本実施例2では、成層燃焼時、冷間始動時、高負荷時のいずれかに該当するか否かで、PM増加領域であるか否かを判定する。このステップ204で、PM増加領域ではないと判定されれば、燃焼室内でのPM発生量が少なく、PM低減制御を行う必要がないと判断して、以降の処理を行うことなく、本ルーチンを終了する。
一方、上記ステップ204で、PM増加領域であると判定されれば、ステップ205に進み、WGV53を閉弁して、排気バイパス通路52への燃焼ガスの流れを遮断して、エンジン11から排出される燃焼ガスを全て排気タービン46側の排気管25に流して、排気タービン46側の排気管25内の排気圧力を上昇させる。これにより、排気管25内の温度を上昇させて、エンジン11から該排気管25内に排出される燃焼ガス中のPMの再燃焼を促進してPM排出量を低減する。この際、エンジン11から排出する燃焼ガスの温度を上昇させる制御(例えば点火時期の遅角等)をWGV53の閉弁と併せて行うようにしても良く、これにより、排気管25内の温度を効率良く上昇させてPMの再燃焼を効率良く促進させることができる。
尚、本実施例2の過給機45は、WGV53とABV49の両方を備えた構成としているが、ABV49を省いた構成としても良く、要は、WGV付きの過給機を搭載した筒内噴射エンジンであれば、本発明を適用可能である。
次に、図7及び図8を用いて本発明を二次空気供給装置付きの筒内噴射内燃機関に適用した実施例3を説明する。
まず、図7に基づいて二次空気供給装置付きのエンジン制御システム全体の構成を概略的に説明する。但し、前記実施例1と実質的に同じ部分は、同一符号を付して説明を省略又は簡略化し、主として異なる部分について説明する。
二次空気供給装置60は、排気管25のうちの排出ガスセンサ28よりも上流側(例えば排気ポート近傍)に二次空気を供給する。具体的には、次空気供給装置60は、電気モータで駆動されるエアポンプ61から吐出する二次空気を、二次空気配管62を通して各気筒の二次空気供給ノズル63に分配して各気筒の排気マニホールド(排気通路)に導入する。二次空気配管62には、該二次空気配管62を開閉する制御弁64が設けられている。
この二次空気供給装置60のエアポンプ61と制御弁64は、ECU30によって制御される。ECU30は、後述する図8のPM低減制御ルーチンを実行することで、エンジン運転状態に基づいてエンジン11の燃焼室内で発生するPM(排気管25内に排出されるPM)が増加するか否かを予測し、PMの増加が予測されたときに、エアポンプ61をオンすると共に制御弁64を開弁して排気管25に二次空気を導入する。これにより、排気管25内の酸素濃度が上昇して、エンジン11から排気管25内に排出される燃焼ガス中のPMの再燃焼(酸化反応)を促進させて、PM排出量を効果的に低減する。
以上説明した本実施例3のPM低減制御は、ECU30によって図8のPM低減制御ルーチンに従って次のようにして実行される。本ルーチンは、エンジン運転中に所定周期で繰り返し実行され、特許請求の範囲でいうPM増加予測手段及び制御手段としての役割を果たす。
本ルーチンが起動されると、まずステップ301で、各種センサの出力信号等に基づいて現在のエンジン運転状態を判定し、次のステップ302で、二次空気導入中であるか否かを判定し、二次空気導入中であれば、以降の処理を行うことなく、本ルーチンを終了する。
これに対し、上記ステップ302で、二次空気導入中ではないと判定されれば、ステップ303に進み、排気管25内に二次空気を導入可能な運転状態であるか否かを判定し、二次空気を導入可能な運転状態ではないと判定されれば、以降の処理を行うことなく、本ルーチンを終了する。
上記ステップ303で、二次空気を導入可能な運転状態であると判定されれば、ステップ304に進み、エンジン運転領域がエンジン11の燃焼室内で発生するPMが増加するPM増加領域であるか否かを判定する。本実施例3では、成層燃焼時、冷間始動時、高負荷時のいずれかに該当するか否かで、PM増加領域であるか否かを判定する。このステップ304で、PM増加領域ではないと判定されれば、燃焼室内でのPM発生量が少なく、PM低減制御を行う必要がないと判断して、以降の処理を行うことなく、本ルーチンを終了する。
一方、上記ステップ304で、PM増加領域であると判定されれば、ステップ305に進み、エアポンプ61をオンすると共に制御弁64を開弁して排気管25に二次空気を導入する。これにより、排気管25内の酸素濃度を上昇させて、エンジン11から排気管25内に排出される燃焼ガス中のPMの再燃焼(酸化反応)を促進させて、PM排出量を効果的に低減する。この際、エンジン11から排出する燃焼ガスの温度を上昇させる制御(例えば点火時期の遅角等)を二次空気の導入と併せて行うようにしても良く、これにより、排気管25内の温度を効率良く上昇させてPMの再燃焼を効率良く促進させることができる。
尚、本実施例3では、二次空気供給装置60のエアポンプ61を電動モータで駆動するようにしたが、二次空気供給装置60のエアポンプ61を、エンジン11の動力等で電磁クラッチを介して駆動するようにしても良い。
その他、本発明は、上記3つの実施例1〜3を適宜組み合わせて実施しても良い等、要旨を逸脱しない範囲内で種々変更して実施できる。
11…エンジン(内燃機関)、12…吸気管、16…スロットルバルブ、21…燃料噴射弁、22…点火プラグ、25…排気管、26…上流側触媒、27…下流側触媒、30…ECU(PM増加予測手段,制御手段)、31…気流制御弁、34…EGR弁、37…吸気バルブ、38…排気バルブ、39…吸気側可変バルブリフト装置、40…排気側可変バルブリフト装置(排気側可変バルブ装置)、45…過給機、46…排気タービン、47…コンプレッサ、48…吸気バイパス通路、49…ABV(エアバイパスバルブ)、52…排気バイパス通路、53…WGV(ウェイストゲートバルブ)、60…二次空気供給装置、61…エアポンプ、62…二次空気配管、63…二次空気供給ノズル、64…制御弁

