JP2011006758A - Method for dephosphorizing molten iron - Google Patents

Method for dephosphorizing molten iron Download PDF

Info

Publication number
JP2011006758A
JP2011006758A JP2009153157A JP2009153157A JP2011006758A JP 2011006758 A JP2011006758 A JP 2011006758A JP 2009153157 A JP2009153157 A JP 2009153157A JP 2009153157 A JP2009153157 A JP 2009153157A JP 2011006758 A JP2011006758 A JP 2011006758A
Authority
JP
Japan
Prior art keywords
cao
supply
dephosphorization
hot metal
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009153157A
Other languages
Japanese (ja)
Other versions
JP5412994B2 (en
Inventor
Atsushi Matsumoto
篤 松本
Masaki Miyata
政樹 宮田
Teppei Tamura
鉄平 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2009153157A priority Critical patent/JP5412994B2/en
Publication of JP2011006758A publication Critical patent/JP2011006758A/en
Application granted granted Critical
Publication of JP5412994B2 publication Critical patent/JP5412994B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for dephosphorizing molten iron, with which P concentration in the molten iron can be made ≤0.020% without using a fluorite.SOLUTION: When the dephosphorizing treatment is carried out by using a top and bottom-blown converter and blowing powdery CaO-containing dephosphorizing agent into the molten iron from a top-blowing lance, the mass of the blowing powdery CaO-containing dephosphorizing agent is made ≥40% of the total mass of all CaO charged into the converter, and blending basicity (a value of the ratio of the added CaO to SiOin the molten iron) after dephosphorizing treatment is made 2.0-3.0, and the molten iron temperature after dephosphorizing treatment is made 1,350-1,420°C. Then, blowing of the powdery CaO-containing dephosphorizing agent to the molten iron is started after the lapse of 15-35% of the supplying time T1 of the all top-blowing oxygen from the supply starting time of the top-blowing oxygen in the dephosphorizing treatment, and is continued till the lapse of 85-100% of the supplying time T1, and the average blowing speed of the dephosphorizing agent during the continuation period of the blowing is made 0.5-3.0 kg/min/t.

Description

本発明は、蛍石等、ハロゲン系化合物の滓化促進剤を使用しないで、溶銑中のP濃度を0.020重量%以下とすること、または80%以上の溶銑の脱りん率を安定して達成することができる溶銑の脱りん方法に関する。以下、本明細書では、溶銑やスラグ、生石灰等の成分組成についての「質量%」を、単に「%」とも表示する。   The present invention stabilizes the dephosphorization rate of hot metal of 80% or more, or the P concentration in hot metal is 0.020% by weight or less without using a halogenated compound hatching accelerator such as fluorite. The present invention relates to a hot metal dephosphorization method that can be achieved. Hereinafter, in the present specification, “mass%” for the component composition of hot metal, slag, quicklime, etc. is also simply expressed as “%”.

近年、鋼材に対する品質要求が高度化し、低りん鋼に対する需要が増大している。これに対応するため、CaO含有脱りん材を用いる溶銑脱りん法が開発された。CaO含有脱りん剤中のCaOによる脱りん反応は、下記(a)式のように進行する。
3(CaO)+5(FeO)+2[P]=(3CaO・P25)+5[Fe] …(a)
ここで、( )はかっこ内の化学式の物質がスラグ中に、[ ]はかっこ内の化学式の物質が溶銑中に存在することを示す。
In recent years, quality requirements for steel materials have become higher, and the demand for low phosphorus steel has increased. In order to cope with this, a hot metal dephosphorization method using a CaO-containing dephosphorization material has been developed. The dephosphorization reaction by CaO in the CaO-containing dephosphorizer proceeds as shown in the following formula (a).
3 (CaO) +5 (FeO) +2 [P] = (3CaO · P 2 O 5 ) +5 [Fe] (a)
Here, () indicates that the substance of the chemical formula in parentheses is present in the slag, and [] indicates that the substance of the chemical formula in parentheses is present in the hot metal.

この溶銑脱りん処理を効果的に行うには、十分な濃度の(CaO)がスラグ中に溶解して存在し、脱りん処理に必要なレベルの(FeO)濃度がスラグ中で維持されることが必要である。CaOの融点は2570℃と高いため、CaOの滓化促進には、何らかの滓化促進剤の添加が必要である。そこで、従来から、脱りん処理に塊状の生石灰(CaO)を用いる場合には、例えば蛍石等のハロゲン系化合物が滓化促進剤として併用されてきた。   In order to effectively perform this hot metal dephosphorization treatment, a sufficient concentration of (CaO) is present in the slag and the level of (FeO) necessary for the dephosphorization treatment is maintained in the slag. is required. Since the melting point of CaO is as high as 2570 ° C., some hatching accelerator needs to be added to promote the hatching of CaO. Therefore, conventionally, when using massive quicklime (CaO) for dephosphorization, halogen compounds such as fluorite have been used in combination as hatching accelerators.

ハロゲン系化合物を含むスラグには、脱りん処理に用いる容器の耐火物溶損量を増加させるという問題がある。また、近年、鉄鋼の副産物であるスラグの有効利用技術が環境問題の視点から望まれているのに対して、蛍石等のハロゲン系化合物のスラグへの混入は、スラグの用途が限定されるため好ましくない。   The slag containing a halogen compound has a problem of increasing the refractory erosion amount of the container used for the dephosphorization treatment. In recent years, effective utilization technology of slag, which is a by-product of steel, has been desired from the viewpoint of environmental problems, whereas the incorporation of halogen compounds such as fluorite into slag limits the application of slag. Therefore, it is not preferable.

この問題を解決するため、特許文献1および特許文献2には、蛍石等の滓化促進剤を使用せず、粉状のCaOを上吹き酸素とともに溶銑に吹き付ける、溶銑の脱りん処理方法が開示されている。   In order to solve this problem, Patent Literature 1 and Patent Literature 2 disclose a hot metal dephosphorization method in which powdered CaO is sprayed onto hot metal together with top blowing oxygen without using a hatching accelerator such as fluorite. It is disclosed.

しかし、特許文献1に記載の方法の場合、上吹き酸素等によって飛散した溶銑の飛沫であるスピッティングの量が増大し、鉄歩留まりの低下および炉口地金付きの増加という問題がある。炉口地金付きが増加すると、転炉炉口が小さくなるため、スクラップシュートが入らない等の、操業上の問題が発生する。   However, in the case of the method described in Patent Document 1, the amount of spitting, which is a spatter of hot metal scattered by top blown oxygen or the like, increases, and there is a problem in that the iron yield decreases and the furnace mouth metal increases. An increase in the number of cores attached to the furnace port causes operational problems such as scrap chute not entering because the converter furnace port becomes smaller.

この問題に鑑みて、特許文献3では、CaO含有脱りん剤を溶銑に吹き付ける前に、塩基度0.4〜1.5のスラグを、溶銑表面をカバーするように生成させることで、スピッティング量が低減でき、かつ処理後の溶銑中のP濃度を0.030%以下にできることが開示されている。   In view of this problem, in Patent Document 3, spitting is performed by generating slag having a basicity of 0.4 to 1.5 so as to cover the hot metal surface before spraying the CaO-containing dephosphorizing agent on the hot metal. It is disclosed that the amount can be reduced and the P concentration in the hot metal after the treatment can be made 0.030% or less.

特開平8−311523号公報JP-A-8-311523 特開2000−73112号公報JP 2000-73112 A 特開2001−64713号公報JP 2001-64713 A

しかしながら、近年、鋼材に対する品質要求の高度化が進行し、低りん鋼よりさらにりん規格の厳しい、極低りん鋼の需要が増大してきた。そのため、蛍石等、ハロゲン系化合物の滓化促進剤を使用しないで、脱りん処理後の溶銑中の[P]濃度をさらに低下させる必要が生じてきた。   However, in recent years, quality requirements for steel materials have become more sophisticated, and the demand for ultra-low phosphorus steel, which has a stricter phosphorus standard than low phosphorus steel, has increased. Therefore, it has become necessary to further reduce the [P] concentration in the hot metal after the dephosphorization treatment without using a hatching accelerator of a halogen compound such as fluorite.

本発明は、上記の問題に鑑みてなされたものであり、その目的は、蛍石等、ハロゲン系化合物の滓化促進剤を使用しないで、溶銑中の[P]濃度を0.020%以下とすること、または80%以上の溶銑の脱りん率を安定して達成することができる、溶銑の脱りん方法を提供することにある。   The present invention has been made in view of the above problems, and its object is to use a [P] concentration in the hot metal of 0.020% or less without using a halogenated compound hatching accelerator such as fluorite. Or to provide a hot metal dephosphorization method capable of stably achieving a hot metal dephosphorization rate of 80% or more.

上記の課題を解決するため、本発明者らは種々の検討を重ね、以下の知見を得た。   In order to solve the above problems, the present inventors have made various studies and obtained the following knowledge.

〈知見1−1〉脱りん処理後の最終的な配合塩基度は2.0〜3.0とする。
配合塩基度は、下記(1)式で定義される。
配合塩基度=装入CaO(kg)/{装入SiO2(kg)+WSiO2(kg)} …(1)
ここで、上記(1)式中の各記号は下記の諸量を意味する。
装入CaO(kg):上吹き酸素の供給開始前、および上吹き酸素の供給中に転炉内へ添加されたCaO含有物質中に含まれるCaOの質量、
装入SiO2(kg):上吹き酸素の供給開始前、および上吹き酸素の供給中に転炉内へ添加されたSiO2含有物質中に含まれるSiO2の質量、
SiO2(kg):(溶銑およびスクラップ中に含有されたSi質量(kg))×2.14。
<Knowledge 1-1> The final blending basicity after dephosphorization is 2.0 to 3.0.
The blending basicity is defined by the following formula (1).
Blending basicity = charged CaO (kg) / {charged SiO 2 (kg) + W SiO2 (kg)} (1)
Here, each symbol in the above formula (1) means the following quantities.
Charged CaO (kg): the mass of CaO contained in the CaO-containing material added to the converter before starting the supply of the top-blown oxygen and during the supply of the top-blown oxygen,
Charged SiO 2 (kg): top-blown oxygen supply before starting, and top-blown oxygen SiO 2 mass contained in the SiO 2 containing material which is added to the converter in the in supply,
W SiO2 (kg): (Si mass contained in hot metal and scrap (kg)) x 2.14.

転炉内に投入するCaO含有物質としては、CaOの含有率が90%以上の生石灰、CaOの含有率が40%以上の転炉スラグおよびCaOの含有率が30%以上の取鍋スラグが例示される。   Examples of the CaO-containing material introduced into the converter include quick lime with a CaO content of 90% or more, converter slag with a CaO content of 40% or more, and ladle slag with a CaO content of 30% or more. Is done.

同様に、転炉内に投入するSiO2含有物質としては、SiO2の含有率が90%以上の珪石、SiO2の含有率が10%以上の転炉スラグおよびSiO2の含有率が5%以上の取鍋スラグが例示される。 Similarly, as the SiO 2 -containing material to be introduced into the converter, silica stone having a SiO 2 content of 90% or more, converter slag having a SiO 2 content of 10% or more, and a SiO 2 content of 5% The above ladle slag is illustrated.

脱りん処理後の配合塩基度が3.0を超えて大きい場合、スラグ中のf.CaO(遊離CaO)が増加し、このスラグを路盤材として使用した際の特性が悪化する。脱りん処理後の配合塩基度が2.0未満である場合、溶銑の吹錬中にスロッピングが発生し、脱りん処理の操業に悪影響を及ぼすだけでなく、スラグ中における2CaO・SiO2(以下、「C2S」という)の晶出量が減少し、脱りん率が悪化する。 If the blended basicity after dephosphorization is larger than 3.0, f. CaO (free CaO) increases, and the characteristics when this slag is used as a roadbed material are deteriorated. When the blended basicity after dephosphorization is less than 2.0, not only does slapping occur during the hot metal blowing, which adversely affects the operation of dephosphorization, but also 2CaO · SiO 2 ( Hereinafter, the amount of crystallization of “C2S” decreases, and the dephosphorization rate deteriorates.

また、配合塩基度が目標値に達すると、脱りん反応が進行しなくなる程度にスラグの固相率が高くなる。そのため、溶銑の吹錬の中期で配合塩基度が目標値に達すると、吹錬を継続しても脱りん反応がそれ以上進行しなくなる。   Further, when the blending basicity reaches the target value, the solid phase ratio of the slag increases to such an extent that the dephosphorization reaction does not proceed. Therefore, when the blended basicity reaches the target value in the middle stage of hot metal blowing, the dephosphorization reaction does not proceed any further even if blowing is continued.

〈知見1−2〉脱りん処理後の溶銑の温度は、1350℃〜1420℃とする。
一般的に溶銑は低温である方が脱りん反応に有利である。しかし、低温での脱りん処理は、炉内付着地金が増加するため、操業上の問題が発生する。そのため、脱りん処理後の溶銑の温度は1350℃以上とする。また、溶銑の温度が1420℃を超えて高いと脱りん率が悪化するため、脱りん処理後の溶銑の温度は1420℃以下とする。
<Knowledge 1-2> The temperature of the hot metal after the dephosphorization treatment is set to 1350 ° C. to 1420 ° C.
In general, the hot metal is advantageous for dephosphorization reaction at a low temperature. However, the dephosphorization process at a low temperature causes an operational problem because the amount of ingot in the furnace increases. Therefore, the temperature of the hot metal after the dephosphorization treatment is set to 1350 ° C. or higher. Moreover, since the dephosphorization rate deteriorates when the hot metal temperature exceeds 1420 ° C., the hot metal temperature after the dephosphorization treatment is set to 1420 ° C. or less.

〈知見1−3〉吹錬初期のスラグの塩基度調整用のCaO源は、生石灰の他に取鍋スラグを使用するのが望ましい。
取鍋スラグは、一旦溶融したスラグであるとともに、Al23を含有するため、吹錬初期にスラグの液相率を高める効果がある。取鍋スラグの代表組成はCaO:30〜50%、SiO2:5〜20%、Al23:20〜30%である。取鍋スラグの投入量は、溶銑1トンあたりの質量(kg)として、3.0kg/t〜12kg/tとするのが望ましい。取鍋スラグの投入量が、3.0kg/tより少ないとスラグの液相率を高める効果が小さくなり、12kg/tを超えて大きいとスラグのAl23濃度が上昇してスロッピングの発生が著しくなるためである。
<Knowledge 1-3> As a CaO source for adjusting the basicity of slag at the initial stage of blowing, it is desirable to use ladle slag in addition to quick lime.
The ladle slag is a slag once melted and contains Al 2 O 3, and therefore has an effect of increasing the liquid phase ratio of the slag in the early stage of blowing. Representative compositions of the ladle slag CaO: 30~50%, SiO 2: 5~20%, Al 2 O 3: 20 to 30%. The input amount of ladle slag is preferably 3.0 kg / t to 12 kg / t as mass (kg) per ton of hot metal. When the amount of ladle slag input is less than 3.0 kg / t, the effect of increasing the liquid phase rate of slag is reduced, and when it exceeds 12 kg / t, the Al 2 O 3 concentration of slag increases and slopping This is because the occurrence becomes significant.

〈知見2〉吹錬期間中のスラグの塩基度推移も脱りん反応に大きく影響する。
溶銑の吹錬が進行するとともに、脱りん反応が進行し、スラグの塩基度が上昇すると、スラグの液相(以下、「液相スラグ」ともいう)中に固相が晶出する。晶出した固相のうち、C2Sは、りん酸を3CaO・P25(以下、「C3P」という)として固溶することが広く知られている。
<Knowledge 2> The change in basicity of slag during the blowing process also greatly affects the dephosphorization reaction.
As hot metal blowing proceeds, dephosphorization reaction proceeds, and the basicity of slag increases, a solid phase crystallizes in the liquid phase of slag (hereinafter also referred to as “liquid phase slag”). Among the crystallized solid phases, C2S is widely known to dissolve phosphoric acid as 3CaO · P 2 O 5 (hereinafter referred to as “C3P”).

このような固相の晶出を、脱りん処理に有効に利用することで、脱りん効率を高められる。C2Sは、液相スラグ中のP25と反応するため、液相スラグ中に溶銑中の[P]を極力移行させた吹錬の末期にC2Sを晶出させることが、脱りん効率を向上させる上で重要である。したがって、効率的に脱りんを進行させるには、吹錬中のスラグの塩基度の推移の制御が重要である。具体的には、配合塩基度を以下のように制御することによって、スラグの塩基度の推移を制御するのが望ましい。 By effectively utilizing such solid phase crystallization for dephosphorization, the dephosphorization efficiency can be increased. Since C2S reacts with P 2 O 5 in the liquid phase slag, C2S is crystallized at the end of the blowing process in which [P] in the molten iron is transferred to the liquid phase slag as much as possible. It is important to improve. Therefore, in order to advance dephosphorization efficiently, it is important to control the transition of the basicity of slag during blowing. Specifically, it is desirable to control the transition of the basicity of the slag by controlling the blending basicity as follows.