Claims (7)

  1. 筒内に燃料を直接噴射する筒内噴射式内燃機関の制御装置において、
    排気バルブの少なくとも開弁タイミングを変化させる排気側可変バルブ装置と、
    前記内燃機関の運転状態に基づいて該内燃機関の燃焼室内で発生するパーティクルマター(以下「PM」と表記する)が増加するか否かを予測するPM増加予測手段と、
    前記PM増加予測手段によりPMの増加が予測されたときに前記排気バルブの開弁タイミングを遅角させるように前記排気側可変バルブ装置を制御する制御手段と
    を備えていることを特徴とする筒内噴射式内燃機関の制御装置。
  2. 前記PM増加予測手段は、前記内燃機関の運転状態が成層燃焼時、冷間始動時、高負荷時のいずれかに該当するときにPMが増加すると予測することを特徴とする請求項1に記載の筒内噴射式内燃機関の制御装置。
  3. 前記制御手段は、前記PM増加予測手段によりPMの増加が予測されたときに内部EGR量を推定する手段と、推定した内部EGR量に基づいて燃焼安定性を確保できる範囲内で前記排気バルブの開弁タイミングを遅角させる手段とを有することを特徴とする請求項1又は2に記載の筒内噴射式内燃機関の制御装置。
  4. 前記排気側可変バルブ装置は、排気バルブのバルブリフト量を変化させる可変バルブリフト装置であることを特徴とする請求項1乃至3のいずれかに記載の筒内噴射式内燃機関の制御装置。
  5. 前記排気側可変バルブ装置は、排気バルブのバルブタイミングを変化させる可変バルブタイミング装置であることを特徴とする請求項1乃至3のいずれかに記載の筒内噴射式内燃機関の制御装置。
  6. 筒内に燃料を直接噴射する筒内噴射式内燃機関の制御装置において、
    前記内燃機関の排気通路に設けられた排気タービンによって吸気通路に設けられたコンプレッサを駆動して吸入空気を過給する過給機と、
    前記排気タービンをバイパスする排気バイパス通路を開閉するウェイストゲートバルブと、
    前記内燃機関の運転状態に基づいて該内燃機関から排出されるパーティクルマター(以下「PM」と表記する)が増加するか否かを予測するPM増加予測手段と、
    前記ウェイストゲートバルブが開放されている運転領域で前記PM増加予測手段によりPMの増加が予測されたときに前記ウェイストゲートバルブを閉じる制御手段と
    を備えていることを特徴とする筒内噴射式内燃機関の制御装置。
  7. 筒内に燃料を直接噴射する筒内噴射式内燃機関の制御装置において、
    前記内燃機関の排気通路に二次空気を供給する二次空気供給装置と、
    前記内燃機関の運転状態に基づいて該内燃機関から排出されるパーティクルマター(以下「PM」と表記する)が増加するか否かを予測するPM増加予測手段と、
    前記PM増加予測手段によりPMの増加が予測されたときに前記二次空気供給装置を作動させて前記排気通路に二次空気を供給する制御手段と
    を備えていることを特徴とする筒内噴射式内燃機関の制御装置。
JP2009151754A 2009-06-26 2009-06-26 筒内噴射式内燃機関の制御装置 Pending JP2011007113A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009151754A JP2011007113A (ja) 2009-06-26 2009-06-26 筒内噴射式内燃機関の制御装置
DE102010030496.4A DE102010030496B4 (de) 2009-06-26 2010-06-24 Steuervorrichtung für Maschine mit Direkteinspritzung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009151754A JP2011007113A (ja) 2009-06-26 2009-06-26 筒内噴射式内燃機関の制御装置