上吹き酸素の供給開始前、または上吹き酸素の供給開始後、全上吹き酸素の供給時間の20%経過時までに、取鍋スラグを添加し、下記(2)および(3)式で定義される、上吹き酸素の供給開始時から全上吹き酸素の供給時間の30%経過までの期間の経過中配合塩基度を、0.5以上1.5以下となるように調整する。
経過中配合塩基度=経過中装入CaO(kg)/{経過中装入SiO2(kg)+MSiO2(kg)} …(2)
SiO2(kg)=WSiO2(kg)/{(QΔSi(Nm3)/η)/VO2(Nm3/s)}×t(s) …(3)
ここで、上記(2)式および(3)式中の各記号は下記の諸量を意味する。
経過中装入CaO(kg):上吹き酸素の供給開始前、および上吹き酸素の供給開始後t(s)までに転炉内へ添加されたCaO含有物物質に含まれるCaOの質量、
経過中装入SiO2(kg):上吹き酸素の供給開始前、および上吹き酸素の供給開始後t(s)までに転炉内へ添加されたSiO2含有物物質に含まれるSiO2の質量、
ΔSi(Nm3):(溶銑およびスクラップ中に含有されたSi質量(kg))×0.80、
η:供給酸素のSiとの反応効率(0.75)、
O2(Nm3/s):酸素供給速度、
t(s):上吹き酸素の供給開始時からの酸素供給時間。
Add ladle slag before starting the supply of top-blown oxygen or after starting the supply of top-blown oxygen until 20% of the total top-blown oxygen supply time has elapsed, and define it using the following formulas (2) and (3) The blended basicity is adjusted so as to be 0.5 or more and 1.5 or less during the period from the start of supplying the top-blown oxygen to 30% of the total top-blown oxygen supply time.
Blending basicity during the course = charging CaO (kg) during the course / {SiO 2 (kg) during the course + M SiO2 (kg)} (2)
M SiO2 (kg) = W SiO2 (kg) / {( QΔSi (Nm 3 ) / η) / V O2 (Nm 3 / s)} × t (s) (3)
Here, each symbol in the above formulas (2) and (3) means the following quantities.
CaO charged during the course (kg): the mass of CaO contained in the CaO-containing material added into the converter before the start of the supply of the top blown oxygen and t (s) after the start of the supply of the top blown oxygen,
Elapsed NakaSoIri SiO 2 (kg): top-blown oxygen supply before starting, and top-blown oxygen supply start after t (s) of SiO 2 contained in the SiO 2 inclusions material added to the converter in the previous mass,
Q ΔSi (Nm 3 ): (mass of Si contained in hot metal and scrap (kg)) × 0.80
η: reaction efficiency of supplied oxygen with Si (0.75),
V O2 (Nm 3 / s): oxygen supply rate,
t (s): Oxygen supply time from the start of supply of top-blown oxygen.

〈知見3〉溶銑脱りん吹錬中の期間ごとに最適なスラグの塩基度が存在する。
溶銑脱りん吹錬中には、期間ごとに最適なスラグの塩基度が存在する。そして、吹錬中のスラグの塩基度の制御には、CaO源の添加速度の調整、すなわちスラグの塩基度の推移の調整が可能な、粉体CaO含有脱りん剤を使用する。スラグの塩基度の調整幅を広くするため、全CaO添加量の40%以上を上吹きCaO粉とする。
<Knowledge 3> Optimum slag basicity exists for each period during hot metal dephosphorization.
During hot metal dephosphorization, optimum slag basicity exists for each period. In addition, for controlling the basicity of slag during blowing, a powder CaO-containing dephosphorizing agent that can adjust the addition rate of the CaO source, that is, the transition of the basicity of the slag, is used. In order to widen the adjustment range of the basicity of the slag, 40% or more of the total CaO addition amount is used as the top blown CaO powder.

ところで、特許文献2には、以下の内容の低りん鋼の溶製方法が示されている。
A.処理時間は7〜10分とする。
B.CaO粉の供給は、塊状石灰源の添加直後より開始してもよいし、Si吹き後(通常2分程度経過後)に開始してもよい。
C.塊状石灰源の投入のタイミングは吹錬スタート時とし、CaO粉の投入のタイミングは吹錬期間の10〜75%の間とする。
By the way, Patent Document 2 discloses a method for melting low phosphorus steel having the following contents.
A. The processing time is 7 to 10 minutes.
B. The supply of CaO powder may be started immediately after the addition of the massive lime source, or may be started after Si blowing (usually after about 2 minutes have elapsed).
C. The timing for charging the bulk lime source is at the start of blowing, and the timing for charging CaO powder is between 10 and 75% of the blowing period.

このように、特許文献2には、CaO粉の供給期間については示されている。しかし、CaO粉を供給開始するタイミングおよび供給終了するタイミング、ならびにCaO粉の供給速度についての最適な組み合わせ範囲は明示されていない。   As described above, Patent Document 2 discloses the supply period of the CaO powder. However, the optimal combination range about the timing which starts supply of CaO powder, the timing which finishes supply, and the supply speed of CaO powder is not specified.

本発明者らは、上述の知見1−1〜1−3、2および3を得る過程での検討により、最も効率的に脱りん反応を進行させるには、CaO含有脱りん剤の吹き付けを開始するタイミングおよび吹き付けを終了するタイミング、ならびに粉体吹き付け速度の最適な組み合わせ範囲が存在すると考察し、さらに検討した。その結果、以下の知見を得た。   The present inventors have started spraying a CaO-containing dephosphorization agent in order to make the dephosphorization reaction proceed most efficiently by examining the above-described findings 1-1 to 1-3, 2 and 3. It was considered that there was an optimal combination range of the timing to finish and the timing to finish spraying, and the powder spraying speed, and further investigation was made. As a result, the following knowledge was obtained.

〈知見4〉脱りん反応の進行に最適な、粉状CaO含有脱りん剤の吹き付け開始、終了タイミングおよび平均吹き付け速度の組み合わせ範囲が存在する。
具体的には、CaO含有脱りん剤の吹き付けを、その脱りん処理における上吹き酸素の供給開始時から全上吹き酸素の供給時間の15〜35%経過後に開始し、上吹き酸素の供給開始時から全上吹き酸素の供給時間の85%〜100%経過時までの間継続し、かつ、吹き付け継続期間中の平均脱りん剤吹き付け速度を0.5〜3.0kg/min/tとすることにより、最も効率的に脱りん反応を進行させることができる。平均脱りん剤吹き付け速度とは、溶銑1トンあたりの、単位時間あたりのCaO含有脱りん剤の吹き付け質量を意味する。
<Knowledge 4> There is a combination range of spraying start and end timings and average spraying speed of the powdered CaO-containing dephosphorizing agent that is optimal for the progress of the dephosphorization reaction.
Specifically, the spraying of the CaO-containing dephosphorizing agent is started after 15 to 35% of the supply time of the total top blowing oxygen from the start of the top blowing oxygen supply in the dephosphorization processing, and the top blowing oxygen supply start From 85 to 100% of the supply time of all top blowing oxygen, and the average dephosphorizing agent blowing speed during the blowing duration is 0.5 to 3.0 kg / min / t. As a result, the dephosphorization reaction can proceed most efficiently. The average dephosphorizing agent spraying speed means the spraying mass of the CaO-containing dephosphorizing agent per ton of hot metal per unit time.

本発明は、以上の知見に基づいてなされたものであり、その要旨は下記〔1〕および〔2〕に示す溶銑の脱りん方法にある。   The present invention has been made on the basis of the above findings, and the gist thereof resides in the hot metal dephosphorization method shown in the following [1] and [2].

〔1〕上底吹き転炉を用い、粒径が100メッシュ以下でCaOを90質量%以上含有する粉状のCaO含有脱りん剤を、酸素をキャリアガスとして、上吹きランスから溶銑に吹き付けて脱りん処理するに際し、前記吹き付ける粉状のCaO含有脱りん剤質量を、前記吹き付ける粉状のCaO含有脱りん剤と別途転炉内に投入する上置き生石灰との合計質量の40%以上とし、かつ、上記(1)式で定義される脱りん処理後の配合塩基度を2.0〜3.0に、脱りん処理後の溶銑温度を1350℃〜1420℃に調整する、溶銑の脱りん方法であって、前記粉状のCaO含有脱りん剤の溶銑への吹き付けを、当該脱りん処理における上吹き酸素の供給開始時から全上吹き酸素の供給時間の15〜35%経過時に開始し、前記上吹き酸素の供給開始時から全上吹き酸素の供給時間の85%〜100%経過時までの間継続し、かつ、吹き付け継続期間中の平均脱りん剤吹き付け速度を0.5〜3.0kg/min/tとすることを特徴とする溶銑の脱りん方法。 [1] Using a top-bottom blown converter, a powdery CaO-containing dephosphorizing agent having a particle size of 100 mesh or less and containing 90% by mass or more of CaO is sprayed from the top blowing lance onto the hot metal using oxygen as a carrier gas. In performing the dephosphorization treatment, the powdered CaO-containing dephosphorizing agent mass to be sprayed is 40% or more of the total mass of the powdered CaO-containing dephosphorizing agent to be sprayed and the superheated quick lime charged separately in the converter, In addition, the basicity after dephosphorization defined by the above formula (1) is adjusted to 2.0 to 3.0, and the hot metal temperature after dephosphorization is adjusted to 1350 ° C to 1420 ° C. In this method, spraying of the powdered CaO-containing dephosphorizing agent on the molten iron is started when 15 to 35% of the supply time of all the top blown oxygen has elapsed since the start of the supply of the top blown oxygen in the dephosphorization process. , Supply of the above blown oxygen It continues for 85% to 100% of the supply time of the total top blowing oxygen from the beginning, and the average dephosphorizing agent blowing speed during the blowing duration is 0.5 to 3.0 kg / min / t. A method for dephosphorizing hot metal, characterized by:

〔2〕上吹き酸素の供給開始前、または上吹き酸素の供給開始後、全上吹き酸素の供給時間の20%経過時までに、取鍋スラグを添加し、上記(2)および(3)式で定義される、前記上吹き酸素の供給開始時から全上吹き酸素の供給時間の30%経過までの期間の経過中配合塩基度を、0.5以上1.5以下となるよう調整することを特徴とする、前記〔1〕に記載の溶銑の脱りん方法。 [2] The ladle slag is added before the start of the supply of top-blown oxygen or after the start of the supply of top-blown oxygen until 20% of the supply time of all the top-blown oxygen has elapsed, and the above (2) and (3) The blending basicity is adjusted so as to be 0.5 or more and 1.5 or less during the period from the start of supply of the top-blown oxygen to 30% of the total top-blown oxygen supply time defined by the formula The hot metal dephosphorization method as described in [1] above.

本発明の溶銑の脱りん方法によれば、吹錬中の塩基度、CaO含有脱りん剤の吹き付け速度、ならびにCaO含有脱りん剤の吹き付け開始のタイミングおよび吹き付け終了のタイミングを制御することで、蛍石等、ハロゲン系化合物の滓化促進剤を使用しないで、脱りん処理後の溶銑中のP濃度を0.020%以下にすること、または80%以上の溶銑の脱りん率を安定して達成することができる。   According to the hot metal dephosphorization method of the present invention, by controlling the basicity during blowing, the spraying speed of the CaO-containing dephosphorizing agent, the timing of the start of spraying of the CaO-containing dephosphorizing agent and the timing of the end of spraying, Without using a halogen-based compound hatching accelerator such as fluorite, the P concentration in the hot metal after dephosphorization is reduced to 0.020% or less, or the dephosphorization rate of hot metal of 80% or more is stabilized. Can be achieved.

脱りん率に及ぼすCaO含有脱りん剤の吹き付け開始タイミングの影響を示すグラフである。It is a graph which shows the influence of the spray start timing of the CaO containing dephosphorization agent on the dephosphorization rate. CaO含有脱りん剤の吹き付け終了タイミングが85%以上かつCaO含有脱りん剤の吹き付け開始タイミングが15%以上35%以下の条件において、脱りん率に及ぼすCaO含有脱りん剤の吹き付け速度の影響を示すグラフである。The effect of the spraying speed of the CaO-containing dephosphorizing agent on the dephosphorization rate under the conditions where the spraying completion timing of the CaO-containing dephosphorizing agent is 85% or more and the spraying start timing of the CaO-containing dephosphorizing agent is 15% or more and 35% or less. It is a graph to show.

本発明の溶銑の脱りん方法、および上記の知見を確認するための試験について、以下に説明する。   The hot metal dephosphorization method of the present invention and the test for confirming the above findings will be described below.

1.本発明の溶銑の脱りん方法について
本発明の溶銑の脱りん方法は、前記〔1〕に記載の方法である。
1. About the hot metal dephosphorization method of the present invention The hot metal dephosphorization method of the present invention is the method described in [1] above.

本発明の溶銑の脱りん方法を実施する脱りん処理溶炉は、通常の上底吹き転炉を使用する。しかし、上底吹き転炉と異なる脱りん専用炉も使用できる。   The dephosphorization furnace for carrying out the hot metal dephosphorization method of the present invention uses a normal top-bottom blowing converter. However, a dephosphorization furnace different from the top-bottom converter can also be used.

CaO含有脱りん剤およびキャリアガスの上吹きには、ランスを使用する。ランスとしては、通常のラバールノズルを有する単孔または多孔(3〜10孔)の水冷ランスも使用できるが、本発明の溶銑の脱りん方法では、粉状の脱りん剤を上吹きするため、ストレートノズルまたは先細ノズルを有するランスが望ましい。   A lance is used for the top blowing of the CaO-containing dephosphorizing agent and the carrier gas. As the lance, a single-hole or porous (3 to 10-hole) water-cooled lance having a normal Laval nozzle can also be used. However, in the hot metal dephosphorization method of the present invention, since a powdered dephosphorizing agent is blown up, a straight lance is used. A lance having a nozzle or a tapered nozzle is desirable.

上吹き用の粉状のCaO含有脱りん剤とは、酸素ガスによって搬送および吹き付けが可能な粉状または粒状の脱りん剤を意味する。この脱りん剤のCaO分の含有率は90%以上とする。好ましい脱りん剤として、粒径が100メッシュ(147μm)以下の微粉により構成される脱りん剤が例示できる。ただし、粒径が3mm以下の粗粒が含まれていてもよい。粒径が100メッシュ以下の微粉が好ましい理由は、上吹き後直ちに滓化するからである。   The powdery CaO-containing dephosphorizing agent for top blowing means a powdery or granular dephosphorizing agent that can be transported and sprayed by oxygen gas. The content of CaO in this dephosphorizing agent is 90% or more. As a preferable dephosphorizing agent, a dephosphorizing agent composed of fine powder having a particle size of 100 mesh (147 μm) or less can be exemplified. However, coarse particles having a particle size of 3 mm or less may be included. The reason why a fine powder having a particle size of 100 mesh or less is preferable is that it hatches immediately after top blowing.

溶銑上に上置きする、上置き用のCaO含有脱りん剤は、粒径が5mm〜50mmのものが望ましい。5mm未満の細粒であると集塵ロスが大きくなり、50mmを超えて大きいと滓化不良となるからである。   The CaO-containing dephosphorizing agent for placing on the hot metal is preferably 5 to 50 mm in particle size. This is because dust collection loss increases when the particle size is less than 5 mm, and hatching failure occurs when the particle size exceeds 50 mm.

攪拌用の底吹きガスには、CO2、CO、ArおよびN2の1種、または2種以上の混合ガスを使用することができる。 As the bottom blowing gas for stirring, one kind of CO 2 , CO, Ar and N 2 , or a mixed gas of two or more kinds can be used.

底吹きガスの流量は、目標とする脱りん処理時間によって異なるものの、0.05Nm3/min/t〜0.4Nm3/min/tが望ましい。0.05Nm3/min/t未満の場合、脱りん速度が低下するおそれがある。0.4Nm3/min/tを超えて大きい場合、スラグ中(FeO)の溶銑中の[C]による還元が促進されて、脱りん率が悪化するおそれがある。 The flow rate of bottom-blown gas, although varies depending dephosphorization treatment time as a target, 0.05Nm 3 /min/t~0.4Nm 3 / min / t is desirable. If it is less than 0.05 Nm 3 / min / t, the dephosphorization rate may decrease. If it exceeds 0.4 Nm 3 / min / t, the reduction by [C] in the hot metal in the slag (FeO) is promoted, and the dephosphorization rate may deteriorate.

上吹きに使用するキャリアガスとしての酸素ガスは、工業用の純酸素が望ましい。上吹きする酸素ガスの流量は、目標とする脱りん処理時間、溶銑中の[Si]濃度および溶銑温度によって異なるものの、0.5Nm3/min/t〜3.0Nm3/min/tが望ましい。0.5Nm3/min/t未満の場合、脱りん処理時間が長くなり、溶銑の生産性が悪化するおそれがある。3.0Nm3/min/tを超えて大きいと、脱C反応が過剰に進行するおそれがある。脱りん処理後の溶銑中の[C]濃度が低くなりすぎると、次工程の脱炭処理における熱源が不足するおそれがある。 The oxygen gas as the carrier gas used for top blowing is preferably industrial pure oxygen. Flow rate of the oxygen gas to be blown on the dephosphorization treatment time as a target, although different depending on [Si] concentration and the hot metal temperature in the hot metal, it is desirable 0.5Nm 3 /min/t~3.0Nm 3 / min / t . When it is less than 0.5 Nm 3 / min / t, the dephosphorization treatment time becomes long, and the productivity of hot metal may be deteriorated. If it exceeds 3.0 Nm 3 / min / t, the de-C reaction may proceed excessively. If the [C] concentration in the hot metal after the dephosphorization process becomes too low, the heat source in the decarburization process in the next step may be insufficient.