Publications (1)

Publication Number Publication Date
JP2011007113A true JP2011007113A (ja) 2011-01-13

Family

ID=43299301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009151754A Pending JP2011007113A (ja) 2009-06-26 2009-06-26 筒内噴射式内燃機関の制御装置

Country Status (2)

Country Link
JP (1) JP2011007113A (ja)
DE (1) DE102010030496B4 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127581A (ja) * 2009-12-21 2011-06-30 Nippon Soken Inc 内燃機関の制御装置
JP2017125409A (ja) * 2016-01-12 2017-07-20 マツダ株式会社 エンジンオイルの劣化診断装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69424868T2 (de) 1993-06-30 2001-01-11 Orbital Eng Australia Auspuffventilzeitregler der auf klopfen und drehkraft reagiert
JP4691822B2 (ja) 2001-04-27 2011-06-01 トヨタ自動車株式会社 内燃機関の制御装置
DE10322361A1 (de) 2003-05-09 2004-11-25 Robert Bosch Gmbh Verfahren und Vorrichtung zum Verbessern des Startverhaltens eines Verbrennungsmotors
JP4306711B2 (ja) 2006-09-29 2009-08-05 トヨタ自動車株式会社 筒内噴射式火花点火内燃機関

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127581A (ja) * 2009-12-21 2011-06-30 Nippon Soken Inc 内燃機関の制御装置
JP2017125409A (ja) * 2016-01-12 2017-07-20 マツダ株式会社 エンジンオイルの劣化診断装置

Also Published As

Publication number Publication date
DE102010030496A1 (de) 2011-01-05
DE102010030496A8 (de) 2016-07-28
DE102010030496B4 (de) 2022-03-03

Similar Documents

Publication Publication Date Title
US8086385B2 (en) Control apparatus for internal combustion engine
JP5904290B2 (ja) ターボ過給機付きエンジン
US8607544B2 (en) Methods and systems for variable displacement engine control
JP5772025B2 (ja) 内燃機関の制御装置
EP2985440B1 (en) Control apparatus of internal combustion engine
JP4780059B2 (ja) 内燃機関の制御装置
JP5169439B2 (ja) 内燃機関制御装置及び内燃機関制御システム
US8099228B2 (en) Control apparatus for internal combustion engine
CN107524536B (zh) 内燃机及内燃机的控制方法
JP5397567B1 (ja) 内燃機関の制御装置
JP2008025445A (ja) 内燃機関の制御装置
JP2012229666A (ja) 内燃機関の制御装置
JP2009235920A (ja) 過給機付き筒内噴射式内燃機関の燃料噴射制御装置
JP2007327480A (ja) 内燃機関の排気浄化システム
JP5403277B2 (ja) 内燃機関
JP2009216059A (ja) 内燃機関の制御装置
JP2012097639A (ja) 内燃機関の制御装置
JP4905327B2 (ja) 内燃機関の排気浄化システム
JP2011007113A (ja) 筒内噴射式内燃機関の制御装置
JP5832156B2 (ja) 内燃機関の制御装置
JP2012241574A (ja) 内燃機関の制御装置
JP2009299623A (ja) 内燃機関の制御装置
EP2397679B1 (en) Internal Combustion Engine
JP5435237B2 (ja) 内燃機関
JP2009191660A (ja) 内燃機関の制御装置