2.上記知見の確認試験について
本発明をなす基礎となった、上記の知見を確認するための試験について説明する。この試験では、CaO含有脱りん剤を上吹きするタイミングが脱りん率に及ぼす影響を調査した。
2. About the confirmation test of the said knowledge The test for confirming said knowledge used as the foundation which makes this invention is demonstrated. In this test, the effect of the timing of top blowing the CaO-containing dephosphorizing agent on the dephosphorization rate was investigated.

2−1.試験条件
脱りん処理溶炉として、通常の上底吹き転炉を用いた。粉状のCaO含有脱りん剤の上吹きには、ストレートノズルを有するランスを用いた。粉状のCaO含有脱りん剤には、CaO含有率が90%以上であり、粒径が100メッシュ以下のものを用いた。
2-1. Test conditions A normal top-bottom blowing converter was used as the dephosphorization furnace. A lance having a straight nozzle was used for the top blowing of the powdered CaO-containing dephosphorizing agent. As the powdered CaO-containing dephosphorizing agent, one having a CaO content of 90% or more and a particle size of 100 mesh or less was used.

上吹きランスから吹き付ける粉状のCaO含有脱りん剤の質量は、この粉状のCaO含有脱りん剤と別途転炉内に投入する上置き生石灰との合計質量の40%以上とした。脱りん処理後(吹錬終了時)の配合塩基度は、2.0〜3.0に調整した。脱りん処理後の溶銑温度は、1350〜1420℃に調整した。   The mass of the powdered CaO-containing dephosphorizing agent sprayed from the top lance was set to 40% or more of the total mass of the powdered CaO-containing dephosphorizing agent and the quick calcined lime charged separately in the converter. The blending basicity after dephosphorization treatment (at the end of blowing) was adjusted to 2.0 to 3.0. The hot metal temperature after the dephosphorization treatment was adjusted to 1350 to 1420 ° C.

脱りん処理前の溶銑の[C]濃度は4.6%〜4.9%、[Si]濃度は0.19%〜0.55%、[P]濃度は0.099%〜0.124%であった。脱りん処理前の溶銑温度は1300℃〜1400℃であった。転炉に装入した溶銑の質量は約250t〜270t、スクラップの質量は約20t〜40tとした。また、脱りん剤の粒径、底吹きガスのガス種および流量等については、上記の望ましい範囲内とした。   [C] concentration of hot metal before dephosphorization is 4.6% to 4.9%, [Si] concentration is 0.19% to 0.55%, and [P] concentration is 0.099% to 0.124. %Met. The hot metal temperature before dephosphorization was 1300 ° C to 1400 ° C. The mass of the hot metal charged into the converter was about 250 to 270 t, and the scrap mass was about 20 to 40 t. In addition, the particle size of the dephosphorizing agent, the gas type and flow rate of the bottom blowing gas, and the like were within the above-described desirable ranges.

表1には、No.1〜40の試験についての、脱りん処理前の溶銑中の[C]濃度、[Si]濃度および[P]濃度、ならびに粉状のCaO含有脱りん剤の吹き付けタイミングおよび吹き付け速度を示す。   In Table 1, no. The [C] density | concentration, the [Si] density | concentration and the [P] density | concentration in the hot metal before a dephosphorization process about the test of 1-40, and the spray timing and spray speed of a powdery CaO containing dephosphorizing agent are shown.

Figure 2011006758
Figure 2011006758

2−2.試験結果
表1には、試験条件と併せて、脱りん処理後の溶銑中の[P]濃度(表1では「脱P後[P]」)、脱りん率(表1では「脱P率」)、スロッピングの発生の有無、脱りん率の評価(表1では「脱P」)を示す。脱りん率は、脱りん処理前の溶銑中の[P]濃度をP1、脱りん処理後の溶銑中の[P]濃度をP2とした場合、(P1−P2)/P1により算出した。スロッピングの欄において、○はスロッピングが発生しなかったこと、×はスロッピングが発生したことを表す。脱Pの欄において、○は脱りん率が80%を超えて大きく、評価が良好であったこと、×は脱りん率が80%以下であり、評価が不可であったことを表す。
2-2. Test results Table 1 shows the [P] concentration in the hot metal after the dephosphorization treatment (“P after deP [P]” in Table 1) and the dephosphorization rate (“DeP rate in Table 1) together with the test conditions. "), The presence or absence of slopping, and the evaluation of the dephosphorization rate (" De-P "in Table 1). The dephosphorization rate was calculated by (P1-P2) / P1, where [P] concentration in hot metal before dephosphorization treatment was P1, and [P] concentration in hot metal after dephosphorization treatment was P2. In the column of slopping, ◯ indicates that no slopping has occurred, and x indicates that slopping has occurred. In the column of de-P, ◯ indicates that the dephosphorization rate is greater than 80% and the evaluation is good, and x indicates that the dephosphorization rate is 80% or less and the evaluation is impossible.

図1は、脱りん率に及ぼすCaO含有脱りん剤の吹き付け開始タイミングの影響を示すグラフである。図1のグラフは、横軸をCaO含有脱りん剤の吹き付け開始タイミング(%)、縦軸を脱りん率(%)とした。CaO含有脱りん剤の吹き付け開始タイミングとは、上吹き酸素の供給開始からCaO含有脱りん剤の吹き付け開始までの時間(T2)が、その脱りん処理のための吹錬における全上吹き酸素の供給時間(T1)において占めた時間の比率(T2/T1)である。   FIG. 1 is a graph showing the influence of the spray start timing of the CaO-containing dephosphorizing agent on the dephosphorization rate. In the graph of FIG. 1, the horizontal axis represents the spray start timing (%) of the CaO-containing dephosphorization agent, and the vertical axis represents the dephosphorization rate (%). The start timing of spraying of the CaO-containing dephosphorizing agent is the time (T2) from the start of supplying the top-blown oxygen to the start of spraying of the CaO-containing dephosphorizing agent. It is the ratio (T2 / T1) of the time occupied in the supply time (T1).

図1のグラフでは、脱りん率に及ぼすCaO含有脱りん剤の吹き付け終了タイミングの影響を併せて示すため、表1に示すNo.1〜40の試験結果を、CaO含有脱りん剤の吹き付け終了タイミングが85%以上の場合は●、85%未満の場合は○として、層別して表した。CaO含有脱りん剤の吹き付け終了タイミングとは、上吹き酸素の供給開始からCaO含有脱りん剤の吹き付け終了までの時間(T3)が、その脱りん処理のための吹錬における全上吹き酸素の供給時間(T1)において占めた時間の比率(T3/T1)である。   In the graph of FIG. 1, in order to show together the influence of the timing of the end of spraying of the CaO-containing dephosphorizing agent on the dephosphorization rate, The test results of 1 to 40 were stratified as ● when the CaO-containing dephosphorization spray finish timing was 85% or more, and ○ when less than 85%. The end timing of spraying of the CaO-containing dephosphorizing agent is the time (T3) from the start of supplying the top-blown oxygen to the end of spraying the CaO-containing dephosphorizing agent. It is the ratio (T3 / T1) of the time occupied in the supply time (T1).

図1のグラフから、CaO含有脱りん剤の吹き付け開始タイミングが35%以下の場合には、CaO含有脱りん剤の吹き付け終了タイミングが85%以上の方が、同タイミングが85%未満の場合よりも、全体として脱りん率が良好であったことがわかる。   From the graph of FIG. 1, when the spray start timing of the CaO-containing dephosphorizing agent is 35% or less, the timing when the CaO-containing dephosphorizing spray finishes is 85% or more than when the timing is less than 85%. It can also be seen that the dephosphorization rate was good overall.

その上、CaO含有脱りん剤の吹き付け開始タイミングが35%以下の場合には、CaO含有脱りん剤の吹き付け終了タイミングが85%以上かつCaO含有脱りん剤の吹き付け開始タイミングが15%以上の条件において、70%以上の脱りん率が得られた。   In addition, when the spray start timing of the CaO-containing dephosphorizing agent is 35% or less, the spray finish timing of the CaO-containing dephosphorizing agent is 85% or more and the spray start timing of the CaO-containing dephosphorizing agent is 15% or more. , A dephosphorization rate of 70% or more was obtained.

一方、CaO含有脱りん剤の吹き付け開始タイミングが35%よりも遅かった場合には、スロッピングが発生し、かつ、そのスロッピングの影響もあって、CaO含有脱りん剤の吹き付け終了タイミングに関係なく脱りん率が70%未満であった。   On the other hand, when the spraying start timing of the CaO-containing dephosphorizing agent is later than 35%, slopping occurs, and due to the effect of the slopping, it relates to the timing of finishing the spraying of the CaO-containing dephosphorizing agent. The dephosphorization rate was less than 70%.

図2は、CaO含有脱りん剤の吹き付け終了タイミングが85%以上かつCaO含有脱りん剤の吹き付け開始タイミングが15%以上35%以下の条件において、脱りん率に及ぼすCaO含有脱りん剤の吹き付け速度の影響を示すグラフである。ここで、CaO含有脱りん剤の吹き付け速度とは、粉体の吹き付け開始から終了までの平均の吹き付け速度(溶銑1トンあたりの、単位時間あたりの吹き付け質量)を意味する。   FIG. 2 shows the spraying of the CaO-containing dephosphorizing agent on the dephosphorization rate under the conditions that the spraying end timing of the CaO-containing dephosphorizing agent is 85% or more and the spraying start timing of the CaO-containing dephosphorizing agent is 15% or more and 35% or less. It is a graph which shows the influence of speed. Here, the spraying speed of the CaO-containing dephosphorizing agent means the average spraying speed (the spraying mass per unit time per ton of hot metal) from the start to the end of the powder spraying.

図2のグラフには、表1に示す試験のうち上記タイミングの条件に合致する、No.2、3、5〜7、13、18、19、31〜35および38の結果を示した。図2のグラフ中では、これらの試験結果のCaO含有脱りん剤の吹き付け速度を、表1のデータをもとに、0.5kg/min/t未満を×、0.5〜3.0kg/min/tを黒三角、3.0kg/min/tを超えて大きい場合を△として分類した。   In the graph of FIG. The results of 2, 3, 5-7, 13, 18, 19, 31-35 and 38 were shown. In the graph of FIG. 2, the spraying speed of the CaO-containing dephosphorizing agent of these test results is shown as x below 0.5 kg / min / t based on the data in Table 1, 0.5 to 3.0 kg / Min / t was classified as a black triangle, and Δ / 3.0 kg / min / t was classified as Δ.

図2のグラフから、CaO含有脱りん剤の平均吹き付け速度が0.5〜3.0kg/min/tの範囲である場合、すなわち脱りん条件が本発明で規定する条件を全て満足する場合(No.2、3、5〜7、13、18および19)には、この範囲外の場合と比較して脱りん率が高く、80%を超えて大きい脱りん率が得られることが確認できた。また、脱りん条件が本発明で規定する条件を全て満足した試験のうち、No.5以外は溶銑中の[P]濃度が0.020%以下であった。   From the graph of FIG. 2, when the average spray rate of the CaO-containing dephosphorizing agent is in the range of 0.5 to 3.0 kg / min / t, that is, when the dephosphorizing conditions satisfy all the conditions defined in the present invention ( In Nos. 2, 3, 5-7, 13, 18 and 19), it can be confirmed that the dephosphorization rate is higher than that outside this range, and a dephosphorization rate exceeding 80% is obtained. It was. Of the tests in which the dephosphorization conditions satisfied all the conditions defined in the present invention, No. Except for 5, the [P] concentration in the hot metal was 0.020% or less.

さらに、本発明者らは、この確認試験の条件に加えて、前記〔2〕の条件、すなわち上吹き酸素の供給開始前、または上吹き酸素の供給開始後、全上吹き酸素の供給時間の20%経過時までに、取鍋スラグを添加し、かつ、上記(2)および(3)式で定義される、上吹き酸素の供給開始時から全上吹き酸素の供給時間の30%経過までの期間の経過中配合塩基度を0.5以上1.5以下となるよう調整することにより、さらに脱りん率の向上が可能であることを確認した。   Further, in addition to the conditions for the confirmation test, the present inventors set the total time of the top-blown oxygen supply time under the condition [2], that is, before the start of the top-blown oxygen supply or after the start of the top-blown oxygen feed. By the time when 20% has elapsed, ladle slag is added, and from the start of the supply of top-blown oxygen, as defined by the above formulas (2) and (3), until 30% of the total top-blown oxygen supply time has elapsed It was confirmed that the dephosphorization rate could be further improved by adjusting the blended basicity to 0.5 or more and 1.5 or less during the course of the period.

本発明の溶銑の脱りん方法の効果を確認するため、下記の脱りん処理試験を行うとともに、溶銑の脱りん率の評価を行った。   In order to confirm the effect of the hot metal dephosphorization method of the present invention, the following dephosphorization treatment test was conducted and the dephosphorization rate of the hot metal was evaluated.

1.試験条件
脱りん処理溶炉として、通常の上底吹き転炉を用いた。粉状のCaO含有脱りん剤の上吹きには、ストレートノズルを有するランスを用いた。粉状のCaO含有脱りん剤には、CaO含有率が90%以上であり、粒径が100メッシュ以下のものを用いた。
1. Test conditions A normal top-bottom blowing converter was used as the dephosphorization furnace. A lance having a straight nozzle was used for the top blowing of the powdered CaO-containing dephosphorizing agent. As the powdered CaO-containing dephosphorizing agent, one having a CaO content of 90% or more and a particle size of 100 mesh or less was used.

脱りん処理前の溶銑の[C]濃度は4.6%〜4.8%、[Si]濃度は0.11%〜0.45%、[P]濃度は0.099%〜0.122%であった。脱りん処理前の溶銑温度は1300℃〜1400℃であった。上底吹き転炉に装入した溶銑の質量は約250t〜270t、スクラップの質量は約20t〜40tとした。   [C] concentration of hot metal before dephosphorization is 4.6% to 4.8%, [Si] concentration is 0.11% to 0.45%, and [P] concentration is 0.099% to 0.122. %Met. The hot metal temperature before dephosphorization was 1300 ° C to 1400 ° C. The mass of the hot metal charged in the top-bottom blowing converter was about 250 to 270 t, and the mass of the scrap was about 20 to 40 t.

溶銑上に上置きする生石灰には、CaO純分が約92%であり、粒径が30mm以下の塊状のものを使用した。ランスから上吹きするCaO含有脱りん剤には、CaO純分が約92%であり、粒径が150μm以下の粉体生石灰を使用した。   As the quicklime placed on the hot metal, a massive lime having a CaO content of about 92% and a particle size of 30 mm or less was used. As the CaO-containing dephosphorizing agent blown up from the lance, powdered lime having a CaO pure content of about 92% and a particle size of 150 μm or less was used.

上吹きするCaO含有脱りん剤は、上吹きするCaO含有脱りん剤と別途転炉内に投入する上置き生石灰との合計質量の40%以上となるように調整した。   The CaO-containing dephosphorizing agent to be blown up was adjusted to be 40% or more of the total mass of the CaO-containing dephosphorizing agent to be blown up and the top quick lime charged separately in the converter.

Al23源として取鍋スラグを吹錬開始前または吹錬開始後2分以内に、上底吹き転炉内に投入した。取鍋スラグの投入量は、3.0〜12.0kg/tとした。 Ladle slag as an Al 2 O 3 source was put into the top-bottom blown converter before the start of blowing or within 2 minutes after the start of blowing. The input amount of the ladle slag was set to 3.0 to 12.0 kg / t.

また、固酸として使用する酸化鉄には、ミルスケール(鋼材の製造過程で、高温に加熱された鋼材の表面に発生した酸化物層)を使用した。溶銑1トンあたりの固酸の投入量は、5.1kg/t〜30.3kg/tとした。   Further, mill scale (an oxide layer generated on the surface of a steel material heated to a high temperature during the manufacturing process of the steel material) was used as the iron oxide used as the solid acid. The input amount of solid acid per ton of hot metal was 5.1 kg / t to 30.3 kg / t.

脱りん処理終了後の配合塩基度は2.0〜2.9とし、脱りん処理終了後の溶銑温度は1350℃〜1420℃とした。   The blending basicity after the dephosphorization treatment was 2.0 to 2.9, and the hot metal temperature after the dephosphorization treatment was 1350 ° C. to 1420 ° C.

以上の条件で、CaO含有脱りん剤の吹き付け開始タイミングおよび吹き付け終了タイミング、ならびにCaO含有脱りん剤の吹き付け速度をそれぞれ変更し、表2に示す条件で、溶銑の脱りん処理を実施した。   Under the above conditions, the spray start timing and spray end timing of the CaO-containing dephosphorizing agent and the spraying speed of the CaO-containing dephosphorizing agent were changed, and the hot metal dephosphorization treatment was performed under the conditions shown in Table 2.

Figure 2011006758
Figure 2011006758

表2のCaO含有脱りん剤の吹き付け開始タイミングおよび吹き付け終了タイミングならびにCaO含有脱りん剤の吹き付け速度の欄の数値に付した下線は、その数値が本発明で規定する範囲内であることを表す。   The underline attached to the numerical value in the column of the spray start timing and spray end timing of CaO-containing dephosphorizing agent and the spraying speed of CaO-containing dephosphorizing agent in Table 2 indicates that the numerical value is within the range defined by the present invention. .

2.試験結果
表2には、試験条件と併せて、脱りん処理後の溶銑中の[P]濃度(表2中では「脱P後[P]」)、脱りん率(表2中では「脱P率」)、スロッピングの発生の有無、脱りん率の評価(表2中では「脱P」)を示した。スロッピングの欄において、○はスロッピングが発生しなかったこと、×はスロッピングが発生したことを表す。脱Pの欄において、○は脱りん率が80%を超えて大きく、評価が良好であったこと、×は脱りん率が80%以下であり、評価が不可であったことを表す。
2. Test results Table 2 shows, together with the test conditions, the [P] concentration in the hot metal after the dephosphorization treatment (“P after deP” in Table 2) and the dephosphorization rate ( P rate "), the presence or absence of slopping, and the evaluation of the dephosphorization rate (" De-P "in Table 2). In the column of slopping, ◯ indicates that no slopping has occurred, and x indicates that slopping has occurred. In the column of de-P, ◯ indicates that the dephosphorization rate is greater than 80% and the evaluation is good, and x indicates that the dephosphorization rate is 80% or less and the evaluation is impossible.

比較例1、3および14は、CaO含有脱りん剤の吹き付け開始タイミングが35%以降と、本発明の規定範囲外であり、脱Si反応が終了する時間からスロッピングが発生した。また、脱りん率も64%〜70%と、80%以下であった。   In Comparative Examples 1, 3 and 14, the spraying start timing of the CaO-containing dephosphorizing agent was 35% or more, which was outside the specified range of the present invention, and slapping occurred from the time when the de-Si reaction was completed. The dephosphorization rate was 64% to 70%, which was 80% or less.

比較例2、4および9は、CaO含有脱りん剤の吹き付け速度が0.5kg/min/t未満と、本発明の規定範囲外であり、吹錬全体を通じてスロッピングが発生した。また、脱りん率も66〜79%と、80%以下であった。   In Comparative Examples 2, 4 and 9, the spraying speed of the CaO-containing dephosphorizing agent was less than 0.5 kg / min / t, which was outside the specified range of the present invention, and slopping occurred throughout the entire blowing. Further, the phosphorus removal rate was 66 to 79%, which was 80% or less.

比較例5〜8および10〜13では、スロッピングが発生しなかった。これは、吹錬中のスラグの塩基度が高く推移したためであると考えられる。しかしながら、脱りん率は65%〜78%と、80%以下であった。   In Comparative Examples 5 to 8 and 10 to 13, no slipping occurred. This is considered to be because the basicity of slag during blowing was high. However, the dephosphorization rate was 65% to 78%, which was 80% or less.

スロッピングが発生しなかった比較例のうち、比較例7、8および10のように、CaO含有脱りん剤の吹き付け速度が3.0kg/min/tを超えて大きくなると、スラグの塩基度が急激に上昇してしまい、スラグフォーミングが起こらなくなるため、スロッピングの発生は抑制される。しかし、スラグ中のT.Fe(全鉄分)が低くなるため、脱りん率は悪化する。比較例5、6および13のように、吹き付け開始タイミングが15%未満である場合も、同様の原因で、スロッピングの発生は抑制されるものの、脱りん率は悪化する。   Among the comparative examples in which slopping did not occur, as in Comparative Examples 7, 8 and 10, when the spraying speed of the CaO-containing dephosphorizing agent exceeded 3.0 kg / min / t, the basicity of the slag was increased. Since it rises rapidly and slag forming does not occur, the occurrence of slopping is suppressed. However, T. Since Fe (total iron content) becomes low, the dephosphorization rate deteriorates. Even in the case where the spray start timing is less than 15% as in Comparative Examples 5, 6 and 13, for the same reason, although the occurrence of slopping is suppressed, the dephosphorization rate deteriorates.

比較例11および12のように、吹き付け終了タイミングが85%未満である場合には、吹き付け終了時点でスラグが固化してしまい、脱りん反応が促進されなくなるため、脱りん率は低い値となる。   As in Comparative Examples 11 and 12, when the spraying end timing is less than 85%, the slag solidifies at the end of spraying and the dephosphorization reaction is not promoted, so the dephosphorization rate is low. .

本発明例1〜4においては、スロッピングの発生を抑制可能な範囲でスラブフォーミングが促進されるため、T.Feが上昇する。そのため、本発明例1〜4では、スロッピングの発生もなく、88〜92%の脱りん率が得られた。   In Examples 1 to 4 of the present invention, slab forming is promoted within a range in which the occurrence of slopping can be suppressed. Fe rises. Therefore, in Examples 1-4 of the present invention, there was no occurrence of slopping, and a dephosphorization rate of 88-92% was obtained.

通常、転炉中への固酸投入量が増加すると、スラグ中のT.Feが増加するため、脱りん処理後の溶銑中の[P]濃度が低下する。固酸投入量は、溶銑の温度や成分によって変化するので、固酸投入量によらず、安定して脱りん処理後の溶銑中の[P]濃度を低下させる必要がある。しかし、本発明例1〜4では、固酸投入量によらず、高い脱りん率が得られた。   Normally, when the amount of solid acid input into the converter increases, the T.O. Since Fe increases, the [P] concentration in the hot metal after the dephosphorization treatment decreases. Since the amount of solid acid input varies depending on the temperature and components of the hot metal, it is necessary to stably reduce the [P] concentration in the hot metal after dephosphorization regardless of the amount of solid acid input. However, in Inventive Examples 1 to 4, a high dephosphorization rate was obtained regardless of the solid acid input.

本発明の溶銑の脱りん方法によれば、吹錬中の塩基度、CaO含有脱りん剤の吹き付け速度、ならびにCaO含有脱りん剤の吹き付け開始のタイミングおよび吹き付け終了のタイミングを制御することで、蛍石等、ハロゲン系化合物の滓化促進剤を使用しないで、脱りん処理後の溶銑中のP濃度を0.020%以下にすること、または80%以上の溶銑の脱りん率を安定して達成することができる。   According to the hot metal dephosphorization method of the present invention, by controlling the basicity during blowing, the spraying speed of the CaO-containing dephosphorizing agent, the timing of the start of spraying of the CaO-containing dephosphorizing agent and the timing of the end of spraying, Without using a halogen-based compound hatching accelerator such as fluorite, the P concentration in the hot metal after dephosphorization is reduced to 0.020% or less, or the dephosphorization rate of hot metal of 80% or more is stabilized. Can be achieved.

したがって、本発明の溶銑の脱りん方法は、蛍石等の滓化促進剤を使用しない脱りん方法として広範に適用できる。   Therefore, the hot metal dephosphorization method of the present invention can be widely applied as a dephosphorization method without using a hatching accelerator such as fluorite.

Claims (2)

上底吹き転炉を用い、
粒径が100メッシュ以下でCaOを90質量%以上含有する粉状のCaO含有脱りん剤を、酸素をキャリアガスとして、上吹きランスから溶銑に吹き付けて脱りん処理するに際し、
前記吹き付ける粉状のCaO含有脱りん剤質量を、前記吹き付ける粉状のCaO含有脱りん剤と別途転炉内に投入する上置き生石灰との合計質量の40%以上とし、
かつ、下記(1)式で定義される脱りん処理後の配合塩基度を2.0〜3.0に、脱りん処理後の溶銑温度を1350℃〜1420℃に調整する、溶銑の脱りん方法であって、
前記粉状のCaO含有脱りん剤の溶銑への吹き付けを、当該脱りん処理における上吹き酸素の供給開始時から全上吹き酸素の供給時間の15〜35%経過時に開始し、前記上吹き酸素の供給開始時から全上吹き酸素の供給時間の85%〜100%経過時までの間継続し、
かつ、吹き付け継続期間中の平均脱りん剤吹き付け速度を0.5〜3.0kg/min/tとすることを特徴とする溶銑の脱りん方法。
配合塩基度=装入CaO(kg)/{装入SiO2(kg)+WSiO2(kg)} …(1)
ここで、上記(1)式中の各記号は下記の諸量を意味する。
装入CaO(kg):上吹き酸素の供給開始前、および上吹き酸素の供給中に転炉内へ添加されたCaO含有物質中に含まれるCaOの質量、
装入SiO2(kg):上吹き酸素の供給開始前、および上吹き酸素の供給中に転炉内へ添加されたSiO2含有物質中に含まれるSiO2の質量、
SiO2(kg):(溶銑およびスクラップ中に含有されたSi質量(kg))×2.14。
Using a top-bottom blow converter,
When a powdery CaO-containing dephosphorizing agent having a particle size of 100 mesh or less and containing 90% by mass or more of CaO is subjected to dephosphorization treatment by blowing oxygen from the top blowing lance onto the molten iron as a carrier gas,
The powdered CaO-containing dephosphorizing agent mass to be sprayed is 40% or more of the total mass of the powdered CaO-containing dephosphorizing agent to be sprayed and the quick calcined lime charged separately in the converter,
In addition, the mixing basicity after dephosphorization defined by the following formula (1) is adjusted to 2.0 to 3.0, and the hot metal temperature after dephosphorization is adjusted to 1350 ° C to 1420 ° C. A method,
The spraying of the powdered CaO-containing dephosphorizing agent on the hot metal starts when 15 to 35% of the supply time of the total top-blown oxygen has elapsed since the start of the top-blown oxygen supply in the dephosphorization process. Continued from the beginning of the supply of 85% to 100% of the supply time of all the top blown oxygen,
And the dephosphorization method of hot metal characterized by setting the average dephosphorizing agent spraying speed during the spraying duration to 0.5 to 3.0 kg / min / t.
Blending basicity = charged CaO (kg) / {charged SiO 2 (kg) + W SiO2 (kg)} (1)
Here, each symbol in the above formula (1) means the following quantities.
Charged CaO (kg): the mass of CaO contained in the CaO-containing material added to the converter before starting the supply of the top-blown oxygen and during the supply of the top-blown oxygen,
Charged SiO 2 (kg): top-blown oxygen supply before starting, and top-blown oxygen SiO 2 mass contained in the SiO 2 containing material which is added to the converter in the in supply,
W SiO2 (kg): (Si mass contained in hot metal and scrap (kg)) x 2.14.
上吹き酸素の供給開始前、または上吹き酸素の供給開始後、全上吹き酸素の供給時間の20%経過時までに、取鍋スラグを添加し、
下記(2)および(3)式で定義される、前記上吹き酸素の供給開始時から全上吹き酸素の供給時間の30%経過までの期間の経過中配合塩基度を、0.5以上1.5以下となるよう調整することを特徴とする、請求項1に記載の溶銑の脱りん方法。
経過中配合塩基度=経過中装入CaO(kg)/{経過中装入SiO2(kg)+MSiO2(kg)} …(2)
SiO2(kg)=WSiO2(kg)/{(QΔSi(Nm3)/η)/VO2(Nm3/s)}×t(s) …(3)
ここで、上記(2)式および(3)式中の各記号は下記の諸量を意味する。
経過中装入CaO(kg):上吹き酸素の供給開始前、および上吹き酸素の供給開始後t(s)までに転炉内へ添加されたCaO含有物物質に含まれるCaOの質量、
経過中装入SiO2(kg):上吹き酸素の供給開始前、および上吹き酸素の供給開始後t(s)までに転炉内へ添加されたSiO2含有物物質に含まれるSiO2の質量、
ΔSi(Nm3):(溶銑およびスクラップ中に含有されたSi質量(kg))×0.80、
η:供給酸素のSiとの反応効率(0.75)、
O2(Nm3/s):酸素供給速度、
t(s):上吹き酸素の供給開始時からの酸素供給時間。
Add ladle slag before the start of supply of top blown oxygen or after the start of supply of top blow oxygen until 20% of the supply time of all top blown oxygen has elapsed,
The blended basicity during the period from the start of the supply of the top blown oxygen to the passage of 30% of the supply time of all the top blown oxygen defined by the following formulas (2) and (3) is 0.5 or more and 1 It adjusts so that it may become 0.5 or less, The dephosphorization method of the hot metal according to claim 1 characterized by things.
Blending basicity during the course = charging CaO (kg) during the course / {SiO 2 (kg) during the course + M SiO2 (kg)} (2)
M SiO2 (kg) = W SiO2 (kg) / {( QΔSi (Nm 3 ) / η) / V O2 (Nm 3 / s)} × t (s) (3)
Here, each symbol in the above formulas (2) and (3) means the following quantities.
CaO charged during the course (kg): the mass of CaO contained in the CaO-containing material added into the converter before the start of the supply of the top blown oxygen and t (s) after the start of the supply of the top blown oxygen,
Elapsed NakaSoIri SiO 2 (kg): top-blown oxygen supply before starting, and top-blown oxygen supply start after t (s) of SiO 2 contained in the SiO 2 inclusions material added to the converter in the previous mass,
Q ΔSi (Nm 3 ): (mass of Si contained in hot metal and scrap (kg)) × 0.80
η: reaction efficiency of supplied oxygen with Si (0.75),
V O2 (Nm 3 / s): oxygen supply rate,
t (s): Oxygen supply time from the start of supply of top-blown oxygen.
JP2009153157A 2009-06-29 2009-06-29 How to remove hot metal Active JP5412994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009153157A JP5412994B2 (en) 2009-06-29 2009-06-29 How to remove hot metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009153157A JP5412994B2 (en) 2009-06-29 2009-06-29 How to remove hot metal

Publications (2)

Publication Number Publication Date
JP2011006758A true JP2011006758A (en) 2011-01-13
JP5412994B2 JP5412994B2 (en) 2014-02-12

Family

ID=43563729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009153157A Active JP5412994B2 (en) 2009-06-29 2009-06-29 How to remove hot metal

Country Status (1)

Country Link
JP (1) JP5412994B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106987676A (en) * 2017-02-13 2017-07-28 唐山不锈钢有限责任公司 A kind of converter basicity dynamic control method
JP2019218609A (en) * 2018-06-20 2019-12-26 日本製鉄株式会社 Dephosphorization method for molten iron

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105423A (en) * 2001-09-28 2003-04-09 Sumitomo Metal Ind Ltd Treating method for dephosphorization and desulfurization of molten iron
JP2004307944A (en) * 2003-04-08 2004-11-04 Nippon Steel Corp Pre-treatment operational method for molten iron in converter-type vessel
JP2006274349A (en) * 2005-03-29 2006-10-12 Sumitomo Metal Ind Ltd Method for refining steel
JP2008106296A (en) * 2006-10-24 2008-05-08 Sumitomo Metal Ind Ltd Method for improving removability of slag after dephosphorization, and method for dephosphorizing molten iron using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105423A (en) * 2001-09-28 2003-04-09 Sumitomo Metal Ind Ltd Treating method for dephosphorization and desulfurization of molten iron
JP2004307944A (en) * 2003-04-08 2004-11-04 Nippon Steel Corp Pre-treatment operational method for molten iron in converter-type vessel
JP2006274349A (en) * 2005-03-29 2006-10-12 Sumitomo Metal Ind Ltd Method for refining steel
JP2008106296A (en) * 2006-10-24 2008-05-08 Sumitomo Metal Ind Ltd Method for improving removability of slag after dephosphorization, and method for dephosphorizing molten iron using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106987676A (en) * 2017-02-13 2017-07-28 唐山不锈钢有限责任公司 A kind of converter basicity dynamic control method
JP2019218609A (en) * 2018-06-20 2019-12-26 日本製鉄株式会社 Dephosphorization method for molten iron

Also Published As

Publication number Publication date
JP5412994B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
JP5343506B2 (en) Hot phosphorus dephosphorization method
JP3687433B2 (en) How to remove hot metal
JP5553167B2 (en) How to remove hot metal
JP5412994B2 (en) How to remove hot metal
JP5904238B2 (en) Method of dephosphorizing hot metal in converter
JP5061545B2 (en) Hot metal dephosphorization method
JP2006009146A (en) Method for refining molten iron
JP2008063645A (en) Steelmaking method
JP2013064167A (en) Method for dephosphorizing molten iron
JP5182322B2 (en) Hot phosphorus dephosphorization method
JP2009256727A (en) Method for refining molten steel
JP3711835B2 (en) Sintering agent for hot metal dephosphorization and hot metal dephosphorization method
JP6642739B2 (en) Hot metal dephosphorization method
JP5131870B2 (en) Hot metal dephosphorization method
JP5333423B2 (en) Hot metal dephosphorization method
JP5803837B2 (en) Method of desiliconization and dephosphorization of hot metal
JP2000129329A (en) Method for dephosphorizing molten iron
JP6500476B2 (en) How to smelt molten metal
JPH11172313A (en) Method for dephosphorizing molten iron
JP7348519B2 (en) Method of dephosphorizing hot metal
JP5304816B2 (en) Manufacturing method of molten steel
JP2011149083A (en) Method for dephosphorizing molten pig iron
JP5447554B2 (en) Dephosphorization method for hot metal
JP5494170B2 (en) Hot phosphorus dephosphorization method
JP2004107735A (en) Method for efficiently dephosphorizing molten iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130912

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131028

R151 Written notification of patent or utility model registration

Ref document number: 5412994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350